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Abstract

We develop a new method to analyze the total electron content (TEC) depression in the ionosphere after a tsunami occurrence.

We employ Gaussian process regression to accurately estimate the TEC disturbance every 30 s using satellite observations from

the GNSS network, even over regions without measurements. We face multiple challenges. First, the impact of the acoustic wave

generated by a tsunami onto TEC levels is non-linear and anisotropic. Second, observation points are moving. Nevertheless, our

method always computes these volumes, along with estimated uncertainties, when applied to the 2011 Tohoku-Oki Earthquake,

even with random selections of only 5% of the 1,000 GPS Earth Observation Network System receivers considered here over

Japan. The method can warn of a tsunami event within 15 minutes of the earthquake, at high levels of confidence, even with

a sparse receiver network. Hence, it is potentially applicable worldwide using the existing GNSS network.
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Abstract. We develop a new method to analyze the total
electron content (TEC) depression in the ionosphere after a
tsunami occurrence. We employ Gaussian process regression
to accurately estimate the TEC disturbance every 30 s using
satellite observations from the GNSS network, even over re-5

gions without measurements. We face multiple challenges.
First, the impact of the acoustic wave generated by a tsunami
onto TEC levels is non-linear and anisotropic. Second, obser-
vation points are moving. Third, the measured data is not uni-
formly distributed in the targeting range. Nevertheless, our10

method always computes the electron density depression vol-
umes, along with estimated uncertainties, when applied to the
2011 Tohoku-Oki Earthquake, even with random selections
of only 5% of the 1,000 GPS Earth Observation Network
System receivers considered here over Japan. Also, the sta-15

tistically estimated TEC depression area mostly overlaps the
range of the initial tsunami, which indicates that our method
can potentially be used to estimate the initial tsunami. The
method can warn of a tsunami event within 15 minutes of the
earthquake, at high levels of confidence, even with a sparse20

receiver network. Hence, it is potentially applicable world-
wide using the existing GNSS network.

1 Introduction

The damage caused by tsunamis can be devastating. For ex-
ample, almost 20,000 people died in the tsunami following25

the 2011 Tohoku tsunami in Japan. One reason for such lev-
els of casualties is that current tsunami height predictions are

relatively unreliable, even following an identified earthquake
event, and so early warning systems are not as effective as
required. Initial sea surface deformations are typically indi- 30

rectly determined from seismological inversions of the earth-
quake source. However, some of these early estimates are
sometimes much lower than expected: for instance the 2011
Tohoku-oki earthquake initial estimated value of Mw7.9 was
used for warnings but the actual magnitude was Mw9.1. 35

Research on tsunami warnings has been conducted for a
long time, and has undergone remarkable technical evolu-
tion with the development of various technologies (Bernard
and Titov, 2015; Wächter et al., 2012). For example, in re-
cent years, tsunami warning systems have been developed for 40

tsunamis of seismic origin in and around the Mediterranean
Sea (Amato et al., 2021).

Furthermore, the initial tsunami wave cannot be precisely
inferred from seismic information alone due to the complex-
ity of the relationship between the earthquake source and the 45

initial wave. For example so-called tsunami earthquakes gen-
erate much larger tsunamis than expected from the seismic
source, e.g. the Mentawai 2010 tsunami (Lay et al., 2011;
Satake et al., 2013), whereas some powerful earthquakes
sometimes produce tsunamis much smaller than expected 50

e.g. for the 2005 Mw8.6 Nias earthquake. These deficien-
cies in the seismic approach become even greater when con-
sidering additional contributions to the tsunami wave such
as splay faults and submarine landslides not well picked up
by seismic monitoring. One could account for the uncertain- 55

ties in the earthquake source estimates and propagate these
to the initial tsunami height in real-time (Giles et al., 2021),
but these approaches cannot realistically model in 3-D and in
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real-time the seabed deformation arising from the earthquake
source due to epistemic, computational and observational in-
adequacies. In addition, in some cases, seismic gaps and co-
seismic slips do not overlap, which makes tsunami prediction
based on seismic data highly difficult (Lorito et al., 2011).5

Hence, Bernard and Titov (2015) illustrates a more advanced
warning system that uses detecting devices such as pressure
sensors and predicts tsunami heights using tsunami informa-
tion. Specifically, observations closely related to the actual
generated tsunami wave are more likely to provide more pre-10

cise warnings. One example is the successful data assimila-
tion of tsunami wave from buoys, with either dense or pos-
sibly sparse networks (Tanioka and Gusman, 2018; Wang
et al., 2019). Still, some problems remain, such as the high
maintenance cost of those devices and avoiding high ocean15

currents for installation locations (Bernard and Titov, 2015).
We explore here the use of real-time satellite data due to its
global coverage, low expense, low maintenance, and rapid
access.

A path towards accurate warnings is to estimate the20

Tsunami Ionospheric Holes (TIHs) generated in the iono-
sphere after the initial tsunami occurrence (Kamogawa et al.,
2016). The formation of a TIH, which is a decrease in total
electron content (TEC) in the ionosphere, can be explained
by the following physical mechanisms (Kamogawa et al.,25

2016; Shinagawa et al., 2013). First, a displacement of sea
surface caused by a tsunami generates acoustic waves that
propagate vertically upward and reach the ionosphere. Then,
the plasma is moved along the magnetic field by the sound
waves and the downward flow is larger than the upward flow30

partly because the gravity force causes downward motion.
The downward plasma causes recombination and ion pro-
duction is suppressed, resulting in a decrease in TECs, and
the depression in TECs is called a TIH. The TIH observed
in the ionosphere at the time of the 2011 Tohoku tsunami35

has been reproduced by performing numerical simulations
of this physical phenomenon (Shinagawa et al., 2013; Zetter-
gren et al., 2017; Zettergren and Snively, 2019).

In Japan, the GPS Earth Observation Network System
(GEONET), which is a network of more than 1,200 receivers,40

enables us to observe the behavior of the TEC in the iono-
sphere with a large number of data points. The most promi-
nent case of the TEC changes in the ionosphere observed by
GEONET is the tsunami following the 2011 Earthquake, off
of the Pacific coast of Tohoku. By focusing on the changes in45

the ionosphere after the earthquake and observing the high-
frequency component of the TEC fluctuations, Tsugawa et al.
(2011) observed a rapid decrease in TEC near the epicen-
ter approximately 7 minutes after the earthquake : the rapid
fluctuation of the high-frequency component of TEC was de-50

tected as concentric waves that radiated outward, and these
concentric waves were confirmed to have had a central point
source. Saito et al. (2011a) analyzed the unfiltered TEC fluc-
tuations in which, a significant decrease in TEC was ob-
served, with an amplitude of up to 5 TECu and an area of55

500 km. Similarly, Kakinami et al. (2012) showed that the
amplitude of the decrease in TEC exceeds 5 TECu, analyz-
ing the TEC without frequency filtering.

Furthermore, Kamogawa et al. (2016) examined the be-
havior of the TEC depression in the ionosphere after the 60

tsunami, examining the low-frequency component of TEC
in a variety of tsunami cases including the 2011 Tohoku
tsunami. They discovered a positive correlation between the
initial tsunami height and the rate of TEC depression. It is
thus likely possible to detect an initial tsunami by evaluating 65

the magnitude of TIH, which is the reduction of the TEC in
the ionosphere. However, it is still challenging to define the
scale of TIH, because even if a dense network of GNSS re-
ceivers is maintained, such as in Japan, there are areas where
the TEC cannot be measured by the network. Moreover, the 70

TEC measurement locations move in the same way as the
satellite moves, and those locations are not uniformly dis-
tributed within the target range. The shape of the TIH cannot
be completely captured from the measurement points alone.
In addition, in regions where GNSS observation networks are 75

less dense, the number of available data is even smaller, mak-
ing it very difficult to detect the TIH confidently.

To overcome these problems, we implement below a sta-
tistical method for the analysis of TEC using satellite data,
which allows us to estimate TEC values even over areas with 80

no measurements and to evaluate the whole TIH even without
a dense measurement network such as GEONET in Japan.
Our approach does not make any assumption on the nature
of the source of the tsunami. This method enables us to cal-
culate the volume (with uncertainty) of the hole as an as- 85

sessment of the scale of the TIH, and we propose to use its
volume as a measure of the TIH. We believe that estimating
the TIH provides a new and important tool for early tsunami
warning systems that is independent of seismology.

In section 2, the pre-processing and characteristics of the 90

data are described in detail to ensure that this study is repro-
ducible. In addition, we describe our surface fitting method.
In section 3, we present the results of fitting surfaces com-
puted by our new method and the time series analysis of the
TIH volume. In section 4, we conclude and mention future 95

possibilities offered by this method.

2 Data and Method

2.1 Data

In this study, TEC is calculated using GEONET data oper-
ated by the Geospatial Information Authority of Japan, and 100

the following assumptions are made in processing the data.
First, we approximate the F region, which contains many
more electrons than other regions in the ionosphere, as a thin
layer at an altitude of 300 km because the two effects of the
chemical reactions and diffusion are balanced and the elec- 105

tron density is maximized at an altitude of 300 km. The point
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where the line connecting a GNSS satellite and a receiver in-
tersects with this approximated thin layer is called the iono-
spheric point (IP). The footprint of the IP to the surface is
called the Sub-Ionospheric Point (SIP).

Two radio signals from the GNSS satellites, 1575.42 MHz5

and 1222.60 MHz, are transmitted to the GNSS receivers,
and the propagation time of the radio signals depends on the
electron density in the atmosphere. Therefore, the TEC be-
tween the GNSS satellites and the GNSS receivers can be es-
timated from the phase delay of these two types of radio sig-10

nals. This TEC, which is in the pathway between a satellite
and a receiver, is called the slant TEC, noting that in general
the line of sight to the satellite is not vertical. The slant TEC
at the time of the earthquake is used as the reference value
for the time-series slant TEC data. The time-series slant TEC15

is defined as the difference between the slant TEC and the
reference TEC value for each satellite receiver pair.

For each time-series slant TEC data, a quadratic fitting
is performed by the ordinary least-squares method for data
points from 30 minutes before to 7 minutes after the time20

of the earthquake to be consistent with the previous study
(Kamogawa et al., 2016). These fitting curves are assumed
to represent the time-series slant TEC data as it would have
been in the absence of the effect of TEC depression caused
by acoustic waves induced by the tsunami because it takes25

almost 7 minutes for acoustic waves to reach the ionosphere.
Then, we calculate the difference between the fitting

curves and the time-series slant TECs for each case. By mul-
tiplying the time series differences by the cosine of the an-
gle θ between the vertical upward direction and the straight30

line between the satellite and the receiver, we obtain ∆vTEC,
which is the variation of the vertical component of the slant
TEC time series data. The conceptual diagram of the descrip-
tion of the data processing so far is drawn in Figure 1.

Figure 1. The schematic image of TEC depression detected by a
satellite and a receiver.

To apply a low-pass filter to this ∆vTEC, we take a35

300 seconds backward moving average to obtain the low-

frequency components of ∆vTEC. Since TIH is a hole
formed by the decrease of TEC, we want to focus on the
decrease of TEC in our analysis. For this reason, in the fol-
lowing sections, we use the data of which the low-frequency 40

∆vTEC is less than 1. The low-frequency ∆vTEC is here-
inafter referred as TEC for sake of simplicity.

The unit of TEC is TECu, which is 1.0× 1016electron
m−2. Since the time resolution of the available data is the
30-second interval, we set the time of the 2011 off the Pacific 45

coast of Tohoku Earthquake occurrence as 6:46:30 (UTC)
even though the exact occurrence time is 6:46:18 (UTC) ac-
cording to the Japan Meteorological Agency.

In addition, the data includes outliers due to broken re-
ceivers. We detected them using the K-nearest neighbor al- 50

gorithm (Cover and Hart, 1967), and removed these outliers
from the data to be analyzed. The general principle of the
K-nearest neighbor algorithm is that for a given data point,
k nearest neighbor data sets are identified, and labels are as-
signed to these k nearest neighbor data sets and the given 55

data point. Generally, this method requires the definition of
the metric for measuring the distance (similarity) between
data points, and the number k needs to be chosen as well.
Here, simple but effective choices are made: the Euclidean
distance is used to measure the similarity and k is defined as 60

the square root of the number of data points in the targeting
range.

2.2 Robust Fitting Method with Gaussian Process
Regression

We analyze data over the area of 10 degrees of latitude and 10 65

degrees of longitude centered at 38.297◦N and 142.373◦E,
the location of the epicenter of the 2011 Tohoku Earthquake
as reported by the USGS. Gaussian process (GP) regression
(Rasmussen and Williams, 2006) is a method of regressing a
function Y (here the TEC as a function of horizontal coordi- 70

nates) using a flexible nonlinear model based on a set of ob-
served data. A GP is in fact a generalization of the multivari-
ate normal distribution to infinite dimensions: any marginal
distribution projected to finite dimensions is multivariate nor-
mal. The fitted GP here probabilistically represents all possi- 75

ble TEC surfaces that interpolate (up to a so-called nugget
noise level) the observations. We employ here the Matérn
kernel with an additional nugget that accounts for some noise
about the observations:

kν(xp,xq) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
, (1) 80

cov(yp,yq) = kν(xp,xq) +σ2δp,q (2)

Here, r = |xp−xq|,Kν is a modified Bessel function of the
second kind, Γ is the Gamma function, ν and l are positive
parameters, σ2 is the variance of the noise (i.e. the nugget),
and δp,q = 1 if p= q and zero otherwise. The Matérn Ker- 85

nel’s smoothness ν generates a GP whose smoothness re-
lates to ν, and should thus be carefully chosen to match the
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smoothness of the function Y . By setting ν = 5/2 , we use
a kernel function that is twice differentiable, which, in our
analysis, conforms very well to the physical phenomena of
TEC reduction.

After fitting our GP, the joint distribution of the estimates5

at any new locations are estimated (with uncertainty) even
in areas where there is no measurement data. Here we pre-
dict the TEC surface over the area in increments of 0.01 de-
grees in both latitude and longitude. However, using 1,200
receivers, it takes more than 10 minutes to fit the full data10

due to costs of O(n3) where n is the number of data points.
A stochastic partial differential equation (SPDE) approach

using the integrated nested Laplace approximation (INLA)
(Lindgren et al., 2011; Rue et al., 2009) can reduce the cost
of fitting the GP. Such an approach not only is faster but15

has demonstrated that spatial predictions are more accurate,
less uncertain and more robust than the standard covariance-
based fitting of a GP e.g. when mapping stratospheric ozone
(Chang et al., 2015). Exploiting Gaussian Markov random
fields (GMRF), the INLA-SPDE reduces costs to O(n

3
2 ) for20

two dimensions. The crucial point is that a Gaussian spatial
process with a Matérn covariance function is the stationary
solution to a certain SPDE that can be solved using finite el-
ement approaches and approximated using the INLA in the
GMRF setting. Nevertheless, some effort must be put into25

creating a reasonable mesh that solves the SPDE using fi-
nite elements, shown in Figure 2. The number of elements
in the mesh cannot be too large as the computational burden
would become too high, and not too small, as the fitting sur-
face would not be a good approximation of the actual surface.30

Using this INLA-SPDE method with about 5,200 mesh el-
ements, the average computational time to fit the full data and
predict the surface in 30-second increments from 5:30:00 to
6:30:00 becomes less than 1 minute, with a standard devi-
ation of less than 5 seconds, whereas the average compu-35

tational time based on the standard GP regression method is
more than 10 minutes, with a standard deviation of more than
2 minutes. The exact values are described in table 1.

Table 1. Computational time for the TEC surface fitting and the
TEC value estimation.

GP regression INLA-SPDE
Mean time (s) 763.9 43.1
Standard deviation time (s) 151.2 4.5

3 Results

Figure 3 displays the measured TEC data at different times.40

The red star is the location of the epicenter of the 2011 off the
Pacific coast of Tohoku Earthquake and the two large black
circles with slanting lines are outliers. It can be seen that the
measurement points are moving and are not uniformly dis-
tributed in the targeting range, which is from 33.297◦N to45

43.297◦N in latitude and from 137.373◦E to 147.373◦E in
longitude. Moreover, although it can be confirmed from pan-
els (c) and (d) that the TIH is formed, we argue that a sin-
gle data point alone such as the minimum TEC value is not
enough to evaluate the scale of TIH. Indeed, doing so does 50

not account for the width nor the anisotropy of the TIH. Fig-
ure 3 highlights the fact that in order to properly evaluate
the TIH, it is necessary to analyze the data using statistical
methods, rather than using the observed data as is.

3.1 Outlier detection 55

For the two data points that are determined to be outliers by
our method, we validate them as outliers as follows. Panel (a)
in Figure 4 is the 3D plot of the captured data by satellites
at 6:00:00, and the two red dots are the points identified as
outliers. It is clear that these two outliers have very different 60

values from their neighboring measurement points, but such
spikes do not correspond to any genuine physical variations.
These points will move further away from the surrounding
points over time, and eventually, the absolute values of the
two outliers reach over 50 TECu, which can distort the fitting 65

surface considerably and prevent proper TIH analysis.
In addition, to validate further, we create a semi-variogram

cloud. In the semi-variogram cloud, half the value of the
squared difference between feature values of two data points
is plotted against the difference in geographical space be- 70

tween the two data points. Panel (b) shows the semi-
variogram cloud of the data at 6:00:00 (UTC), where the red
points are associated with points considered as outliers by
our method. We can see that these two points present ex-
tremely different values when compared to the other mea- 75

surement points. This correspond to a clear lack of correla-
tion between these two points and the rest of the data set.

Our method identifies the receivers that correspond to the
outliers. In this case, these outliers are observed by the re-
ceiver 960588 and 950175 respectively. According to the 80

Geospatial Information Authority of Japan, either the anten-
nas of the receiver or the receiver itself was replaced by a
new one in the following year of the 2011 Tohoku-Oki earth-
quake.

In the analysis, it is inappropriate to include observations 85

measured by receivers that would have been broken. There-
fore, the exclusion of these outliers is essential to the TIH
analysis, and hence all the analyses in this study are imple-
mented after removing the outliers.

3.2 Surface fitting with full data 90

Figure 5 shows that measured TEC data, its fitting surface
and confidence interval, and 2D mapping for both full data
and sparse data at 6:08:30 (UTC). Although Figure 5 panel
(a) shows that the observed TEC decreases near the epicenter,
which is shown using a red star mark, the position where it 95

decreases the most and the range of the depression cannot be
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Figure 2. Panel (a) is the mesh elements and observed data, which is plotted with blue marker, at 6:00:00 (UC). The number of mesh
elements is about 5,200. Panel (b) is the relationship between computational time and the number of the mesh elementsto the 32 th power.
The computation time is the average value of the time at 5:46:30, 6:00:00, 6:08:00, and 6:16:00. The orange solid line is the regression line.
The coefficient is 0.000259 and the intercept is 12.044.

Figure 3. The red star is the epicenter and the two large black circles are the outliers. Panel(a), (b), (c), and (d) are the TEC data measured
by GNSS network at 5:46:30, 6:00:00, 6:08:00, and 6:16:00 (UTC) respectively. 5:46:30 was the time of the earthquake occurrence.
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Figure 4. Panel (a) is the 3D plot of the captured data. The two red dots are outliers identified by our method. Panel (b) is the semi-variogram
cloud of the data. In both (a) and (b), the data depicted and analyzed is captured by satellites at 6:00:00 (UTC).

described in detail due to the limited number of data points.
In addition, the degree of TEC decrease in panel (a) and the
three-dimensional plot of the TEC depression represented by
blue dots in panel (c) show that the TEC values gradually
changes from 0 in the area where TEC continues to be stable5

to the minimum value in the region where it is decreasing the
most. These facts indicate that, in the evaluation of TIH, it is
necessary to estimate the values of TECs where no captured
data exists, in order to use a measure that can take the overall
variation into account rather than using a single data point.10

Here, we present our method’s success in surface fitting
with uncertainty as expressed in panel (c) and (e) in which
respectively the surface and confidence interval are depicted
with red and green colours. The fitted surface in panel (c)
is an almost perfect fit to the TEC data observed by the15

satellites. We can thus confirm that the TEC values on the
surface do not change linearly from the stable area to its
minimum. This fact indicates that the TEC oscillation, which
is thought to be the effect of high-frequency components
(Tsugawa et al., 2011), remains even after implementing20

the data pre-processing, which is low pass filter. Panel (g),
which is the 2D projection of the fitting surface, shows that
our method enables us to estimate the TEC values with a
fine granularity even over the region where the data is not
detected by the GNSS satellites and receivers. The estimated25

values are computed and displayed in increments of 0.01
degrees in latitude and longitude. The result shows that our
method can capture the TIH anisotropic structure (Zettergren
and Snively, 2019). In addition, the 2d projection result
shows that the epicenter of the earthquake and the place30

where the minimum TEC value is obtained are explicitly
different. It is also found that the shape and region of the TIH
region are almost the same as those of the initial tsunami
shown by the simulation Saito et al. (2011b).

35

3.3 Surface fitting with sparse data

Unlike the case of full data displayed in panel (a), it can be
clearly seen from panel (b) that the number of data points in
the sparse data case is not sufficient to entirely analyze TIH,
where 95% of the GNSS receivers are randomly removed 40

from the observed data. This situation is highly possible in
areas where a dense network of GNSS satellites and receivers
has not been installed and hence the appropriate analysis for
TIH is almost impossible from the captured data. Neverthe-
less, our new analysis method can overcome this sparse data 45

problem effectively.
In panel (d) and (f), the fitting surface, its confidence inter-

val, and almost 5% of captured data are depicted by a red sur-
face, a green surface, and blue dots respectively. The uncer-
tainty naturally increases by comparing panel (f) with panel 50

(e) since the number of data points is smaller than that of the
original data. Despite the extremely small number of data
points, our method is successful in surface fitting and uncer-
tainty evaluation.

2D projection of the fitting surface with sparse data, in 55

panel (h), shows that the location and range of the TIH are ad-
equately estimated and consistent with those of the full data
case shown in panel (g). To be more specific, our method is
able to estimate the anisotropic TIH, which is consistent with
the location and shape of the initial tsunami. These results 60

demonstrate that our new method based on GP regression
overcomes the sparse data problem by implementing surface
fitting that adequately estimated TEC variation with uncer-
tainty and captured TIH shape.

3.4 TIH expansion 65

Since we are able to estimate all the TEC variations in the
target area, we analyze the shape of TIH in detail using the
observed data. Figure 6 displays the distribution of TEC be-
low different levels at different times. Specifically, in panels
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Figure 5. Left-hand side is for the full data and right-hand side is for the sparse data using only 5% of the GEONET receivers. (a) and (b) are
measured TEC data. (c) and (d) are measured TEC data (blue dots) and the fitting surface (red surface). (e) and (f) are measured TEC data
(blue dots) and 99% one-sided confidence interval of the fitting surface (green surface). (g) and (h) are 2D projection of the fitting surface.
All plots are for data at 6:08:30 (UTC). The fitting surface is computed using the INLA-SPDE method.
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(a1) to (a3), the shapes of TIH limited to TEC values of -
2 or less are drawn at 6:08:00, 6:12:00, and 6:16:00 (UTC).
Similarly, in panels (b1) to (b3) and panels (c1) to (c3), the
shapes of TIHs with TEC values of -3 or less and -4 or less,
respectively, are drawn. In these panels, the eight triangles,5

which are colored in pink, orange, brown, black, red, grey,
yellow, and green respectively, are the points where the TIH
below the specified level is the most expanded, located in the
south, north, west, east, northeast, southeast, northwest, and
southwest directions from the tsunami source. The tsunami10

source was set to 38◦N and 143.4◦E, which was calculated
in a previous study (Kamogawa et al., 2016) as the average
of tsunami sources obtained from previous research papers.

As shown in panels (a1) to (a3), the region with TEC less
than -2 can be seen to expand less to the north direction15

than the other directions. In addition, a TEC decrease iso-
lated from the TIH directly above the tsunami can be seen
in the southwest direction. As an overall trend, it can be said
that the expansion of TIH in the east and southwest directions
is more pronounced than in the other directions.20

However, when we observed the behavior of panels (b1) to
(b3), where the value of TEC is less than -3, we found that the
expansion of TIH is different from that of TIH with a TEC
value less than -2 described in panels (a1) to (a3). First of all,
the area of TIH has not expanded so much as that of TIH with25

TEC less than -2. In addition, the southwestward expansion is
not as large as that of TIH in panels (a1) to (a3). For example,
the eastward expansion appears to be the most pronounced,
and also the northward expansion is less pronounced than in
other directions, which are similar characteristics.30

In the case of TIH with TEC less than -4, shown in pan-
els (c1) to (c3), the westward expansion is smaller than the
expansion in the other directions. In addition, the TIH cen-
ter does not remain directly above the vicinity of the tsunami
source, but appears to be moving to the southeast. It can also35

be seen that the region where TEC is less than or equal to
-4 does not expand significantly during the period of 20 to
30 minutes after the earthquake, but it does not shrink sig-
nificantly either. In other words, when we focus on the TEC
values below -4, the shape of the TEC is almost stable.40

3.5 TIH expansion distance in each direction

From Figure 6, it can be inferred that the time evolution of the
shape of the region with small TEC variation and that with
large TEC variation do not necessarily coincide. To investi-
gate this point in more detail, we analyze the graphs with the45

distance in km plotted by time for the most expanded points
in the eight directions from the tsunami source. Here, the dis-
tance is computed by Hubeny’s distance formula. In Figure
7, the distance between the most expanded point in the eight
directions and the tsunami source when the TEC value is -250

or less (panel a), when the TEC value is -3 or less (panel b),
and when the TEC value is -4 or less (panel c) are drawn,

respectively. The eight directions are the same as in Figure 6,
and the color coding for each is also the same.

In panel (a), it can be seen that the expansion in the north- 55

east direction progresses earlier than other directions. A little
later, the eastward expansion continues to progress, and fi-
nally the eastward expansion progresses more than the north-
eastward expansion. The expansion to the south, after in-
creasing for some reason, begins to decrease, and then con- 60

tinues to expand again. Eventually, it will be as large as the
eastward expansion. The westward expansion is a discontin-
uous movement due to the definition of distance and direc-
tion in this analysis. Specifically, as depicted in panels (a2)
and (a3) of Figure 6, the region with TEC less than -2 has 65

a special shape in the western direction, and the distance in
this direction tends to be more discontinuous than the dis-
tances in other directions. What is noteworthy is the expan-
sion of the distance in the north and northwest directions. The
progress of the distances in these directions is clearly smaller 70

than those in other directions. For example, compared to the
expansion in the east direction, the distance in the north and
northwest directions is less than half.

In Panel (b), the time evolution of the distances in all di-
rections appears to be continuous. In this case, too, the ex- 75

pansion toward the northeast progresses in the initial stage,
but then the expansion toward the east progresses signifi-
cantly. The expansion in the south direction can be said to
be slower than that of the two directions mentioned above,
but it eventually expands by the same distance as that in the 80

east direction. The southeast direction shows a similar trend
to the expansion in the south direction, and although the ini-
tial expansion is not so large, the final value is large. It can be
seen that the north and southwest directions do not expand
as much even at the beginning, and then remain in a stable 85

state with almost the same value over time. The northwest
direction, as with panel (a), is one of the directions that does
not expand the most. The most significant difference between
Panel (b) and Panel (a) is the expansion in the west direction.
In Panel (a), the distance in the west direction expands dis- 90

continuously and finally reaches the highest value. On the
other hand, in Panel (b), the distance in the west direction is
the smallest in almost all time periods.

In panel (c), the time at which the image begins to ex-
pand is greatly delayed because the threshold is set even 95

smaller than in panels (a) and (b). Initially, the expansion
in the northwest and south directions is significant, and as
time passes, the expansion in the east direction becomes the
largest. Eventually, the distance in the southeast direction be-
comes larger than the distances in the other directions at the 100

end of the period, but its maximum value is smaller than the
value recorded by the east direction around 6:10:30 (UTC).
The expansions in the north and southwest directions show
almost the same development. For the northwest and west di-
rections, as in panel (b), only the smallest expansion is shown 105

during the period.
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Figure 6. Tsunami Ionospheric Hole expansion: (a1)-(a3) are plots of TIH with TEC less than or equal to -2. (b1)-(b3) and (c1)-(c3) are less
than or equal to -3 and -4 respectively. These plots are at 6:08:00, 6:12:00, and 6:16:00 (UTC). The eight triangles are south, north, west,
east, northeast, southeast, northwest, and southwest directions from the tsunami source, respectively. The colors are pink, orange, brown,
black, red, grey, yellow, and green respectively. The red star mark is the location of the epicenter.

3.6 TIH overlapping with initial tsunami

Unlike the high-frequency component of the TEC variation
(Tsugawa et al., 2011), the low-frequency component of the
TEC variation displays large drops in its values and remains
fixed within a region, as shown in Figure 6. Since this TEC5

reduction is caused by the initial tsunami, staying in the same
location is theoretically correct. As shown in Figure 8, the
initial tsunami estimated by Saito et al. (2011b) using inver-
sion analysis mostly overlaps with the TIH where the TEC
reduction is large. Although there have been studies to es-10

timate the tsunami source using TEC fluctuation data, these
estimate the tsunami source as a point (Liu et al., 2019). We
show here for the first time that our method of estimating
the entire TIH by Gaussian process regression can be used
to estimate the initial tsunami region as shown in Figure 8.15

In the case of TEC values less than -3 shown in Panel (a1),

(a2), and (a3), the TIH almost overlaps the initial tsunami ar-
eas, while (b1), (b2), and (b3) where TEC values less than -4
shows TIH stays within the initial tsunami region.

3.7 TIH volume computation 20

Figure 9 shows the time series of the TIH volume, which is
computed by trapezoidal quadrature method for the region
where the TEC estimated by the surface fitting has a negative
value. In other words, the volume between the flat surface,
that is the TEC values are equal to 0, and the fitting surface 25

which has negative value is calculated.
The main effect by acoustic waves induced by the initial

tsunami is that the reduction of TEC in the ionosphere by
moving the plasma along the magnetic field and causing re-
combination. More specifically, although there are regions 30

where the TEC increases due to complex physical mecha-
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Figure 7. Tsunami Ionospheric Hole expansion: (a) is the time series of distance from the tsunami source in 8 directions for TIH with TEC
less than or equal to -2. (b) and (c) are the time series of distance with TEC less than or equal to -3 and -4 respectively.
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Figure 8. The initial tsunami and TIHs with TEC values less than -3 or -4. The blue area is the simulated initial tsunami by inversion analysis
with 130 small basis functions implemented by Saito et al. (2011b). In Panel (a1), (a2), and (a3), the red areas are TIHs with TEC less than
-3, while the green areas in Panel (b1), (b2), and (b3) illustrate TIHs with TEC less than -4. Panel (a1) and (b1) are snapshots at 6:08:00
(UTC), (a2) and (b2) are at 6:12:00 (UTC), and (a3) and (b3) are at 6:16:00 (UTC).

Figure 9. The time series of TIH volume for full data and sparse data with one-sided confidence interval. The red solid line is the volume
calculated with fitting surface for full data.The solid yellow line and the solid blue line are one-sided 80% CI and 99% CI respectively.
The dashed lines are for sparse data with only 5% of receivers. The horizontal black line is a provisional threshold. (a) The TEC surface is
computed based on GP regression. (b) The TEC surface is computed based on GP regression using the INLA-SPDE method.
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nisms, the magnitude of the initial tsunami can be assessed
by focusing on the decrease in the TEC. Therefore, the vol-
ume of the region with negative TEC value is considered to
be related to the magnitude of the initial tsunami.

In panel (a), the surface fitting is implemented with sim-5

ple GP regression, while the INLA-SPDE method is applied
to the GP regression process in panel (b). The solid lines in
panel (a) and (b) in Figure 9 display the TIH volumes com-
puted for the full data and the dashed lines are for the sparse
data. In the case of the sparse data, we repeat 10 times the10

random selection of 5% of the receivers and the GP regres-
sion to fit the surfaces, and then calculate the average value
using each computed volume. This iterative process is in-
tended to exclude a possible influence of the random seed
used in the sparse data selection on the results. As shown in15

Figure 3, the measurement points are moving and not uni-
formly distributed in the targeting range. Still, the time series
of the computed TIH volumes looks continuous, as shown in
panel (a) and (b) in Figure 9.

The volume of the TIH begins to increase almost 10 min-20

utes after the earthquake occurrence and continues to in-
crease until about 28 minutes after the earthquake shown in
Figure 9 (a) and (b). Past study of actual post-earthquake
TEC variation data has confirmed that the percentages of
TEC depressions for huge simulated tsunami reach almost25

40 times as large as those for smaller simulated tsunami
(Kamogawa et al., 2016). Although it is impossible to un-
derstand the time evolution of TIH volume in advance since
no study has considered and analyzed the entire TEC vari-
ation in the targeting range under the extremely complex30

TIH mechanism and our new method is applied to only one
tsunami case, it is a sufficiently conservative estimate that the
threshold is set at about 10-20% of the maximum TIH vol-
ume according to the aforementioned previous study. There-
fore, if the volume exceeds this threshold, it is reasonable35

to draw the conclusion that a huge tsunami is being gener-
ated. In this analysis, a provisional threshold is set at 200,000
TECu×km2.

In the case of the full data, both panels show that the vol-
umes calculated from the fitting surface (but not accounting40

for uncertainties in the approximation) reach the threshold 1
and 2 minutes earlier respectively than the volumes of 80%
and 99% CI. Similarly, in the case of the sparse data, the time
difference is about 2 and 4 minutes respectively to reach the
threshold for the volumes computed from the fitting surface45

and both CIs. It means that thanks to our uncertainty com-
putations, making sure that a warning is at a high level of
confidence, based on data, of either 80% or 99% results in
delays for advisories of only respectively 1-2 or 2-4 minutes.

The warning system based on this method is highly fea-50

sible because the surface fitting and the estimation of the
TEC values for the full data can be processed in less than
a minute based on the INLA-SPDE method. However, in
the case of the sparse data fitting, our implementation of the
INLA-SPDE method sometimes fails due to the geometric55

meshing optimised for larger data sets, naturally where the
benefit of this method is. Nevertheless, the robustness and
feasibility of this method never deteriorate because it is pos-
sible to compute the surface and estimated values in less than
10 seconds for the sparse data case based on the standard GP 60

regression method.
Our method is the first to demonstrate that we can

calculate the volume of TIHs accurately in real-time and use
it as a measure of TIHs even when only a limited number
of measurement points are available. In addition, the time 65

series of the volumes obtained from the surface by points on
the 80% and 99% one-sided confidence intervals (CIs) of the
TEC values are also plotted in Figure 9.

4 Conclusions 70

In this paper, we compute the volume of the ionospheric
depression generated by a tsunami, in real time, and with
enough confidence to issue warnings. The surface fits the
TEC data using a Gaussian process regression after remov-
ing outliers. It enables us to estimate the TEC values over the 75

entire target area. Furthermore, uncertainty can be properly
evaluated for the estimated value of TEC according to the
density of observations.

The TIH captured by our method is located east of the epi-
center. This is consistent with the initial tsunami estimated by 80

the inversion analysis of the waveforms being east of the epi-
center (Saito et al., 2011b). Also, the estimated TIH almost
overlaps with the estimated initial tsunami area. In the iono-
sphere, the anisotropic conductance and geomagnetic field
directions theoretically cause ionospheric currents to have 85

complex shapes (Zettergren and Snively, 2019). We con-
cretely show here that the estimated TIH can be anisotropic
using observed TEC data and a statistical approach.

As shown in our results, this new method is robust as it
works in situations where measurements are not uniformly 90

distributed and moving, TIHs display anisotropy, and even
if the number of observed data points is sparse. Since our
estimates of the shape of the anisotropic TIHs reflect the sig-
nature of the initial tsunami wave, we demonstrate that using
one specific data point such as the minimum observed value 95

as a scale of a TIH (Kamogawa et al., 2016) is insufficient
to characterise the initial wave. Our computation of the vol-
ume of TIHs as a measure to assess the scale of TIHs takes
fully into account the spatial variations of the TEC depres-
sion generated by the tsunami over the domain, including any 100

anisotropy.
In addition, although there have been papers referring to

TIH based on observational data (Kakinami et al., 2012;
Kamogawa et al., 2016), it was impossible to give a detailed
explanation of the temporal variation of TIH in those pa- 105

pers due to data limitations. Using our method, however, the
detailed TIH expansion anaylsis based on different thresh-
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olds becomes possible. One of the findings is that the way in
which the region with small TEC variation expands is dra-
matically different from that with large TEC variation ex-
pands. In our study, it is confirmed that the northward ex-
pansion is smaller than the southward expansion, no mat-5

ter at which threshold level the TIH expansion is checked.
This is consistent with the outcomes in previous studies Heki
and Ping (2005) that in the northern hemisphere, the interac-
tion of the geomagnetic field with the movement of charged
particles in acoustic waves may have attenuated northward10

propagating. This result is also consistent with the simu-
lated results of previous studies using 3-dimensional simula-
tions Zettergren et al. (2017); Zettergren and Snively (2019),
where the TEC decrease in the south direction was larger
than that in the north direction. While the results of the 2D15

simulations did not show a relatively large decrease in TEC
to the south Shinagawa et al. (2013), the 3D simulations did
Zettergren et al. (2017); Zettergren and Snively (2019), and
we have demonstrated this through statistical analysis based
on satellite captured data.20

As for the high-frequency component of the TEC vari-
ability, past studies (Saito et al., 2011a) analyzing observa-
tional data have confirmed that the eastward propagation of
the TEC fluctuation is faster than the westward propagation.
Although our analysis is focused on the low-frequency com-25

ponent, we have confirmed for the first time that the west-
ward expansion of TIH with TEC less than -3, estimated by
this new method, is less rapid than the eastward expansion.
However, no similar simulation results have been reported so
far for the asymmetry in the east-west direction found in our30

analysis based on the measured data. Furthermore, the west-
ward expansion observed for TEC values below -2 cannot be
satisfactorily explained by the relevant previous studies, and
further detailed analysis is needed. Previous papers based on
observation data without imposing frequency filters mention35

that the TIH stops just above the tsunami source, but a more
detailed analysis in our study shows that TIH with a thresh-
old of TEC variation below -2 expands over time. The TIH
separated by each of these thresholds overlaps with the initial
tsunami region calculated by Inversion analysis (Saito et al.,40

2011b). In the previous study using TEC observational data
Liu et al. (2020), tsunami source is analysed, but the result
is a point estimation. On the other hand, our method can es-
timate tsunami region because it is possible to cover all the
targeting area.45

There have been attempts to construct tsunami early warn-
ing using TEC variations. Liu et al. (2019) demonstrates that
the location of the tsunami source can be estimated from 10
IPs by observing TEC variations with a high-pass filter using
methods that considers the propagation speed such as the cir-50

cle method, the ray-tracing technique, and the beam-forming
technique. However, these methods only identify the tsunami
source with uncertainty and do not take into account the scale
and range of the initial tsunami. As larger initial tsunamis
cause larger decreases in TEC (Astafyeva et al., 2013; Kamo-55

gawa et al., 2016), if a TIH volume reaches a certain thresh-
old, then it indicates that a large-scale initial tsunami has oc-
curred. Therefore, using our method, it is possible to build
an early warning system that issues a tsunami warning when
the volume of the TIH exceeds a certain threshold, taking 60

uncertainty into consideration. In our analysis, we set a pro-
visional threshold at 200,000 TECu×km2, and it is clear
that the volumes calculated using both full data and sparse
data exceed the threshold within 15 minutes after the earth-
quake occurrence, or sooner with a lower threshold. Even 65

carrying out the computations in the most exacting case, us-
ing 99% confidence intervals and sparse data (5% of the to-
tal observations) only delays the warning by around 4 min-
utes. We anticipate that more numerical work, more physical
understanding of possible natural levels of TEC variations, 70

and more data analysis will be required to establish more
finely the thresholds at which advisories can be issued, and
thus shorten the advisories to possibly 10 minutes or so. Al-
though, in some cases, tsunamis reach the coast very fast, to
apply our method there must be a minimum window of al- 75

most 10 minutes between generation and arrival. However,
this is perfectly valid for tsunami hazard assessment over
populous regions with larger arrival times, as for example
tsunami hazard assessment in the city of Victoria, British
Columbia, from a tsunami generated in the Cascadia sub- 80

duction zone (Salmanidou et al., 2021). Our implementation
on the 2011 Tohoku Earthquake in Japan demonstrates that
our method works well there. Hence it is very likely that this
method can be applied to tsunamis around the world, caused
by any kind of sources. This may enable the construction of 85

a robust worldwide tsunami early warning system using the
volume of TIHs as an index.
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