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Abstract

Satellite-atmosphere interactions cause large uncertainties in low-Earth orbit determination and prediction. Thus, knowledge of

and the ability to predict the space environment, most notably thermospheric mass density, are essential for operating satellites

in this domain. Recent progress has been made toward supplanting the existing empirical, operational methods with physics-

based data-assimilative models by accounting for the complex relationship between external drivers such as solar irradiance,

Joule, and particle heating, and their response in the upper atmosphere. Simultaneously, a new era of CubeSat constellations

is set to provide data with which to calibrate our upper-atmosphere models at higher spatial resolution and temporal cadence.

With this in mind, we provide an initial method for converting precision orbit determination (POD) solutions from global

navigation satellite system (GNSS) enabled CubeSats into timeseries of thermospheric mass density. This information is then

fused with a physics-based, data-assimilative technique to provide calibrated model densities.
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Key Points: 11 

• GNSS-enabled satellites are capable of monitoring the state of the thermosphere at much 12 

higher cadences than current operational datasets 13 

• We present an initial technique to infer neutral densities from orbit determination 14 

products of the Spire CubeSat constellation 15 

• Densities are used to drive a data-assimilative, physics-based model of the thermosphere 16 

and ionosphere during 23 Sept.–9 Dec. 2018  17 
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Abstract 18 

Satellite-atmosphere interactions cause large uncertainties in low-Earth orbit determination and 19 

prediction. Thus, knowledge of and the ability to predict the space environment, most notably 20 

thermospheric mass density, are essential for operating satellites in this domain. Recent progress 21 

has been made toward supplanting the existing empirical, operational methods with physics-22 

based data-assimilative models by accounting for the complex relationship between external 23 

drivers such as solar irradiance, Joule, and particle heating, and their response in the upper 24 

atmosphere. Simultaneously, a new era of CubeSat constellations is set to provide data with 25 

which to calibrate our upper-atmosphere models at higher spatial resolution and temporal 26 

cadence. With this in mind, we provide an initial method for converting precision orbit 27 

determination (POD) solutions from global navigation satellite system (GNSS) enabled CubeSats 28 

into timeseries of thermospheric mass density. This information is then fused with a physics-29 

based, data-assimilative technique to provide calibrated model densities.  30 

Plain Language Summary: 31 

Satellites with heights below 1,000 kilometers (or about 600 miles) travel through the upper 32 

atmosphere, which influences the path of their orbits. This influence has been monitored, in 33 

some capacity, since the first man-made orbiting satellites were launched into space, but 34 

predicting the effects is still quite difficult. Now commercial satellite “mega constellations” are 35 

being launched into the region at a fast pace, which means that all satellite paths must be known 36 

and projected into the future with great accuracy in order to avoid high-speed collisions. Using 37 

Global Positioning System (GPS) signals, this work blends information from tracking the 38 

position of the mega-constellation satellites themselves with a high-fidelity model of the upper 39 

atmosphere, in an attempt to improve our knowledge of where satellites are and where they are 40 

going to be.   41 

1 Introduction 42 

Within low-Earth orbit (LEO), a region spanning roughly 100 to 1000 km in altitude for 43 

the purposes of this paper, interactions between man-made satellites and the ambient atmosphere 44 

cause large uncertainties in the orbit determination and prediction processes (Berger et al., 2020). 45 

During episodic periods of moderate to severe space weather activity, such atmospheric drag 46 
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uncertainties can amplify by a factor of 2–5 in a matter of minutes to hours (Krauss et al., 2015; 47 

Sutton et al., 2005). These uncertainties, when combined with the steadily growing launch rate of 48 

small satellites and CubeSats and our advancing ability to track smaller and smaller objects, are 49 

poised to overwhelm the U.S. Department of Defense infrastructure currently carrying out the 50 

Detect–Track–Catalog mission. Products of this mission are pervasive across the Space 51 

Situational Awareness (SSA) and Space Traffic Management (STM) enterprises and form a 52 

critical infrastructure for nearly all space-based activities. Thus, knowledge and prediction of the 53 

space environment, particularly the neutral mass density of the thermosphere and lower 54 

exosphere, are an essential part of satellite operations within LEO. 55 

One of the major obstacles in predicting orbit trajectories hours to days in advance, and in 56 

correlating consecutive or irregular object tracking data with a particular orbiting object, comes 57 

from the legacy framework used to model the upper atmosphere’s state and its interaction with 58 

satellites and debris. The current model employed by the Combined Space Operations Center 59 

(CSpOC) and is the High Accuracy Satellite Drag Model (HASDM) (Storz et al., 2005), an 60 

empirical model that self-calibrates by ingesting ground-based tracking data of a select set of 61 

orbiting “calibration objects”—i.e., operational and defunct satellites passing through LEO with 62 

reasonably stable ballistic coefficients. While this method provides an accurate global-average 63 

snapshot of the upper atmosphere, its abilities to capture realistic spatial structure and forecast 64 

into the future are limited, particularly ahead of geomagnetic storming that has the largest impact 65 

on LEO orbital tracking. Physics-based upper atmosphere simulation approaches offer a vast 66 

potential improvement in this regard. Models in this category solve a set of Navier-Stokes fluid 67 

equations that have been appropriately tailored for use in the upper atmosphere and are therefore 68 

inherently better equipped for simulating a dynamic system response to impulsive energy input 69 

from the solar wind and coronal mass ejections. For years the computational cost of these models 70 

prohibited their use in an operational setting. However, present-day computing technology is 71 

abundantly capable of running an ensemble of such models in near real time. Instead, the 72 

primary reason that physics-based methods remain to be adopted by operational centers is the 73 

lack of robust data assimilation schemes capable of self-calibrating at levels equal to or better 74 

than those currently used in combination with empirical models. 75 

Fortunately, significant strides have been made in recent years toward supplanting 76 

empirical methods with physics-based data assimilative models of the upper atmosphere. One 77 
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such advancement has been accomplished by accounting for the complex relationship between 78 

external drivers—namely solar flux, Joule, and particle heating—and the response of the upper 79 

atmosphere by employing a new least-squares filter called the Iterative Driver Estimation and 80 

Assimilation (IDEA) technique (Sutton, 2018). The new filter operates similarly to an unscented 81 

Kalman filter (UKF) with the addition of mechanisms to accommodate the lagged response of 82 

the upper atmosphere to variations in the external drivers. Using this new technique, notable 83 

improvements in neutral density specification—even during a geomagnetic storm—have already 84 

been demonstrated (Sutton, 2018), which can help to lower the uncertainty of orbit determination 85 

and prediction across the LEO catalog, thereby increasing the efficacy of STM activities, 86 

including satellite conjunction assessment and collision avoidance. In addition, the emergence of 87 

large constellations of commercial and academic CubeSats over the past 5 years brings with it an 88 

excellent opportunity. Most newer SmallSats and CubeSats are equipped with Global Navigation 89 

Satellite System (GNSS) devices, making them valuable sources of Precision Orbit 90 

Determination (POD) information. Many are also equipped with the ability to monitor their 91 

attitude, allowing the construction of an accurate force model. This information can be combined 92 

to initialize and constrain models of the upper atmosphere.  93 

In order to track the state of the upper atmosphere with reasonable fidelity, the HASDM 94 

model ingests observations from ground-based radar tracks of known objects using a similar 95 

technique to the one we present here. However, in order to make strides in specifying and 96 

predicting the state of the thermosphere, new data sets with increased spatial resolution, temporal 97 

cadence, and global coverage are needed (Bruinsma, Fedrizzi, et al., 2021). Satellite-based 98 

GNSS observations are capable of describing the space environment at a much higher spatial 99 

resolution and temporal cadence. Whereas the conventional radar-derived, satellite-drag data sets 100 

operate on a multi-orbit to multi-day cadence, we will show that the GNSS-derived data sets are 101 

capable of operating at a cadence of a single orbital period, i.e., on the order of hours rather than 102 

days. Even higher cadences may also be possible but will require further development. The 103 

remainder of the paper details our efforts to use the new set of information provided by CubeSats 104 

to drive a physics-based, data-assimilative approach to simulating atmospheric densities in LEO.  105 
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2 Datasets 106 

2.1 Spire CubeSats 107 

Spire operates a constellation of over 100 CubeSats in LEO with altitudes ranging from 108 

400–650 km and inclinations spanning the globe, from equatorial to polar orbits. Figure 1 gives a 109 

snapshot of the distribution of altitude and orbit inclination of Spire CubeSats as of late January 110 

2021.  111 

 112 

 113 

Figure 1. Current coverage of altitude versus inclination for the Spire constellation of CubeSats 114 

(as of 26 January 2021). The error bars show the perigee-to-apogee range of altitudes. CubeSats 115 

are color coded by common launch dates with the total number of CubeSats in each launch group 116 

indicated in parentheses. The 21 May 2018 launch date is emphasized to indicate the launch date 117 

of the three satellites used in this study. 118 

The data sets used in this study were provided by Spire Global as part of the NASA 119 

Commercial SmallSat Data Pilot Program and cover the period of 23 Sept.–9 Dec. 2018. For the 120 

purposes of our work, the following data products were utilized: 121 

• POD solution ephemeris derived from GNSS tracking 122 

• Satellite pointing in the form of attitude quaternions 123 

• Satellite geometry model 124 
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POD solutions were typically available during the duty cycle of the GNSS/Radio 125 

Occultation (RO) instrument. For the 2018 dataset, duty cycles were in the range of 30–40% of 126 

the time, usually concentrated along 40- to 60-minute segments of an orbit (referred to hereafter 127 

as an orbit arc). This efficiency has increased with more recent CubeSat builds such that current 128 

duty cycles are beginning to approach 100%. For the current data set, ephemeris from each orbit 129 

arc were estimated using the RTOrb software (https://gps-130 

solutions.com/brochures/GPSS_Brochure_RTOrb_ Nov_2011.pdf). This software implements a 131 

Kalman filter-based approach to estimate orbit ephemeris. As configured for the current dataset, 132 

RTOrb considers Earth’s gravity up to degree and order 120 from the EIGEN-2 model (Reigber 133 

et al., 2003), Luni-Solar 3rd body perturbations, atmospheric drag assuming densities from the 134 

Mass Spectrometer Incoherent Scatter extension (MSISe-90) model (Hedin, 1991), and solar 135 

radiation pressure (SRP) with cylindrical Earth-shadowing effects. The latter two effects use a 136 

cannonball approach in which coefficients of drag and reflectivity are estimated within each arc, 137 

respectively, along with the orbit ephemeris. The treatment of drag and SRP in the POD process 138 

is not to be confused with the force model described later in this section; instead, the parameters 139 

estimated here have little bearing on our calculations of orbit energy.  140 

The attitude of the Spire CubeSats is represented by a quaternion describing the 141 

transformation from the body-fixed coordinate system (see Figure 4 below) to the vehicle 142 

velocity/local horizontal (VVLH) orbit-based coordinate system at a given instance in time. 143 

These data enable the orientation of the satellite with respect to the final coordinate system 144 

introduced in Section 3.2. In the initial phases of the NASA Data Pilot assessment, quaternions 145 

were provided at an approximate cadence of 10 seconds during the duty cycle of the GNSS/RO 146 

receiver, with nothing available outside of the duty cycle. However, it was realized early on in 147 

the project that, due to frequent orientation maneuvers, the accuracy of the retrieved neutral 148 

densities would be limited by any breaks in continuity of satellite attitude data (see Section 3.3 149 

for further details). The attitude mode of the CubeSats frequently switched between an observing 150 

mode aligning GNSS/RO antennas along track and a mode that maximizes the amount of solar 151 

flux incident on the solar panels. Because these changes in orientation modify the integrated 152 

effect that atmospheric drag has on the orbit parameters, the orientation must be monitored 153 

constantly in order to convert orbital energy loss rates to an atmospheric density. Spire has since 154 

updated their processing chain for the entire fleet to ensure that a continuous stream of attitude 155 
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quaternions is available for any datasets originating after 2018. However, for the 2018 data set, 156 

processing was limited to a small subset of three CubeSats from Spire Global’s constellation for 157 

which attitude data had been continuously downlinked and archived. These satellites, which will 158 

be used throughout the remainder of the paper, are referred to by Spire’s internal satellite ID 159 

numbers: 83, 84, and 85. These three CubeSats trace back to a common launch on 21 May 2018 160 

into a 51.6° inclination orbit. During the time period of interest these satellites orbited between 161 

the altitudes of 467–492 km and remained within 800–2100 km (or 2–4.5 minutes) of one 162 

another along the orbit track. Additional properties and designations of these CubeSats can be 163 

found in Table 1.  164 

Table 1. Properties of Spire CubeSats used in this study. Note: the last three columns apply to all 165 

three satellites 166 

Spire ID NORAD ID COSPAR ID 
Perigee/Apogee 

Altitude (km) 

Inclination 

(degrees) 

S/C Mass 

(g) 

 

83 43560 2018-046G 

467–492 51.6 4933 ± 4 

 

84 43559 2018-046F 

85 43558 2018-046E 

Figure 2 shows the geometry for the three Spire CubeSats. The GNSS/POD antenna 167 

nominally points in the zenith direction while the front radio occultation (FRO) antenna 168 

generally points along the in-track or anti-in-track directions when the satellite is recording RO 169 

data. When the RO instrument is cycled off, the satellite reorients in such a way as to maximize 170 

illumination of the solar panels.  171 
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 172 

Figure 2. Computer model of Spire’s version 3.3 Lemur CubeSat. 173 

2.2 Swarm Satellite Mission 174 

As an independent data source, neutral densities from the Swarm satellite mission (Friis-175 

Christensen et al., 2008) are used to compare with the assimilated model density output at 176 

locations that differ from the Spire dataset. Anomalies in the Swarm accelerometer data were 177 

noticed early in the mission (Siemes et al., 2016), preventing their use for neutral density 178 

determination using established methods (e.g., Bruinsma et al., 2004; Doornbos et al., 2010; 179 

Sutton et al., 2007). Instead, GNSS tracking data are used to produce POD solutions of neutral 180 

density for the Swarm satellites at a temporal resolution of about 20 minutes, which is then used 181 

to constrain the uncertainties in the accelerometer measuremens (van den IJssel et al., 2020).  182 

The Swarm mission consists of three satellites: Swarm-A, -B, and -C. Swarm-A and -C 183 

reside in essentially the same near-polar orbit, while the orbit of Swarm-B is higher in altitude 184 

and slightly lower in inclination. Of the three satellites, accelerometer data is only currently 185 

available from Swarm-C. This data, referred to as Swarm-C ACC, spans the altitude range of 186 

437–468 km during the 2018 period of interest. During this period, anomalies in the data can 187 

cause the densities to attain non-physical values; these are removed from data prior to 188 

performing any comparison. In addition, orbital averages of the Swarm-C densities are taken and 189 

compared with a corresponding orbital average of model densities in order to mitigate any 190 

spurious errors in the accelerometer data. The orbital plane of Swarm-C precesses 12 hours with 191 

respect to local time approximately every 133 days of the mission. Because the lower-inclination 192 

Spire CubeSats precess much faster (i.e., 12 hours of local-time precession every 31.25 days), 193 
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Swarm-C data allows us to assess the accuracy of the assimilation model for local times and 194 

locations far away from the ingested Spire data over the 2018 period of interest.  195 

3 Methods 196 

3.1 Orbital Energy Determination 197 

To drive our data assimilative process, we use information from GNSS measurements 198 

taken aboard CubeSats. There are several methods available to infer neutral densities from orbit 199 

positioning information. For instance, this can be done by estimating a scaling correction for a 200 

density model within a POD solution using two-line element (TLE, e.g., Brandt et al., 2020) sets 201 

or GNSS tracking (e.g., van den IJssel & Visser, 2007) . We choose instead to employ a model-202 

agnostic energy tracking method that uses the existing POD solutions routinely obtained by 203 

Spire. The first step is to calculate the orbital energy at each available ephemeris data point and 204 

track the change in this quantity between subsequent orbits. For an Earth-orbiting satellite, this 205 

energy can be approximated in the following way: 206 

𝜉 = !!

"
− 𝜔#$%&'" (!)*!

"
− +

%
− 𝑈,-,./'0%12$3  (1) 207 

where 𝑟 = '𝑥" + 𝑦" + 𝑧" and 𝑣 are the satellite's respective position and velocity in an Earth-208 

centered Earth-fixed (ECEF) coordinate frame, 𝜔#$%&' is the rotation rate of the Earth, 𝜇 is the 209 

gravitational parameter for the Earth, and 𝑈,-,./'0%12$3 is a potential function describing 210 

deviations in Earth’s gravitational field from the purely spherical (i.e., −𝜇/𝑟) term. 𝑈,-,./'0%12$3 211 

is most commonly expressed as a spherical harmonic expansion of degree, 𝑛, and order, 𝑚. In 212 

the absence of nonconservative forces (e.g., atmospheric drag or solar radiation pressure) or any 213 

additional perturbing conservative forces not accounted for in Equation 1 (e.g., 3rd body 214 

attraction, solid Earth tides, ocean tides, atmospheric tides, etc.), 𝜉 is a conserved quantity along 215 

the orbit of a satellite.  216 

We have found that the choice of Earth-fixed coordinates becomes important when 217 

considering the non-spherical gravity terms in the energy equation (i.e., Equation 1), particularly 218 

any non-zonal terms (i.e., 𝑚 > 0), which depend on longitude. In ECEF coordinates, 219 

𝑈,-,./'0%12$3 	 is clearly a function of position alone. The alternate formulation of the energy 220 

equation in an inertial coordinate frame, however, would require 𝑈,-,./'0%12$3 	 to be a function 221 
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of both position and time, violating the assumptions underlying a potential function and its use in 222 

the energy equation. As a result, the formulation of energy in an inertial coordinate frame does 223 

not remain constant along an orbit when considering non-zonal terms—even in the absence of 224 

nonconservative forces—and leads to twice-daily oscillations of approximately ±130–140 J/kg/s 225 

or m2/s3 for the orbits analyzed in this paper, or equivalently, about ±30–35 m in the semi-major 226 

axis. Much of this can be directly attributed to the 𝑛 = 𝑚 = 2 gravitational potential term, which 227 

is the largest non-zonal term in 𝑈,-,./'0%12$3. The 3rd body attraction from the sun and moon 228 

depend on time in both Earth-fixed or inertial coordinates, although much less so in the latter. 229 

While fairly minor, the work done by 3rd body attraction on a satellite’s orbit can be taken into 230 

account over time using the following equation:  231 

Δ𝜉45 = ∫ 𝑎⃑45(𝑟, 𝑡) ∙ 𝑣⃑	𝑑𝑡
&"
&#

 (2) 232 

where Δξ45 is the difference in orbital energy due to 3rd body acceleration between times 𝑡6 and 233 

𝑡7; 𝑟 and 𝑣⃑ are the position and velocity vectors in ECEF coordinates; and 𝑎⃑45 is the acceleration 234 

vector of the satellite caused by the gravitational attraction from the sun and moon, also 235 

expressed in the ECEF reference frame. In contrast to Equation 1, continuous knowledge of the 236 

satellite ephemeris is required in order to carry out the integral calculation of Equation 2. While 237 

this is not available directly from the GNSS measurements due to duty cycling, it can be 238 

obtained at sufficient precision using Two-Line Element (TLE) sets along with the Simplified 239 

General Perturbations (SGP4) satellite propagator, both available at https://space-track.org. The 240 

continuous position of the sun and moon were obtained from JPL’s planetary and lunar 241 

ephemeris product (Park et al., 2021 and references therein). 242 

If we describe the Earth’s gravity field using the two-body approximation—ignoring for a 243 

moment the non-spherical and 3rd body contributions—the energy dissipation due to atmospheric 244 

drag remains obscured by the large variations in energy due to Earth’s J2 oblateness term (i.e., 245 

𝑛 = 2, 𝑚 = 0) and higher-order gravitational terms. The light blue data points in Figure 3 show 246 

this simplified calculation of orbital energy for a single CubeSat from Spire Global's 247 

constellation (satellite 83) during the period spanning 23 Sept.–9 Dec. 2018. However, when we 248 

account for a spherical harmonic gravity field up to degree and order 36 and 3rd body effects, the 249 

change in energy caused by atmospheric drag is more readily isolated from variations in the 250 

gravity field as depicted by the dark blue curve. 251 
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 252 

Figure 3. Keplerian orbital energy (light blue curve, i.e., ignoring the 𝑈,-,./'0%12$3 term from 253 

Equation 1) and total orbital energy (dark blue curve, i.e., including the 𝑈,-,./'0%12$3 term from 254 

Equation 1) for Spire CubeSat 83 during the period of 23 Sept.–9 Dec. 2018. 255 

Figure 4 depicts the orbital energy of all three CubeSats over the same time span as 256 

Figure 3 but zoomed in to reveal variations in the rate of decay. To conform with the POD 257 

solutions, we have used the non-spherical terms specified by the EIGEN-2 gravity model 258 

(Reigber et al., 2003). We found that, for our purposes, including terms of degree or order higher 259 

than 36 yielded diminishing returns. 260 
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 261 

Figure 4. Orbital energy (i.e., including the 𝑈,-,./'0%12$3 term from Equation 1) for Spire 262 

CubeSats 83, 84, and 85 during the period of 23 Sept.–9 Dec. 2018. The three timeseries lie 263 

approximately on top of one another, given that they reside in nearly the same orbit and therefore 264 

experience very similar accelerations.  265 

During this period of time, the energy curves track one another quite well due, in part, to 266 

the fact that all three CubeSats occupy essentially the same orbital plane, with separations along 267 

the orbit track in the range of 800–2100 km (or 2–4.5 minutes). Changes in energy were on the 268 

order of 5000 m2/s2 over the entire period of analysis, or about 65 m2/s2 per day. This is 269 

equivalent to a change in the semi-major axis of 1.2 km total, or about 15 meters per day. These 270 

magnitudes are specific to the size, shape and ballistic coefficients of the satellites, as well as the 271 

altitude and prevailing geophysical conditions sampled during the time period of interest. After 272 

applying a simple filter to reject erroneous arcs (note the obvious outliers on day 273, 320, and 273 

342 in Figure 4), the noise level of these timeseries of orbital energy becomes low enough to 274 

derive an effective energy dissipation rate between subsequent orbit arcs. 275 

3.2 Satellite Force Model 276 

To interpret the timeseries of energy from Figure 4 in terms of the behavior of the upper 277 

atmosphere, it is necessary to understand how the satellite drag interaction depends on 278 

atmospheric density. The rate at which energy is lost from a satellite’s orbit to the atmosphere 279 

via the drag force, or the energy dissipation rate (EDR), can be related to atmospheric mass 280 

density through the following equation:  281 
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𝐸𝐷𝑅 ≡ − 89
8&
= 7

":
𝐶;𝐴%0<𝜌𝑣4  (3) 282 

where 𝐶; is the satellite’s coefficient of drag, 𝐴%0< is the cross-sectional area of the satellite 283 

projected in the direction of 𝑣, the velocity of the satellite in the ECEF coordinate frame, 𝑚 is 284 

the satellite mass, 𝜌 is the mass density. Winds are neglected in this equation, however, the co-285 

rotation of the atmosphere with the Earth is automatically considered through the use of ECEF 286 

coordinates. The force model of Sutton (2009) is used to compute the coefficient of drag. From 287 

their Equation 7, we consider the transfer of momentum between incoming atmospheric particles 288 

and the satellite surface assuming that particles are accommodated to the approximate surface 289 

temperature of the satellite using an accommodation coefficient of 𝛼 = 0.93. While the 290 

accommodation coefficient is kept constant, both 𝐶; and 𝐴%0< can vary significantly over the 291 

course of an orbit due to changes in the attitude of the satellite.  292 

In order to compare two subsequent observations of orbital energy 𝜉6 and 𝜉7 calculated 293 

by Equations 1 and 2 at their respective epochs 𝑡6 and 𝑡7, Equation 3 can be integrated to find the 294 

dependence on atmospheric density:  295 

𝜉7 − 𝜉6 = − 7
": ∫ 𝐶;𝐴%0<𝜌𝑣4𝑑𝑡

&"
&#

= − 7
":
𝜌0<< ∫ 𝐶;𝐴%0<𝑣4𝑑𝑡

&"
&#

  (4) 296 

Solving for 𝜌0<<, similar in theme to the work of Picone (2005), gives an effective mass 297 

density between 𝑡6 and 𝑡7 along the orbit of the satellite.  298 

Figure 5 shows the simulated change in orbital energy normalized by neutral density 299 

(𝐸𝐷𝑅/𝜌) as given by Equation 3 for one of Spire Global’s CubeSats according to its orientation 300 

over the course of a single day. This parameter, which we can refer to simply as the force model, 301 

is the conversion factor between the observed energy dissipation rate and atmospheric density. 302 

The periodic shift between pointing modes—one optimized for RO sensing and the other for 303 

solar panel illumination—can be clearly seen in Figure 5. Accounting for the large variations in 304 

the force model becomes crucial because a satellite can dwell in a given pointing mode for a 305 

significant fraction of an orbit, and this dwell time is not necessarily consistent between orbits. If 306 

neglected, these approximate factor-of-two variations in the force model have the potential of 307 

causing errors of similar magnitude in the density retrievals.  308 
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 309 

Figure 5. Force model for Spire CubeSat 83 for a single day starting early on 7 Nov. The force 310 

model is the conversion factor between the observed energy dissipation rate and atmospheric 311 

density. 312 

3.3 Data Assimilation 313 

After processing the GNSS measurements and applying the force model described above, 314 

the final step in our process is to ingest these observations into a data assimilative framework to 315 

correct the global upper atmospheric density. Here we briefly describe the Iterative Driver 316 

Estimation and Assimilation (IDEA) technique, based on the method of Sutton (2018). This 317 

method accounts for the complex relationship between external drivers—namely solar flux and 318 

geomagnetic heating—and the resulting response of the upper atmosphere. In general, these 319 

drivers are poorly monitored and often rely on proxies that only very approximately represent the 320 

physical mechanisms that heat and energize the upper atmosphere. To represent the absorption of 321 

solar extreme and far ultraviolet (EUV/FUV) irradiance, the solar radio flux at 10.7 cm 322 

wavelength (F10.7) is often used as a proxy. In terms of the solar wind–magnetosphere–323 

ionosphere–thermosphere interaction, the geomagnetic Kp index is often used to characterize 324 

heating and momentum exchange at high latitudes. Empirical formulas, such as the Heelis et al. 325 

(1982) convection electric field model, are then used to help convert these proxies into 326 

atmospheric heating, incurring further uncertainty into the overall modeling process. The 327 

reliance on these proxies and their empirical coupling functions leads to large uncertainties when 328 

driving a model of the thermosphere.  329 
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IDEA estimates corrections to the external forcing parameters and their empirical 330 

coupling functions in order to bring a physics-based model into better agreement with direct 331 

observations of the thermosphere. The discrepancies between model output and observations are 332 

minimized by employing a least-squares filter similar in nature to an unscented Kalman filter 333 

(UKF). Figure 6 compares the IDEA process (right) to that of a typical ensemble Kalman filter 334 

(EnKF) configured for ionosphere/thermosphere modeling. IDEA runs several versions of the 335 

thermosphere model, each experiencing slightly different external driving conditions.  336 

In the current implementation of IDEA, the Thermosphere–Ionosphere–Electrodynamics 337 

General Circulation Model (TIEGCM) (Qian et al., 2014; Richmond et al., 1992; Sutton et al., 338 

2015) is used as the physics-based environment model. TIEGCM is a finite-difference solution to 339 

the conservation equations of momentum, mass, and energy describing the upper atmosphere in 340 

the presence of momentum and energy sources. TIEGCM accounts for the dominant features in 341 

the upper atmosphere of molecular diffusion and circulation, solar heating in the EUV and FUV 342 

bands, and high-latitude auroral heating. TIEGCM also has the ability to simulate the ionosphere 343 

and associated electrodynamic coupling between the neutral and plasma environment in a self-344 

consistent manner at middle and low latitudes. The model spans from 97 km at its lower 345 

boundary to between 450 and 700 km at its upper boundary, mostly depending on the level of 346 

solar flux. Migrating diurnal and semi-diurnal tides are specified at the lower boundary in a 347 

climatological sense. Other dynamic features of the lower and middle atmosphere are ignored, 348 

which could lead to uncertainty when estimating corrections to the external forcing.  349 

In terms of data assimilation, additional measures must be taken to deal with the lagged 350 

response of the upper atmosphere to variations in the external drivers. It is well known that the 351 

response of the thermosphere can take on a large range of timescales depending on several 352 

factors, height being among the largest contributors. In order for an estimated correction of the 353 

external forcing parameters to have a timely effect on the model, the time-lagged response must 354 

be accounted for. IDEA abandons the sequential filtering techniques typically used for 355 

ionosphere/thermosphere applications (e.g., M. V. Codrescu et al., 2004, 2021; S. M. Codrescu 356 

et al., 2018; Fuller-Rowell et al., 2004; Godinez et al., 2015; Matsuo et al., 2012, 2013; Minter et 357 

al., 2004; Morozov et al., 2013; Murray et al., 2015). Instead, an iterative approach is adopted so 358 

that estimated forcing parameters can be re-applied to a simulation over the course of a day so 359 



manuscript submitted to Space Weather 

 

that the model can respond to forcing (refer to the additional feedback loop on the right side of 360 

Figure 6).  361 

 362 

Figure 6. Comparison of a typical Ensemble Kalman Filter as configured for use with a time-363 

dependent thermospheric model (left) with the IDEA technique (right; features in color differ 364 

from their counterparts in the EnKF flow chart on the left), where t0 and t1 are the respective start 365 

and end times of the model runs during a given data assimilation cycle (adapted from Sutton, 366 

2018). 367 

In Sutton (2018), satellite-borne accelerometer observations of thermosphere density 368 

were used to calibrate the external forcing parameters driving the TIEGCM. Here we use EDRs 369 

based on POD ephemeris derived from GNSS measurements from 3 satellites from Spire 370 

Global’s constellation of CubeSats. A forward model, based on output from the TIEGCM, the 371 

satellite geometry model shown in Figure 2, and the force model of Sutton (2009), is used to 372 

synthesize orbital energy dissipation for each satellite according to Equation 4. Accelerometer 373 

instruments operate at high cadence (0.1–1 Hz) equating to a resolution of 7–70 km along the 374 
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satellite’s orbit. The GNSS/POD data set yields a measurement of density more on the order of 375 

once per orbit arc (possibly higher with additional development). This difference in information 376 

content between data sets necessitates additional consideration when designing a thermospheric 377 

estimation filter. In this case, we found that the observability of IDEA was limited to estimation 378 

of the most recent daily F10.7 value and the most recent 6-hourly effective Kp value for each 379 

assimilation cycle. The configuration used in this study iterates 3 times per assimilation cycle 380 

and uses five 48-core nodes of a high-performance computer (HPC) to advance by 6 hours to the 381 

next assimilation cycle in less than 3 minutes (i.e., >120x realtime). For comparison, Sutton 382 

(2018) found it possible to estimate the most recent daily F10.7 value and the three most recent 3-383 

hourly Kp values for each assimilation cycle when using the high-resolution accelerometer-384 

derived density data set. However, it is expected that improvements in observability will be 385 

enabled through the use of more CubeSats in the estimation process. And considering the greater 386 

coverage of CubeSats in altitude and local time, accuracy could very well exceed accelerometer-387 

based density model corrections.  388 

4 Results and Discussion 389 

The period spanning 23 Sept.–9 Dec. 2018 (days 266–343) of our study was marked with 390 

very low activity in terms of the magnitude and variation of solar EUV and FUV, as 391 

approximated by measurements of the 10.7 cm solar radio flux (F10.7; top panel of Figure 7). 392 

Note that F10.7 has an approximate lower bound of 66 solar flux units (sfu) at solar minimum and 393 

attains values above 200 during solar maximum. During the latter, 27-day solar rotational 394 

modulation can also produce large swings in F10.7, causing  large signals in the thermospheric 395 

density. Because the available data for this studyfalls firmly within solar minimum, the 396 

variations seen here are quite small. In terms of geomagnetic activity, however, there were two 397 

minor-to-moderate disturbances on 7 Oct. (day 280) and 4 Nov. (day 308) as shown by the 3-398 

hourly Kp geomagnetic index (lower panel of Figure 7).   399 
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 400 

    401 

Figure 7. Top:  observed solar F10.7 radio flux. The grey curve is the daily measured value from 402 

the Ottawa observatory normalized to 1 AU sun-earth distance; the black curve is an 81-day (~3 403 

solar rotation) centered average. Bottom:  the 3-hourly planetary magnetic index Kp. Both panels 404 

span the period of interest 23 Sept.–9 Dec. 2018. 405 

Given observations of orbital variations and an appropriate force model as discussed in 406 

the previous section, an effective atmospheric mass density can be inferred between consecutive 407 

orbit arcs. Figure 8 shows such neutral mass densities derived from the three CubeSats (blue, red 408 

and yellow curves) of Spire’s constellation. The cadence of these densities is approximately one 409 

measurement for each consecutive set of orbit arcs. For the time period studied, this equates to a 410 

cadence of about 2–2.5 hours on average. This cadence depends on the instrument duty cycle, 411 

which has steadily improved since 2018. A higher cadence may be possible in the future as duty 412 

cycle improves, however, the exact allowable cadence will also depend on the altitude of the 413 

satellite and the noise errors of the GNSS measurements. HASDM output is also shown with the 414 

black curve for reference. This empirical model is calibrated by ground-based radar tracking 415 

observations of approximately 70–90 orbiting objects. Because the individual tracking 416 

observations are sparse—relative to those available from GNSS—densities derived from this 417 

technique have an effective cadence of several hours to several days (Storz et al., 2005).  418 
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 419 

Figure 8. Neutral mass densities derived from Spire CubeSats 83–85. Also shown is output from 420 

HASDM as sampled on the orbit of satellite 84. The values plotted are the effective densities 421 

(see the right-hand side of Equation 4) between subsequent orbit arcs. 422 

The CubeSat-derived densities maintain good agreement with one another, given the 423 

close proximity of all three spire satellites within 800–2100 km (or 2–4.5 minutes) along the 424 

orbit track. Agreement with HASDM is also reasonable during this time period. As Figure 7 425 

shows, there are several minor to moderate variations in Kp over the time interval. The 426 

signatures of these disturbances are also seen in the neutral densities of Figure 8. There are 427 

several deviations between data and model though, most notably around days 270, 290, and 300, 428 

where CubeSat-derived densities are significantly lower than HASDM. We have not yet 429 

concluded whether model or data are in error during these intervals, since very little ground-truth 430 

data exists during this period for validation. Another period of discrepancy exists around the 431 

geomagnetic disturbance on day 280, where CubeSat-derived densities experience a much larger 432 

storm-time increase. While it is possible that the higher cadence GNSS densities are capturing 433 

actual storm dynamics better than HASDM, we note that POD data were less frequent during this 434 

particular event than during other times. Additionally, attitude data was unavailable for satellite 435 

83 over much of the disturbance, particularly days 282–285. The discrepancy in amplitude 436 

during this event could also be a function of the higher cadence of the CubeSat POD data fit 437 

spans (5–6 hours during this event) relative to that of the HASDM data fit spans (~1 day or 438 

more), in which case, the CubeSat-derived densities would be expected to more accurately 439 

resolve the storm-time disturbance. 440 
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In general, some error in the observations and modeled output is expected, of 441 

instrumental, data sampling, and geophysical origins. Part of this error is caused by variations in 442 

sampling location for a given data point. In other words, the data points presented in Figure 8 do 443 

not represent the density averaged over a complete orbit; instead, each data point can be sampled 444 

over a very different part of the globe than the previous. The resulting error can be seen in the 445 

HASDM model, which if plotted as an average over full orbits, would appear much more 446 

smooth. Another important source of error in the density timeseries comes directly from 447 

uncertainties in the POD solutions themselves. Because the POD solutions were not designed 448 

with a thermospheric application in mind, we expect that some of the estimation parameters may 449 

have been overfit. And finally, there is certainly an amount of geophysical variability seen in the 450 

observed density timeseries that is not captured by the HASDM model. While an in-depth error 451 

analysis is beyond the scope of the present work, we will continue to investigate techniques to 452 

minimize these sources of error, including improving the underlying POD solutions and 453 

combining timeseries from additional satellites.  454 

A central goal of this work is to ingest multiple data sources into a physics-based, 455 

assimilative thermosphere model to combine information and mitigate the uncertainty of any one 456 

dataset. Figure 9 shows the baseline TIEGCM simulation without any assimilation (grey curve) 457 

driven externally by the observed geophysical indices (GPI) of Kp and F10.7; the POD-based 458 

densities derived using the techniques described in the previous Section (blue, red, and yellow 459 

curves); and the IDEA output over the interval spanning 23 Sept.–9 Dec. 2018 (solid black 460 

curves).  461 

The baseline TIEGCM-GPI simulation shows muted response to the Kp and F10.7 inputs 462 

during this solar-minimum interval, when compared with the IDEA output (or with the HASDM 463 

output in Figure 8). CubeSat densities and IDEA output agree very well over the interval. There 464 

are, however, several short periods when POD data from a single satellite becomes sparse, such 465 

as the period around day 304–306 for satellite 85 (yellow curve), or when attitude data becomes 466 

unavailable, such as the period around day 282–285 for satellite 83 (blue curve). There are also 467 

several periods during which data from a single satellite becomes spurious, not agreeing with the 468 

data from the other two satellites, such as the period around 335–340 for satellite 85 (yellow 469 

curve). In these cases, the other two data sets tend to compensate for missing or spurious data 470 

from the third satellite. This leads us to believe that adding data from additional satellites and 471 
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constellations should improve performance and increase the "signal-to-noise ratio" of the data 472 

assimilation process. 473 

 474 

Figure 9. Comparison of observations with model output. CubeSat-derived densities are given 475 

by the colored curves for satellites 83 (top), 84 (middle), and 85 (bottom). Also shown is the 476 

output from the baseline thermosphere model driven by measured geophysical indices 477 

(TIEGCM-GPI, grey curves) F10.7 and Kp. The data assimilation IDEA output is given along 478 

each of the CubeSat orbits by the black curves.  479 

The performance of these models with respect to the CubeSat-derived densities are 480 

assessed using the metrics of Sutton (2018) and Bruinsma, Boniface, et al. (2021). These consist 481 

of the mean (𝜇), standard deviation (𝜎), and root mean square error (𝑅𝑀𝑆𝑒) of the ratio of model 482 

density to observed density, all computed in logarithmic space:  483 
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𝜎(𝑚/𝑜) = U7
=
∑ Pln >$,&

>',&
− ln 𝜇(𝑚/𝑜)T

"
=
1?7   (6) 485 

𝑅𝑀𝑆𝑒(𝑚/𝑜) = U7
=
∑ Pln >$,&

>',&
T
"

=
1?7   (7) 486 

As mentioned in Sutton (2018), these metrics have several properties that are desirable 487 

when working with the ratio of two quantities that vary exponentially, such as neutral densities. 488 

The 𝑅𝑀𝑆𝑒(𝑚/𝑜) and 𝜎(𝑚/𝑜) quantities are best interpreted as a percentage in the following 489 

way: % = 100 × (exp𝜎(𝑚/𝑜) − 1). The 𝑅𝑀𝑆𝑒(𝑚/𝑜) is a combination of 𝜇(𝑚/𝑜) and 490 

𝜎(𝑚/𝑜), as can be see through the following relation: 𝑅𝑀𝑆𝑒(𝑚/𝑜)" = (ln 𝜇(𝑚/𝑜))" +491 

𝜎(𝑚/𝑜)". The 𝑅𝑀𝑆𝑒(𝑚/𝑜) is therefore a good indicator of total model errors. However, if the 492 

intent is to drive a POD process using the density model, it may be more informative to use the 493 

𝜎(𝑚/𝑜) metric, since a ballistic coefficient is typically estimated per satellite. In practice, this 494 

estimated ballistic coefficient will soak up errors not only in the assumed coefficient of drag, but 495 

also in the mean bias of the density model. Table 2 shows the overall performance of the three 496 

models, TIEGCM-GPI, HASDM, and IDEA at re-creating the energy dissipation rates observed 497 

by the Spire CubeSats’ GNSS data. Table 2 also shows the performance of the three models in 498 

synthesizing the independent data set of orbit-averaged neutral densities from the Swarm-C 499 

satellite.  500 

During the period of interest, the IDEA method outperforms HASDM in all three metrics 501 

with respect to the assimilated Spire data. This is true of both the prior and posterior IDEA 502 

estimates of density. The ‘posterior’ IDEA estimate is the fully assimilated nowcast solution, 503 

whereas the ‘prior’ IDEA estimate is a 6-hour forward simulation (i.e., forecast) by the TIEGCM 504 

based on the initial conditions and estimated drivers from the previous posterior assimilation 505 

cycle. The prior mean is expected to remain close to the posterior mean if no major changes in 506 

the actual geophysical conditions occur during this 6-hour span. Minor fluctuations in the actual 507 

conditions could cause upward or downward trends over a given 6-hour span, resulting in density 508 

variations that tend to average out of 𝜇(𝑚/𝑜) while slightly increasing the 𝜎(𝑚/𝑜) metric for 509 

the prior IDEA estimates relative to the posterior. It should be noted, however, that IDEA has a 510 

clear advantage in this comparison over the other two models, since IDEA assimilates the very 511 
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data that it is now being compared against. This comparison confirms that the IDEA technique, 512 

as an estimation filter, has the requisite control authority to sufficiently adjust the model to the 513 

assimilated data set.  514 

To go a step further, the Swarm-C ACC data is used as an independent data source to 515 

assess the performance of IDEA in locations outside the vicinity of assimilated data. Due to the 516 

differences in precession rates between the Spire CubeSats and the Swarm-C satellite, the local 517 

times of their orbital planes align approximately once every 41 days. This alignment occurs 518 

twice during the 23 Sept.–9 Dec. 2018 time period, on 10 Oct. (day 283) and 20 Nov. (day 324). 519 

Aside from these brief alignment periods lasting only a few days, Spire and Swarm data sets are 520 

sampling vastly different sectors of the globe. Table 2 shows that IDEA succeeds in reducing the 521 

𝜇(𝑚/𝑜) and overall 𝑅𝑀𝑆𝑒(𝑚/𝑜) with respect to the free-running TIEGCM-GPI simulation but 522 

at the expense of an increased 𝜎(𝑚/𝑜). In the comparison with Swarm-C data, HASDM 523 

performs the best in all three metrics. However, it should be noted that HASDM has a clear 524 

advantage in this comparison over the other models because HASDM assimilates data from ~75 525 

satellites from across the globe while IDEA only assimilates within a single orbit.  526 

Sutton (2018) used accelerometer-derived neutral densities from a single satellite to drive 527 

the IDEA technique. In the previous study, the technique showed high proficiency for estimating 528 

neutral densities in local times away from where the assimilated data resided. In the current 529 

work, using effective neutral densities from a single orbit plane at an approximate 2–2.5 hour 530 

cadence per satellite, the comparison with data from other local times deteriorates. While this is 531 

not all that surprising, it does provide some insight into the specificity required to apply adequate 532 

corrections to the external drivers. The observability of these corrections depends on features of 533 

the observations, including the global coverage, spatial resolution, temporal cadence, 534 

measurement error, and measurement type (e.g., mass density from accelerometers vs. chemical 535 

composition from a mass spectrometer). In essence, the impact that each external driver has on 536 

the observation must be distinguishable from the impact caused by other drivers. With 537 

accelerometer data, this is satisfied to some extent because measurements are of high cadence 538 

and sample two distinct local time and all latitudes over the course of an orbit. Any change in 539 

geomagnetic activity will first impact high-latitude thermosphere before influencing lower 540 

latitudes, while changes in solar flux affect the thermosphere in a much less localized manner. 541 

Likewise, the model’s day-to-night ratio of density will decrease as geomagnetic activity 542 
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increases yet is only slightly affected by variations in solar flux (Waldron, 2020). Both of these 543 

signals can be discerned with accelerometer data but not with orbit-averaged data. Several 544 

questions remain:  Can this issue of observability with POD-inferred densities be overcome by 545 

including data from multiple local-time orbital planes and/or with reduced averaging? And in 546 

terms of assimilation, which characteristic of a density data set is more valuable, spatial 547 

resolution in the latitudinal direction or sampling of multiple local time planes?  548 

Table 2. Performance metrics of each model with respect to the assimilated Spire Global 549 

CubeSat data and independent Swarm-C ACC data, calculated over the entire interval spanning 550 

days 266–343, 2018. Orbital averages of the Swarm-C data (as well as the corresponding model 551 

output) have been taken to minimize the effect of spurious errors in the accelerometer data.  552 

 TIEGCM-GPI HASDM IDEA 

 Prior Posterior 

Assimilated Spire CubeSat POD Data 

𝜇(𝑚/𝑜)  1.33 1.10 1.04 1.04 

𝜎(𝑚/𝑜)  48.7% 40.6% 34.6% 30.7% 

𝑅𝑀𝑆𝑒(𝑚/𝑜)  62.7% 42.6% 34.9% 31.1% 

Independent Swarm-C ACC Orbit-Averaged Data 

𝜇(𝑚/𝑜)  1.40 1.12 1.20 1.19 

𝜎(𝑚/𝑜)  24.9% 8.2% 37.2% 32.4% 

𝑅𝑀𝑆𝑒(𝑚/𝑜)  49.6% 15.2% 43.8% 39.4% 

5 Summary and Conclusions 553 

The increases in satellite and debris populations in LEO necessitates improvements in 554 

how we detect, track, and catalog orbiting objects. Additionally, if we are to avoid catastrophic 555 

collisions in LEO, we must also be able to reliably predict the trajectories of satellites multiple 556 

days in advance, giving satellite operators sufficient lead time to plan safe and effective 557 

maneuvers. With the variability of the space environment, particularly thermospheric mass 558 

density, being the largest uncertainty in the orbit prediction chain, this study investigates new 559 

ways to monitor the upper atmosphere. In this notoriously data-starved region, the 560 

instrumentation commonly carried on recently launched LEO SmallSats and CubeSats, 561 
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particularly GNSS receivers, can be used to improve the accuracy of physics-based neutral 562 

density specifications. Notably, the amount of data available from this new category of 563 

observation should continue to scale with the crowdedness of LEO, whereas the current ground-564 

based tracking database remains limited in quantity and resolution.  565 

In the current work, we have applied a post-processing method to the timeseries of POD 566 

ephemeris from three CubeSats in Spire’s constellation. This has allowed us to track the time 567 

evolution of orbital energy of each CubeSat over an orbit arc. Further application of a satellite-568 

surface force model converts this information into a timeseries of in situ atmospheric mass 569 

density. By analyzing 78 days’ worth of data from late 2018, we were able to observe the impact 570 

of minor and moderate fluctuations in geomagnetic activity during the prevailing solar minimum 571 

conditions. We also found good agreement with HASDM, one of the only sources of 572 

thermospheric data currently available for comparison. While the resulting timeseries from a 573 

single satellite may be prone to errors, identified here simply as a discrepancy between density 574 

timeseries derived from co-orbiting CubeSats, this can be mitigated by assimilating timeseries 575 

from multiple data sets into a physics-based model of the thermosphere.  576 

Additionally, with more advanced processing methods, it may be possible to lower the 577 

error for timeseries of individual CubeSats. The POD solutions used here were not specifically 578 

tailored to the application of measuring density. One potential complication is that overfitting of 579 

parameters or insufficient arc size may have led to significant noise in the inferred densities. 580 

Future work will focus on improving the POD solutions to reduce error and finding the optimal 581 

size of the POD fitting window as a function of altitude, phase of the solar cycle, satellite 582 

geometry characteristics, and GNSS instrument precision and errors. With these improvements 583 

in place, it may even be possible to attain higher cadences than a single data point per orbit. This 584 

has been demonstrated when using a state-of-the-art geodetic GNSS receiver (van den IJssel & 585 

Visser, 2007), but extending this technique to GNSS-equipped SmallSat constellations would 586 

provide much needed global coverage of thermospheric observations. When paired with a 587 

suitable assimilative, physics-based models of the thermosphere, there is great potential to lower 588 

the uncertainty of orbit predictions across the LEO catalog, improve the accuracy of conjunction 589 

assessments, and increase the efficacy of STM activities. 590 
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