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Abstract

The need for uncertainty quantification placed by weather forecasting makes Bayesian deep learning (BDL) a suited candidate

for data-driven weather forecasting. In this study, we use Bayesian Long-Short Term Memory neural networks (BayesLSTMs) to

forecast output from the Lorenz 84 system with seasonal forcing. The latter represents the dynamics of large scale eddies (Rossby

waves) on a westerly jet. We show that forecasts with the BayesLSTM can stay close to the attractor of the Lorenz model

and conclude that they represent the nonlinear relations between each component in this simplified atmospheric circulation

system. The forecasts are evaluated against persistence and a Vector Autoregressive Model (VAR). We demonstrate that the

BayesLSTMs can produce reliable probabilistic forecasts and address uncertainties relevant to weather forecasting. Our study

indicates that BDL is an easy and fast solution for probabilistic weather forecast and is promising to enhance weather forecasting

capabilities at short to medium-range timescales.
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Abstract14

[The need for uncertainty quantification placed by weather forecasting makes Bayesian deep15

learning (BDL) a suited candidate for data-driven weather forecasting. In this study, we use16

Bayesian Long-Short Term Memory neural networks (BayesLSTMs) to forecast output from17

the Lorenz 84 system with seasonal forcing. The latter represents the dynamics of large scale18

eddies (Rossby waves) on a westerly jet. We show that forecasts with the BayesLSTM can19

stay close to the attractor of the Lorenz model and conclude that they represent the nonlinear20

relations between each component in this simplified atmospheric circulation system. The21

forecasts are evaluated against persistence and a Vector Autoregressive Model (VAR). We22

demonstrate that the BayesLSTMs can produce reliable probabilistic forecasts and address23

uncertainties relevant to weather forecasting. Our study indicates that BDL is an easy24

and fast solution for probabilistic weather forecast and is promising to enhance weather25

forecasting capabilities at short to medium-range timescales.]26

Plain Language Summary27

[Recent developments in artificial intelligence (AI) have brought many techniques to28

climate science. Among these techniques, deep neural networks (DNN) serve as good can-29

didates to improve and speed up weather forecasts. However, these DNN always have30

fixed structure and therefore can not satisfy the need of weather forecast for uncertainty31

estimation. To solve the problem, we introduce Bayesian deep learning (BDL), which is32

probabilistic and enables uncertainty quantification. In this study, we explore the BDL33

with a simplified chaotic system, the Lorenz 84 model with seasonal forcing. We test and34

use BDL to forecast the Lorenz 84 system and evaluate its probabilistic forecast skill against35

the persistence and a baseline statistical model. Our study indicates that the BDL is able to36

account for the uncertainty required by weather forecasting and it represents the nonlinear37

relations between each component in this simplified atmospheric circulation system. It is a38

promising tool for preliminary and quick probabilistic forecasts and therefore can enhance39

weather forecasting capabilities.]40

1 Introduction41

Deep neural networks (DNNs) are capable of representing intricate features of data42

and have been proven to be useful for many scientific disciplines (e.g., LeCun et al., 2015),43

including weather forecasting and climate science (Reichstein et al., 2019). It has been44

demonstrated by recent studies that typical DNN are able to mimic and predict the be-45

havior of chaotic systems (e.g. Hochreiter & Schmidhuber, 1997; Chattopadhyay et al.,46

2019) and therefore they are potentially applicable to weather forecasting. However, mostly47

deterministic DNNs are considered and these are prone to overfitting and this can result in48

over-confident forecasts (Shridhar et al., 2019).49

Due to the chaotic nature of the atmospheric dynamics and uncertainties in both initial50

conditions and models representing the atmosphere, weather forecasts are of probabilistic51

nature. In general, uncertainty estimation is achieved via an ensemble approach within trust-52

worthy Numerical Weather Forecast systems (NWP) (Gneiting et al., 2007; Leutbecher &53

Palmer, 2008). However, this strategy is computationally expensive for NWP-based weather54

forecasts. Concerning the deep learning approaches, in order to meet the requirement for55

uncertainty quantification, many attempts have been made to adapt deterministic DNN to56

weather forecasting (e.g., Scher & Messori, 2018). These efforts mainly involve generating a57

DNN-based ensemble through perturbing either the training data or the structure of DNN58

(e.g., Zaier et al., 2010; H.-z. Wang et al., 2017). However, in practice, this technique is59

computationally expensive due to multiple training cycles that are needed and it is often60

difficult to manually select proper perturbations which can approximate the error growth61

of a real dynamical system. Fortunately, recent developments in deep learning have led62
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to a branch of DNN to cope with overfitting and address uncertainties, which is known as63

Bayesian deep learning (BDL).64

Unlike feed-forward DNN, BDL is constructed by replacing fixed weights with distri-65

butions and therefore are designed to represent uncertainties (Blundell et al., 2015). With66

a well-defined likelihood function, BDL is able to capture both the aleatoric and epistemic67

uncertainty (Kendall & Gal, 2017; Shridhar et al., 2018, 2019). They can avoid making68

over-confident decisions and incorporate regularization naturally by implementing the vari-69

ational approaches (Shridhar et al., 2019). Together with the simplicity of implementing70

BDL on an already defined deep neural network, these make BDL an attractive approach71

for representing atmospheric dynamics and the practice of weather forecasting (Vandal et72

al., 2018).73

An operational numerical weather forecast system is very complex. Here, we want to74

understand the characteristics of BDL within a simplified dynamical system that represents75

the essence of midlatitude atmospheric dynamics and explore the types of uncertainties76

addressed by BDL. In particular we examine how BDL can replicate the phase and amplitude77

of midlatitude Rossby waves on a jet as represented in a Lorenz 84 model (Lorenz, 1984;78

H. Wang et al., 2014). The predictive nature and time scale of propagation and development79

of Rossby waves form the basis of short to medium-range weather forecasting. We will assess80

whether BDL can represent the predictability of this simplified atmospheric circulation81

system. We notice that the concept of BDL in the perspective of weather forecasting is82

quite similar to the implementation of the Bayesian theorem in data assimilation (e.g., Ghil83

& Malanotte-Rizzoli, 1991; Navon, 2009; Bannister, 2017).84

Long-Short Term Memory neural networks (LSTMs) have a network structure and85

characteristics that are found to be suitable to represent fluids in environmental studies86

(Liu et al., 2020). In this study, we explore BDL by turning LSTMs into Bayesian LSTMs87

(BayesLSTMs). We will use the BayesLSTMs to forecast the Lorenz 84 model and assess the88

forecast quality in the spatial and temporal space at different lead times. The probabilistic89

forecasts produced by the BayesLSTM will be evaluated against those with persistence of90

initial conditions and a baseline statistical model. An emphasis is placed on the uncertainties91

represented by the BayesLSTM and its capacity in preserving the physical consistency in a92

simplified atmospheric circulation system.93

The paper is organized as follows: we elaborate on the concept of BDL and Lorenz 8494

model with seasonal forcing in the section Methodology. An analysis of uncertainty estima-95

tion with BDL, and the procedure of sampling the BayesLSTM and generating ensemble96

forecasts are also provided in this section. The probabilistic forecasts of the Lorenz 84 sys-97

tem using the BayesLSTM are elucidated and analyzed in the section Results. This section98

also includes forecasts with persistence and a baseline statistical model for comparison and99

evaluation. Finally, in the section Conclusion and Discussion, we summarize this study and100

provide our perspective for future work.101

2 Methodology102

In this section, we briefly introduce the Lorenz 84 model with seasonal forcing and103

elaborate upon the concept of BDL as well as how an LSTM network is transformed into104

a BayesLSTM. Based on the characteristics of BDL, the procedure of producing ensemble105

forecasts and a description of uncertainty estimation with BayesLSTM is presented in this106

section.107

2.1 Lorenz 84 Model with Seasonal Forcing108

The Lorenz 84 system represents the general circulation of the atmosphere in a low109

dimensional space and therefore it is useful as a baseline model for exploring BayesLSTMs110
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in weather forecasting (Lorenz, 1984). To incorporate more realistic features into the simple111

Rossby wave evolution system, we add a seasonal forcing to the classical Lorenz 84 model.112

The dynamical system is formulated as follows:113

dX

dT
= −Y 2 − Z2 − aX + aF (1 + εcos(ωT ))

dY

dT
= XY − bXZ − Y +G(1 + εsin(ωT ))

dZ

dT
= bXY +XZ − Z (1)

where X represents the intensity of the westerly wind circulating around the globe, Y and114

Z represent the cosine and sine phases of a chain of superimposed large-scale eddies, T is115

the time, a and b indicate mechanical and thermal damping, F and G the symmetric and116

asymmetric thermal forcing, ε the intensity of seasonal forcing, and ω the angular frequency117

of seasonality (Freire et al., 2008). In this study, we mainly focus on the sensitivity of the118

forecast quality to variations in the initial condition X and model parameter a.119

To obtain a chaotic system that is suitable for the assessment of the BayesLSTM120

forecast, we chose the model parameters to be a = 0.25, b = 4.0, F = 8.0, G = 1.0, ε = 0.4,121

and the initial conditions as X,Y, Z = 1.0. One unit of time in the Lorenz model corresponds122

to 5 days. The damping time of the wave is about 5 days (Lorenz, 1984). We sample the123

system with a temporal resolution equal to 1/30 unit time, which is 4 hours. The period of124

seasonal forcing is taken as 73 unit time steps and then the period of the entire system is125

equivalent to 356 days. With this configuration, the trajectories and the time series of each126

variable are shown in Figure 1. Unless specifically noted, the time step and lead time steps127

in this paper are based on the sampling interval, which is 4 hours.128

2.2 BayesLSTM and Bayes by Backprop129

Our aim is to investigate whether the BayesLSTM can represent the Lorenz 84 model130

described above. We can add Bayesian inference to an existing neural network by replacing131

fixed weights with distributions (e.g. see Figure 1 in Blundell et al., 2015). Given the132

structure of an LSTM network (Hochreiter & Schmidhuber, 1997), the Bayesian form of an133

LSTM network can be represented by equation 2:134

it = σ(W s
xi ◦ xt +W s

hi ◦ ht−1 +Wci ◦ ct−1 + bi)

ft = σ(W s
xf ◦ xt +W s

hf ◦ ht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(W s
xc ◦ xt +W s

hc ◦ ht−1 + bc)

ot = σ(W s
xo ◦ xt +W s

ho ◦ ht−1 +Wct ◦ ct + bo)

ht = ot ◦ tanh(ct) (2)

with it the input gate, ft the forget gate, ct the cell state, ot the output gate, ht the hidden135

state, W s the weight distribution, xt the input, b the bias, ◦ the element-wise product, σ136

the sigmoid function and tanh the hyperbolic tangent function. The subscripts describe137

the corresponding weight matrix to different gates and states. W s
xi indicates the weight138

matrix of input values related to the input gate, while W s
hf represents the weight matrix139

of hidden states corresponding to the forget gate. The subscript t indicates the time step.140

The structure of a BayesLSTM is illustrated in Figure 1c.141

We need to search for the weight distribution W s, thus the posterior p(w|D) where142

w denotes the weight and D = (xj , yj)j indicates the training set. As the true poste-143

rior probability distribution is intractable (because of the marginal likelihood), we use a144
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variational inference scheme, namely the Bayes by Backprop approach, to approximate it145

(Blundell et al., 2015; Shridhar et al., 2018, 2019). The reason for choosing this method146

is elaborated upon in detail in the supporting material. A simple variational distribution147

q(w|θ) (where θ is the variational posterior parameter), such as a Gaussian distribution, or148

a lognormal distribution is often chosen (Blundell et al., 2015; Shridhar et al., 2018; Van-149

dal et al., 2018). Here we approximate the posterior p(w|D) with a Gaussian distribution150

q(w|θ), which consists of two trainable parameters µ ∈ Rd and σ ∈ Rd. As a result, θ in the151

assumed variational distribution q(w|θ) can be denoted by N (θ|µ, σ2).152

The gap between the chosen variational distribution and the exact posterior distri-153

bution is reduced using the Kullback-Leibler (KL) divergence between p(w|D) and q(w|θ)154

(Graves, 2011; Blundell et al., 2015). KL divergence measures the similarity between two155

distributions and in this we define the optimal parameters θ∗ as:156

θ∗ = argmin
θ

[q(w|θ)||p(w|D)]

= argmin
θ
KL[q(w|θ)||p(w)]− Eq(w|θ)[log p(D|w)] + log p(D) (3)

where KL indicates the full KL divergence operation and E represents the expectation.157

This equation includes a data dependent part Eq(w|θ)[logp(D|w)] and a prior dependent158

part KL[q(w|θ)||p(w)] (Neal & Hinton, 1998; Blundell et al., 2015; Shridhar et al., 2019).159

We sample the weight w from q(w|θ) and the cost function that we optimize is:160

F(D, θ) =

N∑
n=1

log q(w(n)|θ)− log p(w(n))− log p(D|w(n)) (4)

where w(n) denotes the nth Monte Carlo sampling from the variational posterior q(w(n)|θ).161

Together with the local reparameterization method (explained in the supplementary162

material), which translates the global uncertainty in the weights into a form of local uncer-163

tainty (Kingma et al., 2015; Shridhar et al., 2019), our BayesLSTMs are ready for training164

and back-propagation. We constructed the networks using the Pytorch library, and our code165

is published on Github (https://github.com/geek-yang/DLACs).166

2.3 Ensemble Forecasting with BDL and Numerical Configurations167

The ensemble method is generally used for uncertainty assessment in weather forecast-168

ing (Gneiting et al., 2005; Buizza et al., 2008; Leutbecher et al., 2017). In numerical weather169

prediction systems (NWP), uncertainties in the initial conditions and model parameters are170

projected by ensemble forecasts with perturbations in the initial conditions and model for-171

mulations (Palmer, 2002; Milinski et al., 2020). It has been explained in many previous172

studies that BDL is able to address the uncertainties in initial conditions and model pa-173

rameters (e.g., Kendall & Gal, 2017). More details about the uncertainty estimation with174

BDL are provided in the supplementary material. This characteristic is fundamental for175

any probabilistic forecast and therefore makes BDL a candidate for weather forecasting.176

However, they are treated differently than in operational NWP approaches.177

The ability of BayesLSTM to characterize uncertainty is reflected in its forecasting178

procedure. During a prediction process, the whole time series preceding the forecast date179

(t < t0) will be fed to the model to initialize the memory and position the state of the180

network. Therefore the model itself is constrained by the past and this is similar to an181

NWP-based forecast. When producing a forecast that takes uncertainties into account for182

a next time step, the BayesLSTM will first sample the weight distributions multiple times183

to build an ensemble and then use the sampled weight matrix to generate the predictions184
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for the target time step (t = t1). The ensemble forecast can be extended to more time steps185

ahead (t = tn > t1) by continuing with each individual LSTM.186

In order to evaluate ensemble forecasts with the BayesLSTM, several scores are cal-187

culated, including continuous ranked probability score (CRPS), root mean square error188

(RMSE) and Euclidean distance (EuD). The mathematical expressions of these scores can189

be found in the supplementary material.190

For all the experiments in this paper, we generate sequences including 1500 time steps191

(250 days) with the Lorenz 84 model. The training set contains 1300 time steps (about 216192

days) and the validation set consists of 200 time steps (about 33 days). The optimization is193

based on the minimization of training loss, which consists of likelihood cost (data-dependent)194

and complexity cost (prior dependent) (Shridhar et al., 2019). A scaling factor between these195

two sources of loss should be tuned, since it accounts for the trade-off between the width196

of ensemble spread in terms of uncertainty estimation and saturation of forecasts around197

the variance displayed in the observations. Note that the scaling factor is related to the198

normalization of the distributions and cannot be calculated exactly. The training time199

is about 20 hours on a single GPU (Nvidia Tesla K40m). The hyperparameters like the200

learning rate, number of epochs and number of layers, were tested and determined in terms201

of the EuD error. It shows that a combination of a learning rate equal to 0.01, a single202

BayesLSTM layer and 3000 epochs is sufficient to achieve satisfying results. The training203

loss is shown in Figure S1. More details about the numerical configurations are shown in204

the supplementary material.205

2.4 Vector Autoregressive Model206

The VAR model is used as a baseline method to assess the probabilistic forecast skill207

of BayesLSTM. As a variant of the autoregressive model (AR), the VAR model generalizes208

univariate AR by allowing for multivariate time series and therefore can capture the relation209

between multiple variables. The VAR model and many variants belonging to the VAR family210

haven shown skill in many weather forecast applications (e.g., Gneiting et al., 2006; L. Wang211

et al., 2016, and many others). To expand its forecast capacity from the deterministic212

domain to the probabilistic domain, we replaced the Gaussian noise term (εt) with Gaussian213

distributed variations based on the variance of input time series from the chosen lag step to214

the current step. The optimal number of the lag to be included in the model is determined215

based on the auto-correlation of each variable of the Lorenz 84 model output (shown in216

Figure S2 in the supplementary material), and tests of forecast quality in terms of the217

CRPS score. In our case, the VAR model with a lag equal to 3 provides the best probabilistic218

forecast. Mathematically, our modified VAR model can be expressed as:219

Xt = α1 +

Lag∑
l=1

(β11,lXt−l + β12,lYt−l + β13,lZt−l) + ε1,t

Yt = α2 +

Lag∑
l=1

(β21,lXt−l + β22,lYt−l + β23,lZt−l) + ε2,t

Zt = α3 +

Lag∑
l=1

(β31,lXt−l + β32,lYt−l + β33,lZt−l) + ε3,t (5)

with

ε1,t = N [0, σ(Xt−1, Xt−2, ..., Xt−l)
2]

ε2,t = N [0, σ(Yt−1, Yt−2, ..., Yt−l)
2]

ε3,t = N [0, σ(Zt−1, Zt−2, ..., Zt−l)
2]
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Where α and β are trainable parameters in the model, εt the Gaussian distributed variations,220

and Xt−l, Yt−l and Zt−l the Lorenz model output at time lag l. The parameters were221

updated by fitting the model to the time series of Lorenz model output using maximum222

likelihood.223

3 Results224

We evaluate the capacity of BDL in representing the dynamics of Rossby wave propa-225

gation on a westerly jet by investigating the forecasts in the spatial and temporal domains.226

Based on the selected scoring metrics, we further assess the forecast quality of BayesLSTM227

against the forecasts with persistence and a VAR model.228

3.1 Representing the Evolution of Lorenz 84 Model229

A retrospective forecast of the Lorenz 84 system with the BayesLSTM is shown in230

Figure 2. The forecasts start every time step (4 hours) and each has been extended to a231

lead time of 3 days. Given the time series of the BayesLSTM forecasts in Figure 2a, it can232

be observed that in general the forecasts are close to the time series of the Lorenz 84 model233

output, which is considered to be the ”truth”. Although the forecast quality drops down234

with the increase of lead time as expected, the BayesLSTM shows good skill in replicating235

the variations of the Lorenz 84 model, especially for the state-transitions of the Lorenz 84236

system and the sinusoidal patterns of the eddy components, like the forecast of X around237

valid date 14 and the forecast of Y around valid date 16. This indicates that the BayesLSTM238

learns to predict the state of the Lorenz system. Considering the typical predicting process239

of an LSTM network, in which the whole time series of the Lorenz 84 system preceding the240

forecast time should be fed to the system, it implies that our BayesLSTM is well constrained241

by the Lorenz 84 model output. Given the fact that the learning process of a deep neural242

network is characterized by the relationship between input fields, it further indicates that243

the non-linear relations between the variables in this Lorenz 84 system, the westerly X and244

the large scale eddies Y and Z, were addressed by the BayesLSTM.245

In addition, we plot the forecast trajectory in Figure 2d and compare it with the Lorenz246

model output to further evaluate the performance of BayesLSTM. It can be noticed that the247

forecast trajectory is close to the attractor and the ”behavior” of the forecast trajectory as a248

function of lead time resembles the evolution of the Lorenz 84 model. The result is consistent249

with the assessment based on the time series of each component as shown in Figure 2a. As a250

follow-up check, we investigate the physical consistency of BayesLSTM forecasts via the log251

power spectrum density of forecast time series, which is shown in Figure 2c. Only the high252

frequency components of X (with the frequency between 0.9 and 1.5) differ from the Lorenz253

model output. In general, the power spectrum density of the BayesLSTM forecasts is similar254

to that of the Lorenz 84 model. This indicates that the phases of the waves simulated by255

BayesLSTM do not differ much from the Rossby waves in the Lorenz 84 model. Considering256

the time step (4 hours) and the damping time of the Lorenz system (5 days), such similarity257

over the whole frequency space reflects that the BayesLSTM can account for the dynamics258

of this Rossby wave system across different time scales, which potentially benefits from its259

ability of multiple-level information abstraction. Together with the similar amplitudes of260

waves displayed in Figure 2a, it implies that the BayesLSTM manages to learn the Rossby261

wave propagation. The interaction between the jet and eddy components in this simplified262

atmospheric circulation system and the forecasts are physically realistic.263

In order to evaluate the probabilistic forecast skill of the BayesLSTM, we generated264

a 20-member ensemble by sampling the BayesLSTM network and the time series of these265

retrospective forecasts up to 3 lead days are shown in Figure 2b. The blue shades serve266

to approximate the error growth of the Lorenz 84 system, which are selected as the range267

between the current Lorenz model series persisting for 3 lead and lag days. Note that this268

selection is made based on the auto-correlation in Figure S2 and it aims to assist the evalu-269
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ation of the probabilistic forecasts, specifically for the uncertainty estimation. It is observed270

that the forecast members are located around the Lorenz model output and the spread is271

comparable to the error growth of this Rossby wave system. This indicates that the spread of272

the BayesLSTM ensemble is neither over-dispersive nor under-dispersive. The probabilistic273

forecasts therefore address uncertainties in a reasonable way. Collectively, the development274

of these forecasts as a function of lead time in 2b are similar to the single forecast in 2a.275

This means almost all the ensemble members capture the properties of the propagating276

waves and the jet strength while allowing for the occurring of uncertainty. Consequently,277

the probabilistic forecasts generated by sampling the BayesLSTM are physically plausible.278

Nevertheless, the BayesLSTM forecasts may lose skill at certain valid time. For in-279

stance, in Figure 2a and b between valid date 0 to 6, forecasts of X drift away unrealistically.280

This might result from the state-dependency of the BayesLSTM, or in general the state-281

dependency of any deep learning approaches. For a numerical model, it is common to have282

state-dependency, for example, the prediction of NAO/blocking events in medium-range283

forecasts (e.g., Parker et al., 2018). This may also apply to the deep learning approaches if284

the training data fails to provide adequate information for forecasting at some points.285

3.2 Evaluate the BayesLSTM ensemble forecasts286

A reliability assessment of probabilistic forecasts with the BayesLSTM ensemble was287

performed using the chosen metrics. The BayesLSTM ensemble consists of 20 members288

and they are evaluated against a deterministic forecast with persistence and a probabilistic289

forecast with the VAR model, which is also a 20-member ensemble. The results are shown290

in Figure 3. Regarding the CRPS score, in general the BayesLSTM ensemble forecast is291

better than the VAR ensemble forecast considering all the variables for almost all lead days.292

Only around day 1 for predictand X, the VAR ensemble forecast shows slightly better skill.293

The error growth of the BayesLSTM ensemble forecast is much slower than that of the VAR294

ensemble forecast. Given the definition of CRPS score, which provides a quadratic measure295

of discrepancy between the forecast cumulative density function (CDF) and the empirical296

CDF of the scalar observation (Gneiting et al., 2005), this indicates that the forecast CDF297

with the BayesLSTM centered around the Lorenz model output, while the forecast CDF298

with the VAR is relatively over-dispersive.299

Regarding the RMSE shown in Figure 3b, forecasts with persistence are better than300

that with BayesLSTM and VAR ensemble concerning only X. This is consistent with301

the high auto-correlation of the zonal wind X shown in Figure S2. While for the eddy302

components Y and Z, the BayesLSTM provides much better forecasts within 3 lead days,303

with the averaged RMSE error smaller than the standard deviation of the full time series304

of the Lorenz 84 model output. Considering the nonlinear relation between the westerly X305

and large scales eddies Y and Z, this means that the BayesLSTM is able to preserve the306

physical consistency between the zonal wind and the propagation of large scale eddies in307

this atmospheric circulation system, and therefore produces better probabilistic forecasts.308

It is evident by analyzing the time series in Figure 2a, that the variations of Y and Z are309

well represented by the BayesLSTM forecasts up to a lead time of 3 days.310

More information about forecast quality in terms of the trajectories, which intrinsically311

embody the properties of Rossby waves and jet strength, is reflected by the EuD in Figure 3c.312

Starting from the first forecast time step (4 hours), the BayesLSTM shows better forecast313

skill concerning the EuD. Although the EuD error grows with the increase of lead time for314

all the forecast methods, the BayeLSTM forecasts are better than the others for the whole315

inspected lead time range. Note that within 2 lead days, the EuD error of BayesLSTM is316

smaller than the standard deviation of the Lorenz 84 model output, which is about 0.6.317

Since the EuD of BayesLSTM ensemble forecast shown in Figure 3c is the average of 20318

members with forecasts starting every time step, this implies that these ensemble members319

are able to replicate the patterns of the attractor and the spread of the ensemble is properly320
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distributed around the target Lorenz 84 model trajectory. It further demonstrates that321

probabilistic forecast with BayesLSTM can address uncertainties adequately.322

4 Discussion323

We demonstrate the capability of BayesLSTM in probabilistic weather forecasting. In-324

tuitively, by perturbing the Lorenz 84 model, it seems possible to compare the BayesLSTM325

forecasts to the perturbed Lorenz model output and check if the BayesLSTMs are able to326

address uncertainties in the initial conditions and model formulation, respectively. How-327

ever, there is no objective way to determine the amplitude of the perturbation which can328

appropriately approximate the error growth in the Lorenz system that is analogue to a re-329

alistic dynamical system of Rossby waves on a jet. So this experiment is not feasible at the330

moment.331

In addition, we extended the ensemble forecasts to more than 60 lead days and noticed332

that after 20 days, the forecast errors increase dramatically with the increase of lead time333

(not shown). From this point, it seems that the BayesLSTM is useful for medium-range334

forecasts and it is not suitable for seasonal forecast and climate change predictions. The335

outcome of this study is insufficient to prove that, either the Bayesian deep neural networks336

can mathematically represent the differential equations which depict the Lorenz 84 system337

with seasonal forcing (note that due to the features of deep learning and the nature of deep338

neural networks, there is no direct mapping between weight matrix in a trained BayesLSTM339

and Lorenz model parameters), or BayesLSTMs only abstract and store the physical linkages340

in a latent space and use them to produce memory-based forecasts at relatively short time341

scales. This can be explored in the future.342

Although not the main topic of this paper, we note that the formulations of BDL are343

very similar to data assimilation, specifically the Bayesian data assimilation, which is exten-344

sively used in weather forecasting to combine the knowledge from observations and models,345

and deal with the uncertainty in the initial conditions (Evensen, 1994; P. L. Houtekamer346

& Mitchell, 1998; P. Houtekamer & Zhang, 2016). Based on the Bayes’ theorem, it incor-347

porates model knowledge into the prior and corresponding observations as likelihood, and348

treats the observation involving uncertainty estimation as posterior. Given the large dimen-349

sional systems, in reality approximate solutions are always made based on different methods,350

like variational methods, Kalman-based methods and particle filters (Navon, 2009).351

Given the fact that forecasts with BayesLSTM stay close to the Lorenz 84 attractor,352

the BayesLSTM may be also chaotic. This question can be answered by the chaotic system353

diagnostics, for instance, with the Lyapunov spectrum (Broer et al., 2002; Freire et al.,354

2008). However, this is beyond our scope now but worth the effort in the future. So far, it355

can be concluded that BayesLSTM is a useful candidate for weather forecasts, at relatively356

small lead times up to several days. For a long term climate forecast, the BayesLSTM may357

not be a good choice in terms of the error accumulation and the lack of skill in physical358

model representation. Also, for simulating and forecasting changes in the climate system359

boundary condition uncertainty will need to be taken into account. This can be further360

tested by studies using observational data and climate model ensembles in the future.361

5 Conclusion362

In this study, we explored the potential of BDL for weather forecasting using the363

modified Lorenz 84 model as a model for the atmosphere. The probabilistic character364

of the BDL is addressed and assessed using the chaotic nature of the Lorenz 84 system365

with seasonal forcing as ’truth’. Specifically, we chose BayesLSTM as an example of BDL366

to forecast the Lorenz 84 model and evaluate its forecast skill. It was observed that the367

retrospective forecasts are similar to those of the Lorenz model output in the spatial and368

temporal domain. The forecast trajectories are close to the attractor. This indicates that369
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Figure 1. (a) Trajectory and (b) time series of each variable of the Lorenz 84 model with seasonal

forcing. The sequences contain 250 days (1500 time steps) and the starting point is marked with a

blue dot. (c) Structure of the Bayesian Long-Short Term Memory neural networks (Fortunato et

al., 2017).

BayesLSTM is able to learn the propagation of Rossby waves in this atmospheric system,370

in terms of both the amplitude and phase. It further demonstrates that the BayesLSTM371

is able to replicate the interaction between the jet stream and large-scale eddies and thus372

the evolution of Rossby waves on a midlatitude jet. The forecasts get worse with increasing373

lead times due to the accumulation of errors, as expected.374

The probabilistic forecast skill of BayesLSTM was analyzed and evaluated against375

persistence and a VAR model. We found that the BayesLSTM forecasts saturate around376

the model output considering both the sequences of each variable and the trajectory. In377

terms of the scores in the chosen metrics, the BayesLSTM shows better probabilistic forecast378

skill than persistence and the VAR model in the inspected lead days. It shows that the379

BayesLSTM is able to account for uncertainties relevant to the evolution of this simplified380

atmospheric circulation system, though the procedure differs from well-known NWP based381

approaches. Given the relatively low cost of ensemble forecasts compared to deterministic382

DNN and NWP systems, and the capacity in probabilistic forecasting, BayesLSTM, or383

in general BDL, is useful to produce fast and reliable probabilistic weather forecast and384

therefore is promising to enhance weather forecasting capabilities at short to medium-range385

timescales.386
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Figure 2. BayesLSTM retrospective forecasts up to a lead time of 3 days (18 time steps),

with forecasts starting every time step (every 4 hours). (a) Time series of each variable (b) time

series of a 20-member ensemble (c) logarithmic power spectrum and (d) trajectory in phase space.

Except for (b) all the figures contain the results from a single BayesLSTM retrospective forecast.

The Lorenz model output is included as reference (blue, labelled as ”model output”) and the blue

shades indicate the range between the Lorenz model output persisting for 3 days, both lead (3 days

forward) and lag (3 days backward).
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Introduction This supplementary material includes additional information regarding

BDL and the variational inference method for training the Bayesian neural networks,

namely the Bayes by Backprop. It also includes a brief introduction of the local re-

parameterization trick and the evaluation metrics. A detailed explanation of the lead

time dependent forecasts and numerical configurations of training and forecasting with

BayesLSTM is provided.
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S1. BDL and Bayes by Backprop In this section, we elaborate on BDL and Bayes

by Backprop in detail. Deep neural networks are equipped with multiple layers of fixed

weights to extract the multiple levels of abstraction in the training data (LeCun et al.,

2015). These neural networks are deterministic and prone to overfitting and forecasts with

over-confidence (Blundell et al., 2015). In order to incorporate uncertainty estimation

during training and forecasting, we need to transform the deterministic neural network

into a probabilistic structure and therefore we seek help from the Bayes’ theorem.

To begin with, we have a training set D = (xi, yi)i which consists of input data x ∈ Rd

and output data y ∈ Rd. We aim for a probabilistic neural network p(y|x,w) with a

distributed weight w. To obtain the weight distribution, we apply the Bayesian inference

and we will get the expression:

p(w|x, y) =
p(y|x,w)p(w)

p(x, y)
(1)

By substituting p(x, y) according to the law of total probability, we can obtain:

p(w|x, y) =
p(y|x,w)p(w)∫
p(y|x,w)p(w)dw

(2)

The integral in the denominator requires coverage of all possible values of w, which is com-

putationally prohibitive. This makes the true posterior probability distribution intractable

(Blundell et al., 2015; Shridhar et al., 2018, 2019). To solve this, various approximation

methods (e.g. maximum-a-posteriori scheme, variational inference schemes) were studied

in the past (Graves, 2011; Shridhar et al., 2018). Among all of them, variational inference

schemes are widely embraced and they work well for a wide range of BDL applications.
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So far, three popular variational inference schemes are always used to approximate the

intractable posterior: Monte Carlo Markov Chain (MCMC), Monte Carlo dropout (MCD)

and Bayes by Backprop (BBB).

MCMC is a family of methods that combines stochastic variational inference and Monte

Carlo approaches (Salimans et al., 2015). Unlike variational inference in general which

takes a random draw from a simple variational distribution and keeps optimizing the

distribution, MCMC methods subsequently apply a stochastic transition operator to the

random draw, so as to cover the exact posterior distribution. As long as the iterations are

sufficient, MCMC can approximate the exact posterior well. However, we do not know if

the iterations are sufficient and this procedure is always very costly.

An alternative is MCD, which uses dropout to perform variational inference where the

variational distribution comes from a Bernoulli distribution. Hence it is also known as

Variational inference with Bernoulli Distribution (Gal & Ghahramani, 2015, 2016). This

method makes use of dropout in each layer of neural network during training as well as

testing and thus the process is equivalent to sampling from a Bernoulli distribution and

provides a measure of uncertainty. Nevertheless, it provides a rough approximation of the

target posterior and the control of uncertainty is limited by the complexity of the neural

network.

Given the drawback of MCMC and MCD, in this study, we choose a more functional

and affordable approach, BBB, to approximate the posterior. This method is a back-

propagation (BP) compatible variational inference approach that estimates a density

function with a known distribution and progressively update it with BP (Blundell et
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al., 2015; Shridhar et al., 2018). More details about BBB can be found in the section

Methodology in the main body of the paper.

S2. Local re-parameterization method With the implementation of BBB and op-

timization function, it seems our BayesLSTM is ready for training. However, the whole

procedure is not ready for back-propagation (BP) due to the stochastic node including

N (θ|µ, σ2) in our chosen variational distribution. In order to enable the optimization of

the parameters of Gaussian posterior with BP, we introduce the local reparameterization

method, which translates the global uncertainty in the weights into a form of local un-

certainty (Kingma et al., 2015; Shridhar et al., 2019). In this case, we replace N (θ|µ, σ2)

with w = µ+ σ ∗ ε where ε ∼ N (0, 1). More information about the local reparameteriza-

tion method can be found in the related literature (Kingma & Welling, 2013; Kingma et

al., 2015; Shridhar et al., 2018, 2019).

S3. Evaluation metrics In order to evaluate these ensemble forecasts, we include con-

tinuous ranked probability score (CRPS), root mean square error (RMSE) and Euclidean

distance.

CRPS is a popular verification tool for the assessment of probabilistic forecast systems.

It is used to evaluate an ensemble forecast against a single deterministic observation and

it has the following form (Gneiting et al., 2005):

CRPS(F, v) =

∫ inf

− inf

[F (r)−H(r − v)]2dr (3)
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with F the predictive cumulative density function (CDF), v the verifying observation, r

the threshold value, and H(r − v) the Heaviside function which takes the value 0 when

r < v and otherwise 1.

RMSE score is also included in this study and it is defined in the following way so as

to work with the probabilistic forecast results:

RMSE =
1

N
ΣN
n=1

1

T
ΣT
t=1

√
(xpred − xobs) (4)

with N the number of ensemble members, T the number of time steps, xpred and xobs the

predicted and observed value.

Euclidean distance (EuD) is used to evaluate the similarity between trajectories, which

is expressed as:

EuD =
1

N
ΣN
N=1

1

T
ΣT
T=1

√
(xpred − xobs)2 + (ypred − yobs)2 + (zpred − zobs)2 (5)

S4. Estimate uncertainty with BDL Typically, three types of uncertainties are con-

sidered: (1) Uncertainties in the initial conditions (2) Necessary approximations and cor-

responding uncertainties in the construction of a numerical model of the real atmosphere

(3) Uncertainties posed by external forcing and boundaries. The last one is often ignored

in an operational weather forecast system, but relevant for climate studies and local fore-

casts. Kendall and Gal (2017) explained how the model uncertainty and initial condition

uncertainty are addressed by BDL respectively. Given the nature of the forward process

of BDL, model uncertainty is addressed by the BDL via placing a prior distribution over a
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model’s weight, which is already explained by the prior dependent part KL[q(w|θ)||p(w)]

during the training of BDL when minimizing the KL divergence (Kendall & Gal, 2017).

The representation of initial condition uncertainty with BDL is less straightforward.

During training, the BayesLSTMs approach output yj ∈ Rd with an input xj ∈ Rd and

weight distribution wj, as P (yj|xj, wj). However, there is always noise εj in the input

fields (initial conditions) and this propagates through the network and affects the output,

thus P (yj|xj, wj, εj). With the help of Bayes rule, we bring in the pre-knowledge of model

weight distribution as prior and search for the best weight distribution as posterior that

is able to achieve the testing set x̂j and ŷj following P (ŷj|x̂j) = EP (wj |D)[P (ŷj|x̂j, wj)].

To simplify the problem, we assume a Gaussian distribution for the prior and the weight

distribution then can be solved via maximum a posteriori (MAP). Due to the use of the

BBB approach, we need to solve the KL divergence and the knowledge of observation is

brought in via the data-dependent term Eq(w|θ)[log p(D|w)] in equation 3 in the paper,

and finally the −log p(D|w(j)) in equation 4. It then can be reformulated as:

L(θ,D) = − 1

N

N∑
j=1

log p(yj|f ŵj(xj, εj)) (6)

If we assume the error in the output is Gaussian, then −logp(yj|f ŵj(xj, εj)) ∝ 1
2σ2 ||yj −

f ŵj(xj)||2 + 1
2
logσ2. The shape of this Gaussian probability is determined by the variance

σ, which is in this case the deviation between the ground truth in reality and the uncer-

tainty corresponding to the noise in the input fields εj. As a result, the data dependent

loss evolves as:
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LNN(θ,D) =
1

N

N∑
j=1

1

2σ(εj)2
||yj − f ŵj(xj)||2 +

1

2
log σ(εj)

2 (7)

with σ(εi) indicating the variance as a function of noise in the input fields, which represents

the uncertainty in the initial conditions. In other words, uncertainty in the initial condition

is modeled through the neural networks by generating a distribution over the output of

the model. Note that this is recognized as heteroscedastic and aleatoric uncertainty in

machine learning and it does not exist in a non-Bayesian (deterministic) neural network

since this observation noise parameter ε is fixed as part of the model’s weight decay and

therefore neglected after training (Kendall & Gal, 2017). So far, our analysis is based

on the hypothesis of linear propagation of expectation with variational inference in the

LSTM (Fortunato et al., 2017). However, it should be noted that this becomes different

when forecasting more than one step ahead since there is also uncertainty coming from

the forecasts of previous time steps.

S5. Lead time dependent forecast and numerical configurations The whole

numerical processes of training the BayesLSTM and making lead time dependent forecasts

with BayesLSTM are described in details in this section. We generate time sequences of

variable X, Y and Z with modified Lorenz 84 model, which including 1500 time steps

in total. We perform sequence-to-one forecast with BayesLSTM and the first 1300 time

steps are used for training. During training, in each epoch we pass 3 x 1300 points to

the BayesLSTM model. The model samples its weight distribution at each time step

(with 3 points X, Y and Z passed to the model) and after 1300 iterations we perform

back-propagation to update the BayesLSTM model. The procedure will be repeated until
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the maximum epochs are reached (or the early stop module is called, depending on the

setup).

The validation set consists of 200 time steps. The forecasting procedure is the same

as the training process, except that there is no back-propagation and we perform lead

time dependent forecasts (Liu et al., 2020). At each forecast time step tn, we use the

Lorenz model output (observation) to initialize the model and make forecasts, which can

be described by the equation below:

(X, Y, Z)pred[tn] = BayesLSTM((X, Y, Z)obs[t0,t1,t2,...,tn−1]) (8)

with (X, Y, Z)pred[tn] denotes the forecast X, Y and Z at time step tn, and (X, Y, Z)obs[tm]

represents the Lorenz model output of X, Y and Z at time step tm with m < n. It is

still sequence-to-one prediction, which means data at time step t0 to tn−1 will be passed

to the BayesLSTM model to make the forecast for the time step tn.

For one more lead time step tn+1, the forecast is based on both the model output from

t0 to tn−1 and the forecast of time step tn, and therefore it can be expressed as:

(X, Y, Z)pred[tn+1] = BayesLSTM((X, Y, Z)obs[t0,t1,t2,...,tn−1] + (X, Y, Z)pred[tn]) (9)

It can be noticed that starting from the time step tn+1 (the second lead time step),

the forecast quality also depends on the forecasts of previous time steps. This helps us

explore how far the BayesLSTM can predict the Lorenz system, which corresponds to the

actual predictability of a weather and climate system.
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Figure S1. Training loss in the logarithmic form. The likelihood loss and complexity loss are

included separately.
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Figure S2. Autocorrelation of each variable of the Lorenz 84 model output. The blue shades

indicate the p-value in null hypothesis significance testing.
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