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Abstract

Hydrologic variability can present severe financial challenges for organizations that rely on water for the provision of services,

such as water utilities and hydropower producers. While recent decades have seen rapid growth in decision-support innovations

aimed at helping utilities manage hydrologic uncertainty for multiple objectives, support for managing the related financial risks

remains limited. However, the mathematical similarities between multi-objective reservoir control and financial risk management

suggest that the two problems can be approached in a similar manner. This paper demonstrates the utility of Evolutionary

Multi-Objective Direct Policy Search (EMODPS) for developing adaptive financial risk management policies in the context of

hydropower production in a snow-dominated region. These policies dynamically balance a portfolio, consisting of snowpack-

based financial hedging contracts, cash reserves, and debt, based on evolving system conditions. Performance is quantified based

on four conflicting objectives, representing the classic tradeoff between “risk” and “return” in addition to decision-makers’ unique

preferences towards different risk management instruments. The dynamic policies identified here significantly outperform static

management formulations that are more typically employed for financial risk applications in the water resources literature.

Additionally, this paper combines visual analytics and information theoretic sensitivity analysis to help decision-makers better

understand how different candidate policies achieve their comparative advantages through differences in how they adapt to

real-time information. The methodology developed in this paper should be applicable to any organization subject to financial

risk stemming from hydrology or other environmental variables (e.g., wind speed, insolation), including electric utilities, water

utilities, agricultural producers, and renewable energy developers.
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Abstract17

Hydrologic variability can present severe financial challenges for organizations that rely18

on water for the provision of services, such as water utilities and hydropower producers.19

While recent decades have seen rapid growth in decision-support innovations aimed at20

helping utilities manage hydrologic uncertainty for multiple objectives, support for man-21

aging the related financial risks remains limited. However, the mathematical similari-22

ties between multi-objective reservoir control and financial risk management suggest that23

the two problems can be approached in a similar manner. This paper demonstrates the24

utility of Evolutionary Multi-Objective Direct Policy Search (EMODPS) for developing25

adaptive policies for managing the drought-related financial risk faced by a hydropower26

producer. These policies dynamically balance a portfolio, consisting of snowpack-based27

financial hedging contracts, cash reserves, and debt, based on evolving system conditions.28

Performance is quantified based on four conflicting objectives, representing the classic29

tradeoff between “risk” and “return” in addition to decision-makers’ unique preferences30

towards different risk management instruments. The dynamic policies identified here sig-31

nificantly outperform static management formulations that are more typically employed32

for financial risk applications in the water resources literature. Additionally, this paper33

combines visual analytics and information theoretic sensitivity analysis to help decision-34

makers better understand how different candidate policies achieve their comparative ad-35

vantages through differences in how they adapt to real-time information. The method-36

ology developed in this paper should be applicable to any organization subject to finan-37

cial risk stemming from hydrology or other environmental variables (e.g., wind speed,38

insolation), including electric utilities, water utilities, agricultural producers, and renew-39

able energy developers.40

Keywords41

hydropower, water resources, financial risk, direct policy search, reservoir control,42

global sensitivity analysis43

1 Introduction44

Reservoir control and financial risk management share strong similarities. The prin-45

cipal task in each is to reduce the risk of negative impacts from variable inflows (either46

hydrologic flows or cash flows), through the use of a buffer stock (either a reservoir or47

–2–



manuscript submitted to Water Resources Research

a reserve fund) that is filled in times of abundance and drawn down in times of scarcity48

(Figure 1). Other risk management tools may also be used to limit the impact of low-49

flow periods, but at a cost (e.g., water desalination or demand management for stream-50

flow deficits, and borrowing or financial hedging for cash flow deficits). In both cases,51

the manager must make decisions under an array of uncertainties, and may need to nav-52

igate tradeoffs between conflicting objectives (e.g., flood control vs. water supply for reser-53

voir control, risk vs. cost for financial risk management). And in both cases, as systems54

dynamically evolve, managers will have to adapt to new information as it becomes avail-55

able. In other words, reservoir control and financial risk management can be formulated56

as very similar Markov Decision Processes (MDPs) (Bertsekas, 2019; Powell, 2019), whether57

managers attempt to solve this problem explicitly, using programmatic approaches such58

as stochastic dynamic programming, or implicitly, relying on expert specified rules. Ad-59

ditionally, reservoir control and financial risk management are strongly interdependent60

activities for water-reliant organizations in the Food-Energy-Water Nexus, such as hy-61

dropower producers, municipal water utilities, and irrigation districts (Cai, Wallington,62

Shafiee-Jood, & Marston, 2018; D’Odorico et al., 2018; Scanlon et al., 2017). Such or-63

ganizations rely on water for the provision of services, and as a result, their revenues and/or64

costs can be highly dependent on hydrologic inflows (Blomfield & Plummer, 2014; Lar-65

son, Freedman, Passinsky, Grubb, & Adriaens, 2012). This suggests that an understand-66

ing of complex water resource system dynamics can be used to better characterize and67

adaptively manage financial risks borne by water-reliant organizations.68

Figure 1. A simple reservoir model and a simple cash flow model share the same underlying

decision structure.
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Water resource systems researchers have developed a broad range of strategies for69

dynamically managing reservoir operations in the face of uncertain hydrometeorology70

and demands (see reviews by Castelletti, Pianosi, and Soncini-Sessa (2008); Labadie (2004);71

Macian-Sorribes and Pulido-Velazquez (2019); Yeh (1985)), but Stochastic Dynamic Pro-72

gramming (SDP) and its many derivatives have been the most popular. The problem73

is formulated as an MDP in which a decision-maker must make sequential decisions based74

on the stochastically evolving state of the system. Each action affects the immediate cost/reward75

as well as the future state of the system. In SDP, this recursion is used to find optimal76

operating rules, in the form of a discrete policy table, using the Bellman Equation (Bell-77

man, 1957). However, despite its widespread use, SDP suffers from a number of limita-78

tions that reduce its applicability to large, complex, multi-objective problems where op-79

erations are evaluated using stochastic simulations (see discussion in Giuliani, Castel-80

letti, Pianosi, Mason, and Reed (2016)).81

A variety of approximation methods have been developed to overcome these chal-82

lenges, such as approximate dynamic programming, reinforcement learning, and model83

predictive control (Bertsekas, 2019). Direct Policy Search (DPS) (Rosenstein & Barto,84

2001), or parameterization-simulation-optimization (Koutsoyiannis & Economou, 2003),85

has become increasingly popular in the field of water resources systems analysis (Macian-86

Sorribes & Pulido-Velazquez, 2019). DPS is an approximation in policy space (Powell,87

2019), wherein the optimal operating policy is assumed to lie in the space of a certain88

parametric family of functions, and the policy parameters are optimized rather than the89

decisions themselves (i.e., optimizing state-aware adaptive rule systems instead of spe-90

cific actions). This drastically reduces the “curse of dimensionality” that limits the tractabil-91

ity of large SDP problems. Additionally, DPS allows for “model-free” representation of92

stochastic inputs, meaning that observational data, synthetically generated data, and93

process-based simulation model output can all be used in lieu of explicit probability dis-94

tributions (Desreumaux, Côté, & Leconte, 2018; Giuliani, Quinn, Herman, Castelletti,95

& Reed, 2018). A simulation-based approach to optimization also allows for flexible con-96

struction of mixed multi-objective formulations (Giuliani et al., 2016; Kasprzyk, Reed,97

& Hadka, 2016; Quinn, Reed, & Keller, 2017). In Evolutionary Multi-Objective Direct98

Policy Search (EMODPS) (Giuliani, Herman, Castelletti, & Reed, 2014), the policies are99

parameterized with a non-linear approximating network and optimized using a multi-100

objective evolutionary algorithm (MOEA). EMODPS has been deployed to solve com-101
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plex reservoir operations problems (multiple reservoirs; multiple, mixed objectives; and102

model-free information) that would be untenable using a traditional SDP approach (Denaro,103

Anghileri, Giuliani, & Castelletti, 2017; Giuliani, Pianosi, & Castelletti, 2015; Quinn et104

al., 2018; Zatarain Salazar, Reed, Quinn, Giuliani, & Castelletti, 2017).105

To complement algorithmic search strategies, water resources researchers have de-106

veloped an assortment of computational tools to help decision-makers better understand107

their options. This is especially important in multi-objective contexts, where optimiza-108

tion results in a multitude of solutions representing the optimal tradeoffs between con-109

flicting objectives (the Pareto set), rather than a single “best” policy. As the dimension-110

ality of the Pareto set grows, it becomes increasingly difficult to conceptualize. High-dimensional111

visualization, solution brushing, and other visual analytic techniques can help decision-112

makers to better understand the complex tradeoffs in their system and choose the so-113

lution that best suits their needs (Herman, Zeff, Reed, & Characklis, 2014; Huskova, Ma-114

trosov, Harou, Kasprzyk, & Lambert, 2016; Kollat & Reed, 2007). These tools can also115

help decision-makers to refine their conceptualization of the problem through iterative116

reformulation (Castelletti & Soncini-Sessa, 2006; Giuliani, Herman, et al., 2014; Kasprzyk,117

Reed, Characklis, & Kirsch, 2012). Visual analytics are especially powerful when com-118

bined with global sensitivity analyses that probe the impacts of key uncertainties on sys-119

tem performance (Iooss & Lemâıtre, 2015; Pianosi et al., 2016; Saltelli, Tarantola, & Cam-120

polongo, 2000). These tools can be used to “open the black box” of non-linear approx-121

imating networks and help decision-makers to better understand how the optimal op-122

erating policies adapt to changing conditions (Quinn, Reed, Giuliani, & Castelletti, 2019).123

In this way, visual analytics and sensitivity analysis can help to build trust between wa-124

ter resources modelers and real-world stakeholders. Although water resources practition-125

ers in general have been slow to adopt computational decision support tools such as MOEAs,126

visual analytics, and global sensitivity analysis (Basdekas, 2014; Brown et al., 2015), a127

growing number of real-world use cases suggests that this may be changing (Basdekas128

& Hayslett, 2021; Moallemi, Kwakkel, de Haan, & Bryan, 2020; Smith, Kasprzyk, & Dilling,129

2019; Wild, Reed, Loucks, Mallen-Cooper, & Jensen, 2019; Wu et al., 2016).130

Many organizations such as water utilities and hydropower producers rely on wa-131

ter for the provision of services. During drought, these organizations can experience re-132

duced revenues and/or increased costs (Hughes et al., 2014; Larson et al., 2012). For ex-133

ample, an electric utility with reduced hydropower capacity during drought will have less134
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electricity to sell (reduced revenues) and/or be forced to purchase more expensive replace-135

ment power from other generators (increased costs). Similarly, a water utility experienc-136

ing supply shortfalls will typically implement demand management measures (reduced137

revenues) and/or water purchases from other utilities or irrigators (increased costs). These138

measures can result in severe cash flow deficits that leave an organization at risk of de-139

faulting on its obligations (e.g., debt service, operations and maintenance) (Ceres, 2017;140

Leurig, 2010). Water utilities and hydropower-reliant electric utilities are therefore vul-141

nerable to significant financial disruption during drought, and hydrologic financial risk142

can have an outsized impact on the long-term viability of the utility; indeed, credit rat-143

ing agencies have noted that the ability to manage the financial impacts of drought is144

an important factor in determining a utility’s creditworthiness (Chapman & Breeding,145

2014; Moody’s Investors Service, 2011, 2019). Tools such as reserve funds, financial hedg-146

ing contracts, and lines of credit can be used to reduce the variability of net cash flows.147

This, in turn, can reduce an organization’s likelihood of bankruptcy, improve its credit148

rating, and reduce its future borrowing costs (Bank & Wiesner, 2010; Pérez-González149

& Yun, 2013), in addition to helping risk-averse staff feel more comfortable (Bodnar, Gi-150

ambona, Graham, & Harvey, 2019; Krause & Tse, 2016). Most utilities rely heavily on151

debt to finance infrastructure projects (Hughes & Leurig, 2013), so financial risk man-152

agement is a key component of providing quality service at affordable rates.153

Despite the critical role of financial risk management in water resources, decision154

support for practitioners in this area has remained limited. There is a long history of con-155

sidering financial objectives such as expected revenues and costs in water resources sys-156

tems analysis (e.g., see references in Labadie (2004); Macian-Sorribes and Pulido-Velazquez157

(2019); Yeh (1985)). However, fewer studies have explicitly accounted for variability in158

costs and revenues, or the financial risk management actions that an organization can159

take to combat this variability. Those that do have tended to propose static, non-adaptive160

management strategies. For example, modeling of financial reserves is not common in161

the water resources literature, and the limited examples tend to assume that the util-162

ity will contribute either a fixed amount or a fixed fraction of revenues to the reserve fund163

each year (Rehan, Knight, Unger, & Haas, 2013; Rehan, Unger, Knight, & Haas, 2015;164

Zeff, Kasprzyk, Herman, Reed, & Characklis, 2014). Similarly, there is a growing inter-165

est in using hydrology-based financial hedging contracts in applications such as hydropower166

(Foster, Kern, & Characklis, 2015; Hamilton, Characklis, & Reed, 2020; Meyer, Charack-167
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lis, Brown, & Moody, 2016), water supply (Brown & Carriquiry, 2007; Maestro, Barnett,168

Coble, Garrido, & Bielza, 2016; Zeff & Characklis, 2013), and agriculture (Denaro, Castel-169

letti, Giuliani, & Characklis, 2020; Mortensen & Block, 2018; Turvey, 2001), but researchers170

have generally assumed that the same contract is purchased each year, not allowing for171

risk management to be adjusted over time as conditions change.172

However, financial researchers have demonstrated that adaptive, state-aware ac-173

tion is crucial to financial risk management (Bolton, Chen, & Wang, 2011; Disatnik, Duchin,174

& Schmidt, 2014; Froot, Scharfstein, & Stein, 1993; Rampini, Sufi, & Viswanathan, 2014).175

Just as a reservoir operator should consider current reservoir levels and expected future176

inflows when making release decisions, so should a financial risk manager consider the177

utility’s current bank account balance and projected future revenues and costs when de-178

ciding whether to withdraw money from the bank, or whether to hedge its drought ex-179

posure using index contracts. A variety of optimization methods have been applied to180

financial problems such as investment portfolio selection (Markowitz, 1952; Mulvey, 2001;181

Pardalos, Sandström, & Zopounidis, 1994), asset-liability management (Kouwenberg &182

Zenios, 2008; Sodhi, 2005), and cash flow management (Baumol, 1952; da Costa Moraes,183

Nagano, & Sobreiro, 2015; Miller & Orr, 1966). As in water resources systems analysis,184

some researchers have attempted to provide more realistic decision support using multi-185

objective formulations (de Almeida-Filho, de Lima Silva, & Ferreira, 2020; Marqués, Garćıa,186

& Sánchez, 2020; Salas-Molina, Pla-Santamaria, & Rodriguez-Aguilar, 2018; Zopouni-187

dis, Galariotis, Doumpos, Sarri, & Andriosopoulos, 2015), model-free information (Sun,188

Fang, Wu, Lai, & Xu, 2011), heuristic solution methods (Aguilar-Rivera, Valenzuela-Rendón,189

& Rodŕıguez-Ortiz, 2015; da Costa Moraes & Nagano, 2013; Ponsich, Jaimes, & Coello Coello,190

2013; Tapia & Coello Coello, 2007), and visual analytics (Flood, Lemieux, Varga, & William Wong,191

2016; Savikhin, Lam, Fisher, & Ebert, 2011). Beyond the academic literature, the use192

of quantitative decision support tools by financial firms (e.g., banks, hedge funds, insur-193

ers) has proliferated in recent years, driven by growth in computing power, big data, al-194

gorithms, and visualization software (Fabozzi, Focardi, & Jonas, 2007; Rundo, Trenta,195

di Stallo, & Battiato, 2019; Zopounidis, Doumpos, & Niklis, 2018). However, these firms196

generally employ proprietary and highly problem-specific technologies that are not read-197

ily adoptable by organizations outside of the financial sector, such as water and power198

utilities, which nevertheless face significant financial risks.199
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This paper bridges the gap between reservoir control and financial risk manage-200

ment to show how computational tools developed for the former can be adapted to the201

latter. This research builds on prior work by the authors dealing with drought-related202

financial risk management by a hydropower producer. First, Hamilton et al. (2020) de-203

veloped a hydro-financial simulation model that abstracts the hydroclimatology, hydropower204

generation, cash flows, and financial risk management of the Power Enterprise of the San205

Francisco Public Utilities Commission (SFPUC). The authors used this model to eval-206

uate different static financial risk management portfolios within a Monte Carlo frame-207

work and search for optimal portfolios using an MOEA. In related work, Gupta, Hamil-208

ton, Reed, and Characklis (2020) introduced an adaptive EMODPS formulation of a sim-209

plified financial risk management problem, which was used to diagnostically benchmark210

if modern MOEAs are capable of addressing this new class of problem. The present study211

builds on these prior works by contributing the most detailed and actionable represen-212

tation to date of how EMODPS can be used to craft operating policies that adapt to chang-213

ing conditions over time when managing drought-related financial risk. The advantages214

of dynamic decision-making are demonstrated relative to a simplified static operating215

policy akin to those commonly applied to financial risk management in the water resources216

literature. This paper also demonstrates the value of higher-dimensional problem fram-217

ings that explicitly account for decision-maker preferences with respect to the use of dif-218

ferent management tools. Lastly, a framework is contributed for combining a posteriori219

visual analytics with information theoretic sensitivity analysis (ITSA) in order to help220

decision-makers better understand how complex, non-linear operating policies achieve221

their goals by adapting to real-time information when making decisions.222

2 Study context223

2.1 Study area224

San Francisco Public Utilities Commission (SFPUC) owns and operates three reser-225

voirs (Hetch Hetchy Reservoir, Cherry Lake, and Lake Eleanor) in the upper Tuolumne226

River basin in the Sierra Nevada mountains (Figure S1 in Supporting Information (SI)).227

These reservoirs deliver drinking water to much of the San Francisco Bay area, and en228

route, the water also provides hydroelectric power. SFPUC uses this hydropower to sell229

retail electricity at fixed rates to San Francisco International Airport, municipal build-230

ings in San Francisco, and a number of other retail customer classes within the Bay area.231
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Irrigation districts along the Tuolumne River also have the right to buy surplus hydropower,232

when available, at a fixed rate. When hydropower production is in excess of retail and233

irrigation district demands, it is sold at floating market rates into the Western Systems234

Power Pool (hereafter “wholesale market”). On the other hand, when hydropower is in-235

sufficient to meet the demand from retail customers, SFPUC is obligated to purchase236

the remainder on the wholesale market. Although SFPUC provides both water supply237

and power supply, they are operated as independent entities from a financial perspec-238

tive (San Francisco Public Utilities Commission, 2016), and the present work considers239

only the power supply enterprise.240

2.2 Hydro-financial simulation model241

This paper adopts the hydro-financial simulation model from Hamilton et al. (2020).242

The first component of the model is the stochastic engine, which is used to create a million-243

year synthetic record that can be used to drive the system. First, snow water equiva-244

lent depth (SWE) measurements for February 1 and April 1 (the months with the longest245

and most continuous datasets for the watershed) are randomly generated based on a cop-246

ula model. Next, hydropower production is synthetically generated using piecewise lin-247

ear models for each month conditioned on SWE, combined with an autoregressive model248

for residual noise. Third, monthly wholesale power prices are synthetically generated us-249

ing a seasonal autoregressive moving average model. Lastly, monthly hydropower net rev-250

enues are calculated based on hydropower generation and power prices. Net revenues are251

defined as the total annual cash flow resulting from retail and wholesale hydropower sales,252

minus wholesale power purchases, minus the annual “fixed costs” (debt service payments,253

operations and maintenance, salaries, etc.) that must be paid each year. The synthetic254

records are found to closely match the historical record in terms of statistical proper-255

ties, while providing a wider sampling of possible outcomes than can be found in the lim-256

ited historical data. For more details on the methodology and validation of the stochas-257

tic engine, see Hamilton et al. (2020).258

Three annual quantities are derived from this monthly synthetic dataset and used259

as stochastic drivers for the present study. Firstly, the SWE index (εS , in inches) is a260

weighted average of February and April SWE observations. The inflows to SFPUC’s reser-261

voirs are dominated by the seasonal dynamics of snow accumulation and melt, so SWE262

measurements taken upstream of the reservoirs in the late winter/early spring can be263
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used to predict the magnitude of streamflows during the melt period in the late spring/early264

summer. A weighted average of February and April observations is found to improve cor-265

relation with annual hydropower production, relative to either month in isolation, by in-266

corporating information about the timing of snowfall and melt (Hamilton et al., 2020).267

This correlation suggests that the index is a good candidate for financial hedging with268

index contracts (see below). The second stochastic driver is total hydropower net rev-269

enue over the water year (εR, in $M). Lastly, the power price index (εP , in $/MWh) is270

defined as the expected value of the generation-weighted average wholesale power price271

over the coming water year. This index takes advantage of autocorrelation in the mar-272

ket to predict how favorable the wholesale power prices will be for the utility’s net hy-273

dropower revenues over the coming water year. Although the correlation is relatively low274

(ρ = 0.35, see SI Figure S2), the index still provides potentially valuable information275

for making decisions regarding financial risk, and is used as one of the inputs to the dy-276

namic control policies (Section 3.1.2). More details on εP can be found in SI Section S1.277

Absent any financial risk management, the utility will experience years in which278

costs outweigh revenues (i.e., net revenue is negative). This situation can be extremely279

disruptive because the utility risks defaulting on its obligations (e.g., debt service or op-280

erations and maintenance). The hydro-financial simulation model provides three tools281

which can be used to avoid such negative outcomes. Firstly, it can purchase a snowpack-282

based hedging contract called a capped Contract for Differences (CFD). The CFD (SI283

Figure S3) provides payouts to the utility in low-SWE years (below 24.7 inches), when284

it expects to have low hydropower and thus low revenue, in return for the utility mak-285

ing payments in high-SWE years (above 24.7 inches), when the utility expects to have286

abundant hydropower and surplus revenue. The negative correlation between hydropower287

revenue and CFD payout has been found to significantly reduce the volatility of the com-288

bined cash flow, suggesting its value as a financial risk management tool (Hamilton et289

al., 2020). The second risk management tool is a reserve fund, into which the utility can290

deposit surplus cash flows. This allows it to withdraw from the fund when hydropower291

revenues are insufficient to pay its bills. Lastly, the utility has a letter of credit with a292

bank, under which it can borrow money (i.e., issue short-term debt). The debt is paid293

back each year (with interest), and is assumed to take up the slack in situations where294

the other two tools fail to generate sufficient cash flows to avoid defaulting on the util-295

ity’s obligations. Note that the short-term debt considered in this model is distinct from296
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longer-term debt service obligations related to past bond offerings, typically associated297

with infrastructure investments, and which are assumed to be part of the “fixed costs”298

above.299

Figure 2. Annual sequence of operations in hydro-financial simulation model (moving from

top left to bottom right). Solid (dashed) arrows represent the information flows from the current

(previous) time step.

Figure 2 shows how these financial operations are abstracted in the hydro-financial300

simulation model (see Table 1 for a list of variable names, symbols, units, and constants).301

The sequence of operations occurs at the end of each water year, September 30, based302

on the stochastic outcomes that occur over the course of that water year, εt. Two state-303

aware “actions” each year are governed by the control policy (to be described in Section304

3.1): the amount of cash withdrawn from/deposited to the reserve fund (uWt , in $M, where305

uWt > 0 represents a withdrawal and uWt < 0 represents a deposit), and the hedging306

contract slope (uHt , in $M/inch of SWE). All other variables (“model states”) are au-307
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tomatically updated according to the following rules:308

xC1
t = εRt − rDxDt−1 (1)309

xC2
t = xC1

t + uHt−1h
(
εSt
)

(2)310

xFt = rFxFt−1 − uWt (3)311

xC3
t = xC2

t + uWt (4)312

xDt = max(−xC3
t , 0) (5)313

xC4
t = xC3

t + xDt (6)314

where xC1
t , xC2

t , and xC3
t are intermediate cash flows and xC4

t is the final cash flow in315

year t; xDt and xFt are the short-term debt and reserve fund balance at the end of time316

step t; rD and rF are the annual real interest rates on debt and reserves; and h
(
εSt
)

is317

the CFD payout function (SI Figure S3). This function converts the stochastic SWE in-318

dex value from the current year into a number of inches of SWE for which the utility will319

receive compensation (if h
(
εSt
)
> 0) or owe payment (if h

(
εSt
)
< 0). To get the util-320

ity’s total payout received (or payment due), this output is multiplied by the CFD slope,321

uHt−1, as chosen by the control policy at the end of the previous year (Section 3.1). The322

reader is referred to Hamilton et al. (2020) for more details on construction of the CFD.323

A full realization of the hydro-financial simulation model requires iterating this se-324

quence for T = 20 years, subject to a randomly sampled (T+1)-year sequence of stochas-325

tic drivers. The multi-year simulation accounts for the path-dependent dynamics of the326

reserve fund and debt, as well as the autocorrelation within the stochastic power prices.327

The reserve fund and debt are assumed to be zero at t = 0 (in practice these values could328

be set based on circumstance). The hedging contract policy in year 0 (the slope to be329

used for the payout in year 1) is calculated using xF0 , xD0 , and εP0 .330

3 Methods331

Figure 3 shows how the stochastic engine and hydro-financial model are integrated332

into the broader framework of this study. The EMODPS methodology combines adap-333

tive control rules, Monte Carlo ensemble simulation, and MOEA-driven policy search.334

The search produces a large population of candidate policies, which can be explored us-335

ing optimal tradeoff analysis, many-objective visualization, and information theoretic sen-336

sitivity analysis. This framework is further described in what follows.337
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Table 1. Variables and constants for hydro-financial simulation model.

Variable Symbol Value Units

Power price index εPt - $/MWh

SWE index εSt - inches

Annual net revenue εRt - $M

Cash flow 1 xC1
t - $M

Cash flow 2 xC2
t - $M

Withdrawal uWt - $M

Reserve fund balance xFt - $M

Cash flow 3 xC3
t - $M

Debt xDt - $M

Cash flow 4 xC4
t - $M

Hedge contract slope uHt - $M/inch

Mean net revenue before risk management R̄ 10.99 $M

Real discount rate rA 0.9615 -

Real interest rate on fund rF 0.9825 -

Real interest rate on debt rD 1.0100 -

Time horizon T 20 years

Debt sustainability constraint ε 0.05 $M

Normalization for power price index kP 350 $/MWh

Normalization for hedge contract slope kH 4 $M/inch

Normalization for revenues & cash flows kR 250 $M

Normalization for fund & debt kF 150 $M

3.1 Control formulations338

Within the hydro-financial simulation model, there are two important decisions that339

must be made each year: the hedging contract slope and the withdrawal from/deposit340

to the reserve fund. A control policy refers to a structured set of rules for making these341

two decisions each year. This study introduces two types of control: static (or open-loop)342

policies, which perform the same actions with each time step (Section 3.1.1), and dynamic343

(or closed-loop) policies, which adapt to changing conditions over time (Section 3.1.2).344
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Figure 3. Schematic showing overall workflow for this study. Rectangles represent modules

and diamonds represent inputs/outputs. Dashed arrows show the feedback process for the Borg

MOEA, where objective and constraint values from prior control policy evaluations are used to

generate new candidate policies for evaluation. The dotted arrow represents the final population

output from the MOEA search, which is used as input to the post-optimization decision support.

Dynamic policies are considered state-aware because the decisions at each time step are345

conditioned on the current state of the model. Under both static and dynamic formu-346

lations, a policy is defined by a parameter vector which governs its operations. Multi-347

objective evolutionary optimization (Section 3.3) will be used to search for parameter348

vectors that perform well across four objectives related to the annualized cash flow, the349

risk of extreme debt levels, the probability of using hedging contracts, and the size of350

the reserve fund (Section 3.2).351

–14–



manuscript submitted to Water Resources Research

3.1.1 Static policies352

The static control formulation (adapted from Hamilton et al. (2020)) is given by:353

θstat = [uH , xFmax] (7)354

where θstat is the policy parameter vector and uH and xFmax are the two parameters to355

be optimized. uH is the CFD slope, which is held fixed across all years in the simula-356

tion, while xFmax is the maximum allowable reserve fund. Given xFmax, the reserve fund357

operates according to the following simple rules: If the intermediate cash flow is nega-358

tive (xC2
t < 0), cash is withdrawn from the reserve fund to make up the deficit if pos-359

sible. If xC2
t > 0, the surplus is deposited into the fund, up until the fund has reached360

xFmax. This policy is referred to as “static” because the CFD slope does not react to chang-361

ing conditions (i.e., it is not state-aware). Although the withdrawal policy is quasi-state-362

aware via cash-balance constraints (money can neither be created nor destroyed), it is363

not truly dynamic in a meaningful sense (e.g., it cannot condition its reserve fund tar-364

get on power price projections). Note that in Figure 2, the static formulation does not365

include the three input arrows into uHt , and only includes the two input arrows into uWt366

that relate to the cash balance constraints (xC2
t and xFt−1).367

3.1.2 Dynamic policies using Direct Policy Search (DPS)368

The dynamic control formulation conditions the decision at each time step on the369

information available at that time. For a decision uDt , with D ∈ {W,H} representing370

the withdrawal and hedging decisions, respectively:371

uDt = PD(IDt′ |θ
D
dyn) (8)372

where PD is the mathematical form of the policy for decision D (e.g., discrete policy ta-373

ble for SDP), θDdyn is the vector of parameters to be optimized for the policy, and IDt′374

is the information upon which the decision is conditioned. This information can be any375

subset of the model states, actions, and stochastic drivers. The subscript t′ on each el-376

ement represents either the current (t) or previous (t− 1) time step, based on the se-377

quential nature of decisions (see Figure 2).378

In DPS, P is assumed to be a family of parametric functions (Rosenstein & Barto,379

2001). This approximation drastically reduces the number of decision variables in the380

search relative to SDP (Bertsekas, 2019; Powell, 2019). Many parametric function fam-381
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ilies are available (e.g., piecewise linear, polynomial, artificial neural network), but ra-382

dial basis functions (RBFs) have been shown to be efficient universal approximators for383

DPS (Giuliani, Mason, Castelletti, Pianosi, & Soncini-Sessa, 2014). In this work, a sum384

of RBFs is paired with a constant shift parameter, along with an outer function that per-385

forms operations such as normalization and constraints. Equation 8 can be rewritten as:386

uDt = φD

(
aD +

M∑
m=1

wDmϕm

(
IDt′
))

(9)387

where φD is the outer function, aD ∈ [−1, 1] is a constant shift, and wDm is the weight388

given to the mth out of M total RBFs, ϕm. The weights must be chosen such that
∑M
m=1 w

D
m =389

1, and wDm ≥ 0 for all m. The RBF is defined390

ϕm(IDt′ ) = exp

− L∑
l=1

([
IDt′
]
l
− cl,m

)2
(bl,m)

2

 (10)391

where
[
IDt′
]
l

is the lth out of L informational inputs, and cl,m ∈ [−1, 1] and bl,m ∈ (0, 1]392

are the center and radius, respectively, of the mth RBF in the direction of the lth in-393

put. The M RBFs are shared by the two decisions in the control policy.394

The information vector for each decision includes the combination of state variables395

and external drivers that might be useful for making the decision:396

IWt′ =
[
rF x̃Ft−1, rDx̃Dt−1, ε̃Pt , x̃C2

t

]
(11)397

IHt′ =
[
x̃Ft , x̃Dt , ε̃Pt

]
(12)398

where all tildes represent values that have been normalized to lie between 0 and 1, us-399

ing the normalization constants in Table 1. Both decisions utilize information about the400

reserve fund balance and debt, but uD uses last year’s balance plus accumulated inter-401

est, while uW uses the updated value from the present year (Figure 2). Both decisions402

also use the current power price index. Finally, the cash flow prior to withdrawal/deposit,403

xC2
t , is used for uW but not uD. Because the M RBFs are shared across the two deci-404

sions, L = max(LW , LH) = 4.405

The outer functions φW and φH (Equation 9) each consist of multiple nested func-406

tions performing specific operations. The more straightforward φH consists of a normal-407

ization function, φHN , and a constraint function, φHC . Let zt be the argument to φH ,408

the action prescribed by the constant shift and sum of radial basis functions in Equa-409

tion 9 when H is substituted for D. This equation can be decomposed as410

uHt = φH(zt) = φHC
(
φHN (zt)

)
(13)411
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First, φHN scales the hedging contract slope to the proper scale, [0, kH ] ($M/inch),412

where kH is the hedging contract normalization constant in Table 1.413

z′t = φHN (zt) = kH max(min(zt, 1), 0) (14)414

Next, φHC constrains the contract slope to be greater than or equal to a constant415

threshold, kHdH , where the threshold parameter dH ∈ [0, 1] is included in the policy416

parameter vector to be optimized, along with aH , wH , c, and b.417

uHt = φHC(z′t) =


z′t, if z′t ≥ kHdH

0, otherwise

(15)418

The outer function for the withdrawal decision, φW , consists of four nested oper-419

ations. Let zt now be the sum of the constant shift and RBFs in Equation 9 when W420

is substituted for D. Then:421

uWt = φW (zt) = φWCO
(
φWCI

(
φWW

(
φWN (zt)

)))
(16)422

where φWCO, φWCI , φWW , and φWN are the outer constraint, inner constraint, with-423

drawal transformation, and normalization functions. First, when designing the withdrawal424

policy, it was discovered that the EMODPS search produces better results when zt is de-425

fined as the prescribed post-withdrawal cash flow rather than the withdrawal itself. For426

this reason, the normalization function, φWN , transforms zt to the scale of [−kR, kR] ($M),427

where kR is the normalization constant for all revenues and cash flows in Table 1.428

z′t = φWN (zt) = kR max(min (2zt − 1, 1) ,−1) (17)429

The withdrawal transformation function, φWN , transforms z′t from a cash flow into430

a withdrawal/deposit using the relationship between incoming and outgoing cash flow:431

z′′t = φWW (z′t) = z′t − xC2
t (18)432

The inner constraint function, φWCI , ensures that the withdrawal/deposit is con-433

sistent with cash-balance equations:434

z′′′t = φWCI(z′′t ) =


min

(
z′′t , rFxFt−1

)
, if z′′t >= 0

max
(
z′′t , −max

(
xC2
t , 0

))
, otherwise

(19)435
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The first condition ensures that a withdrawal (z′′t > 0) cannot be larger than the bal-436

ance in the reserve fund. The second case dictates that a deposit (z′′t < 0) is only al-437

lowed when the available cash flow xC2
t is positive, and that the deposit cannot be larger438

in magnitude than this cash flow.439

Lastly, the outer constraint, φWCO, ensures that the reserve fund balance (after440

withdrawal/deposit) cannot be larger than a constant threshold, kF dW , where kF ($M)441

is the normalization constant used for the reserve fund and debt in Table 1, and dW ∈442

[0, 1] is another decision variable to be optimized.443

uWt = φWCO(z′′′t ) =


rFxFt−1 − kF dW , if

(
rFxFt−1 − z′′′t

)
> kF dW

z′′′t , otherwise

(20)444

This threshold sets the maximum allowable reserve fund size, equivalent to xFmax in the445

static formulation.446

Equations 8-20 constitute the full dynamic control policy. The parameter vector447

to be optimized for each decision D ∈ {W,H} is448

θDdyn = [aD, dD, wD, c, b] (21)449

where wD =
[
wD0 , ..., w

D
M

]
, c = [c0,0, ..., cL,M ], and b = [b0,0, ..., bL,M ]. The total pa-450

rameter vector to be optimized, θdyn, is the set of unique parameters,451

θdyn = [aW , aH , dW , dH , wW , wH , c, b] (22)452

3.2 Objective formulations453

This study uses “noisy” objective formulations to account for the uncertainty of454

outcomes under the stochastic drivers. Each candidate policy is evaluated using a Monte455

Carlo ensemble of N realizations, each representing one possible trajectory of the hydro-456

financial system under a T -year sample of the stochastic drivers. To convert an ensem-457

ble of time series into a scalar performance metric requires both a time aggregation step458

(e.g., taking the maximum debt over a T -year realization) and a noise filtering step (e.g.,459

taking the 95th percentile over N realizations in the ensemble). Four objectives are con-460

sidered in this study, each defined as the maximization or minimization of a particular461

performance metric.462

The first objective is to maximize the expected annualized cash flow, Jcash, a mea-463

sure of “average” cash flows. A high value represents a low-cost risk management pol-464
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icy. Although public utilities are not strictly profit-maximizing firms, they nonetheless465

aim to maintain sufficient cash flows to keep customer rates low and/or invest in new466

infrastructure, and Jcash is used as a proxy for this type of financial health.467

Jcash
(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)
= Eε

[
ANNt

(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)]
(23)468

where xC4
t is the final cash flow for year t; xFT and xDT are the reserve fund balance and469

debt at the end of the simulation; Eε is the expectation over the stochastic drivers (ap-470

proximated by the mean of N Monte Carlo samples); and ANNt is the annualization471

operator:472

ANNt

(
xC4
t∈(1,...,T ), x

F
T , x

D
T

)
=

1∑T
t=1(rA)t

(
T∑
t=1

(
(rA)txC4

t

)
+ (rA)T+1

(
rFxFT − rDxDT

))
(24)473

where where rA is the real discount rate and rF and rD are the real interest rates on re-474

serves and debt (Table 1). ANNt sums the net present value (NPV) of all discounted475

cash flows over T years, plus the NPV of the reserve fund and debt in year T , and di-476

vides this sum by a normalization factor. The normalized value represents the constant477

cash flow, or annuity, that is equivalent in terms of NPV to the variable cash flow. On478

the whole, annualization allows for a fair comparison, accounting for the time value of479

money, between cash flow time series resulting from different management strategies.480

The second objective is to minimize Jdebt, the 95th percentile of maximum debt.481

This is a measure of the short-term debt load that would be needed to meet fixed costs482

in an extremely bad year (or sequence of years). This performance metric is used as a483

proxy for “risk”, and a decision-maker would want to minimize this quantity in order484

to avoid compromising the utility’s credit rating, increasing future borrowing costs, and/or485

risking bankruptcy.486

Jdebt
(
xDt∈(1,...,T )

)
= Q95ε

[
max

t∈(1,...,T )

[
xDt
]]

(25)487

where the max operator takes the maximum debt over a T -year realization, and the Q95488

operator takes the 95th percentile over the Monte Carlo ensemble.489

These first two objectives, adopted from Hamilton et al. (2020), are representative490

of the risk/return tradeoff analysis that is common in financial applications (Hull, 2009;491

Markowitz, 1952). However, financial researchers have found that higher-dimensional prob-492

lem framings can more accurately represent managers’ behavior in the empirical data493

(Spronk, Steuer, & Zopounidis, 2005; Zopounidis et al., 2015). For example, in addition494
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to maximizing return and minimizing risk, an investment portfolio manager might want495

to minimize the number of unique securities held because this limits the associated pa-496

perwork, transactions fees, etc. Similarly, in workshops designed to help water utilities497

integrate MOEAs into their water portfolio planning processes, Smith et al. (2019) have498

found that managers often weigh the decision levers (e.g., whether a new reservoir must499

be built) alongside more traditional measures of portfolio performance (e.g., supply re-500

liability) when deciding which portfolio to choose. This represents an expansion of the501

objective space in practice, and reflects decision-makers’ expert knowledge of the trade-502

offs associated with various management tools. Bringing together these lines of research,503

a utility manager would be expected to balance tradeoffs associated with different finan-504

cial risk management tools in addition to performance metrics like risk and return (Bank505

& Wiesner, 2010; Hughes et al., 2014). Two additional objectives are now introduced506

in order to explore the impact of such tradeoffs.507

The third objective is to minimize Jhedge, the expected hedging frequency.508

Jhedge
(
uHt∈(0,...,T−1)

)
= Eε

[
max

t∈(0,...,T−1)

[
1uH

t >0

]]
(26)509

where the indicator function 1uH
t >0 returns a 1 if the hedging contract slope is non-zero,510

and a 0 otherwise. This metric represents the likelihood that the utility will enter into511

at least one hedging contract over the course of 20 years. Note that each hedging con-512

tract does have an annual cost, a “loading” applied by the contract seller that makes the513

expected payout of h (SI Figure S3) negative (Hamilton et al., 2020). However, this cost514

is already accounted for by Jcash, and does not need to be double-counted. Jhedge, rather,515

relates to the significant extra costs (in time, personnel, and/or money) of having to set516

up the first hedging contract within a realization, assuming that this start-up cost will517

be significantly diminished in subsequent contract purchases. Moreover, this objective518

can be taken to represent the general discomfort that a utility manager may have with519

financial hedging contracts due to their novelty and perceived complexity or opacity (Bank520

& Wiesner, 2010).521

The last objective is to minimize Jfund, the expected maximum reserve fund bal-522

ance.523

Jfund
(
xFt∈(1,...,T )

)
= Eε

[
max

t∈(1,...,T )

[
xFt
]]

(27)524
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This metric represents the expected value of the largest reserve fund used in a T -year525

realization, which a utility manager may want to minimize in order to avoid attracting526

regulatory scrutiny over holding large liquid reserves (Hughes et al., 2014).527

Finally, a “debt sustainability” constraint ensures that feasible policies do not al-528

low debt to grow unchecked over time (on average), which would likely lead to a credit529

downgrade in practice:530

Eε
[
xDT − xDT−1

]
< ε (28)531

where ε is a small constant (Table 1). This “noisy” constraint is calculated from the en-532

tire Monte Carlo ensemble; there is no constraint on debt use in individual extreme re-533

alizations.534

3.3 Multi-objective evolutionary optimization of control policies535

As described in Sections 1 and 3.1.2, DPS has a number of advantages relative to536

traditional methods such as SDP, especially when combined with non-linear approximat-537

ing networks such as RBFs. However, RBF parameterization can result in a highly non-538

linear and non-convex search space that is difficult to traverse with gradient-based meth-539

ods, especially when combined with noisy multi-objective formulations (Giuliani & Castel-540

letti, 2016; Giuliani, Mason, et al., 2014; Giuliani et al., 2018). These problems are bet-541

ter handled by MOEAs, which use evolution-inspired strategies (e.g., selection, mating,542

mutation) to iteratively improve a population of solutions competing on multiple objec-543

tives (Coello Coello, Lamont, & Van Veldhuizen, 2007). Population-based methods can544

approximate the entire Pareto set in a single run, rather than rerunning many single-545

objective optimizations, making them quite efficient on many-objective problems. Ad-546

ditionally, these heuristic approaches require no information on the topology of a prob-547

lem and are well-adapted to the types of nonlinear, non-convex, high-dimensional, and548

stochastic problems that are common in both water resources (Maier et al., 2014; Nick-549

low et al., 2010; Reed, Hadka, Herman, Kasprzyk, & Kollat, 2013) and finance (Ponsich550

et al., 2013; Tapia & Coello Coello, 2007).551

This study employs the Borg Multiobjective Evolutionary Algorithm (MOEA) (Hadka552

& Reed, 2013), which has been particularly successful across a range of difficult prob-553

lems in water resources (Gupta et al., 2020; Hadka & Reed, 2012; Reed et al., 2013; Zatarain Salazar,554

Reed, Herman, Giuliani, & Castelletti, 2016) and engineering design (Singh et al., 2020;555
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Woodruff, Reed, & Simpson, 2013). The Borg MOEA includes novel components such556

as adaptive search operator selection, adaptive population sizing, stagnation detection557

via epsilon-progress, and epsilon-dominance archiving. Its self-adaptive nature makes the558

Borg MOEA highly controllable (Hadka & Reed, 2013; Reed et al., 2013), and the master-559

worker parallel variant used in this study is scalable on high-performance computing in-560

frastructure (Giuliani et al., 2018; Zatarain Salazar et al., 2017).561

3.4 Information theoretic sensitivity analysis562

A sensitivity analysis (SA) is an evaluation of the effects of a model’s input fac-563

tors on its output factors, and a wide range of methods are available to suit different pur-564

poses. According to the taxonomy of SA introduced by Pianosi et al. (2016), the method565

that follows would be considered a quantitative, global, “all-at-a-time” SA, based on sim-566

ulation model output. This SA is used to explore how different policies adapt their ac-567

tions to changing conditions; more specifically, it will probe the sensitivity of the pre-568

scribed hedging and withdrawal decisions (Equation 8) to changing informational inputs569

(Equations 11-12). This type of analysis can help to “open the black box” of control poli-570

cies, helping decision-makers better understand how different policies respond to chang-571

ing information (Quinn et al., 2019).572

However, commonly-used variance-based methods, which decompose the variance573

of an output variable into contributions from covariance with different input variables,574

are inappropriate in the proposed context. First, the policies described by Equations 9-575

20 are highly non-linear and discontinuous, so that variance and covariance are inappro-576

priate measures of variability and relationship. Secondly, most variance decomposition577

methods assume independence between the input variables, and can lead to misleading578

results when this independence is violated (Borgonovo, 2007; Borgonovo, Castaings, &579

Tarantola, 2011). This is especially problematic in the current context because most Pareto-580

optimal solutions will impose the following relationship between the reserve fund and debt:581

if one is large, the other is usually zero. For these reasons, moment-independent global582

SA methods, such as entropy-based SA (Auder & Iooss, 2009; Krzykacz-Hausmann, 2001),583

are preferred. Hejazi, Cai, and Ruddell (2008) use ITSA to study the impact of hydro-584

logic information on historical release decisions made by reservoir operators under dif-585

ferent conditions. A similar approach is adopted here to study how different policies along586

the Pareto front use model state information to make decisions.587
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Shannon entropy (Shannon, 1948) quantifies how much information is needed, on588

average, to describe a random variable. Consider uD, D ∈ {W,H}, the two policy-prescribed589

actions. uD is a function of the information vector, ID, which varies stochastically through590

time and across Monte Carlo realizations. As such, both the information vector and the591

prescribed action can be considered random variables, ID and UD. The entropy of the592

action is:593

H(UD) = −
∑

uD∈υD
p(uD) log2 p(u

D) (29)594

where p(uD) is the probability mass function (PMF) after discretizing the outcome to595

a discrete domain, υD. The entropy (in bits when written with a base-2 logarithm) can596

be thought of as a moment-free measure of uncertainty, or dispersion, in the probabil-597

ity distribution of a random variable. A variable whose outcome is known determinis-598

tically has zero entropy, while a uniformly distributed variable is the most uncertain and599

has the largest possible entropy. Although a continuous variant of entropy based on Kullback-600

Leibler divergence can also be used for SA (Auder & Iooss, 2009; Liu, Chen, & Sudjianto,601

2006; Pappenberger, Beven, Ratto, & Matgen, 2008), the discrete version is more straight-602

forward when the random variable’s distribution is unknown.603

The mutual information between two random variables measures the average re-604

duction in the entropy of one variable when the other variable’s outcome is known:605

MI(IDi , U
D) = H(UD)−H(UD|IDi ) (30)606

= −
∑

IDi ∈ιDi

∑
uD∈υD

p(IDi , uD) log2

p(IDi , uD)

p(IDi )p(uD)
(31)607

where IDi is the random variable for the ith informational input (e.g., reserve fund bal-608

ance or power price index), H(UD|IDi ) is the entropy of the action conditional on the in-609

put, p(IDi ) is the PMF for the input on the discrete domain ιDi , and p(IDi , uD) is the610

joint PMF on the discrete domain ιDi ×υD. This mutual information is a measure how611

much information the outcome of one random variable contains about the outcome of612

the other: how much does knowledge of a particular informational input reduce the un-613

certainty in the prescribed action?614

Finally, the ITSA index is defined by dividing the mutual information by the en-615

tropy of the prescribed action:616

ηDi =
MI(IDi , U

D)

H(UD)
(32)617
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where ηDi is the sensitivity index for the ith input for decision D. This index varies be-618

tween 0 and 1; ηDi = 0 implies that IDi and UD are independent random variables, while619

ηDi = 1 implies perfect dependence (knowledge of IDi gives us perfect knowledge of uD).620

4 Computational experiments621

4.1 Problem formulations622

This study considers both the static and dynamic control formulations, each of which623

has its own parameter vector to be optimized. The static parameter vector (θstat, Equa-624

tion 7) has two elements to be optimized. The dynamic parameter vector, (θdyn, Equa-625

tion 22) has 4 + 2M + 2ML elements, where L = 4 is the number of informational in-626

puts, and M is the number of RBFs in the policy. With M = 2 RBFs (see next sec-627

tion), θdyn contains 24 elements to be optimized.628

For each control formulation, both two-objective and four-objective problems are629

considered. The two-objective problem can be written:630

θ∗ = arg min
θ

[
−Jcash(θ), Jdebt(θ)

]
(33)631

while the four-objective problem can be written:632

θ∗ = arg min
θ

[
−Jcash(θ), Jdebt(θ), Jhedge(θ), Jfund(θ)

]
(34)633

For both problems, the feasible solution space is restricted to solutions satisfying the sus-634

tainable debt constraint (Equation 28). The two-objective problem is the same as that635

used by Hamilton et al. (2020), allowing for a direct comparison, while the four-objective636

problem provides more nuanced insight into risk management tradeoffs.637

4.2 MOEA experiments638

An ensemble of N = 50, 000 realizations is run for each function evaluation, bal-639

ancing computational demand against the need to minimize sampling error in the noisy640

objective/constraint evaluations (see discussions in Kasprzyk et al. (2012); Quinn, Reed,641

Giuliani, and Castelletti (2017); Zatarain Salazar et al. (2017)). In order to select the642

appropriate number of RBFs, the dynamic 4-objective formulation is repeated with 1,643

2, 3, 4, 8, and 12 RBFs. Due to the inherent stochasticity of evolutionary algorithms,644

each optimization is repeated with 10 different random seeds. Each seed is run for 150,000645

function evaluations (candidate policy trials). Final populations are assessed in terms646

–24–



manuscript submitted to Water Resources Research

of hypervolume, additive epsilon indicator, and generational distance (SI Figure S4), three647

common metrics for assessing convergence, consistency, and diversity of multi-objective648

solution sets (Coello Coello et al., 2007; Hadka & Reed, 2012; Reed et al., 2013). Results649

are found to be relatively insensitive to the number of RBFs used in the dynamic con-650

trol policies, but M = 2 RBFs is chosen due to the robust performance across seeds.651

Next, 20 additional seeds are run for the dynamic 4-objective formulation with M =652

2, and 30 seeds each are also run for the dynamic 2-objective, static 2-objective, and static653

4-objective formulations. The best known Pareto approximate set for each formulation654

is the set of non-dominated solutions from across the 30 seeds. After using the same 50,000-655

member ensemble of 20-year simulations for all formulations/seeds in the initial optimiza-656

tion, each solution in the final Pareto approximate set for each formulation is rerun on657

a separate 50,000-member ensemble, for which results are reported. Important param-658

eter values for the optimization can be found in SI Table S1; all other Borg MOEA pa-659

rameters besides those listed are set to the default values (Hadka & Reed, 2013; Reed660

et al., 2013).661

4.3 Information theoretic sensitivity analysis parameters662

ITSA indices for each specific operating policy are calculated using a 50,000-member663

ensemble of 20-year simulations, yielding 1,000,000 realizations of IDi and uD. Each com-664

ponent is discretized into 50 bins in order to calculate the marginal and joint probabil-665

ity mass functions (Equations 29, 31). This process is repeated for each control policy666

in the Pareto set, yielding separate ITSA indices for each.667

5 Results and discussion668

5.1 Static vs. dynamic financial risk management669

Figure 4 shows the resulting Pareto approximate sets from the 2-objective optimiza-670

tion problem (Equation 33), under both static and dynamic control formulations. Each671

point represents a different financial risk management policy. The ideal performance, de-672

noted by a black star, would be achieved with a cash flow metric (Jcash) of $10.99M (the673

average net revenue in the absence of any financial risk management) and a debt met-674

ric (Jdebt) of zero. However, this is not possible due to the strong tradeoff between “risk”675

and “return” that is standard in financial risk applications: in order to achieve higher676
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expected cash flows, the utility must forego costly risk management actions and there-677

fore risk more extreme debt burdens in less favorable realizations. As discussed in Sec-678

tion 3.2, large short-term debt in our model can be viewed as a proxy for larger finan-679

cial disruptions such as credit rating downgrades or bankruptcy in practice. Decision-680

makers will have to balance this tradeoff when selecting a particular policy for the util-681

ity to use, based on risk aversion, access to credit, and other organizational factors.682

Figure 4. Comparison of 2-objective Pareto approximate sets under static and dynamic con-

trol formulations. The best compromise policy from each formulation is outlined in black and

described in Table 2.

However, decision-makers can drastically reduce the risk management tradeoff by683

using adaptive operating rules that respond to changing conditions. The Pareto approx-684

imate set from the dynamic EMODPS control formulation is found to dominate the Pareto685

approximate set from the static formulation, suggesting that one can improve on both686

the cash flow and debt objectives simultaneously. For example, consider the two exam-687

ple policies outlined in black in Figure 4 and listed in Rows 1-2 in Table 2. These are688

chosen as the “best compromise” policies near the centers of their respective Pareto ap-689

proximate sets (as selected using the TOPSIS method with equal weights on each ob-690

jective (Behzadian, Khanmohammadi Otaghsara, Yazdani, & Ignatius, 2012; Roszkowska,691

2011)). The dynamic policy is found to reduce Jdebt by $2.83M, or 25.1%, relative to the692
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static policy. At the same time, it increases Jcash by $0.23M, representing a 36.1% re-693

duction in risk management cost. This dual improvement highlights the value of dynamic694

financial risk management: the utility can improve on both objectives simultaneously695

without requiring any investment in its infrastructure or changes to its physical oper-696

ations. All that is required is to switch to a more dynamic financial risk management697

policy.698

Table 2. Performance of six example policies referenced throughout the results sections. Rows

1 and 2 represent the best compromise policies from the static and dynamic control formulations,

respectively, under the 2-objective optimization problem (Section 5.1). Row 3 represents the best

compromise policy from the 4-objective optimization problem and the dynamic control formula-

tion, after brushing with a posteriori constraints (Section 5.2). Rows 4-6 represent policies that

are highly sensitive to information about the reserve fund balance, debt, and power price index,

respectively (Section 5.3).

Row Figure Jcash Jdebt Jhedge Jfund Fund Debt Power

($M/yr) ($M) (unitless) ($M) Sensitivity Sensitivity Sensitivity

1 4 red 10.37 11.25 1.00 16.11 – – –

2 4 blue 10.59 8.42 1.00 19.31 0.74 0.11 0.12

3 8 10.75 15.90 0.77 12.01 0.36 0.72 0.01

4 9a 10.20 3.22 1.00 24.55 0.93 0.12 0.00

5 9b 10.71 15.72 0.40 16.83 0.44 0.96 0.01

6 9c 9.84 8.96 1.00 1.53 0.02 0.03 0.72

The dynamic formulation allows the utility to take different sequences of actions699

under different stochastic realizations, using parameterized control rules that allow for700

the actions taken at any particular time to be better tailored to the current state of the701

system. To elucidate the differences between static and dynamic financial risk manage-702

ment, the two best compromise policies are simulated under two different 20-year real-703

izations from the synthetic record: an unusually wet period and an unusually dry pe-704

riod (Figure 5). Differences in SWE (5a) lead to drastic differences in hydropower gen-705

eration (5b) and net revenues (5d) under the two realizations, and the dry scenario ex-706

periences lengthy periods of drought-related cash flow deficits. The two scenarios also707
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yield very different responses in terms of the hedging policy (5e & 5i), reserve fund bal-708

ance (5f & 5j), debt (5g & 5k), and final cash flow (5h & 5l). In the wet scenario, the709

reserve funds fill up quickly and stay nearly full. Neither policy requires any significant710

debt, and final cash flows are generally positive and rather large. In the dry scenario,711

the reserve funds fluctuate up and down, including two periods in which they reach zero.712

During these periods, significant debt is required to overcome further cash flow deficits.713

The final cash flows are close to zero throughout the dry simulation, as both policies strug-714

gle to fill their reserve funds.715

With respect to the hedging contract, the static policy uses the same contract each716

year in both the wet and dry scenarios, with a payout slope of $0.32M/inch. The dynamic717

policy, on the other hand, adjusts its contract slope from year to year. In the wet sce-718

nario, it opts not to hedge at all after year 0, while in the dry scenario, it fluctuates be-719

tween $0 and $0.85M/inch. Comparing the hedging slope dynamics to the other model720

state variables suggests that this policy opts to hedge only when the reserve fund bal-721

ance is low and/or when debt is non-zero. This strategy allows the dynamic policy to722

achieve higher cash flows than the static policy in wet scenarios (Sub-Figure 5h), by fore-723

going the cost of hedging contracts when the utility already has sufficient protection from724

a large reserve fund. On the other hand, when the reserve is empty and/or there is out-725

standing debt (presumably after a very dry year or sequence of years), the utility pur-726

chases large hedging contracts in order to increase its financial risk coverage and thus727

reduce the risk of extreme debt levels (Sub-Figure 5k). This adaptivity allows the dy-728

namic policy to improve on both the cash flow objective and the debt objective simul-729

taneously, compared to the static policy. As will be seen in Section 5.3, there are a mul-730

tiplicity of ways that utilities can adapt to changing conditions to meet their goals.731

5.2 Many-objective decision-making732

As discussed in Section 3.2, a decision-maker choosing a financial risk management733

policy may actually consider other factors beyond risk (Jdebt) and return (Jcash). For734

example, the utility might also worry about the size of the reserve fund needed to en-735

act a particular policy (Jfund), or the likelihood of needing to develop and integrate a736

complicated hedging program (Jhedge). Such decision-makers are likely to find that none737

of the solutions found under the 2-objective problem (Figure 4) can meet their needs.738

The 2-objective problem cannot adequately represent important management tradeoffs739
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Figure 5. Trajectories for hydro-financial simulation model, over both wet and dry 20-year

realizations, for the example static and dynamic policies shown in Figure 4 and Rows 1-2 of Ta-

ble 2. Sub-Figures show (a) SWE index; (b) hydropower generation; (c) wholesale power price;

(d) net hydropower revenue; (e & i) hedging slope action; (f & j) fund balance; (g & k) debt; and

(h & l) final annual cash flow. Middle column (e-h) shares its y-axis with the right-hand column

(i-l).

because it does not account for decision-maker preferences with respect to the use of dif-740

ferent risk management tools. For this reason, Jhedge and Jfund can be explicitly included741

in the optimization using the 4-objective problem (Equation 34).742

Both the static and dynamic formulations produce much larger Pareto approximate743

sets in this higher-dimensional problem (Figure 6), representing the more complex set744

of tradeoffs across the four objectives. The dynamic Pareto approximate set is found to745

generally outperform the static Pareto approximate set, especially in terms of the over-746
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Figure 6. Comparison of 4-objective Pareto approximate sets under static and dynamic

control formulations.

all diversity of solutions. For the static formulation, where the hedging contract slope747

is fixed, Jhedge must be equal to 1 or 0. The dynamic formulation, on the other hand,748

is able to find policies with Jhedge spanning the entire range from 0 to 1. Note that Jhedge749

is defined as the fraction of 20-year realizations that contain any hedging, not the frac-750

tion of years which hedge (see Equation 26). Thus, intermediate values between 0 and751

1 represent solutions that are unlikely to hedge in any given year, but maintain the op-752

tion to do so under particularly problematic circumstances. This valuable optionality753

is only possible with a dynamic control strategy. Additionally, the dynamic solution set754

occupies a much larger region within the ridge where Jhedge = 1. These policies out-755

perform the nearest static policies with respect to Jcash and Jdebt, but may require the756

use of larger reserve funds. Because the dynamic control method produces a much more757

complete and continuous Pareto approximate set, it allows decision-makers to find con-758

trol policies that more precisely match their preferences.759

A major benefit of solving the larger-dimensional problem is that the solution set760

will already contain all of the tradeoffs for all possible lower-dimensional problems (di761

Pierro, Khu, & Savić, 2007). In the present context, the 4-objective Pareto front will in-762

clude within it the Pareto fronts for the four 3-objective problems, six 2-objective prob-763

lems, and four 1-objective problems that are embedded within the 4-objective problem764

(Figure 7). In Sub-Figure 7a, the blue triangles show the subset of the 4-objective Pareto765

–30–



manuscript submitted to Water Resources Research

approximate set that is non-dominated with respect to the original two objectives, Jcash766

and Jdebt. When compared to the original 2-objective solutions (Figure 4), the 4-objective767

policies are very similar with respect to the first two objectives. However, they can achieve768

improvements with respect to the two new objectives (see SI Figure S5). In other words,769

it is possible to improve Jfund and/or Jhedge with no penalty in Jcash or Jdebt, but they770

must be included in the optimization explicitly to realize this benefit.771

Figure 7. Visualization of Pareto approximate sets for different sub-problems. Colored points

represent solutions that are non-dominated with respect to a particular sub-problem; for exam-

ple, orange points in sub-figure (a) represent solutions that are non-dominated with respect to

Jdebt and Jhedge. Light grey points in all sub-figures represent solutions from the 4-objective

problem that are not captured in the lower-dimensional problems.

More broadly, the lower-dimensional sub-problems tend to produce Pareto approx-772

imate sets that are near the extreme boundaries of the larger-dimensional problem. Sub-773

Figure 7a includes four sub-problems for which the Pareto approximate set consists of774

a single solution (Jcash-Jhedge, Jcash-Jfund, Jhedge-Jfund, Jcash-Jhedge-Jfund). Each775
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of these sub-problems excludes debt, leading to a single optimal policy that performs es-776

sentially no risk management. This is consistent with prior work finding that conflicts777

in higher-dimensional problems can remain hidden in lower-dimensional sub-problems778

(Kollat & Reed, 2007; Matrosov et al., 2015; Woodruff et al., 2013). Sub-Figure 7a also779

shows results for the Jcash-Jdebt, Jdebt-Jhedge, and Jdebt-Jfund sub-problems. Each sub-780

set of solutions is concentrated along an outer border of the larger Pareto front, where781

performance of the two explicitly-considered objectives is optimized at the expense of782

the other two objectives. The same pattern is evident in the 3-objective sub-problems783

of Sub-Figures 7b (Jcash-Jdebt-Jhedge), 7c (Jcash-Jdebt-Jfund), and 7d (Jdebt-Jhedge-Jfund).784

These solution sets are larger, but still occupy extremal regions of the overall Pareto front.785

Thus, by choosing to optimize a 2- or 3-objective sub-problem, decision-makers may un-786

wittingly produce an incomplete and biased Pareto approximate set.787

The larger-dimensional problem leads to a fuller set of alternatives that better rep-788

resents the tradeoffs associated with decision-maker preferences for different financial risk789

management tools. However, it is a non-trivial task to select a single operating policy790

from among the large Pareto approximate set. Interactive visualization approaches can791

help with this task. One example is to allow decision-makers to apply a posteriori per-792

formance criteria and “brush away” solutions that fail to meet these constraints (Kasprzyk,793

Nataraj, Reed, & Lempert, 2013). The strictness of the constraints can be iteratively794

increased until decision-makers are relatively agnostic about the tradeoffs across the fea-795

sible solution set. For example, consider a utility whose financial team (perhaps in con-796

sultation with its regulatory commission) develops the following criteria: if R̄ = $10.99M797

is the mean annual net hydropower revenue in the absence of any risk management, then798

(1) the risk management policy should not reduce expected annualized cash flows by more799

than 2.5% (Jcash ≥ 0.975R̄); (2) the utility should rarely be forced to borrow more than800

150% of mean net revenue to cover cash flow deficits (Jdebt ≤ 1.5R̄); and (3) the util-801

ity should not maintain reserves larger 150% of mean net revenue (Jfund ≤ 1.5R̄). These802

constraints drastically reduce the set of feasible solutions (Figure 8). At this point, a quan-803

titative method such as TOPSIS (Behzadian et al., 2012; Roszkowska, 2011) can be used804

to select one of the remaining policies for the utility to use (e.g., the policy outlined in805

Figure 8 and listed in Row 3 of Table 2).806

While these constraints could, in theory, be applied a priori and used to reduce807

the number of objectives in the optimization, it is very difficult in practice for decision-808
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Figure 8. Set of feasible solutions after filtering for stakeholder-determined a posteriori con-

straints. The best compromise policy from the feasible set is outlined in black and described in

Row 3 of Table 2

makers to effectively set the constraint values without first understanding the topology809

of the tradeoff surface (Kasprzyk et al., 2016; Spronk et al., 2005). This highlights the810

value of the EMODPS approach, which is scalable to extremely large problems on mod-811

ern high-performance computing infrastructure (Giuliani et al., 2018; Zatarain Salazar812

et al., 2016), suggesting that the formulation used here could be expanded to include ad-813

ditional objectives such as customer rates, social equity, and environmental quality. Ad-814

ditionally, future work should consider the effects of alternative problem framings; for815

example, a decision-maker may prefer a risk metric based on cash flow semi-variance (Tur-816

vey & Nayak, 2003), or a hedging objective that seeks to maximize year-to-year stabil-817

ity for planning purposes (Quinn, Reed, & Keller, 2017). In practice, researchers and stake-818

holders can iteratively refine the multi-objective problem in a way that matches their819

intuitions and goals (Smith, Kasprzyk, & Dilling, 2017; Wu et al., 2016) while balanc-820

ing the accuracy of the Monte Carlo estimator and the tractability of the search (Kasprzyk821

et al., 2012; Quinn, Reed, Giuliani, & Castelletti, 2017; Zatarain Salazar et al., 2017).822

5.3 Value of state information for control823

As demonstrated above, the EMODPS method can be used to develop control poli-824

cies that perform well across a range of stakeholder preferences. However, decision-makers825

may be unwilling to adopt a complex, non-linear control policy if its operating rules re-826

–33–



manuscript submitted to Water Resources Research

main opaque; it may be necessary to “open the black box” for users if they are to ap-827

ply such tools in practice (Castelvecchi, 2016; Quinn et al., 2019). Each policy represents828

a map from a vector of inputs (e.g., reserve fund balance) to its outputs (e.g., the hedg-829

ing contract slope). ITSA (Section 3.4) can help decision-makers to better understand830

how different policies respond to changing model state information. Figure 9 shows the831

hedging policy sensitivity indices for each solution in the Pareto approximate set, rep-832

resenting the degree to which each policy adjusts its annual hedging decision based on833

each of the three inputs: the reserve fund balance (ηHF , Sub-Figure 9a), the debt (ηHD ,834

9b), and the power price index (ηHP , 9c). Each index is a measure of the importance of835

a particular input variable for controlling a state-aware policy; η = 1 implies that the836

policy is entirely controlled by the input, while η = 0 means that the input has no im-837

pact on the policy. Interestingly, Figure 9 shows that each input has a different region838

of “specialization” in objective space. The reserve fund balance is the most important839

input for policies along the top of the ridge where Jhedge = 1. These are policies that840

achieve a relatively low levels of debt and high levels of cash flow, in return for frequent841

hedging and a relatively large reserve fund. The debt information, on the other hand,842

is critical for policies occupying the swath of objective space with Jhedge between 0 and843

1. The power price index is less informative overall, but does provide value for policies844

along the bottom edge of the Pareto front with minimal reserve funds and debt.845

In order to better understand how these policies utilize information, it is helpful846

to visualize the policies themselves. One high-sensitivity policy is chosen for each input847

(as outlined in Figure 9, and listed in Rows 4-6 of Table 2). Each policy is used to sim-848

ulate 20 random 20-year trajectories. The 400 resulting decisions are visualized in state-849

action space using parallel-coordinate plots (Figure 10). The first three vertical axes rep-850

resent the three hedging policy inputs (reserve fund balance, debt, power price index).851

The policy output (hedging contract slope) is represented by the fourth vertical axis as852

well as the colorbar to aid interpretation. Each colored line connecting the four axes rep-853

resents one of the 400 simulated decisions. These visualizations, in combination with the854

sensitivity indices, can be useful in understanding how each policy operates. For exam-855

ple, the policy in Sub-Figure 10a appears to hedge selectively, when the reserve fund bal-856

ance has fallen below a certain threshold. Above the threshold, no hedging contract is857

purchased, and below the threshold, the hedging slope increases as the fund balance falls.858

The policy in Sub-Figure 10b has a similar strategy, but structured around debt; hedg-859
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Figure 9. Information theoretic sensitivity indices, relative to hedging contract slope deci-

sion, for the (a) reserve fund balance; (b) debt; and (c) power price index. One high-sensitivity

solution for each input is outlined in black and described in Rows 4-6 of Table 2
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ing is zero below some threshold, and increases with debt above the threshold. Lastly,860

the bottom policy always utilizes hedging contracts, the magnitude of which tend to be861

inversely proportional to the power price index. Each of these patterns is consistent with862

the sensitivity indices in Figure 9 and Table 2.863

These plots can be used to build intuition about how the different risk management864

policies achieve their competitive advantages. For example, compare the fund-sensitive865

policy (a) to the debt-sensitive policy (b). The former maintains a relatively large re-866

serve fund for its risk management needs, and uses hedging contracts as a substitute to867

maintain its risk protection when the reserve fund is inadequate. This is qualitatively868

similar behavior to the example policy simulated in Section 5.1 (Figure 5). The debt-869

sensitive policy, on the other hand, keeps a much smaller reserve fund, which results in870

more frequent cash flow shortfalls and debt during dry years. In order to reduce the like-871

lihood of extreme debt spirals during longer droughts, this policy begins to use hedging872

contracts when it has significant debt, and ceases hedging once it has paid off this debt.873

The result is that the debt-sensitive policy is significantly more risky than the fund-sensitive874

policy, but in return, it is less costly and requires less frequent hedging and a smaller re-875

serve fund. The power-sensitive policy (c) takes a more consistent approach, purchas-876

ing hedging contracts each year. This makes it the most expensive policy of the three877

due to the cost of these contracts. However, the risk coverage from hedging allows it to878

maintain a very small reserve fund and still avoid substantial debt. This policy also ad-879

justs its hedging contract in response to projected wholesale power prices. If the power880

price index is high, then the utility expects that its net revenue per unit of hydropower881

will be higher than average, and vice versa when the index is low. By purchasing hedg-882

ing contracts in inverse proportion to this index, the utility can dampen the overall vari-883

ability of its combined cash flow (hydropower net revenue plus the net payout from the884

hedging contract), and thus reduce its financial risk.885

ITSA and policy visualization plots for the withdrawal/deposit decision can be found886

in SI Figures S6-S7. The withdrawals and deposits are found to be much less sensitive887

to model state information than hedging, suggesting that the gains from dynamic finan-888

cial risk management in this study largely accrue from dynamic hedging rather than dy-889

namic reserve fund management. This is consistent with past studies which have found890

relatively simple optimal control rules for cash inventory problems; however, such stud-891

ies often employ strict assumptions on the distribution and predictability of incoming892
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Figure 10. Hedging control policy visualization for three chosen policies in Figure 9 and Rows

4-6 of Table 2. Policies (a), (b), and (c) are highly sensitive to the reserve fund, debt, and power

price index information, respectively. The first three vertical axes represent the three inputs,

while the fourth axis and the colorbar represent the hedging action. Each line connecting the four

axes represents one state-action combination experienced within a simulation.
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cash flows, and their generalizability to real-world situations is uncertain (da Costa Moraes893

et al., 2015). A major advantage of the EMODPS approach is the flexibility of the non-894

linear approximating network used to parameterize the policies. The RBF network is found895

to identity complex policies for the hedging decision while maintaining relatively sim-896

ple rules for the withdrawal/deposit decision (i.e., without over-fitting). This flexibility897

is important when the decision analyst does not know the optimal rule form for each ac-898

tion a priori. In problems with a larger number of candidate actions, an iterative scheme899

for selecting the decisions most amenable to dynamic control would be beneficial.900

One final takeaway from Figures 9 and 10 is that the most important model states901

to include in a state-aware control policy can vary widely across the Pareto approximate902

set. This implies that the most important input(s) cannot be known a priori without903

accounting for decision-maker preferences. This is consistent with both analytical (Gra-904

ham & Georgakakos, 2010; Tejada-Guibert, Johnson, & Stedinger, 1995) and empirical905

(Hejazi et al., 2008) studies in the reservoir control literature, which have found that the906

objective(s) of the operator can affect which hydrologic factors are deemed most infor-907

mative. However, computational constraints often require that the total set of poten-908

tially informative data be culled to a small subset of the most important variables. The909

results of this study confirm the importance of accounting for the multi-dimensional na-910

ture of information value during this process (Denaro et al., 2017; Giuliani et al., 2015).911

5.4 Limitations and future directions912

A limitation of this study is that the stochastic engine adopted from Hamilton et913

al. (2020) assumes that wholesale power prices are independent from hydrology. In re-914

ality, fluctuations in hydropower availability can impact wholesale prices across the west-915

ern United States on multiple timescales (Su, Kern, Reed, & Characklis, 2020; Voisin et916

al., 2018). This inverse correlation between streamflow and price could alter the utility’s917

financial risk either for the better (e.g., higher prices received for hydropower sold dur-918

ing drought) or for the worse (e.g., higher prices paid for replacement power). Future919

work could integrate these factors into the adaptive hydro-financial risk model using an920

economic power dispatch model (e.g., Su, Kern, Denaro, et al. (2020)) or a surrogate sta-921

tistical model (e.g., Madani, Guégan, and Uvo (2014)), but this is beyond the scope of922

the current investigation.923
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Another limitation of this study is the implicit assumption of stationarity embed-924

ded in the stochastic engine adopted from Hamilton et al. (2020). Despite this fact, Fig-925

ure 5 suggests that the EMODPS-derived policies trained on a stationary Monte Carlo926

ensemble can perform relatively well across a wide range of potential outcomes, many927

of which are extreme compared to historical data. Additionally, the present study con-928

cerns purely financial decisions on relatively short time scales, for which interannual cli-929

mate variability is expected to overwhelm longer-term non-stationarity (Lehner et al.,930

2020). The reader is referred to Hamilton et al. (2020) for further discussion of these is-931

sues. Nonetheless, future studies should consider a broader analysis of the impacts of chang-932

ing climate, markets, etc., on the robustness of adaptive financial risk management strate-933

gies for hydropower production. This would be especially important if combined with934

dynamic infrastructure investments (Haasnoot, Kwakkel, Walker, & ter Maat, 2013; Kwakkel,935

Haasnoot, & Walker, 2015; Zeff, Herman, Reed, & Characklis, 2016), since climate un-936

certainties become increasingly important for long-term, irreversible decisions (Doss-Gollin,937

Farnham, Steinschneider, & Lall, 2019; Stakhiv, 2011). Statistical learning approaches938

can be used to update decision-making based on evolving beliefs about the non-stationary939

hydro-financial system (Cohen, Zeff, & Herman, 2020; Fletcher, Lickley, & Strzepek, 2019;940

Fletcher et al., 2017; Herman, Quinn, Steinschneider, Giuliani, & Fletcher, 2020). Ad-941

ditionally, scenario discovery approaches can be used to search for financial risk man-942

agement strategies that perform satisfactorily across a wide range of (perhaps deeply)943

uncertain factors (Bryant & Lempert, 2010; Herman, Reed, Zeff, & Characklis, 2015; Kasprzyk944

et al., 2013; Lempert, 2002).945

6 Conclusions946

A substantial body of literature has emerged around optimal control of water reser-947

voir systems in the face of hydrologic uncertainty (Macian-Sorribes & Pulido-Velazquez,948

2019). Evolutionary multi-objective direct policy search has emerged as an especially pow-949

erful tool for overcoming the simultaneous curses of dimensionality, modeling, and mul-950

tiple objectives that are characteristic of problems in the field (Giuliani et al., 2016, 2018).951

This paper demonstrates that the same properties of EMODPS that make it ideal for952

optimal reservoir control problems also make it well suited for the complex, multi-objective953

financial risk management problems faced by water-reliant organizations as a result of954

hydrologic variability. The methodology is applied in the context of the hydrologic fi-955
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nancial risk faced by the Power Enterprise of the San Francisco Public Utilities Com-956

mission, an electricity producer relying primarily on hydropower. EMODPS is used to957

develop control policies that dynamically balance the use of snowpack-based hedging con-958

tracts, cash reserves, and debt, based on changing conditions within the model. Perfor-959

mance is quantified based on four conflicting performance metrics: expected annualized960

cash flow, 95th percentile maximum debt, expected hedging frequency, and expected max-961

imum reserve fund balance. The first two metrics represent the classic return vs. risk962

tradeoff in finance, while the second two metrics represent a decision-maker’s preferences963

for using one risk management instrument over another based on an organization’s in-964

dividual circumstances. By utilizing real-time model state information when making de-965

cisions, the dynamic policies produced by EMODPS are found to significantly outper-966

form policies produced under a more static control formulation akin to those commonly967

used for financial risk management in the water resources literature. A posteriori visual968

analytics and information theoretic sensitivity analysis can be used to help decision-makers969

better understand how the complex, non-linear operating policies adapt to real-time in-970

formation when making decisions.971

The methodology developed in this paper should help decision-makers to better un-972

derstand the dynamic relationships between hydrology, decision-making, and financial973

outcomes, and thus facilitate more knowledgeable and effective management of hydro-974

logic financial risks. Additionally, we note that while the interrelatedness of hydrology975

and financial risk is conceptually useful for the present study (i.e., water resources re-976

searchers and practitioners will easily grasp the similarities between reservoir control and977

financial risk management), it does not represent a necessary condition for the useful-978

ness of the dynamic financial risk management framework presented herein. In fact, a979

broad class of financial risk management problems share a similar mathematical struc-980

ture to reservoir control (i.e., multi-objective Markov Decision Processes). Although the981

decision-making context and implementation details will vary, the overall framework pre-982

sented here should thus be applicable to a wide variety of organizations, from water util-983

ities exposed to hydrologic risk, to renewable energy developers exposed to wind risk,984

to commodities firms exposed to interest rate risk.985
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Introduction15

This Supporting Information (SI) provides additional methodological details related16

to the power price index (Section S1), in support of Section 2.2 of the main text. Ad-17

ditionally, this SI provides Table S1 (supporting Section 4.2 of the main text), Figure18

S1 (supporting Section 2.1 of the main text), Figure S3 (supporting Section 2.2 of the19

main text and Section S1 of SI), Figure S3 (supporting Section 2.2 of the main text), Fig-20

ure S4 (supporting Section 4.2 of the main text), Figure S5 (supporting Section 5.2 of21

the main text), and Figures S6-S7 (supporting Section 5.3 of the main text).22

S1: Power price index23

The power price index (εP , in $/MWh) is the third stochastic driver described in24

Section 2.2 of the main text. Like the other two drivers, εP is derived from the one mil-25

lion years of monthly synthetic hydro-financial records from Hamilton, Characklis, and26

Reed (2020); specifically, it is based on the monthly time series of wholesale power price27

and hydropower generation.28

Let Ḡm be the average excess hydropower sold into the wholesale market in month29

m. This quantity is highest in the spring and early summer, when the alpine snow melts.30

It is lowest, and negative, during the autumn dry season, when hydropower is often in-31

sufficient to meet retail electricity demand. The generation-weighted average power price32

for water year t is defined as33

Pwtt =
1

12

∑12
m=1 ḠmPm,t∑12
m=1 Ḡm

(1)34

where Pm,t is the power price in the mth month of water year t ($/MWh). Pwtt will be35

highest for years in which dry-season power prices are lower than average and wet-season36

power prices are higher than average, both of which are generally beneficial from a net37

revenue perspective.38

The generation-weighted average power price over the coming year can be predicted39

via linear regression in log-space, using information about power prices from the prior40

year:41

lnPwtt = β̂0 + β̂1 lnPwtt−1 + β̂2 lnP12,t−1 + ε (2)42
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where P12,t−1 is the power price in September, the final month of the prior water year,43

β̂i are the estimated regression coefficients, and ε is the regression residual, assumed to44

follow a normal distribution with mean 0 and standard deviation σ.45

Now the power price index is defined as the expected value of the generation-weighted46

average power price over the coming water year, conditional on the information from the47

prior year.48

εPt = E[Pwtt | Pwtt−1, P12,t−1] (3)49

= E
[
exp(β̂0 + β̂1 lnPwtt−1 + β̂2 lnP12,t−1 + ε)

]
(4)50

= exp(β̂0) · (Pwtt−1)β̂1 · (P12,t−1)β̂2 · E[exp(ε)] (5)51

= exp(β̂0) · (Pwtt−1)β̂1 · (P12,t−1)β̂2 · exp(σ2/2) (6)52

where σ is the standard deviation of the normally-distributed residuals from the log-space53

regression.54

This power price index (in units of $/MWh) thus predicts the generation-weighted55

average power price over the coming water year, t, using the information available from56

the prior water year, t−1. The performance of this index can be assessed by plotting57

the power price index against the realized generation-weighted average power price (Fig-58

ure S2). This relationship is found to have a correlation coefficient of 0.35.59
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Tables60

Table S1. Parameters for multi-objective optimization with the Borg Multi-Objective Evolu-

tionary Algorithm.

Parameter Value

Number of samples per function evaluation 50,000

Number of function evaluations per Borg MOEA run 150,000

Number of seeds for Borg MOEA 30

Number of radial basis functions (M) 2

Number of informational inputs to policy (L) 4

ε-dominance parameter for Jcash $0.075 M/year

ε-dominance parameters for Jdebt $0.225 M

ε-dominance parameter for Jhedge $0.05001

ε-dominance parameters for Jfund $0.225 M
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Figures61

Figure S1. (a) Map of the study region. (b) Zoomed in map of the contributing watershed.

Figure reproduced from Hamilton et al. (2020) Supporting Information.
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Figure S2. Relationship between power price index and generation-weighted average power

price, along with correlation coefficient ρ. Only 2000 data points shown for clarity.
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Figure S3. (a) Probability density for SWE index, a weighted average of February 1 and

April 1 observations. (b) Net payout function for the capped contract for differences (CFD). The

threshold separating positive and negative payouts is 24.71 inches. The slope of this contract

is controlled by either the static or dynamic control policy. Present study uses the “baseline”

loading. Figure adapted from Hamilton et al. (2020).
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Figure S4. Convergence metrics for approximate Pareto sets from the Borg MOEA, using

different numbers of radial basis functions (RBFs), for 10 random seeds each: (a) Hypervolume

metric; (b) Generational distance metric; (c) Additive epsilon indicator metric.
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Figure S5. Results from 2-objective and 4-objective optimization problems, after filtering

for non-dominated solutions with respect to the 2-objective problem (Jcash vs. Jdebt). Results

displayed for both 2-objective (a) and 4-objective (b) performance.
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Figure S6. Entropic sensitivity indices, relative to withdrawal/deposit decision, for the re-

serve fund balance (a), debt (b), power price index (c), and incoming cash flow (Cash Flow 2)

(d).
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Figure S7. Withdrawal/Deposit control policy visualization for three chosen policies in

Figure 8 and rows 4-6 of Table 2 in the main text. The policies are chosen due to their high sen-

sitivity (with respect to the hedging control policy) to the reserve fund (a), debt (b), and power

price index (c) information.
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