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Abstract

Knowledge of soil properties is essential for risk assessment of vapor intrusion (VI). Data assimilation (DA) provides a valuable

means to characterize contaminated sites by fusing the information contained in the measurement data (such as concentrations

of volatile organic chemicals). Nevertheless, the application of DA in risk assessment of VI is quite limited. Moreover, soil

heterogeneity is often overlooked in VI-related research. To fill these knowledge gaps, we apply a state-of-the-art DA method

based on deep learning (DL), that is, ES(DL), to better characterize the contaminated sites in VI risk assessment. The

effectiveness of ES(DL) is well demonstrated by three representative scenarios with increasing soil heterogeneity. The results

clearly show that ignoring soil heterogeneity will significantly undermine one’s ability to make reasonable decisions in VI risk

assessment. As a preliminary attempt of applying an advanced DA method in VI research, this work provides implications for

the potential of using DL and DA in complex problems that couple hydrological and environmental processes.
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Abstract16

Knowledge of soil properties is essential for risk assessment of vapor intrusion (VI). Data as-17

similation (DA) provides a valuable means to characterize contaminated sites by fusing the18

information contained in the measurement data (such as concentrations of volatile organic19

chemicals). Nevertheless, the application of DA in risk assessment of VI is quite limited.20

Moreover, soil heterogeneity is often overlooked in VI-related research. To fill these knowl-21

edge gaps, we apply a state-of-the-art DA method based on deep learning (DL), that is,22

ES(DL), to better characterize the contaminated sites in VI risk assessment. The effective-23

ness of ES(DL) is well demonstrated by three representative scenarios with increasing soil24

heterogeneity. The results clearly show that ignoring soil heterogeneity will significantly un-25

dermine one’s ability to make reasonable decisions in VI risk assessment. As a preliminary26

attempt of applying an advanced DA method in VI research, this work provides implications27

for the potential of using DL and DA in complex problems that couple hydrological and28

environmental processes.29

1 Introduction30

Vapor intrusion (VI) is the exposure pathway that volatile organic chemicals (VOCs)31

migrate from the subsurface contaminated site (e.g., groundwater) into the building base-32

ment or foundation through soils (T. E. McHugh et al., 2012; Shirazi et al., 2019). When33

presented in the indoor air with certain levels, VOCs can pose risks to human health. In34

the past decades, VI has been identified in many different sites, and it has been drawing35

an increasing attention in the investigation methods, model development, and regulations,36

etc (Abreu & Johnson, 2005; DeVaull, 2007; Johnston et al., 2014; Ma et al., 2018, 2020;37

T. McHugh et al., 2017; Ström et al., 2019; Yao et al., 2013).38

To assess the risk of VI, various models, ranging from analytical to numerical, from39

one-dimensional to three-dimensional, have been developed to simulate the process of VOC40

migration from the source to the receptor (Bozkurt et al., 2009; Pennell et al., 2009; Yao41

et al., 2011, 2012). In the simulation of VOC transport, there exist multiple sources of42

uncertainties, including those from environment, contaminant, and household properties43

(Johnston et al., 2014). Comprehensive analyses have shown that the movement of VOC in44

the vadose zone determines the distribution of vapor-phase contaminant in the soil profile,45

and has a considerable influence on the air quality (Abreu & Johnson, 2005; Yao et al., 2012,46

2014). Thus, determining the soil properties is an indispensable step in risk assessment of47

VI. As demonstrated by previous works, soil hydraulic parameters like the porosity are im-48

portant controlling factors of VI (Durner, 1994; Soto & Kiang, 2016), and soil heterogeneity49

plays an important role in many processes happening in the vadose zone, including the mi-50

gration and mitigation of VOCs (Gao et al., 2019; Mousavi Nezhad et al., 2013; Nezhad et51

al., 2011; Reddy & Adams, 2001; Soto & Kiang, 2016; Verginelli et al., 2019). In such situ-52

ations, accurately predicting VOCs movement from the subsurface site to the indoor space53

may be challenging. This necessitates characterization of heterogeneous soil properties in54

the risk assessment of VI sites.55

When measurement data (e.g., VOC concentrations in the indoor air or soil profile)56

are available, one can utilize them to reduce uncertainties in the simulation of VI, and57

thus to better assess the health risk of this process (e.g., reduce false-negative or -positive58

identification of VI sites). One promising approach to fuse the measurement information59

into the VI model is data assimilation (DA; Carrassi et al., 2018). Nevertheless, rigorous60

quantification and reduction of uncertainties with DA is rather limited in VI-related research.61

One important work conducted by Johnston et al. (2014) used Markov chain Monte Carlo62

(MCMC, a well-known DA method) to update the VI model parameters (including soil63

hydraulic properties, air exchange rate, indoor-outdoor pressure difference, and building64

parameters, etc) from indoor VOC concentrations, to assist better decision making. In that65

work, homogeneous soil properties were assumed. In many cases, it is necessary to consider66

–2–



manuscript submitted to Water Resources Research

the soil heterogeneity (Bozkurt et al., 2009; Verginelli et al., 2019; Wang et al., 2020; Yao et67

al., 2017). Nevertheless, updating heterogeneous soil properties poses a significant challenge68

to DA methods. That might account for the reason why there is so few research (if there is69

any) that applies DA in heterogeneous field for VI risk assessment.70

In geo- and environmental sciences, the most popular DA methods include MCMC,71

particle filter (PF), ensemble Kalman filter (EnKF) and its variants (Beven, 2010; Carrassi72

et al., 2018; Evensen, 2009; Klimova, 2018; Smith, 2013). However, MCMC and PF are not73

suitable for high-dimensional problems (Snyder et al., 2008; Zhang, Vrugt, et al., 2020), and74

EnKF, as well as its variants, are constrained by the Gaussian assumption (Evensen, 2009;75

Stordal et al., 2011; Zhang, Zheng, et al., 2020). To adequately characterize the site proper-76

ties that govern the migration process of VOCs, one usually needs to handle a large number77

of unknown variables (which are intractable for MCMC and PF), and the model parameters,78

simulation outputs, and measurement errors involved may not be Gaussian-distributed (then79

EnKF and its variants are not applicable). In this situation, a more capable DA method is80

required. In the past decade, machine learning techniques, especially deep learning (DL),81

have been extensively used to solve tough problems in different research fields, including82

environmental risk assessment and protection (Aquilina et al., 2018; Mayr et al., 2016; Re-83

ichstein et al., 2019; Weichenthal et al., 2019). The success of DL comes from its power in84

extracting complex features automatically and simulate nonlinear relationships effectively85

from training data (Goodfellow et al., 2016; LeCun et al., 2015). Inspired by the advances86

in DL theories and applications, a new DA method, namely ES(DL), is developed in our87

recent work (Zhang, Zheng, et al., 2020). ES(DL) is efficient in solving high-dimensional DA88

problem that is free from the Gaussian assumption, and is thus utilized in the present work89

to quantify and reduce the uncertainty originated from the heterogeneous soil properties90

for VI risk assessment. As will be demonstrated in latter part of this paper, incorporating91

soil heterogeneity characterization can greatly improve one’s knowledge about the transport92

process of VOCs, which is vital for decision making in environmental management.93

The rest of this paper is organized as follows. In Section 2, we describe the concerned94

processes (i.e., transport of a representative VOC) and the corresponding governing equa-95

tions. To improve our understanding of the underlying system from the measurement data,96

a state-of-the-art DA method, that is, ES(DL), is formulated in the subsequent Section 3.97

In Section 4, we are concerned with benchmarking analysis of the benefit of considering soil98

heterogeneity when characterizing the contaminated site. Finally, we conclude and discuss99

this work in the Section 5.100

2 Problem Description101

2.1 Overview of The Study Area102

In this study, we consider the migration of trichloroethylene (TCE) from the ground-103

water into a building through unsaturated soil. This building covers a wide area of 24 m×24104

m with a 10 m×10 m square foundation 2 m below the ground. A 0.15 m×0.005 m crack105

at the foundation floor is the only way for TCE to enter the indoor air. Figure 1 depicts106

the sketch of the study domain, which is discretized into 933 nodes (the red dots signify107

the monitoring locations for TCE concentration in the soil profile) in the numerical model.108

Initially, the pressure head is −2 m on the ground surface and linearly increased to 0 m at109

the bottom (i.e., the groundwater level), representing a hydro-static condition. It means110

that the transport of liquid-phase TCE is not involved in the vadose zone. A volatile-type111

boundary condition is imposed on the top boundary and the crack, while the two lateral112

sides are impervious boundaries (Abreu & Johnson, 2005). At the bottom of the domain,113

the first-type (Dirichlet) boundary condition is imposed for solute transport. In all scenar-114

ios, TCE concentration (in the gas phase) at the pollution source is set as 1 mol/m3. The115

simulation lasts for 500 days.116
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Figure 1. Sketch of the study domain. Concentrations of TCE are obtained at measurement

locations denoted by the red dots.

2.2 Governing Equation117

Here, we focus only on the diffusion and adsorption of TCE in the soil profile, which118

can be described by the following equation (Abreu & Johnson, 2005; Yao et al., 2013):119

(
θg +

θw

H
+
Kocfocρb

H

)
∂Cg

∂t
= ~∇ ·

(
Deff

~∇Cg

)
, (1)

where θg [L3
gas/L3

soil] and θw [L3
water/L3

soil] are the gas- and moisture-filled porosity, re-120

spectively; H is the Henry’s law constant [-]; Koc is the adsorption coefficient of TCE121

to soil organic carbon [(M/Moc)/(M/L3
water)]; foc is the mass fraction of soil organic carbon122

[Moc/Msoil]; ρb is the soil bulk density [Msoil/L3
soil]; Cg is the vapor concentration in soil (gas123

phase) [M/L3
gas]; t is the time [T]; ~∇ is the del operator; and Deff is the effective diffusion124

coefficient of TCE in soil [L2/T], which can be calculated as,125

Deff = Dg
θ

10/3
g

θ2
T

+
Dw

H

θ
10/3
w

θ2
T

, (2)

where Dg and Dw are the diffusion coefficients of TCE in air and water [L2/T], respectively;126

θT = θg+θw is the total soil porosity [L3
pores/L3

soil]; The relationship between θw and pressure127

head h is described by the van Genuchten model (Van Genuchten, 1980):128

θw − θr

θT − θr
=

{ 1
(1+|αh|n)1−1/n , h < 0

1, h ≥ 0
, (3)

where θr is the residual moisture content [-], α [1/L] and n [-] are shape parameters related129

to the soil pore-size distribution.130

Assuming the building as a well-mixed continuously stirred tank, the indoor TCE con-131

centration, Cin [M/L3], at time t can be calculated by the following equation:132

Vb
dCin

dt
= Mck − CinAeVb, (4)
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Cin,0 =
Mck

Qck + VbAe
≈ Mck

VbAe
, (5)

where Cin,0 is the indoor TCE concentration at the initial time [M/L3], chosen as the133

steady-state indoor TCE concentration; Vb is the building volume [L3]; Ae is the indoor air134

exchange rate [1/T]; Qck is the soil gas flow rate to the enclosed space [L3/T]; and Mck is135

the contaminant entry rate through the crack [M/T], which can be estimated as:136

Mck =

∫
Ω

JckdΩ, (6)

where Jck is the mass flux of TCE through the crack [M/L2/T]; and Ω is the cross-section137

area of the crack [L2].138

In the heterogeneous condition, analytical expression of equation (1) is usually not139

available. Here we use the finite element method to numerically solve the governing equation140

of TCE transport.141

3 The Deep Learning-based Data Assimilation Method: ES(DL)142

For the sake of simplicity, here we use the following compact form to represent the143

migration process of TCE , that is,144

ỹ = f(m) + ε, (7)145

where f(·) is the numerical model built with the finite element method; m is the vector for146

the model parameters, which include, but not limited to, spatially-distributed soil hydraulic147

parameters and variables that determine the transport of TCE vapor in the porous medium;148

and ỹ denotes the concentration measurements of TCE in the soil profile, which contain an149

error term ε.150

To facilitate a better understanding of VI, it is essential to assimilate the measurements,151

ỹ, to reduce the uncertainty of the model parameters, m. Here, a state-of-the-art data152

assimilation method proposed in our recent work (Zhang, Zheng, et al., 2020) is adopted.153

This method, termed as ES(DL), utilizes deep learning to handle non-linearity and non-154

Gaussianity encountered in many complex problems. Thus, it is a more general and flexible155

alternative of the widely-used EnKF (as well as its variants). In ES(DL), we use the prior156

ensemble to represent our initial knowledge about the model parameters, that is, M(0) =157 {
m

(0)
1 , ...,m

(0)
Ne

}
, where Ne is the ensemble size, and m

(0)
i ∼ p(m), i = 1, ..., Ne, and p(m)158

is the prior distribution of model parameters. Then the corresponding model outputs are159

calculated as, Y(0) =
{
f(m

(0)
1 ), ..., f(m

(0)
Ne

)
}

.160

Essentially, data assimilation works by correcting the prior ensemble, M(0), with the161

update vectors, ∆M(0) =
{

∆m
(0)
1 , ...,∆m

(0)
Ne

}
, from the innovation vectors, ∆Y(0) =

{
ỹ−162

f(m
(0)
1 )+ε1, ..., ỹ−f(m

(0)
Ne

)+εNe

}
, where ε1, ..., εNe are random realizations of measurement163

errors. Our new knowledge about the model parameters is represented by the updated164

ensemble, that is, M(1) = M(0) + ∆M(0). In ES(DL), training data of innovation and165

update vectors are generated from M(0) and Y(0) as, D
(0)
in =

{
f(m

(0)
i )− f(m

(0)
j ) + εij |i =166

1, ..., Ne−1, i < j ≤ Ne

}
and D

(0)
out =

{
m

(0)
i −m

(0)
j |i = 1, ..., Ne−1, i < j ≤ Ne

}
. From the167

training data D(0) =
{
D

(0)
in D

(0)
out

}
, a nonlinear mapping, G(DL) [·], from ∆Y(0) to ∆M(0)

168

can be obtained with an adequate deep learning model, that is,169

∆M(0) = G(DL)

[
∆Y(0)

]
. (8)170

Then each sample in M(0) can be updated as,171
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m
(1)
i = m

(0)
i + G(DL)

[
ỹ− f(m

(0)
i ) + εi

]
, (9)172

where M(1) =
{
m

(1)
1 , ...,m

(1)
Ne

}
is the updated ensemble that contains the information assim-173

ilated from the measurement data. For highly nonlinear problems, using the measurements174

multiple times can be more effective, as doing local steps towards the measurements can175

make use of more linear fits to the data. Details about the ES(DL) method can be found176

in (Zhang, Zheng, et al., 2020). As shown in Figure 2, we use the ResNet architecture (He177

et al., 2016) in ES(DL) for the effective characterization of heterogeneous VI sites. Readers178

who are interested in the theories of deep learning and data assimilation are suggested to179

refer to (Goodfellow et al., 2016; LeCun et al., 2015) and (Carrassi et al., 2018; Evensen,180

2009; Law et al., 2015), respectively.181

(a) ResNet used in ES(DL)

Input Res
Block

…… FC Output

Several Res Blocks

Input

Co
nv BN Co
nv BN

Co
nv BN

Re
LU

Co
nv BN Re
LU

Co
nv BN Re
LU

Re
LU

(b) Res Block used in ResNet

Figure 2. (a) The deep neural network (ResNet) used in ES(DL) for data assimilation; (b) The

residual (Res) block consisting of three layers, that is, convolutional layer (Conv), batch normal-

ization layer (BN), and ReLU activation layer (ReLU). Here, FC denotes a fully-connected layer.

4 Illustrative Examples182

Soil homogenization is common practice in risk assessment of VI (Friscia, 2014). Nev-183

ertheless, overlooking soil heterogeneity will certainly introduce some bias to the analysis184

results. To demonstrate whether ignoring soil heterogeneity will undermine the reliability185

of VI risk assessment, three representative VI scenarios are set up below.186

4.1 Scenario 1: Layered Soil with The Accurate Prior187

In the first scenario, we consider the migration of TCE in the soil consisting of three188

layers: sand, loamy sand and sandy loam (from top to bottom). The thicknesses of the189

three layers are 2 m, 3 m and 3 m, respectively. TCE concentrations at the monitoring190

locations (red dots in Figure 1) are measured at the 5th, 15th and 25th days. Three sets191

of θr, α and n corresponding to the three soils are unknown and to be inferred from these192

concentration measurements, while other parameters in the VI model are identified from193

experiments and/or literature, whose values are listed in Table 1.194
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Table 1. Available parameter values for the vapor intrusion model

Parameter Symbol Unit Value

Foundation length L m 10
Foundation width - m 10
Foundation depth df m 2

Crack depth dck m 0.15
Crack width wck m 0.005
Space volume Vb m3 174

Air exchange rate Ae 1/h 0.5
Henry’s law constant H - 0.42

Gas diffusion coefficient Dg m2/d 0.68
Liquid diffusion coefficient Dw m2/d 7.86×10−5

Longitudinal dispersivity αL m 0.001
Transverse dispersivity αT m 0.001

Concentration of pollution source (gas-phase) Csource mol/m3 1
Adsorption coefficient of organic carbon Koc m3/kg 0.126

Total soil porosity θT m3/m3 0.43

Carsel and Parrish (1988) proposed two Gaussian transformation approaches (LN: log-195

normal, and LR: log-ratio) to characterize the prior distributions of θr, α and n, that is,196

LN : Y = ln(X), (10)

LR : Y = ln[(X − u)/(v −X)], (11)

where X is the parameter before transformation within the range of [u, v]; Y is the trans-197

formed parameter that is Gaussian distributed. The statistical parameters of sand, loamy198

sand and sandy loam used for distribution approximation are provided in Table 2. The199

factored covariance matrix (LT) as shown in Table 3 is obtained by the Cholesky decompo-200

sition:201

CY = LLT, (12)

where CY is the prescribed covariance matrix among the transformed parameters; L is a202

lower triangular matrix; and the superscript “T” denotes the transpose operator. Then203

random realizations of θr, α and n for the three soils can be generated as follows:204

Y = u + Lξ, (13)

where u is the mean vector for the transformed parameters and ξ is a standard Gaussian205

random vector.206
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Table 2. Statistical parameters used for distribution approximation (θr: m3/m3; α : ×102/m;

and “NO” means no transformation is needed for α in loamy sand)

Soil texture
Hydraulic Transformation Parameter ranges

Mean
Standard

parameter type u v deviation

Sand
θr LN 0 0.10 −3.120 0.224
α LR 0 0.25 0.378 0.439
n LN 1.50 4.00 0.978 0.100

Loamy sand
θr LR 0 0.11 0.075 0.567
α NO 0 0.25 0.124 0.043
n LR 1.35 5.00 −1.110 0.307

Sandy loam
θr LR 0 0.11 0.384 0.700
α LR 0 0.25 −0.937 0.764
n LN 1.35 3.00 0.634 0.082

Table 3. Correlation among the transformed hydraulic parameters represented by the factored

covariance matrix

θr α n

Sand
θr 0.182 0.258 −0.047
α 0.143 −0.011
n 0.017

Loamy sand
θr 0.522 0.017 −0.194
α 0.014 0.019
n 0.108

Sandy loam
θr 0.538 0.017 −0.194
α 0.014 0.019
n 0.108

Here, measurements of TCE concentration at the monitoring sites are obtained through207

running the numerical model with the true parameter values (red vertical lines in Figure208

3) and perturbing the simulation results with errors that fit ε ∼ N (0, 0.012). Then we209

apply the ES(DL) method to infer the unknown parameters in light of these measurement210

data. The network architecture used in ES(DL) is presented in Figure 2, where only one211

residual block is employed. Prior and posterior distributions of the parameters of interest212

are presented in Figure 3. It can be seen that for most parameters, the uncertainty ranges are213

significantly reduced through assimilating the measurement data, and the true parameter214

values generally locate near the centers of these posterior curves.215

In VI-related researches, to reduce the complexity of the problem, soil at the contami-216

nated site was often assumed to be homogeneous (Friscia, 2014). Here, we test whether this217

simplification still hold in this layered-soil scenario. Three more cases are further tested,218

that is, assuming the soil as homogeneous and using the prior beliefs of sand, loamy sand219

and sandy loam respectively in data assimilation. In Figure 4, 95% confidence intervals of220

predicted indoor TCE concentrations with or without considering the layered soil hetero-221

geneity are calculated and plotted against the simulation time. When the soil is assumed222

as a single layer of sand or loamy sand, indoor TCE concentrations will be over-estimated,223

–8–
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which may lead to over-repair in practice; if the soil profile is treated as a single layer of224

sandy loam in the prior assumption, indoor TCE concentrations will be under-estimated,225

which may risk the human health; when the layered heterogeneity of soil is considered cor-226

rectly (represented by the purple lines), the indoor TCE concentrations can be predicted227

accurately, indicated by a narrower and more accurate confidence interval. To provide quan-228

titative comparisons, we calculate the root-mean-square errors (RMSEs) between the true229

TCE concentrations and the the predicted concentrations from different prior beliefs. The230

RMSE values are 4.07×10−6, 1.15×10−6, 1.26×10−6, and 3.76×10−8 for the sand, loamy231

sand, sandy loam and layered assumptions, respectively. The result shows that the error232

can be reduced by two orders of magnitude if the layered-heterogeneity condition of soil is233

rigorously considered.234
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Figure 4. 95% confidence intervals of predicted TCE concentrations in the indoor air with

different prior beliefs of the soil structure.

4.2 Scenario 2: Spatially Heterogeneous Field with The Accurate Prior235

In addition to the layered structure considered in the prior section, below we set up a236

more complex scenario where the soil is spatially heterogeneous. Here, we assume that the237

uncertainty stems from the random field of α, whose prior is log-Gaussian (Li et al., 2009).238

That is to say, there are 931 (the number of model grids) unknown model parameters to be239

estimated. In the two-dimensional field of Y = ln(α), the mean value is µY = 2.21, and the240

covariance between two arbitrary locations, (x1, z1) and (x2, z2), can be characterized by241

CY [(x1, z1) , (x2, z2)] = σ2
Y exp

−
√(

x1 − x2

λx

)2

+

(
z1 − z2

λz

)2
 , (14)

where σ2
Y = 0.15 is the variance of the Y field; λx = 4 m and λz = 2 m are the correlation242

lengths in the horizontal and vertical direction, respectively. With the given statistics,243

realizations of Y field can be generated using the Cholesky decomposition.244

TCE concentrations at the monitoring locations (red dots in Figure 1) are measured245

every three days from the 3rd day to the 24th day. Thus, a total of 120 concentration246

measurements are obtained. Considering the complexity of the current scenario, we use two247

residual blocks in ResNet (Figure 2) for the ES(DL) method. By assimilating the available248

measurements, we can obtain the mean estimate of Y field (Figure 5b) that can correctly249

capture the high and low regions of the true Y field (Figure 5a), yet their spatial extent is250

underestimated. This is caused by the sparsity of the measurement locations. Furthermore,251

we compare the 95% confidence intervals of predicted TCE concentrations in the indoor air252

calculated from the prior and posterior parameter ensembles respectively in Figure 6, which253

clearly indicate that uncertainty in the prediction can be greatly reduced. Based on the254

above results, we are confident to claim that the proposed method can effectively estimate255

the heterogeneous parameter field in light of the measurement data. For better estimation256

results, a larger and diverse data set is warranted.257
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Figure 5. (a) Reference ln(α) field, (b) Estimated mean ln(α) field from data assimilation using

the ES(DL) method.
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Figure 6. 95% confidence interval of predicted TCE concentrations in the indoor air for spatially

heterogeneous field with the accurate prior.

4.3 Scenario 3: Spatially Heterogeneous Field with Imperfect Priors258

In the above sections, we consider two representative scenarios of soil heterogeneity, that259

is, layered and spatially-heterogeneous, and accurate prior knowledge is available in advance.260

However, in many situations, accurate prior information is often difficult to obtain. Below261

we consider such a scenario where the exact prior information (spatially heterogeneous) is262

not known a priori, and imperfect assumptions (layered or homogeneous) are implied in263

data assimilation to reduce parameter uncertainties of θr, α and n.264
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The mean values of the three parameters are µθr = 0.078 m3/m3, µα = 3.6/m and265

µn = 2.56, and their coefficients of variation are Vθr = 0.2, Vα = 0.4 and Vn = 0.4,266

respectively. As θr > 0, α > 0 and n > 1, it is assumed that ln(θr), ln(α) and ln(n− 1) are267

Gaussian distributed, whose statistical moments can be calculated as (Man et al., 2018):268

µY = 2 ln (µX)− 0.5 ln
[
µ2
X

(
1 + V 2

X

)]
, (15)

σ2
Y = ln

(
1 + V 2

X

)
, (16)

where X and Y represent variables before and after the log-normal transformation, respec-269

tively. Using the Cholesky decomposition, random realizations of the three parameter fields270

can be obtained. Here the correlation lengths in the horizontal and vertical direction are271

λx = 4 m and λy = 2 m, respectively.272

In risk analysis of VI, four imperfect prior assumptions are tested, that is, the homoge-273

neous conditions using the prior of sand, loamy sand, and sandy loam, respectively, and the274

layered soil condition with three soil types. Based on the four priors, we implement data275

assimilation and make predictions. In Figure 7, 95% confidence intervals of the predicted276

indoor TCE concentrations are calculated and plotted against the simulation time. When277

the soil is assumed as sand or loamy sand, the indoor TCE concentrations will be overes-278

timated; if the soil is assumed to be sandy loam, the uncertainty of predictions will be too279

high to inform decision making; although the layered assumption is still imperfect, much280

better predictions can be made, which is crucial for VI risk assessment. As for quantitative281

comparisons, the RMSEs between the true and predicted indoor TCE concentrations are282

calculated as 3.52×10−6, 4.95×10−6, 1.56×10−6, and 1.46×10−7 for the above four prior283

beliefs, respectively. This indicates that the error can be reduced by at least one order of284

magnitude by applying the layered-soil assumption. The above results again demonstrate285

that characterizing soil heterogeneity is essential in VI-related research, even when accurate286

prior information is missing.287
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Figure 7. 95% confidence intervals of predicted TCE concentrations in the indoor air with four

imperfect prior assumptions.
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5 Conclusions288

Heterogeneity is an inherent attribute of soil. In risk analysis of vapor intrusion (VI),289

assuming soil homogeneity is common practice, which can simplify the problem, but may290

undermine the effectiveness of decision making. Moreover, uncertainties are ubiquitous, yet291

the utilization of data assimilation to reduce uncertainties is lacking in VI-related research.292

To fill these gaps, we propose a deep learning-based data assimilation method, that is,293

ES(DL), and apply it to improve site characterization of VI in heterogeneous fields.294

In this study, three representative scenarios, that is, layered soil with the accurate prior,295

spatially heterogeneous soil with the accurate prior, and spatially heterogeneous soil with296

imperfect priors, are tested. What we want to demonstrate through these case studies is297

that: if the soil heterogeneity is not reasonably treated, one’s ability to understand the VI298

process and to make reasonable predictions will be compromised. It is true that considering299

soil heterogeneity will make the risk assessment of VI more challenging. Thus, It is strongly300

recommended to apply an adequate data assimilation method in VI-related research to fuse301

the information contained in the measurement data. This work is a preliminary attempt of302

using the deep learning-based data assimilation method to improve site characterization for303

VI risk assessment in heterogeneous soils, which provide important implications for both304

researchers and practitioners concerning risk assessment of VI at contaminated sites.305

Here, only the uncertainties originated from measurement errors and model parameters306

are considered. In practice, another important source of uncertainty, that is, structural307

inadequacy of the VI model, should also be treated explicitly. To this end, different ap-308

proaches can be adopted (Claeskens & Hjort, 2008; Evensen, 2019; Gupta et al., 2012; Xu309

& Valocchi, 2015). For example, in data assimilation, multiple competing VI models can be310

used simultaneously, and the degree of confidence of each model can be evaluated; one can311

also treat model structural errors as nuisance variables whose values are updated together312

with the model parameters; moreover, a data-driven model can be built for the model er-313

ror, and this error model can be integrated into the system model to avoid over-confident314

predictions. These issues are very interesting and will be tested in future works.315
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