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Abstract

Projecting the potential impacts of LULC (Land Use/Land Cover) change on watershed hydrological response is critical for water

management decisions in a changing environment. An improved representation of vegetation dynamics is needed to improve

the capability of several hydrological models to produce reliable projections of these impacts. Here we in troduce a modification

in the plant growth module of SWAT (Soil Water Assessment Tool) to improve the representation of the bimodal seasonality

of LAI (Leaf Area Index), which is particularly important for tropical watersheds with bimodal precipitation regimes. The

new SWAT-Tb variant that we propose here reproduces not only observed streamflow, but also the bimodal seasonal pattern

of LAI in a tropical mountain watershed of the Andes. In contrast, standard SWAT is inherently unable to reproduce this

bimodality, although it can be calibrated to reproduce streamflow. Differences between models in the representation of LAI

seasonality can lead to significantly different results about LULC change impacts on streamflow. SWAT-Tb results show that

deforestation impacts on streamflow are more pronounced for seasonal than for annual streamflow, and indicate that forests can

play a crucial role in enhancing water availability during dry seasons. The seasonality of streamflow anomalies is switched due

to forest-to-pasture conversion, implying that while forest expansion increases water availability in dry seasons, forest conversion

into pasture decreases it. Due to its poor representation of LAI seasonality, standard SWAT largely underestimates this role of

forest, which can be misleading for decision making about water security and forest conservation
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Abstract19

Projecting the potential impacts of LULC (Land Use/Land Cover) change on watershed20

hydrological response is critical for water management decisions in a changing environment.21

An improved representation of vegetation dynamics is needed to improve the capability of22

several hydrological models to produce reliable projections of these impacts. Here we in-23

troduce a modification in the plant growth module of SWAT (Soil Water Assessment Tool)24

to improve the representation of the bimodal seasonality of LAI (Leaf Area Index), which25

is particularly important for tropical watersheds with bimodal precipitation regimes. The26

new SWAT-Tb variant that we propose here reproduces not only observed streamflow, but27

also the bimodal seasonal pattern of LAI in a tropical mountain watershed of the Andes. In28

contrast, standard SWAT is inherently unable to reproduce this bimodality, although it can29

be calibrated to reproduce streamflow. Differences between models in the representation30

of LAI seasonality can lead to significantly different results about LULC change impacts31

on streamflow. SWAT-Tb results show that deforestation impacts on streamflow are more32

pronounced for seasonal than for annual streamflow, and indicate that forests can play a33

crucial role in enhancing water availability during dry seasons. The seasonality of streamflow34

anomalies is switched due to forest-to-pasture conversion, implying that while forest expan-35

sion increases water availability in dry seasons, forest conversion into pasture decreases it.36

Due to its poor representation of LAI seasonality, standard SWAT largely underestimates37

this role of forest, which can be misleading for decision making about water security and38

forest conservation.39

1 Introduction40

Changes in Land Use/Land Cover (LULC henceforth) lead to some of the most concern-41

ing anthropogenic alterations of hydrological processes and concomitant environmental and42

social phenomena (Foley et al., 2005; M. Zhang et al., 2017). In a watershed, the trans-43

formation of LULC affects multiple aspects and components of the surface water balance,44

including soil permeability (Benavides et al., 2018), evapotranspiration (Ponette-González45

et al., 2014), surface runoff (Roa-Garćıa et al., 2011), infiltration (Maŕın et al., 2019), base46

flow, water yield (Ochoa-Tocachi et al., 2016), energy partitioning (Mercado-Bett́ın et al.,47

2019), and, ultimately, the watershed response via streamflow (Muñoz-Villers & McDonnell,48

2013; Ramı́rez et al., 2017) and regulation capacity (e.g. the amplitude of the streamflow49

regime) (Ochoa-Tocachi et al., 2016; Peña-Arancibia et al., 2019; J. F. Salazar et al., 2018).50

Projecting the potential impacts of LULC change on watershed response and regulation is51

critical for water management decisions in a changing environment (Montanari et al., 2013;52

J. F. Salazar et al., 2018).53

Deforestation is one of the most relevant forms of LULC change, especially in regions like54

tropical South America with historically high deforestation rates that may be exacerbated by55

climate change and complex social issues (Zemp et al., 2017; A. Salazar et al., 2018; Duque-56

Villegas et al., 2019). This is particularly problematic in the tropical Andes, where water and57

related energy security rely largely on streamflow from mountain watersheds (Viviroli et al.,58

2007; Sáenz et al., 2014; Angarita et al., 2018; Immerzeel et al., 2020). Major LULC trends59

in this region include the transformation of Andean forest and paramo vegetation to pastures60

for cattle raising (Garćıa-Leoz et al., 2017), agricultural systems (Clerici et al., 2019), and61

forest plantations (Bonnesoeur et al., 2019). Field observations show that forest conversion62

into pasture or crops is associated with changes in the water balance components and related63

surface properties such as soil permeability, surface runoff, and infiltration (Ramı́rez et al.,64

2017; Maŕın et al., 2019; Suescún et al., 2017). Therefore, understanding the potential65

impacts of forest loss on streamflow is needed for the assessment of threats to sustainability,66

especially in mountain watersheds that are becoming increasingly critical for water security67

in lowland populations (Immerzeel et al., 2020; Viviroli et al., 2020).68
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The effects of LULC change on watershed response are largely assessed through hydro-69

logical models (e.g. M. Zhang et al., 2017; Dos Santos et al., 2018; Peña-Arancibia et al.,70

2019). Hydrological models are generally able to reproduce observed streamflow (Krysanova71

et al., 2017). This is a result of, first, models being built upon physical principles, the main72

of which is mass (water) conservation; and second, of models having numerous parameters73

that can be tuned to reproduce observations (i.e. model calibration). However, the capa-74

bility of making reliable projections (e.g. for LULC scenarios) depends on the potential75

of these models to reproduce the system’s behavior for the right reasons (Kirchner, 2006).76

When the performance of hydrological models is largely, or exclusively, evaluated by com-77

paring simulated and observed streamflow (e.g. Setegn et al., 2010; Villamizar et al., 2019),78

there is a danger of ignoring unrealistic representations of other important water balance79

components and related processes.80

The Soil and Water Assessment Tool (SWAT) is among the most widely used hydro-81

logical models for investigating LULC change impacts on watershed response (Marin et al.,82

2020; Tan et al., 2020). One of the most critical model components for this task is the83

vegetation dynamics module (Strauch & Volk, 2013; Alemayehu et al., 2017), since it di-84

rectly affects the surface water and energy balances (Bonan, 2008). This module includes85

a plant growth scheme that was originally developed for temperate regions (Neitsch et al.,86

2011) and, therefore, is not necessarily adequate for tropical regions (Strauch & Volk, 2013;87

Alemayehu et al., 2017; Hoyos et al., 2019; H. Zhang et al., 2020). This limitation has been88

partially addressed by using the Leaf Area Index (LAI) to represent vegetation dynamics89

(Strauch & Volk, 2013; Alemayehu et al., 2017; Ma et al., 2019; Rajib et al., 2020). For in-90

stance, Alemayehu et al. (2017) developed a SWAT variant (named SWAT-T) that improves91

the representation of LAI seasonality in tropical ecosystems, yet still fails to reproduce the92

bimodal seasonality of LAI that is typical of many of them (Ye et al., 2021) and that is93

related to the seasonal migration of the ITCZ (Urrea et al., 2019; Knoben et al., 2019).94

An improved representation of vegetation dynamics is needed to improve the potential of95

SWAT to produce reliable projections of LULC change impacts (Marin et al., 2020).96

The goals of the present study were, first, to improve the representation of tropical veg-97

etation dynamics in SWAT, and then to use the improved model for studying the potential98

impacts of LULC change on the response of a tropical watershed. More specifically, here we99

introduce a modification in the plant growth module of SWAT to improve the representation100

of LAI seasonality, which leads to a new variant that we refer to as SWAT-Tb. Then we101

compare the performance of SWAT-Tb with other SWAT variants (i.e. standard or default102

SWAT (Revision 627) and SWAT-T), and show that, in contrast to these other variants,103

SWAT-Tb produces a realistic representation of not only streamflow but also LAI. Finally,104

we use SWAT-Tb to study the potential effects of LULC change on streamflow, particularly105

the expansion of either forest or pasture cover, in a tropical mountain watershed; and show106

that using the standard SWAT can lead to misleading conclusions.107

2 Revision of SWAT Model108

The new variant of SWAT, namely SWAT-Tb, introduces a bimodal representation of veg-109

etation dynamics into the SWAT-T model of Alemayehu et al. (2017). SWAT-Tb accounts110

for the bimodal seasonality of LAI that is typical of many watersheds in tropical (Hoyos et111

al., 2019; Knoben et al., 2019) and non-tropical (Alhamad et al., 2007; Yang et al., 2019)112

regions. In the following sections, we provide background on the SWAT model and explain113

the changes in the new variant.114

2.1 Model Description and Limitations115

SWAT is a public domain, watershed-scale, process-based, hydrological model (Arnold et al.,116

1998; Neitsch et al., 2011) that can simulate the response of watersheds (e.g. streamflow) to117

a variety of forcings, including both climate and LULC change (Gassman et al., 2014; Tan118
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et al., 2020). It is a semi-distributed model wherein a watershed is divided into sub-basins119

that are further divided into Hydrologic Response Units (HRUs), which are characterized by120

uniform soil, slope, LULC, and management attributes. Hydrological processes simulated121

by SWAT include evapotranspiration, surface runoff, percolation, lateral flow, groundwater122

flow, transmission losses, and ponds (Arnold et al., 2012). The model also includes param-123

eterizations for processes such as plant growth, erosion, nutrients cycling, and pesticides124

degradation (Neitsch et al., 2011).125

The most common formulation for vegetation dynamics in SWAT uses a plant growth126

module that simulates leaf area development, light interception, and conversion of inter-127

cepted light into biomass (Neitsch et al., 2011). This module is based on the Environmental128

Policy Impact Climate (EPIC) model (Williams et al., 1989) that was developed for tem-129

perate regions and is not suitable for all tropical regions (Strauch & Volk, 2013; Alemayehu130

et al., 2017). A key reason for this is that the EPIC-based module assumes that plant131

growth, including leaf area development, is mainly controlled by variations in temperature132

and daylength, which is especially relevant for temperate environments (Mwangi et al.,133

2016). For instance, this module assumes that plant growth is reduced as daylength ap-134

proaches that of the shortest day of the year (winter solstice) due to dormancy (Arnold et135

al., 1998). However, tropical vegetation dynamics can be much less influenced by tempera-136

ture and daylenght-driven dormancy (Ma et al., 2019), and instead much more controlled by137

precipitation through soil moisture (X. Zhang et al., 2006). Indeed, in our study watershed,138

seasonal LAI is more related to precipitation than to temperature (see Section 4.1). This139

model limitation and its implications for water balance have been highlighted in several140

studies (Wagner et al., 2011; Strauch & Volk, 2013; Alemayehu et al., 2017; Hoyos et al.,141

2019; Ma et al., 2019; Rajib et al., 2020; H. Zhang et al., 2020; Marin et al., 2020).142

Recognizing this limitation, previous studies have introduced novel representations of143

vegetation dynamics into SWAT, which have produced satisfactory results for regions like144

Central Brazil (Strauch & Volk, 2013), Kenya and Tanzania (Alemayehu et al., 2017),145

southeast China (Ma et al., 2019), north central United States (Rajib et al., 2020), and146

northern Australia (H. Zhang et al., 2020). For instance, Alemayehu et al. (2017) successfully147

implemented their new SWAT-T variant in a tropical watershed in Kenya and Tanzania148

after having modified the plant growth module. Many tropical watersheds, however, do149

not conform to the unimodal cycle as prescribed in SWAT-T. In fact, Hoyos et al. (2019)150

showed that although SWAT-T successfully reproduces streamflow in a watershed of the151

tropical Andes and improves the representation of LAI dynamics as compared to SWAT, it152

nevertheless fails in reproducing the observed bimodal seasonality of LAI.153

2.2 Changes in Plant Growth Module in SWAT-Tb154

We built upon SWAT-T’s vegetation module to develop SWAT-Tb. This enhanced module155

has the capability of representing a bimodal LAI annual cycle. SWAT-T uses changes in the156

Soil Moisture Index (SMI, computed as the ratio between 5-day aggregate precipitation (P)157

and reference evapotranspiration (ET)) as a proxy for the dry to wet season transition in the158

tropics, which then triggers a unimodal vegetation growth cycle (Alemayehu et al., 2017).159

Unlike SWAT-T, SWAT-Tb uses precipitation as a proxy for seasonal variations in LAI.160

This relation is based also on the assumption that the onset of the wet season triggers plant161

growth (Liang et al., 2020), and agrees with observations of the annual cycles of precipitation162

and LAI in the study watershed (see Section 4.1). Using precipitation (as in SWAT-Tb)163

instead of SMI (as in SWAT-T) is also consistent with the fact that tropical environments164

are not always water-limited (Gotsch et al., 2016), therefore there is not always a direct165

relation between plant growth and soil moisture (Alemayehu et al., 2017). In the energy-166

limited environments that are common in the tropical Andes, precipitation is arguably a167

better proxy of vegetation dynamics because it relates to both water and energy (e.g. peak168

LAI comes after peak precipitation as shown in Section 4.1). Seasonal precipitation in the169

tropical Andes is strongly controlled by the latitudinal migration of the ITCZ (Espinoza et170
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Table 1. Description of data used in this study.

Data Description Source

DEM Elevation data at a resolution of 1 arc-second (30
meters).

Jarvis et al. (2008)

Land cover Land cover map for the Grande and Chico rivers wa-
tersheds for the year 2015, scale 1:100,000.

CORANTIOQUIA
and UNAL (2015)

Soil Soil map for the the Grande and Chico rivers water-
sheds, scale 1:50,000.

Machado et al. (2019)

Hydrometeorological Precipitation, minimum and maximum temperature,
relative humidity, evapotranspiration, and stream-
flow for the period 1990–2016.

EPM1 and IDEAM2

LAI MCD15A2Hv006 MODIS-LAI product for the pe-
riod 2003–2016 with a spatial resolution of 0.5 km.
Values are 8-days-composites.

Myneni et al. (2015)

1EPM: Public Utilities Company of Medelĺın, 2IDEAM: Colombian Institute of Hydrology, Meteorology and

Environmental Studies.

al., 2020), which affects the surface energy balance, and therefore other vegetation-related171

variables such as photosynthetic rate, net productivity, and transpiration (Aparecido et al.,172

2018). The SWAT-Tb executable and the associated changes with file examples (*.sub,173

*.mgt and plant.dat) can be found in Supplementary Material S1.174

3 Materials and Methods175

3.1 Study Area176

This study focuses on the Chico River (CR) watershed in the tropical Andes of Colombia177

(Figure 1). The CR watershed is a tributary of the Grande River (GR) watershed, which is178

strategic for water supply to local rural communities and more than 4 million people living in179

the Metropolitan Area around Medelĺın, as well as for hydropower generation (the CR flows180

into a reservoir, Figure 1d), agriculture, and dairy industry. The CR watershed covers a181

drainage area of 169 km2 with altitudes ranging between 2400 and 3260 m.a.s.l. (Figure 1e).182

Mean annual precipitation is 1820 mm, and mean monthly temperature varies between 12◦C183

and 16◦C with an average of 14◦C. Precipitation seasonality is characterized by a bimodal184

regime with two wet seasons: March-April-May (MAM) and September-October-November185

(SON), and two dry seasons: December-January-February (DJF) and June-July-August186

(JJA) (Poveda, 2004; Garćıa-Leoz et al., 2017). Land use in the watershed is dominated187

by pastures (54.17% of the area), followed by native forest (29.30%), shrubs (11.42%), and188

paramo vegetation (4.89%) (Figure 1e). A considerable fraction of native vegetation (e.g.189

native forest, shrubs, and paramo vegetation) has been converted into agro-pastoral uses in190

the watershed (Berrouet et al., 2020). The dominant soil type is Andic Dystrudepts, which191

makes up 62% of the watershed (Figure 1g).192

3.2 Input Datasets and Model Parameters193

A summarized description of the data used in this study and their sources are presented194

in Table 1. Elevation data were used for the definition of sub-basins and HRUs. Based on195

previous studies for tropical Andean regions, the LULC map was reclassified to match the196

SWAT land use types (Supplementary Table S1; (Tapasco et al., 2015; Hoyos et al., 2019;197

Villamizar et al., 2019)), and the soil map was parameterized (Machado et al., 2019; Uribe198

et al., 2018, 2020). Processing of the above data yielded 7 sub-basins and 649 HRUs using199

the SWAT2012 extension (version 1.9) within QGIS 2.6.1 (Dile et al., 2019) software.200
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Figure 1. (a-c) General location of the study area (South America, Colombia, and Antioquia,

respectively). (d) Grande (“big”) and Chico (“small”) rivers watersheds including hydrometeoro-

logical gauges. (e) Digital Elevation Model (DEM), (f) land cover for the year 2015, and (g) soil

types. Land cover and soil types codes are: RYEL: pasture, FRST: native Andean forest, RYEB:

shrubs, BROM: paramo vegetation, RYEE: pasture with secondary growth, PINE: planted forest,

URMD: urban, AD: Andic Dystrudepts, AH: Andic Humudepts, AU: Andic Udifluvents, LH: Lithic

Hapludand, TD: Typic Dystrudepts, TH: Typic Hapludands, and TM: typic melanudands.
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Daily hydrometeorological data (precipitation, maximum and minumum temperature,201

relative humidity, evapotranspiration, and streamflow) from the available gauges (Figure202

1d) were provided by the Colombian Institute of Hydrology, Meteorology and Environmen-203

tal Studies (IDEAM in Spanish) and the Public Utilities Company of Medelĺın (EPM in204

Spanish). We used the Priestley-Taylor equation to calculate evapotranspiration as wind205

data were not available from ground-based gauges, and global datasets (reanalyses) have a206

limited capacity to represent wind over the complex terrain of the Andes (Posada-Maŕın et207

al., 2019). The SWAT’s internal WGENX weather generator (Neitsch et al., 2011) was used208

to estimate daily solar radiation. Observed 8-day composites of LAI were obtained from209

the MCD15A2H-MODIS product (Myneni et al., 2015) for the 2003–2016 period at 0.5 km210

spatial resolution. Further details on LAI data processing are given in Section S2 of the211

Supplementary Material.212

3.3 Model Calibration, Validation and Uncertainty Estimation213

The SWAT-Tb model is calibrated to simulate, first, monthly LAI, and then monthly214

streamflow using both manual and automatized techniques. Parameters are initially se-215

lected based on a literature review (Arnold et al., 2012; Strauch & Volk, 2013; Abbaspour216

et al., 2015; Alemayehu et al., 2017; H. Zhang et al., 2020) that includes previous studies217

for Andean watersheds (Tapasco et al., 2015; Hasan & Wyseure, 2018; Hoyos et al., 2019;218

Villamizar et al., 2019) (Supplementary Table S3). In order to obtain comparable results,219

SWAT-T is also calibrated for LAI whereas SWAT is only calibrated for streamflow. Stream-220

flow and LAI calibration was conducted for 2003–2016, while validation was performed for221

1993–2002. Three years are added at the beginning of each simulation as a spin-up period to222

mitigate the influence of uncertain initial conditions, especially for soil moisture. Sensitivity223

and uncertainty analyses, as well as automatized procedures for calibration and validation224

are carried out in SWAT-CUP 2019 (version 5.2.1; Abbaspour, 2013) using the Sequential225

Uncertainty Fitting (SUFI-2) algorithm (Abbaspour et al., 2004).226

Calibration of LAI is performed for SWAT-Tb and SWAT-T through manual adjust-227

ment of parameters (Supplementary Table S2) while considering land cover types separately.228

The Breaks for Additive Seasonal and Trend (BFAST) method (Verbesselt et al., 2010) was229

implemented to exclude noise from the LAI time series. The Pearson correlation coefficient230

(r), the percent bias (PBIAS), and the Kling–Gupta efficiency (KGE; Gupta et al., 2009)231

are used to evaluate the agreement between simulated and observed LAI values. Since we232

want to assess the effect of an inaccurate representation of vegetation dynamics, SWAT233

is not calibrated for LAI, which is not an unusual practice (e.g. Villamizar et al., 2019;234

Adhikari et al., 2020). Streamflow calibration is focused on the dominant land cover types235

—pasture (RYEL) and native Andean forest (FRST) that account for approximately 80%236

of the watershed (Figure 1f)— and on the upper soil layers that are most directly affected237

by vegetation change (Tobón et al., 2010; Maŕın et al., 2019). Parameters for the dominant238

land cover types are calibrated independently, whereas parameters for all other land cover239

types are grouped in order to reduce computational cost.240

Sensitive parameters are identified with a sensitivity analysis based on 500 simulations.241

This analysis starts with 33 parameters selected based on previous studies and literature242

review (Supplementary Table S3), and yields 18 of them as the most sensitive (p-value243

≤ 0.05, Supplementary Table S4). We also define an acceptable range of variability for each244

sensitive parameter. Subsequently, we calibrate monthly streamflow with SUFI-2 using 1000245

simulations per iteration (Latin hypercube sampling) for the selected parameter ranges. The246

calibration goal is to obtain acceptable values for uncertainty statistics (p-value and r-value)247

and the performance criteria proposed by Moriasi et al. (2007), which include Nash-Sutcliffe248

Efficiency (NSE) as the objective function and other complementary statistics: percent249

bias (PBIAS), determination coefficient, and RMSE-observations standard deviation ratio250

(RSR). We also seek to obtain a reasonable representation of water balance components251

by considering the following metrics: fraction of total runoff as baseflow, ratio between252
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total evapotranspiration and total precipitation, and ratio between surface runoff and total253

streamflow. Model outputs for these metrics are compared with observation-based estimates254

for Andean watersheds (Jaramillo-Robledo, 2003; Garćıa-Leoz et al., 2017; Suescún et al.,255

2017; Bonnesoeur et al., 2019; Maŕın et al., 2019) (Supplementary Table S4).256

3.4 LULC Scenarios257

A control (CTL) scenario (i.e. LULC distribution for 2015 (CORANTIOQUIA &258

UNAL, 2015), Figure 1f) and two extreme LULC scenarios are simulated: full watershed259

forest loss (100% pasture, PAS) and forest cover (100% forest, FOR). These are not real-260

istic but “baseline”-type scenarios that are used to study the range of potential changes261

in streamflow due to forest change in the watershed (e.g. Alvarenga et al., 2016; Tian et262

al., 2017; Li et al., 2019; Peña-Arancibia et al., 2019). These scenarios not only represent263

changes in the cover (e.g. LAI) but also in some soil properties based on parameteriza-264

tion of land cover types, to obtain a more realistic assessment of forest loss and intensive265

pasture management impacts on water balance (Tobón et al., 2010; Maŕın et al., 2019; Peña-266

Arancibia et al., 2019). Each scenario is simulated for the period 1993–2016 (plus a spin-up267

period of three years) using the best-fit parameter values from the calibration along with268

1000 random combinations within the acceptable ranges. These simulations are performed269

using the SUFI-2 algorithm (Abbaspour et al., 2004) and their output is used to assess the270

effects of parameter variability and uncertainty on the results. Differences between scenarios271

are analyzed using the non-parametric Wilcoxon rank-sum and signed-rank tests (Bauer,272

1972). Since everything else is equal, these differences are entirely attributable to LULC273

change.274

3.5 Comparison of SWAT variants275

Three variants of the SWAT model that differ in their plant growth module are used:276

SWAT (default version, Arnold et al., 2012), SWAT-T (Alemayehu et al., 2017), and SWAT-277

Tb (present study). These variants are compared to evaluate their performance in repro-278

ducing the observed dynamics of plant growth, specifically LAI (see Section 4.1). As a279

proof-of-concept, we also compare SWAT calibrated for streamflow with SWAT-Tb cali-280

brated for both LAI and streamflow.281

4 Results282

4.1 LAI Calibration283

The observed seasonality of precipitation and LAI for all vegetation types in the wa-284

tershed exhibits a marked bimodal regime (Figure 2). There are two wet seasons in MAM285

and SON, and two “dry” (less rainy) seasons in DJF and JJA. The SMI follows this same286

pattern. Relative to precipitation and SMI, LAI exhibits a pattern that can be described287

as mirrored to precipitation with lower values around the wet seasons and higher values in288

the dry seasons, which indicates energy-limited ecosystems. This suggests that during the289

dry seasons plant growth is not as limited by reduced precipitation and moisture (SMI is290

greater than 1 in all months but January) as it is enhanced by increased radiation resulting291

from less cloud cover (Aparecido et al., 2018). These results confirm the role of precipita-292

tion (and cloudiness) in controlling vegetation seasonality, which according to our results293

and previous observations appears to be greater than that exerted by temperature. This294

contrasts the assumptions made in the EPIC model about the dominant role of temperature295

in plant growth (Williams et al., 1989; Arnold et al., 2012).296

Comparison between observed and simulated LAI using SWAT, SWAT-T, and SWAT-297

Tb for the dominant LULC types shows that SWAT fails to represent LAI seasonality, as298

evinced by high biases (53% < |PBIAS| < 90%) and negative or low correlations (−0.51 <299

r < 0.13). Results for other LULC types are shown in Supplementary Figure S1. A default300
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Figure 2. Average seasonality of climate variables (1990–2016; gauging stations) and LAI (2003–

2016; BFAST-MODIS; area weighted HRU mean) in the CR watershed. Land cover types as in

Figure 1.

–9–



manuscript submitted to Water Resources Research

Figure 3. Observed (MODIS) and simulated (SWAT, SWAT-T, and SWAT-Tb) seasonality of

LAI in the CR watershed for native Andean forest (top) and pasture (bottom). Time series (a, d),

average annual cycle (b, e), and the corresponding box-plots and performance statistics (c, f).

assumption of the SWAT model is that LAI is zero at the beginning of each simulation year,301

which is unrealistic for tropical vegetation. This assumption is kept for the proof-of-concept,302

and because it is behind an important limitation of SWAT for tropical watersheds (Strauch303

& Volk, 2013; Mwangi et al., 2016; Alemayehu et al., 2017; Hoyos et al., 2019; H. Zhang et304

al., 2020). Regardless of whether this assumption is changed, SWAT does not reproduce LAI305

bimodality. Calibrated SWAT-T realistically reproduces the range of variability of LAI but306

fails to represent LAI bimodality because it has a prescribed unimodal regime with a single307

vegetation growth cycle per year (Alemayehu et al., 2017; Hoyos et al., 2019). Calibrated308

SWAT-Tb outperforms both SWAT and SWAT-T in reproducing the observed bimodality309

of LAI, as indicated by the correlation values.310

4.2 Streamflow Calibration and Validation311

SWAT-Tb is calibrated for streamflow by varying the most sensitive parameters (Sup-312

plementary Table S3). The best-fit parameter values and acceptable ranges (i.e. range313

of parameter values for which simulations are acceptably realistic) are presented in Table314

2. Simulated and observed monthly streamflow are shown in Figure 4 for the calibration315

(2003–2016) and validation (1993–2002) periods. Based on multiple criteria (NSE, RSR,316

and PBIAS), the model performance can be considered as “very good” and “good” for317

calibration and validation, respectively (Moriasi et al., 2007). Furthermore, water balance318

components are realistic as compared to the reference values (Supplementary Table S4).319

Likewise, using the best-fit parameter values in Table 2, the performance of standard320

SWAT in reproducing observed streamflow varies between “very good” (for calibration) and321

“good” (for validation) (Moriasi et al., 2007, Supplementary Figure S2). This illustrates322

how standard SWAT can show high performance to reproduce streamflow despite having a323

low capability to simulate dynamics of LAI (Figure 3 and Supplementary Figure S1).324

4.3 Forest versus Pasture Impacts on Streamflow325

SWAT-Tb results show that the potential impact of forest cover change on the watershed326

response is much more pronounced in monthly (Figure 5c) than in annual streamflow (Figure327

5f). The results based on annual streamflow would misleadingly indicate that there are328

small differences between the FOR and PAS scenarios. In contrast, forest change leads to329
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Table 2. Best-fit values for parameters and their acceptable range for the calibrated SWAT-Tb

model.

Parameter1 Description
Scaling Range

Best-fit value
type2 min max

CN2.mgt RYEL Runoff curve number for moisture con-
dition II.

r -0.22 -0.20 -0.20

ESCO.hru RYEL Soil evaporation compensation factor. v 0.35 0.50 0.42

ESCO.hru FRST Soil evaporation compensation factor. v 0.25 0.40 0.27

ALPHA BF.gw Baseflow alpha factor (1/days). v 0.030 0.045 0.030

CN2.mgt FRST Runoff curve number for moisture con-
dition II.

r -0.20 -0.18 -0.19

SOL K(1).sol RYEL Saturated hydraulic conductivity
(mm/hr).

r -0.35 -0.2 -0.23

GWQMN.gw FRST Threshold depth of water in the shallow
aquifer required for return flow to occur
(mm H2O).

v 1500 2000 1988.25

CH K2.rte Effective hydraulic conductivity in
main channel alluvium (mm/hr).

v 25 75 52.63

GWQMN.gw RYEL Threshold depth of water in the shallow
aquifer required for return flow to occur
(mm H2O).

v 2000 2500 2490.25

ESCO.hru BPRR Soil evaporation compensation factor. v 0.15 0.30 0.29

SOL K(1).sol FRST Saturated hydraulic conductivity
(mm/hr).

r -0.20 -0.10 -0.16

SOL BD(1).sol BPRR Moist bulk density (g/cm3). r -0.15 0.0 -0.039

CN2.mgt BPRR Runoff curve number for moisture con-
dition II.

r -0.18 -0.15 -0.17

SOL AWC(1).sol FRST Available water capacity of the soil
layer (mm H2O/mm soil).

r -0.30 -0.15 -0.25

SOL BD(1).sol RYEL Moist bulk density (g/cm3). r 0.15 0.25 0.24

GWQMN.gw BPRR Threshold depth of water in the shallow
aquifer required for return flow to occur
(mm H2O).

v 1800 2200 1866.20

SOL K(1).sol BPRR Saturated hydraulic conductivity
(mm/hr).

r -0.15 0.0 -0.08

SOL AWC(1).sol RYEL Available water capacity of the soil
layer (mm H2O/mm soil).

r 0.35 0.50 0.37

1Numbers (1, 2) refer to the soil layer number. FRST: native Andean forest, RYEL: pasture, and BPRR:

paramo vegetation, planted forest, shrubs, and pasture with secondary growth. 2Scaling type: v (absolute)

indicates that the parameter is replaced by the given value, r (relative) indicates that the parameter is

multiplied by [1 + (given value)], which preserves spatial variability.
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Figure 4. Calibration (2003–2016) and validation (1993–2002) of SWAT-Tb for monthly stream-

flow. Vertical bars show monthly rainfall from SWAT output, calculated from records in climate

stations. NSE: Nash-Sutcliffe coefficient, PBIAS: percent bias, R2: coefficient of determination,

and RSR: RMSE-observations standard deviation ratio. 95PPU: the 95% prediction uncertainty.

Model performances based on the criteria of Moriasi et al. (2007): a Good (0.65<NSE≤0.75,

0.50<RSR≤0.60, ±10%<BIAS< ±15%) and b Very Good (0.75<NSE≤1.00, 0.00<RSR≤0.50,

BIAS≤±10%).

significant differences in monthly streamflow seasonality, which are particularly pronounced330

during the dry seasons (DJF and JJA). The occurrence of 100% forest cover in the watershed331

leads to increased streamflow during the dry seasons (e.g. average streamflow in January332

is about 10% greater in the FOR than in the CTL scenario), whereas its absence causes333

a streamflow reduction (e.g. average streamflow in January is about 6% lower in the PAS334

than in the CTL scenario). During the wet seasons, the most significant difference is found335

in April when streamflow is reduced in the FOR scenario, while it is increased in the PAS336

scenario. Differences between scenarios are smaller in the SON wet season. These results337

remain valid when considering 1000 combinations of parameters values within the acceptable338

ranges (Supplementary Figure S3).339

Differences between scenarios seem small when looking at box-plots for the annual cycle340

(Figure 5b) and annual average (Figure 5e). This is because these box-plots do not show341

the year-to-year variability of monthly streamflow. Figures 5c and 5f clarify this by showing342

the distribution (box-plots) of monthly differences computed as the difference of stream-343

flow between scenarios for the same month and year. This is important to guarantee that344

the comparison is done between LULC scenarios under the same climate forcing (precipi-345

tation and temperature). For instance, PAS scenario streamflow under La Niña conditions346

(above-normal precipitation) is not comparable to FOR scenario streamflow under El Niño347

conditions (below-normal precipitation).348

Despite their comparable ability to reproduce observed streamflow, SWAT and SWAT-349

Tb results do not support the same conclusions. For instance, streamflow increase in the350

FOR scenario during the dry seasons is largely underestimated (in DJF) or even reversed (in351

July and August) (Figure 5c) in SWAT output. The median percent increase of streamflow352

from SWAT can be less than half the corresponding increase in SWAT-Tb (e.g. ∼ 4% versus353

∼ 10% in January). Further, SWAT results indicate that the median annual streamflow354

would barely change due to extensive modification of LULC in the FOR and PAS scenarios355

(Figure 5d). In contrast, SWAT-Tb output show a greater change in the median annual356

streamflow. The statistical significance of this change will be discussed below.357
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Figure 5. Comparison of monthly (left) and annual (right) streamflow between scenarios and

models. Input precipitation (blue bars) is the same for all scenarios and models (a,d). Average an-

nual cycle (b) and annual streamflow (e) in all scenarios for 1993–2016. Percent differences between

monthly (c) and annual (f) streamflow in the control (CTL) and LULC (FOR and PAS) scenarios

for 1993–2016 as simulated by SWAT-Tb and SWAT using best fit parameters. Positive (negative)

values indicate that streamflow is increased (decreased) in the LULC change scenario. Boxes (dark

green and yellow) show variability of monthly differences in SWAT-Tb output, whereas lines with

dots (light green and orange) show the corresponding median from SWAT output. Asterisks iden-

tify months for which the difference between medians in the FOR and PAS scenarios is statistically

significant (n=24, p < 0.05) for SWAT-Tb output.
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Figure 6. Annual cycle and percent differences between monthly (a) actual evapotranspiration

(ET), (b) surface runoff (SURQ), (c) lateral flow (LATQ), (d) percolation (PERC), (e) groundwater

contribution to streamflow (GWQ), and (f) water yield (WYLD) in the control (CTL) and LULC

(FOR and PAS) scenarios for 1993–2016 as simulated by SWAT-Tb at the watershed scale. Vari-

ables are HRU area-weighted means for each month. Positive (negative) values indicate that the

variable is increased (decreased) in the LULC change scenario. Vertical bars show mean monthly

precipitation (PCP).

4.4 Water Balance Components358

Differences in streamflow between scenarios are caused by differences in the watershed’s359

water balance components (Figure 6). The largest differences between the CTL and LULC360

scenarios are found for surface runoff (Figure 6b), lateral flow (Figure 6c), percolation (Fig-361

ure 6d), and groundwater contribution (i.e. baseflow) to streamflow (Figure 6e). The sum of362

these differences leads to differences in water yield (Figure 6f). By comparison, differences363

in evapotranspiration are much less pronounced (Figure 6a; note that their magnitudes364

never exceed 6%). All these differences consider the year-to-year variability as explained365

previously for Figure 5.366

In our simulations, differences between output from SWAT-Tb and SWAT are entirely367

caused by differences in the simulated LAI values (Figure 7a). The resulting differences in368

water balance components are more pronounced for the PAS than for the FOR scenario369

(Figure 7b–g). As compared to SWAT-Tb, in the PAS scenario SWAT overestimates water370

yield throughout the year (Figure 7g), with larger values during JJA and SON, i.e. during371

the second dry and wet seasons of the year in the actual bimodal regime. This overestima-372

tion in JJA–SON results from greater production of surface runoff (Figure 7c), lateral flow373

(Figure 7d), and base flow (Figure 7f), as well as from reduced evapotranspiration (Figure374

7b). In DJF–MAM, there are mixed patterns in the water balance components that lead375

to a smaller overestimation of water yield. In the FOR scenario, SWAT underestimates376

LAI throughout the year, mostly in DJF, which leads to mixed results in water balance377

components. In both scenarios, differences of surface runoff between models (Figure 7c) are378

minimal (< ± 0.5 mm), hence the effects on streamflow result mainly from variations in379

evapotranspiration and groundwater flows (i.e. lateral flow, percolation, and base flow).380
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Figure 7. Differences between SWAT and SWAT-Tb in the monthly median of (a) Leaf Area

Index (LAI), (b) total biomass (BIOM, i.e. above-ground and roots at the end of the period

reported as dry weight), (c) actual evapotranspiration (ET), (d) surface runoff (SURQ), (e) lateral

flow (LATQ), (f) percolation (PERC), (g) groundwater contribution (GWQ), and (h) water yield

(WYLD) for each LULC scenario (PAS and FOR) at the watershed scale (area-weighted HRU mean

for each month).

5 Discussion381

5.1 Advantages of SWAT-Tb over SWAT382

There is no noticeable difference between SWAT-Tb and SWAT in representing monthly383

streamflow (Figures 5b and S2). However, there are visible differences in their capability to384

reproduce vegetation dynamics through LAI (Figure 3), as well as in their results regarding385

the potential impact of forest conversion on streamflow (Figure 5c) and the underlying386

changes in the water balance components (Figure 7).387

Our proof-of-concept illustrates how SWAT can be calibrated to realistically simulate388

streamflow despite being intrinsically unable to reproduce the observed dynamics of LAI,389

which has multiple effects on the water balance components including evapotranspiration,390

canopy interception, and surface runoff (Neitsch et al., 2011; Strauch & Volk, 2013; Ale-391

mayehu et al., 2017). Hence, there is a danger of getting the right results (e.g. the model392

reproduces observed streamflow) for the wrong reasons (Kirchner, 2006), which strongly393

limits the capability of models (i.e. SWAT in the present case) to produce reliable results394

for informing decisions.395

We argue that SWAT results (Figures 5 and 7), and perhaps also the results of studies396

using the approach of calibrating and validating SWAT for streamflow but not for LAI397

(e.g. Villamizar et al., 2019; Adhikari et al., 2020), may be misleading about the impacts398

of tropical forest change on streamflow. In contrast, SWAT-Tb provides better insight399

by reproducing not only the observed streamflow but also the bimodal dynamics of LAI400

that are typical of many tropical watersheds. This is particularly important for assessing401

water balance components that affect water security in the tropical Andes threatened by402

undergoing deforestation (A. Salazar et al., 2018; Viviroli et al., 2020).403
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5.2 Forest Impact on the Watershed’s Regulation Capacity and Water Avail-404

ability405

Results of previous studies about forest change impacts on streamflow are diverse406

(M. Zhang et al., 2017; Ochoa-Tocachi et al., 2016; Jones et al., 2020), which suggests that407

conclusions about this are hardly generalizable. However, a number of previous studies have408

concluded that increased forest cover in a watershed leads to decreased annual streamflow,409

mainly as a consequence of increased evapotranspiration (Ellison et al., 2012; Muñoz-Villers410

& McDonnell, 2013; Ogden et al., 2013; M. Zhang et al., 2017). In our results, differences411

in annual streamflow between scenarios are not statistically significant (p> 0.05; Figure 5f412

and Supplementary Figure S3f), which does not necessarily imply that these differences are413

negligible or physically meaningless (Amrhein et al., 2019). Given this, and in addition to414

the significant differences in the annual cycle, our results indicate that annual streamflow is415

almost always greater in the FOR than in the CTL and PAS scenarios, which is opposite to416

the aforementioned conclusion.417

There are statistically significant differences in monthly streamflow between scenarios418

(p< 0.05; Figure 5c and Supplementary Figure S3c), particularly in dry seasons (DJF and419

JJA). This is relevant from the perspective of regulation, defined here as the capacity of420

watersheds to reduce streamflow variability and attenuating extreme streamflows (Ochoa-421

Tocachi et al., 2016; J. F. Salazar et al., 2018; Rodŕıguez et al., 2018). This regulation422

implies a contrasting capacity of watersheds to increase low streamflows while reducing423

floods (J. F. Salazar et al., 2018; Rodŕıguez et al., 2018). The CR watershed’s regulation424

capacity is increased in the FOR scenario, as revealed by higher streamflow during the dry425

season while little change during the wet season, relative to the CTL scenario.426

Increased forest cover leads to reduced direct runoff and lateral flow, as well as to427

increased percolation and groundwater contribution to streamflow (i.e. base flow), as com-428

pared to the effect of increased pasture cover (Figure 6), which is consistent with field429

observations in the region of the CR watershed by Garćıa-Leoz et al. (2017); Suescún et al.430

(2017). Although these effects of forest change are the same throughout the year (Figure431

6), their impact on streamflow is not the same because it depends on the relative contribu-432

tion of each water balance component to streamflow. In dry seasons, streamflow depends433

more on base flow than on direct runoff and lateral flow. In contrast, during wet seasons434

precipitation may contribute more to streamflow via direct runoff and lateral flow than base435

flow. As a result, the impacts on streamflow of reduced direct runoff and lateral flow, and436

increased percolation and base flow, vary across seasons. The increased presence of forest437

can increase low streamflow during dry seasons mainly through increased base flow, while438

it can reduce streamflow during the wet season mainly through reduced direct runoff and439

lateral flow.440

These results are consistent with some theoretical hypothesis and previous observational441

studies. The infiltration trade-off hypothesis for tropical environments (Bruijnzeel, 1989,442

2004) proposes that reduced forest cover in a watershed can lead to reduced low streamflow443

in dry seasons as a result of reductions in infiltration and water storage in soils during wet444

seasons, which are not compensated by water gains due to reduced evapotranspiration. The445

forest reservoir hypothesis (J. F. Salazar et al., 2018) proposes that tropical forests enhance446

the capacity of watersheds to regulate streamflow, mainly through their role in mediating447

land-atmosphere interactions. Ellison et al. (2012) divide the forest water debate into two448

schools of thought: the “demand-side” and the “supply-side” schools. While the former449

sees trees and forests as consumers of available water and competitors for other downstream450

water uses, the latter supports the beneficial impact of forest cover on the hydrological cycle,451

emphasizing that increasing forest cover raises water yield. Our results lend support to the452

“supply-side” perspective.453

Observational and modeling studies have shown that forest conversion into pasture or454

croplands in tropical watersheds can result in decreased low streamflows and increased floods455
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(Roa-Garćıa et al., 2011; Ogden et al., 2013; Ochoa-Tocachi et al., 2016; Ramı́rez et al.,456

2017; Krishnaswamy et al., 2018; Peña-Arancibia et al., 2019; López-Ramı́rez et al., 2020).457

Our results indicate that forest cover gain (i.e. FOR scenario) leads to increased infiltration458

and groundwater recharge (Figures 6c-e) and little changes in evapotranspiration (Figures459

6a). Field observations in the region of the CR watershed have indicated that the difference460

between evapotranspiration of native Andean forest (FRST) and pasture (RYEL) is small461

(Garćıa-Leoz et al., 2017), as it is in our results.462

6 Conclusions463

Bimodal seasonal patterns of vegetation dynamics are common to many watersheds,464

especially (although not exclusively) in tropical regions under the influence of the ITCZ.465

The new SWAT-Tb variant reproduces not only observed streamflow, but also the bimodal466

seasonal pattern of LAI in a tropical mountain watershed. In contrast, standard SWAT467

is inherently unable to reproduce this bimodality in vegetation dynamics, although it can468

be calibrated to reproduce streamflow. These variations in the representation of LAI sea-469

sonality can lead to significantly different results when assessing LULC change impacts on470

streamflow.471

Regarding the effect of forest change on streamflow, our results show that impacts472

can be much more pronounced for seasonal than for annual streamflow, and indicate that473

forests can play a crucial role in enhancing water availability during dry seasons. We found474

that the seasonality of streamflow anomalies is largely switched due to forest-to-pasture475

conversion, implying that while forest expansion increases water availability in dry seasons,476

deforestation (e.g. forest conversion into pasture) can strongly decrease it. Due to its poor477

representation of LAI seasonality, standard SWAT largely underestimates this role of forest,478

which can be misleading for decision making about water security and forest conservation.479

Data availability480

The SWAT-Tb executable and code will be available through SWATshare (https://481

mygeohub.org/groups/water-hub/swatshare landing), which is a cyberinfrastructure for482

sharing, simulation, and visualization of SWAT models. For review purposes, the data483

are available online at https://bit.ly/2XT8uxs. After publication, we may change the484

link to keep the files permanently available in SWATshare. Emails requesting necessary485

technical support can be directed to the corresponding author. The data used in this486

study are publicly available. Sources to access these data, including any other infor-487

mation to replicate the results, are provided in the references, tables, and supporting488

information. Also, they are accessible through links provided below: Digital Elevation489

Model was from http://srtm.csi.cgiar.org/. MODIS-LAI data was obtained from490

https://lpdaac.usgs.gov/products/mcd15a2hv006/. IDEAM from491

http://dhime.ideam.gov.co/atencionciudadano/. Land cover and soil types maps is492

available through CORANTIOQUIA and UNAL (2015) and Machado et al. (2019), respec-493

tively.494
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Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E., et al. (2008). Hole-filled SRTM for the614

globe Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm.615

csi. cgiar. org), 15 , 25–54.616

Jones, J. A., Wei, X., Archer, E., Bishop, K., Blanco, J. A., Ellison, D., . . . Creed, I. F.617

(2020). Forest-water interactions under global change. In Forest-Water Interactions618

(pp. 589–624). Springer.619

Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measure-620

ments, analyses, and models to advance the science of hydrology. Water Resources621

Research, 42 (3).622

Knoben, W. J., Woods, R. A., & Freer, J. E. (2019). Global bimodal precipitation season-623

ality: A systematic overview. International Journal of Climatology , 39 (1), 558–567.624

Krishnaswamy, J., Kelkar, N., & Birkel, C. (2018). Positive and neutral effects of forest cover625

on dry-season stream flow in Costa Rica identified from Bayesian regression models626

with informative prior distributions. Hydrological Processes, 32 (24), 3604–3614.627

Krysanova, V., Vetter, T., Eisner, S., Huang, S., Pechlivanidis, I., Strauch, M., . . . others628

(2017). Intercomparison of regional-scale hydrological models and climate change629

impacts projected for 12 large river basins worldwide—a synthesis. Environmental630

Research Letters, 12 (10), 105002.631

Li, F., Zhang, G., Li, H., & Lu, W. (2019). Land Use Change Impacts on Hydrology in the632

Nenjiang River Basin, Northeast China. Forests, 10 (6), 476.633

Liang, B., Chen, X., Lang, W., Liu, G., Malhi, Y., & Rifai, S. (2020). Examining land634

surface phenology in the tropical moist forest eco-zone of South America. International635

Journal of Biometeorology , 1–12.636
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Muñoz-Villers, L., & McDonnell, J. (2013). Land use change effects on runoff generation in663

a humid tropical montane cloud forest region. Hydrology and Earth System Sciences,664

17 (9), 3543.665

Mwangi, H. M., Julich, S., Patil, S. D., McDonald, M. A., & Feger, K.-H. (2016). Mod-666

–20–



manuscript submitted to Water Resources Research

elling the impact of agroforestry on hydrology of Mara River Basin in East Africa.667

Hydrological Processes, 30 (18), 3139–3155.668

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MCD15A2H MODIS/Terra+ Aqua Leaf669

Area Index/FPAR 8-day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land670

Processes DAAC.671

Neitsch, S. L., Arnold, J., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment672

tool theoretical documentation version 2009 (Tech. Rep.). College Station, Texas:673

Texas Water Resources Institute.674

Ochoa-Tocachi, B. F., Buytaert, W., De Bievre, B., Célleri, R., Crespo, P., Villaćıs, M., . . .675
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Supplementary Material S1: SWAT-Tb implementation

Alemayehu, Griensven, Woldegiorgis, and Bauwens (2017) modified SWAT by adding15

two parameters (based on Strauch and Volk (2013)) that represent the end of the dry16
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season (SOS1) and the beginning of the wet season (SOS2). In SWAT-Tb, we added three17

new parameters (SOS3, SOS4, and SOS5) to represent the seasonality of precipitation18

characterized by a bimodal regime with two wet and dry seasons. In this case, SOS119

and SOS2 represent the months of the end and beginning of the first dry-wet season20

transition, respectively. SOS3 represents the end of the first wet season and the beginning21

of the second dry season (i.e. a new growth cycle), whereas SOS4 and SOS5 indicate,22

respectively, the first and last month of the second dry-wet season transition. In SWAT-23

T, SOS1 and SOS2 parameters are estimated using the seasonal pattern of SMI based on24

precipitation and a reference evapotranspiration ratio (Figure 2; Alemayehu et al., 2017).25

The SOS(1,2,3,4,5) parameters are defined using mean monthly precipitation and LAI26

seasonality for each land cover category in the CR watershed.27

Implementation of SWAT-Tb requires the user to add the lines shown below to the allo-28

cate parm.f, getallo.f, grow.f, modparm.f, readsub.f, and zero.f subroutines from SWAT-T29

(Alemayehu et al., 2017). New lines are annotated as [svalencia]. The SWAT-Tb exe-30

cutable as well as the *.sub, *.mgt, and subroutines files, which must be adapted, are31

available online at https://bit.ly/2XT8uxs. This link is intended only to allow detailed32

revision of the manuscript. After publication, we may change the link to keep the files33

permanently available.34

allocate parm.f

! allocate tropical plant growth variables [talemayehu]35

allocate (iseason(mhru))36

allocate (sos1(msub))37

allocate (sos2(msub))38
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allocate (sos3(msub)) !! Added by [svalencia]39

allocate (sos4(msub)) !! Added by [svalencia]40

allocate (sos5(msub)) !! Added by [svalencia]41

getallo.f

read (27,6100) subfile42

call caps(subfile)43

open (25,file=subfile)44

do j = 1, 57 !! changed (54) [svalencia]45

read (25,6000) titldum46

end do47

grow.f

!! INCOMING VARIABLES48

!! sos1(:) |month |starting month of transition to first wet season added by [talemayehu]49

!! sos2(:) |month |ending month of transition to first wet season added by [talemayehu]50

!! added by [svalencia]51

!! sos3(:) |month |ending of the first wet season and the starting of the second dry season52

!! sos4(:) |month |starting month of transition to second wet season53

!! sos5(:) |month |ending month of transition to second wet season54

55

56

if (smi tr <=0.0) smi tr = 0.557

idp = idplt(j)58
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if (Abs(sub lat(hru sub(j))) < 20. .AND.59

iseason(j) == 0 .AND.60

& i mo >= sos1(hru sub(j)) .AND.61

& i mo <= sos2(hru sub(j))) then62

smi=0.63

64

if (count D(j)>0) then65

do kk = 1, w size-166

pet subA(w size-kk+1,(j)) = pet subA(w size-kk,(j))67

end do68

pet subA(1,(j)) = pet sub((j))69

else70

pet subA(1,(j)) = pet sub((j))71

end if72

if (count D(j) > 0) then73

do kk = 1, w size-174

sub pcpA(w size-kk+1,(j)) =75

& sub pcpA(w size-kk,(j))76

77

end do78

sub pcpA(1,(j)) = sub pcp(hru sub(j))79

else80

sub pcpA(1,hru sub(j)) = sub pcp(hru sub(j))81
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end if82

count D(j) = count D(j) +183

if(count D(j) > w size) count D(j) = w size84

if(count D(j) == w size) then85

smi = sum(sub pcpA(:,(j)))/sum(pet subA(:,(j)))86

if (smi >= smi tr) then87

call changeseason88

count D(j) = 089

end if90

91

end if92

if(count D(j) < w size) then93

smi = 0.094

end if95

else if (Abs(sub lat(hru sub(j))) < 20. .AND.96

& iseason(j) == 0 .AND. i mo > sos2(hru sub(j))97

.AND. i mo <= sos3(hru sub(j))) then !! Added by [svalencia]98

call changeseason99

count D(j) = 0100

101

!! Added by [svalencia]102

else if (Abs(sub lat(hru sub(j))) < 20.103

.AND. iseason(j) == 1 .AND.104
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& i mo >= sos4(hru sub(j)) .AND.105

& i mo <= sos5(hru sub(j))) then106

smi=0.107

108

if (count D(j)>0) then109

do kk = 1, w size-1110

pet subA(w size-kk+1,(j)) = pet subA(w size-kk,(j))111

end do112

pet subA(1,(j)) = pet sub((j))113

else114

pet subA(1,(j)) = pet sub((j))115

end if116

if (count D(j) > 0) then117

do kk = 1, w size-1118

sub pcpA(w size-kk+1,(j)) =119

& sub pcpA(w size-kk,(j))120

121

end do122

sub pcpA(1,(j)) = sub pcp(hru sub(j))123

else124

sub pcpA(1,hru sub(j)) = sub pcp(hru sub(j))125

end if126

count D(j) = count D(j) + 1127
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if(count D(j) > w size) count D(j) = w size128

if(count D(j) == w size) then129

130

smi = sum(sub pcpA(:,(j)))/sum(pet subA(:,(j)))131

if (smi >= smi tr) then132

call changeseason133

count D(j) = 0134

end if135

end if136

if(count D(j) < w size) then137

smi = 0.0138

end if139

140

else if (Abs(sub lat(hru sub(j))) < 20. .AND.141

& iseason(j) == 0 .AND. i mo > sos5(hru sub(j))) then142

call changeseason143

count D(j) = 0144

end if145

modparm.f

!! added for plant growth modification for tropics added by [talemayehu]146

integer, dimension (:), allocatable :: iseason, sos1, sos2, sos3, sos4, sos5 !! last three added by [svalencia]147
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readsub.f

read (101,*) sos1(i) !! added by [talemayehu]148

read (101,*) sos2(i) !! added by [talemayehu]149

read (101,*) sos3(i) !! added by [svalencia]150

read (101,*) sos4(i) !! added by [svalencia]151

read (101,*) sos5(i) !! added by [svalencia]152

zero0.f

!!initialize tropical plant growth variables added by [talemayehu]153

iseason = 0154

sos1 = 0155

sos2 = 0156

sos3 = 0 !! added by [svalencia]157

sos4 = 0 !! added by [svalencia]158

sos5 = 0 !! added by [svalencia]159

smi tr = 0.160

Supplementary material S2: Leaf Area Index (LAI) data and calibration161

LAI data were obtained from the MCD15A2H-MODIS product (Myneni et al., 2015)162

for the GR watershed with a spatial and temporal resolution of 0.5 km and 8-days (com-163

posites), respectively. Only pixels with a corresponding “best quality” flag (LAI QC=0)164

were kept for the analysis. We processed LAI data following methods used in Alemayehu165

et al. (2017) and Hoyos et al. (2019). For most land cover types, LAI values were ex-166

tracted as follows: (i) polygons with an area at of least 5 km2 within the CR watershed167

are selected for each land cover, (ii) LAI values are associated to each land cover type only168
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in pixels where such land cover type covers at least 60% of the area. For shrubs (RYEB)169

and planted forest (PINE), which cover less than 12% of the CR watershed, polygons170

are smaller than 5 km2. Therefore, the corresponding LAI values were extracted from171

polygons in the vicinity of the CR watershed, within the GR watershed. Median LAI172

values for each land cover type and period (8-day composites) were calculated from the173

aforementioned polygons as suggested by Strauch and Volk (2013) and Alemayehu et al.174

(2017).175

For the LAI calibration, the initial values of parameters such as the initial (LAI INIT),176

minimum (ALAI MIN) and maximum (BLAI) LAI values for each land cover type were set177

based on the long-term MODIS-LAI time series (Figure 3 and Supplementary Figure S1).178

Initial values of Plant Heat Units (PHU) were calculated using the long-term daily mean179

temperature, as suggested by Strauch and Volk (2013). Other initial parameters were180

defined based on literature (e.g., T BASE, T OPT, CHTMX, and CANMX; see Table181

S2) and default values (e.g., FRGW1, FRGW2, LAIMX1, LAIMX2, and DLAI). These182

parameters were calibrated by a trial-and-error process to ensure that the LAI values183

simulated by SWAT-T and SWAT-Tb mimicked the smoothed MODIS-LAI. The Pearson184

correlation coefficient (r), the percent of bias (PBIAS), and the Kling–Gupta efficiency185

(KGE) (Gupta et al., 2009) were used to evaluate the agreement between simulated and186

observation-based estimates (MODIS) of LAI.187
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Table S1. Reclassification of land cover types in the CR watershed according to SWAT

categories.

Land cover
type

SWAT cate-
gory

Description Area (%)

Pasture RYEL Pasture dominated by Pennisetum clandestinum
Hochst, ex Chiow (Poaceae), used for cattle dairy

51.24

Native Andean
forest

FRST Forest dominated by mature Andean Oak (Quer-
cus humboldtii Bonpl. Fagaceae)

29.30

Shrubs RYEB Secondary succession with little to no human in-
tervention

11.42

Paramo vegeta-
tion

BROM High altitude native grasslands with sparse vege-
tation cover and ocasional presence of shrubs

4.89

Pasture with
secondary
growth

RYEE Unmanaged grasslands with occurrence of sparse
secondary vegetation

2.93

Planted forest PINE Forest dominated by Pinus patula Schltdl. Cham 0.09
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Table S2. LAI-ralated parameters for each land cover type and their initial and

calibrated values in the SWAT-Tb model.

Parameter Description
Calibrated values (initial values)

FRST RYEL RYEB RYEE BROM PINE

LAI INIT1 Initial leaf area index (m2/m2) 4.20∗ (4.17) 1.80∗ (1.90) 3.50∗ (3.74) 2.30 (-) 3.10∗ (3.16) 3.60∗ (3.80)

BIO INIT Initial dry weight biomass (kg/ha) 500002 (-) 200003 (-) 20000 (-) 20000 (-) 200004 (-) 50000 (-)

PHU PLT5 Total number of heat units or growing degree days needed to bring plant to maturity 3000∗ (1700) 3000∗ (1700) 1700 (-) 1800∗ (1700) 2000 (-) 5000 (-)

BLAI1 Maximum potential leaf area index (m2/m2) 4.40∗ (3.79) 1.95∗ (1.68) 4.50∗ (3.22) 2.80∗ (2.0) 3.20∗ (2.62) 3.90∗ (3.50)

ALAI MIN1 Minimum leaf area index (m2/m2) 2.60∗ (3.38) 1.25∗ (1.35) 1.85∗ (1.44) 1.45∗ (1.41) 2.0∗ (1.19) 2.0∗ (2.70)

FRGRW1 Fraction of PHU corresponding to the 1st point on the leaf area development curve 0.15∗ (0.05) 0.10∗ (0.20) 0.07∗ (0.20) 0.07∗ (0.20) 0.07∗ (0.45) 0.10∗ (0.15)

FRGRW2 Fraction of PHU corresponding to the 2nd point on the leaf area development curve 0.38∗ (0.40) 0.40∗ (0.45) 0.20∗ (0.45) 0.40∗ (0.45) 0.20∗ (0.80) 0.38∗ (0.25)

LAIMX1 Fraction of BLAI corresponding to the 1st point on the optimal leaf area development curve 0.70∗ (0.05) 0.10∗ (0.32) 0.15∗ (0.32) 0.10∗ (0.32) 0.15∗ (0.02) 0.40∗ (0.70)

LAIMX2 Fraction of BLAI corresponding to the 2nd point on the optimal leaf area development curve 0.90∗ (0.95) 0.99∗ (0.95) 0.99∗ (0.95) 0.99∗ (0.95) 0.99∗ (0.95) 0.90∗ (0.99)

DLAI Fraction of PHU when LAI beings to decline 0.20∗ (0.99) 0.99∗ (0.50) 0.5∗∗ (-) 0.99∗ (0.50) 0.85∗∗ (-) 0.99∗ (-)

T BASE Minimum temperature for plant growth (◦C) 9.306 (-) 0∗ (7.07) 9.307 (-) 9.307 (-) 7.0∗ (4.08) 0∗ (10.07)

T OPT Optimal temperature for plant growth (◦C) 18.606 (-) 18.07 (-) 18.66 (-) 18.606 (-) 18.0∗ (10.08) 14.07 (-)

BIO E Radiation use efficiency ((kg/ha)/(MJ/m2)) 18.0∗ (15.0) 10.0∗ (30.0) 10.0∗ (30.0) 10.0∗ (30.0) 15.0∗ (35.0) 10.0∗ (15.0)

CHTMX Maximum canopy height (m) 25.09 (-) 0.303,10 (-) 1.2010 (-) 1.2010 (-) 0.508 (-) 25.09 (-)

CANMX Maximum canopy storage (mm H2O) 0.3011,12(-) 0.0510(-) 0.2010,12(-) 0.0510,12(-) 0.1513(-) 0.10(-)

BMDIEOFF Biomass die-off fraction 0.1 ∗∗ (-) 0.05∗∗ (0.1) 0.1∗∗ (-) 0.1∗∗(-) 0.1∗(-) 0.1∗(-)

SOS114 First month of the 1st dry-wet season transition 3 (-)

SOS214 Last month of the 1st dry-wet season transition 4 (-)

SOS314 End of first wet season and the beginning of second dry season 6 (7)

SOS414 First month of the 2nd dry-wet season transition 10 (9)

SOS514 Last month of the 2nd dry-wet season transition 11 (10)

FRST: native Andean forest, RYEL: pasture, RYEB: shrubs, RYEE: pasture with secondary growth, BROM:
paramo vegetation, PINE: planted forest.1BFAST-MODIS LAI time series; ∗Manual adjustment during cali-
bration process; ∗∗Default values in SWAT; 2Spracklen and Righelato (2016); 3Peters, Franco, Schmidt, and
Hincapié Carvajal (2011); 4Hofstede, Castillo, and Osorio (1995); 5Initial values estimated from local temperature
records following Strauch and Volk (2013) and other studies (Hoyos et al., 2019); 6González-Orozco1, Jarvis, and
Palacio (2011); 7Cook et al. (2005); 8Cárdenas Agudelo et al. (2016); 9Orwa et al. (2009); 10Garćıa-Leoz et al.
(2017); 11Veneklaas and Van Ek (1990);12Jaramillo-Robledo (2003);13Leguizamon and Maŕın (2017);14 Parameters
determined using LAI filtered data, precipitation seasonality, and manual LAI calibration.
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Table S3. Global sensitivity analysis in the SWAT-Tb model. Sensitivity is indicated

by a high t-statistic value (in absolute terms) and a low p-value. Parameters are listed

from high to low sensitivity.

Parameter1 Description
Scaling Range

t-statistic p-value

type2 Min Max

CN2.mgt RYEL Runoff curve number for moisture condition II r -0.25 0.25 -16.989 0.000

ESCO.hru RYEL Soil evaporation compensation factor v 0.01 1 -9.989 0.000

ESCO.hru FRST Soil evaporation compensation factor v 0.01 1 -8.197 0.000

ALPHA BF.gw Baseflow alpha factor (1/days) v 0.01 1 -7.299 0.000

CN2.mgt FRST Runoff curve number for moisture condition II r -0.25 0.25 -6.280 0.000

SOL K(1).sol RYEL Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -4.802 0.000

GWQMN.gw FRST Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) v 0 5000 4.669 0.000

CH K2.rte Effective hydraulic conductivity in main channel alluvium (mm/hr) v 0 150 4.428 0.000

GWQMN.gw RYEL Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) v 0 5000 3.996 0.000

ESCO.hru BPRR Soil evaporation compensation factor v 0.01 1 -3.314 0.001

SOL K(1).sol FRST Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -3.158 0.002

SOL BD(1).sol BPRR Moist bulk density (g/cm3) r -0.20 0.20 -2.902 0.004

CN2.mgt BPRR Runoff curve number for moisture condition II r -0.25 0.25 -2.774 0.006

SOL AWC(1).sol FRST Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 -2.599 0.009

SOL BD(1).sol RYEL Moist bulk density (g/cm3) r -0.20 0.20 -2.468 0.014

GWQMN.gw BPRR Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) v 0 5000 -2.399 0.017

SOL K(1).sol BPRR Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -2.238 0.026

SOL AWC(1).sol RYEL Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 -1.950 0.050

SOL K(2).sol RYEL Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -1.867 0.062

SOL BD(2).sol BPRR Moist bulk density (g/cm3) r -0.20 0.20 -1.770 0.077

SOL BD(1).sol FRST Moist bulk density (g/cm3) r -0.20 0.20 -1.607 0.109

SOL K(2).sol BPRR Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -1.541 0.124

RCHRG DP.gw Deep aquifer percolation fraction v 0 1 -1.527 0.128

SOL AWC(2).sol FRST Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 -1.186 0.236

SOL AWC(2).sol RYEL Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 -1.175 0.241

SOL K(2).sol FRST Saturated hydraulic conductivity (mm/hr) r -0.50 0.50 -1.010 0.313

GW DELAY.gw RYEL Groundwater delay times (days) v 0.01 500 0.406 0.685

GW DELAY.gw FRST Groundwater delay times (days) v 0.01 500 -0.379 0.705

SOL AWC(1).sol BPRR Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 0.354 0.723

GW DELAY.gw BPRR Groundwater delay times (days) v 0.01 500 0.309 0.758

SOL AWC(2).sol BPRR Available water capacity of the soil layer (mm H2O/mm soil) r -0.50 0.50 -0.170 0.865

SOL BD(2).sol FRST Moist bulk density (g/cm3) r -0.20 0.20 0.115 0.908

SOL BD(2).sol RYEL Moist bulk density (g/cm3) r -0.20 0.20 0.027 0.978

1Numbers (1, 2) refer to the soil layer number. Land cover types are native Andean forest (FRST), pasture
(RYEL) and BPRR (paramo vegetation, planted forest, shrubs, and pasture with secondary growth). 2Scaling
type: v (absolute) indicates that the parameter is replaced by the given value, r (relative) indicates that the
parameter is multiplied by [1 + (given value)].
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Table S4. Comparison of SWAT average water flux components before and after

calibration with reference values.

Model SWAT average water flux components 1 (mm/yr) Ratios

PREC SURQ LATQ GWQ PET ET REVAP WYLD Baseflow
ratio
(GWQ/
WYLD)

Runoff
ratio
(SURQ/
WYLD)

ET ratio
[(ET+R
EVAP)/
PREC]

SWAT-T 1841.43 114.36 60.67 590.47 862.68 358.19 17.25 1464.77 0.40 0.07 0.20

SWAT-Tb (LAI
calibration)

1841.43 96.52 46.28 401.03 862.68 747.19 17.25 1074.82 0.37 0.09 0.42

SWAT-Tb (LAI
+ streamflow
calibration)

1841.43 16.72 49.88 319.97 862.68 838.80 17.25 954.23 0.33 0.02 0.46

Reference value 0.4-0.52 0.04-0.163 0.5-0.64

Calibration period from 2003 to 2016.1 PREC = precipitation, SURQ = surface runoff contribution to
streamflow, LATQ = lateral flow contribution to streamflow, GWQ = grundwater contribution to streamflow,
PET = potential evapotranspiration, ET = actual evapotranspiration, REVAP = amount of water moving
from shallow aquifer to plants/soil profile, and WYLD = water yield. Reference values from: 2 baseflow fil-
ter (https://engineering.purdue.edu/mapserve/WHAT/), 3 Jaramillo-Robledo (2003), and 4 Garćıa-Leoz et al.
(2017).
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Figure S1. Observed (MODIS) and simulated (SWAT, SWAT-T, and SWAT-Tb) sea-

sonality of LAI in the CR watershed for for (a-c) shrubs (RYEB), (d-f) paramo vegetation

(BROM), (g-i) pasture with secondary growth (RYEE), and (j-k) planted forest (PINE).

Time series (a,d,g,j), average annual cycle (b,e,h,k), and the (c,f,i,l) corresponding box-

plots and performance statistics.
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Figure S2. Calibration (2003–2016) and validation (1993–2002) of SWAT for monthly

streamflow. Vertical bars show monthly rainfall from SWAT outputs, calculated from

records in climate stations. Model performances based on the criteria of Moriasi et al.

(2007): a Good (0.65<NSE≤0.75, 0.50<RSR≤0.60, ±10%<BIAS< ±15%) and b Very

Good (0.75<NSE≤1.00, 0.00<RSR≤0.50, BIAS≤±10%).
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Figure S3. Comparison of monthly (left) and annual (right) streamflow between sce-

narios using 1000 simulations with parameters ranges as we did for the model calibration.

Input precipitation (blue bars) is the same for all scenarios and models (a,d). Average

seasonal cycle (b) and annual streamflow (e) in all scenarios for 1993–2016. Percent dif-

ferences between monthly (c) and annual (f) streamflow in the control (CTL) and LULC

(FOR and PAS) scenarios for 1993–2016 as simulated by SWAT-Tb and SWAT using best

fit parameters. Positive (negative) values indicate that streamflow is increased (decreased)

in the LULC change scenario. Asterisks identify months for which the difference between

medians in the FOR and PAS scenarios is statistically significant (n=24000, p < 0.05) for

SWAT-Tb output.
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