
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
61
09
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

FPGA design for on-board measurement of intermittency from

in-situ satellite data

Norbert Deak1, Octavian Cret,1, Costel Munteanu2, Eliza Teodorescu3, and Marius Echim4

1Computer Science Department, Technical University
2Institute of Space Science
3Institute of Space Science - INFLPR Subsidiary
4Belgian Institute for Space Aeronomy

November 23, 2022

Abstract

Intermittency is a fundamental property of space plasma dynamics, characterizing turbulent dynamical variables as well as

passive scalars. Its qualitative and quantitative description from in-situ data requires an accurate estimation of the probability

density functions (PDFs) of fluctuations and their moments, particularly the flatness, a normalized fourth order moment of the

PDF. Such a statistical description needs a sufficiently large number of samples to be meaningful. Due to inherent technological

limitations (e.g. limited telemetry bandwidth) not all samples collected on-board the spacecraft can be sent to the ground

for further analysis. Therefore, a technology designed to process on-board the data and to compute the flatness is useful to

fully exploit the capabilities of scientific instruments installed on robotic platforms, including nanosatellites. We designed,

built and tested in laboratory such a technology based on Field Programable Gate Arrays (FPGA) . The solution uses the

FloPoCo framework with customized arithmetic operators; the computation block is a pipelined architecture which computes

a new value of the flatness in each clock cycle. The design and implementation achieves optimization directives of the FPGA

resources relevant for operation in space, like area, energy efficiency, and precision. The technology was tested in laboratory

using Xilinx SRL16 or SRLC32 macros and provides correct results validated with test time series provided by magnetic field

data collected in the solar wind by ACE spacecraft. The characteristics and performance of the laboratory prototype pave the

way for a space qualified version.

1

manuscript submitted to Earth and Space Science

FPGA design for on-board measurement of intermittency from in-situ satellite data

N. Deak1, O. Creț1, C. Munteanu2 , E. Teodorescu2, M. M. Echim2,3

1Computer Science Department, Technical University Cluj-Napoca, România.

2Institute of Space Science, Măgurele, România.

3Royal Belgian Institute for Space Aeronomy, Brussels, Belgium.

Corresponding authors: Norbert Deak (deaknorbi93@yahoo.com), Marius Echim

(echim@spacescience.ro)

Key Points:

• A solution based on the FPGA technology is designed and tested to compute the flatness

parameter, a key measure of intermittency in space

• The design is optimized with respect to resource usage and can be deployed on space

qualified FPGAs to be operated on-board spacecraft

• Tests with space-borne data give excellent results confirmed by independent scientific

software tools applied on the same test data.

mailto:email@address.edu)

manuscript submitted to Earth and Space Science

Abstract

Intermittency is a fundamental property of space plasma dynamics, characterizing turbulent

dynamical variables as well as passive scalars. Its qualitative and quantitative description from in-

situ data requires an accurate estimation of the probability density functions (PDFs) of fluctuations

and their moments, particularly the flatness, a normalized fourth order moment of the PDF. Such

a statistical description needs a sufficiently large number of samples for the computation to be

meaningful. Due to inherent technological limitations (e.g., limited telemetry bandwidth) not all

samples collected on-board the spacecraft can be sent to the ground for further analysis. Therefore,

a technology designed to process on-board the data and to compute the flatness is useful to fully

exploit the capabilities of scientific instruments installed on robotic platforms, including

nanosatellites. We designed, built and tested in laboratory such a technology based on Field

Programable Gate Arrays (FPGA) . The building principle is the classical estimation of PDFs and

their moments, based on normalized histograms of a measure. The technical design uses the

FloPoCo framework with customized arithmetic operators; the computation block is a pipelined

architecture which computes a new value of the flatness in each clock cycle. The design and

implementation achieve optimization directives of the FPGA resources relevant for operation in

space, like area, energy efficiency, and precision. The technology was tested in laboratory using

Xilinx SRL16 or SRLC32 macros and provides correct results validated with test time series

provided by magnetic field data collected in the solar wind by ULYSSES spacecraft. The

characteristics and performance of the laboratory prototype pave the way for a space qualified

version of the laboratory design.

Plain Language Summary

The inherently limited resources onboard spacecraft (telemetry bandwidth, computing power and

memory) allow that only a fraction of the scientific data are sent to the ground, thus available for

scientific analysis. Complex strategies are put in place in order to select which fraction of data

will be avalaible for scientist on grpound. Another approach is to perform the key data

computations on-board the spacecraft and send the results to the ground. We designed a module

able to perform such calculations to estimate the flatness parameter – a key statistical descriptor

of data variability helping scientists to understand the turbulent dynamics of space plasmas.

1 Introduction

Space plasmas are natural laboratories where turbulent phenomena can be investigated in-situ at a

level of detail not reachable on ground. Therefore, the investigation of space plasma turbulence

has a many-folded impact. On the one hand, it helps understanding the inter-connections and the

dynamical properties of the solar system plasma environment, with implications on the strategies

to be developed in order to increase the resilience of space assets to natural solar-terrestrial hazards

(or space weather). On the other hand it provides insight on the fundamental properties of

turbulence as a universal phenomenon. The variability of data collected in turbulent space

environments covers a large spectrum of spatio-temporal scales. A leading question in turbulence

studies is how the energy is transferred between scales and is dissipated at the smallest ones.

Intermittency is a key feature of turbulence. There is no universally accepted definition of

intermittency, nevertheless, we adopt here the point of view that intermittency is the dynamical

manuscript submitted to Earth and Space Science

property of a turbulent system to exhibit a high degree of fragmentation in the physical and

dynamical space (Chang, 2015, see also recent a recent review by Echim et al., 2020). In other

words, intermittency is the dynamical property of a turbulent system to be controlled by “active”

elements/structures covering a large spectrum of spatio-temporal scales, and whose

structure/topology changes from scale to scale. The connection with the geometrical, or fractal,

description of variability is straightforward. Indeed, intermittency is often considered to be a

hallmark of the topological departure from self-similarity, thus susceptible to be described by

multifractal analysis (Frisch, 1995, see also Wawraszek and Echim, 2020). The tools adapted to

assess and characterize intermittency from observational in-situ data collected in space at limited

resolution are not trivial.

We aim to develop such tools to help scientists to advance the current understanding of

turbulence in magnetized collisionless plasmas, based on in-situ measurements performed by

satellites. The plasma environments targeted by the technology discussed in this paper are the solar

wind and the planetary magnetospheres, but can be expanded to other types of data, including

ground based or Earth observation space missions. This study is part of a broader effort meant to

build a semiautonomous device equipped with functional modules designed to perform on-board

nonlinear analyses of turbulent fluctuations of plasma parameters. Based on its versatility and

opportunities for optimization of resources we build a technology relying on Field Programable

Gate Arrays (FPGA). Several modules of this device, the On-board Architecture for Nonlinear

Analysis of data (OANA) are already released, like the IP cores modules devoted for the spectral

and statistical analysis of fluctuations (Deak et al., 2018, Opincariu et al., 2019). Here we discuss

a new feature added to OANA, namely the FPGA technology designed to compute the moments

of the probability distribution functions (PDFs) of fluctuations, namely the flatness parameter (see.

its definition in the next section). As it will be described below, although the mathematical

algorithm to compute the flatness is a standard one, its implementation in FPGA is not trivial and

requires advanced tools like the appropriate integration of floating point numbers.

Indeed, the specification of the format and behavior of the variables represented in floating-

point strongly varies, depending on the application’s characteristics. An important property is the

representation range. The vast majority of the programming languages support the most common

floating-point formats of the IEEE-754 standard: single and double precision floating-point, and

some of the operations are directly supported in hardware, by the Floating-Point Unit (FPU) found

on the target architecture, if available. There are various implementations of this standard for

FPGAs: some of them are fixed-width, according to the IEEE-754 standard, while others are

custom-width. The IEEE-754 standard for floating-point computation supports several formats of

floating-point numbers; the most widely used ones are listed in Table 1.

Table 1. IEEE-754 2008 binary floating-point format

Common name 𝒑 (significand

digits or bits)

we (exponent

digits or bits)

emin

(in decimal)

eMAX

(in decimal)

Max FP

Half precision 11 5 -14 15 65504

Single precision 24 8 -126 127 3.4 1038

Double precision 53 11 -1022 1023 1.79 10308

Quadruple precision 113 15 -16382 16383 1.18 104932

The data to be processed by the FPGA technology presented in this study may be gathered

by any type of sensor, although our primary goal is to use it in the context of solar system

exploration missions. Thus, targeted data can be components of the magnetic and/or electric field,

manuscript submitted to Earth and Space Science

plasma moments, etc., collected in-situ. The proposed architecture to compute the flatness is

custom-width floating-point format created by means of the FloPoCo generator (De Dinechin and

Pasca, 2011). The design of this architecture requires not only a set of custom floating-point

hardware operators, but also an a priori analysis of the data to be acquired from the sensors in order

to make decisions related to the size, latency, operating frequency, power consumption etc. of the

system. All the design decisions related to the format of the floating-point numbers are presented

hereinafter and supported by theoretical (mathematical) proofs. The paper is organized as follows:

in section 2 we review briefly the main theoretical arguments and previous works in the field, in

section 3 we describe the algorithm and the technical solution adopted to compute the flatness with

an FPGA architecture. The paper concludes with a summary and perspective.

2. Theoretical background, computational building blocks

The statistical properties of turbulent fluctuations measured in-situ in space help unfolding the

multi-scale structure of astrophysical plasma turbulence and intermittency. Traditionally,

intermittency can be probed with four classes of methods: (1) estimating the anomalous scaling of

the structure function, (2) searching for the non-Gaussianity features of the probability distribution

functions and computing the flatness parameter, (3) determining a local intermittency measure

from a wavelet representation of data and (4) from the multifractal spectrum (see, for instance,

Wawrzaszek and Echim, 2020, for a recent review). Two analysis methods of this set provide a

quantitative estimation of intermittency suitable for a semi-automatic algorithmic implementation:

(i) computing the flatness (e.g., Bruno et al., 2003) and (ii) estimating the degree of multifractality

(e.g., Wawrzaszek et al., 2015). The multifractal approach has a high level of complexity that

requires computing resources not available for the space systems targeted by this study. Therefore,

the quantitative estimator of intermittency adopted to be implemented in FPGA is the flatness.

This is also a natural option as an FPGA solution is available for estimating the multi-scale

probability distribution functions (Deak et al., 2018). However, the step from computing PDFs to

estimating their moments with FPGA devices is not straightforward, as will be described below.

Intermittency is often linked to the non-Gaussianity of PDFs and formation of leptokurtic

wings (Bruno et al., 2003, see also Wawrzaszek and Echim, 2020). The flatness is a measure of

the departure of a probability distribution function from a normal (Gaussian) distribution.

Formally, the flatness is derived from a normalization of the fourth order moment of the PDF

(Frisch, 1995). In order to compute the PDFs one has to define a measure of variability of the

physical variable; as an example, let the targeted variable be the magnetic field intensity, B. Let

also be this variable measured in-situ at a cadence t, resulting in time series of a total N samples.

The measure is constructed from the incremental time differences of B computed from the

respective time series at different time scales, τ:

𝛿𝐵(𝑡, 𝜏) = 𝐵(𝑡 + Δ) − 𝐵(𝑡) = 𝐵(𝑡 + 𝜏𝛿𝑡) − 𝐵(𝑡) (1)

The Probability Density Distribution of B at scale = t (an integer multiple, , of the

measurement resolution t) is estimated, in its simplest form, as a normalized histogram computed

for 𝛿𝐵(𝑡, Δ) for the particular scale . In the conventional approach, intermittency is investigated

from the scaling behavior of the PDF moments, q, known as the structure functions (SF), defined

as:

𝑆𝐹𝑞 = 〈𝛿𝐵𝑞〉 = ∫ |𝛿𝐵(Δ)|𝑞𝑃(𝛿𝐵, Δ)𝑑𝛿𝐵
+𝛿𝑋𝑚𝑎𝑥

−𝛿𝑋𝑚𝑎𝑥
 (2)

manuscript submitted to Earth and Space Science

where the integration is carried over the entire range of incremental measures (B) computed at

scale . The flatness parameter, F, is then calculated from the fourth order structure function:

𝐹 =
𝑆𝐹4

(𝑆𝐹2)2
 (3)

In practical applications one needs to carefully define the size of the binning used to compute the

histograms at the basis of PDF computation. Indeed, each bin has to be “populated” by a

sufficiently large number of samples (in some applications, see, e.g., Echim et al., 2007, a

minimum value is considered to be equal to 100 samples per bin). The estimation of the moments

of the PDF are also affected by errors when only a smaller number of samples are available from

measurements (Dudok de Wit and Krasnosel'skikh, 1996). Data gaps also alter the estimation of

the flatness. In the current design we assume the data are uniformly sampled, no gaps are

considered. Strategies for restauration of data with gaps exist (see, e.g., Munteanu et al., 2015),

however, they will be considered for later stages of development. The greatest challenges for a

FPGA implementation of the flatness algorithm result from the need to treat accurately floating

point operations required by steps (1)-(3) described above.

There are multiple implementations of floating-point arithmetic architectures on FPGAs.

For example, VFLOAT (Fang and Lesser, 2016) is an open-source variable precision floating

point library, which provides basic operators (adder, multiplier, divider, reciprocal and square root)

up to double precision for the two major FPGA vendors, Altera and Xilinx. The main advantage

consists in the flexibility, since there is no specific target architecture. Others focus on tradeoff

analysis (Munoz et al., 2010), allowing the user to choose from multiple parameters, like bit-width,

area cost, elapsed time and power consumption, while providing basic operators, where the

division and square root are implemented by two different algorithms. In Govindu et al. (2004)

optimization of computing performance is the most important factor, which is obtained by

optimizing the number of pipeline stages to obtain the best throughput rate, up to 200 MHz for the

double precision operators. There are many more implementations, but two of the most

appreciated, complete and freely available IP cores are the Xilinx Floating-Point Operator core1

and the FloPoCo framework (Pasca, 2011; Dinechin and B. Pasca, 2011).

The Xilinx FP core complies with most of the IEEE-754 standard, offering the most

common floating point formats listed in Table 1; however, there are also some differences which

appear because the aim is to provide a better balance between resource usage and functionality.

One major feature is that the Xilinx FP core supports also non-standard floating-point formats. It

can have at most 80 bits for a FP number, with the exponent width in the range of 4 to 16 bits, and

the fraction part from 4 to 64 bits.

FloPoCo (Floating-Point Cores) is an arithmetic core generator for FPGAs. It aims at

creating new high accuracy operators with less resource usage and top performance. It can generate

fully parameterizable FP operators; the user must specify the format of the FP number (the width

of the exponent and significand), and optionally the target frequency, target device family, and

some additional implementation optimization options (e.g. using logic or digital signal processing

resources for the implementation of a multiplier, using distributed or Block RAM memory blocks,

etc.). It also has some differences compared to the IEEE-754 standard. First, it uses a different FP

format, even if the user specifies the single or double precision standard formats as parameters.

Exceptions (zero, infinity or Not a Number (NaN)) are encoded differently, especially using some

1 Xilinx, "LogiCORE IP Floating-Point Operator v7.0," 2 April 2014. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf

manuscript submitted to Earth and Space Science

additional bits, thus two more FP values are available for use, which are reserved in case of the

IEEE-754 for these exceptions. Also, FloPoCo does not support subnormal numbers.

The above mentioned floating-point cores for FPGAs can be used to obtain accurate FP

computations; the choice of the most appropriate one depends on the design specifications.

However, since the aim of our design is to perform as many optimizations as possible (“computing

just right”, i.e. with the exact amount of computational resources necessary), FloPoCo is the

chosen framework, because it offers more flexibility and optimization techniques than Xilinx FP

core.

Figure 1. Example of flatness calculation for a synthetic time series. The signal shown in the upper panel is derived by a
multiplication by 103 of the magnetic field measurements performed by ULYSSES in the solar wind. The middle panel show the
flatness calculated by INA software (Munteanu, 2017, see also http://www.storm-fp7.eu/index.php/data-analysis-tools); the
lower panel show the flatness calculated with ODYN software (Teodorescu and Echim, 2020).

There are a few implementations of Flatness on FPGA devices, but none in the field of

solar system exploration. Shyu and Li (2006) propose an algorithm to compute flatness and to

measure non-Gaussianity in order to separate independent sources from their mixtures in the

context of independent component analysis (ICA). The design implements its own FP arithmetic

datapath to provide better accuracy and higher dynamic performance instead of using fixed-point

http://www.storm-fp7.eu/index.php/data-analysis-tools

manuscript submitted to Earth and Space Science

operations. However, the FP operations are simplified and instead of providing an exact value for

the Flatness, the algorithm provides a value relative to the Gaussian variance to find the maximum

non-Gaussianity. Quirós-Olozábal et al. (2016) compute the Spectral Kurtosis in order to detect

the existence of low level harmonics in power distribution. This algorithm is implemented on a

low-cost FPGA as a real-time analyzer. The authors designed the system mostly for smart grids to

get faster responses regarding the power quality. The input for the Spectral Kurtosis processor is

the output data from an FFT block, and it uses the Xilinx Floating-Point Core to compute the

results in single-precision FP format.

In these previous works the flatness is estimated from equation (3) and work with a fixed

floating point format, on 32-bits. All the previous architectures use either simplified FP operators,

or the Xilinx FP Core. Therefore, their results have either a limited accuracy, or an increased

resource usage, as it will be shown later. In space applications, however, the emphasis is on

resources and not on execution speed. Indeed, the data acquisition rate from most of space sensors

targeted by our application, namely in-situ measurements in the solar system plasmas, is of the

order of hundreds of Hertz, while most FPGAs have an operational frequency of a few hundreds

of MHz. Thus, the main optimization criterion to be fulfilled is the occupied area in the FPGA

chip. By minimizing the resource usage, it becomes possible to implement more designs in the

same FPGA chip, thus increasing the overall level of parallelism in the digital signal processing

algorithms run on the satellite.

Various approaches to compute flatness on-ground are adopted by scientific software tools

designed for data analysis. Two such solutions are provided by (i) the Integrated Nonlinear

Analysis (INA) library (Munteanu, 2017, see also http://www.storm-fp7.eu] and (ii) the open

source software ODYN (Teodorescu and Echim, 2020). These are publicly available software

applications designed to extract various nonlinear data descriptors, including the flatness, from the

analysis of time series available on ground, as higher order data products provided by space

instrumentation. The mathematical kernels of the two software tools are similar, based on equation

(3), and are the starting point for the development of the FPGA solution presented here.

The PDFs of the time series are computed for a number of N scales; each scale comprises

a number of points equal to 2, where takes values between min, in general equal to 0, and

(max-1), where max is the smallest power of 2 for which 2max is still larger than the total length of

the time series (Munteanu, 2017, Teodorescu and Echim, 2020). The PDFs are obtained by moving

a sliding window of length 2 over the entire time series and by taking the differences defined by

(1). The window is displaced by one point at each step, thus consecutive windows overlap. The

normalized histogram of the differences/increments gives the PDF at that scale. For each PDF, at

each scale, the flatness is computed with formula (3) above. An example of such calculations

performed with INA and ODYN is shown in Figure 1.

3 Design and Implementation of an FPGA solution to compute the flatness parameter

The FPGA design for flatness calculation is a general-purpose one, however, its primary

application field is defined for space applications in the framework of exploration of solar system

plasma. Thus, the system must work on-board a satellite and compute the Flatness value of the

data samples gathered by on-board sensors. We consider a number of N = 10000 sample points

and we compute the Flatness value for a series of scales τ = {1, 2, 4, 8, 16, 32, 64, 128, 512, 1024,

2048, 4096, 8192}, so we need to compute the differences (1) for each scale τ: B(t) – B(t-), where

B(t) is the input data sample point at time 𝑡. Each incoming sample is represented in the Two’s

http://www.storm-fp7.eu/

manuscript submitted to Earth and Space Science

Complement numbering system on 16 bits. The equation equation (3) can be rewritten as below,

to simplify it for our design.

𝐹 =

∑|Δ𝐵|4

𝑁 − 𝜏

(
∑|Δ𝐵|2

𝑁 − 𝜏)
2 (4)

𝐹 =
(𝑁 − 𝜏) × ∑|Δ𝐵|4

(∑|Δ𝐵|2)2
 (5)

The main steps of the computation are defined in Algorithm 1 that describes the implementation

of equation (3) in a more procedural way.

Algorithm 1.

Flatness computation of data variance

1. 𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 0, 𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 0, 𝐶𝑜𝑢𝑛𝑡 ← 0

2. For each 𝑡 from 0 to 𝑁

3. Read measured data sample 𝑩(𝑡) at data acquisition rate (CLKA)

4. Save it in the corresponding resource

5. For each 𝜏

6. Δ𝑩(𝑡) ← 𝑩(𝑡) − 𝑩(𝑡 − Δ)

7. 𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + |Δ𝑩(𝑡)|4

8. 𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + |Δ𝑩(𝑡)|2
9. 𝐶𝑜𝑢𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 + 1

10.

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 ←
𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 × 𝐶𝑜𝑢𝑛𝑡

𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟2

11. End for

12. End for

Steps 3 and 4 in Algorithm 1 present the data acquisition part (see Figure 2). They use the specific

feature of Xilinx FPGAs allowing to store all the samples in slice look-up tables (LUTs), where

each LUT is configured as a shift register using Xilinx SRL16 or SRLC32 macros. This way, by

chaining them together, we obtain a large shift register, from where each required data sample is

available, when computing the differences ΔB. This solution for Data Acquisition Block is similar

to the one presented in Deak et al. (2018).

Figure 2. FIFOs (LUTs configured as shift registers, SRL16 / SRLC32) providing access at the data samples with a step of τ (from

Deak et al., 2018)

manuscript submitted to Earth and Space Science

Flatness computation block

The flatness computation block consists of a hardware implementation of steps 6-10 described in

Algorithm 1. The main design includes a Flatness computation block for each scale . The Flatness

value is a real number requiring floating-point arithmetic. However, some operations can be

performed on integer arithmetic. In fact, the only operation where FP numbers are needed is the

division; even the multiplication by the number of elements can be done in integer arithmetic.

Thus, throughout the design, only three customized FP operators are needed: two for transforming

the integers to FP numbers, and one for the division. The FloPoCo framework (Pasca, 2011)

includes a special operator, called Fix2FP, which takes as input a fixed-point format number, in

our case, an integer, and transforms it in a floating-point format. We have used two of these custom

operators from the FloPoCo framework: one for the nominator and one for the denominator, which

constitute the operands of the floating-point division operator (see equation 6 below), FPDiv (the

latter being the third operator).

Figure 3 . The main block diagram of the design

These FP operators are generated by FloPoCo and are fully customizable, both the fixed-

point ones (bit width and location of the decimal point) and the floating-point ones (bit width of

mantissa and exponent, respectively). Thus, the specific FP format used in the design will always

be the most efficient one. Figure 3 illustrates the block diagram of the Flatness computation

module. The inputs to this block represent the number of elements already processed (Count from

Algorithm 1) and the current data sample (ΔB(t)). The output is the Flatness value in FP format.

Figure 4. The block diagram of the Flatness computation block. The thick vertical lines are the registers that delimit the stages of

the pipeline

The Flatness computation block is a pipelined architecture which computes a new value in

each clock cycle, as illustrated by Figure 4. The FloPoCo framework automatically creates

pipelined operators in order to divide the critical path delay and obtain higher speed, if not

specified otherwise. The pipeline depth can differ inside each operator, depending on the

complexity of the operation and the FP format (e.g. the FP division has a pipeline length of 12 for

the IEEE-754 single precision format from Table 1, while transforming a 96 bit width fixed point

to the same FP format, Fix2FP, takes 7 clock cycles). The FloPoCo operators may introduce

manuscript submitted to Earth and Space Science

various delays, therefore additional pipeline registers are added in order to balance the various data

paths of the data-flow graph. These pipeline registers are indicated in purple continuous lines in

Figure . As the format of the floating-point numbers changes, the overall pipeline length of the

Flatness computation block also changes: larger FP formats (more bits for the mantissa and

exponent) increase the pipeline depth of the FloPoCo operators, thus it takes more clock cycles to

obtain the final result. However, this is not a true limitation as the resolution of targeted sensors is

well below the FPGA operational frequency.

4 Flatness calculation with FPGA: experimental tests and results

The technical approach adopted in our design is based on a bit-width evaluation of the flatness at

hardware level, as detailed below.

Bit-width computation

The FloPoCo framework allows the hardware designer to customize the most important features

of the arithmetic operators. Thus, we can the minimize the required size of the FP numbers in our

design, and this way the amount of resources is guaranteed to be minimal. First, since the input

sample, Xi, is on 16 bits, we define:

𝑋𝑖 ∈ (−215, 215) ⇒ Δ𝑋 ∈ (−216, 216) ⇒ |Δ𝑋| ≤ 216. (6)

Then, in case of the nominator:

𝑥 = 𝑅𝑁(|Δ𝑋|)

⇒ 𝑥 ≤ 216, 𝑥 = 𝑀 ⋅ 2𝑒−𝑝+1

⇒ 𝑥4 ≤ 264

⇒ 𝑁 × ∑𝑥4 ≅ 𝑁 × 1000 ⋅ 264 ≤ 𝑁 × 274 ≤ 214 × 274 = 288 ≅ 3.095 ⋅ 1026 (7)

As one can see, the nominator’s value is of the order of 1026 in the worst case, and the denominator

will be slightly smaller. Thus, the architecture that implements the Flatness computation needs a

FP format capable of representing 1026 (or 288) as the maximal value (otherwise overflow will

occur). Table 1 illustrates the maximum FP number for each common FP format. For the case of

the Flatness computation algorithm, half-precision is too small, and single-precision is too much.

The best solution is to find a custom FP format, which is not necessarily an IEEE-754 standard, so

that its precision is the minimum allowing a correct representation of the worst-case values of the

nominator. The largest FP number can be written as in Muller et al. (2018) and it must be greater

than 288 in order to perform computations without overflow:

(2 − 21−𝑝) ⋅ 2𝑒𝑀𝐴𝑋 ≥ 288 (8)

Thus, this formula depends both on 𝑝 and 𝑤𝑒. But 21−𝑝 is very small, and it can be left out to

obtain a lower bound on the exponent:

2𝑒𝑀𝐴𝑋+1 ≥ 288 ⇒ 𝑒𝑀𝐴𝑋 ≥ 87 (9)

manuscript submitted to Earth and Space Science

From this, we can determine that 𝑒𝑀𝐴𝑋 = 87, which means that we need 8 bits for the exponent.

 Another similar computation would be done for determining the precision of the FP

numbers (the number of bits after the decimal point). One way to constraint this is to decide how

big the maximal allowed error is. That is, if 𝑅𝑂𝑈𝑁𝐷 is one of the well-known rounding modes

that are used in floating-point computations (round towards negative or round down, round

towards positive or round up, round towards zero and round to nearest), and 𝑥 is a real number,

the error 𝜖 is:

|𝑅𝑂𝑈𝑁𝐷(𝑥) − 𝑥| = 𝜖 ≤ 𝑢𝑙𝑝(𝑥). (10)

where ulp(x) indicates the unit in the last place of number x.

Figure 5. Flatness for a sample data set for various values of 𝜏. The analysis is performed in the same signal as shown in Figure 1

and gives similar results as the scientific software INA.

The next step is to assume an upper bound for the Flatness value, for which we want 𝜖 to

be smaller than a specified 𝜖𝑀𝐴𝑋. Since Flatness is used to quantify intermittency, thus departure

from Gaussianity manifesting as deviations of the flatness from the reference value FG=3

corresponding to a Gaussian PDF, we accept an upper bounding value of the flatness equal to Fmax

= 24. Flatness values greater than Fmax will then be cut-off to Fmax but this is not a problem in

practical solar system plasma exploration where the flatness takes rarely such extreme values.

Therefore, using the definition of 𝑢𝑙𝑝 applied to equation (4), we obtain:

𝑥 ∈ [23, 23+1) ⇒ 𝑢𝑙𝑝(𝑥) = 23−𝑝+1 ≤ 𝜖𝑀𝐴𝑋 (11)

manuscript submitted to Earth and Space Science

For the 𝜖𝑀𝐴𝑋 we can define a small value, depending on how precise we want the result to be. For

example, if we just want the result to have approximately 1 correct digit after the decimal point,

then 𝜖𝑀𝐴𝑋 = 10−1 ≤ 2−4, so we get:

23−𝑝+1 ≤ 2−4 ⇒ 𝑝 ≥ 8. (12)

We have obtained the minimum value for 𝑝, which guarantees that 𝜖 will always be smaller than

2−4.

Based on equations (9) and (12), we obtain the minimum format for our FP arithmetic:

(8, 8, −126, 127), which means that the significand p is on 8 bits, the exponent is on 8 bits (we),

emin is -126 and eMAX is +127 (see Table 1). So the exponent is on 8 bits, and the significand also

on 8 bits. This way, we reduce the format of the FP representation of our operands to a total of 16

bits, with the desired precision. This is not a standardized format, but a custom one, made possible

by the customization capabilities offered by FloPoCo. Due to the fact that the design is

implemented in an FPGA device, we are able to “compute just right”: there is no need to adjust

existing FP operators, but we allocate and use the exact amount of hardware that is necessary to

implement our task. By contrast, in a regular Central Processing Unit (CPU) these operators are

fixed and one needs to use those that approximate the best the operators that are needed in a specific

application, thus wasting a significant amount of logic resources.

Results

To prove that the bit-width computation in our approach reduces the resource utilization, we have

generated more results concerning the FPGA chip usage for various values of the resolution

(𝜖𝑀𝐴𝑋). The FPGA devices include general logic resources, i.e. slice Look-Up Tables (LUTs),

Flip-Flops, and RAM memory blocks (BRAM), but also specific blocks which are dedicated to

Digital Signal Processing (DSP blocks) and which include embedded adders and multipliers able

to work at high speed. The resource allocation obtained for each of these designs is described in

Table 2. While the logic resources and the flip-flops increase when 𝜖𝑀𝐴𝑋 decreases, the DSP blocks

usage doesn’t change, because DSP blocks are only used for integer multiplication.

Table 2. Resource utilization for different 𝜖𝑀𝐴𝑋 values

𝜖𝑀𝐴𝑋(if 𝑥 < 24)
~decimal

p Slice LUTs
Flip-

Flops

BRAM

blocks

DSP

blocks

2−4 0.0625 8 38177 41409 0 182

2−7 0.0078125 11 40968 42279 0 182

2−10 0.0009765625 14 44349 43526 0 182

2−14 0.000061035 18 48995 45152 0 182

2−20 9.53674316 × 10−7 24 58427 49382 0 182

The technology was tested on a time series simulating data acquired by a space

magnetometer. The data set included 10000 samples and is identical with the time series analyzed

with INA (solar wind data from ULYSSES spacecraft, Balogh et al., 1992) and presented in Figure

1. This time series is an input into the data acquisition module (see Figure 2) and forward processed

by the flatness computation module described above. The Flatness parameter was computed for

the same scales considered by INA and ODYN, with 𝜏 ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192}. The results are shown in Figure 5 and indicate an intermittent

behavior. Indeed, the flatness takes values around 3 for the largest scales, then starts to increase

manuscript submitted to Earth and Space Science

with decreasing scales. These results are fully consistent with the results provided independently

by INA and ODYN scientific software, which confirms the FPGA application provides correct

results.

Summary and perspective

Starting from a mathematical algorithm designed for space plasma time series analysis on-ground

(available from the Integrated Nonlinear Analysis library as well as on open source technology,

Teodorescu and Echim, 2020), we built IP cores for computing the flatness parameter for a signal

that simulates data acquired on-board a spacecraft. The FPGA application is optimized and tested

on XILINX FPGA board. The Flatness computation block is a pipelined architecture which

computes a new value of the flatness parameter in each clock cycle. The application is optimized

such that a minimum number of floating point operations are required.

In order to achieve a minimal use of resources, the maximum value of flatness is limited to

24. Thus, larger values of the flatness are cut-off to this maximal limit. Nevertheless, since a signal

is considered intermittent at a scale if the flatness at that scale is larger than 3, this limitation does

not have a negative impact on the operational goal of the FPGA device. In addition the design

capture the variation of flatness of scales for a wide range of values and scales. The application

achieves its goal to identify intermittency based on flatness values. Numerical tests performed on

relevant signals demonstrate the technology correctly detects departure of the flatness from the

Gaussian value for a significant range of scales. The results are confirmed by an independent test

by INA and ODYN scientific software applied on the same signal.

The release of an FPGA solution for computing the flatness is timely. Indeed, its usefulness

goes beyond the goal of studying fragmentation in the phase space of a turbulent dynamic system,

like solar system plasmas. Due to its simplicity and versatility the solution can be adapted for

various other autonomous data analysis contexts where departure from “normal” behavior, in the

sense of Gaussian statistics, is of interest.

Acknowledgments, Samples, and Data

This work was supported by the Romanian Space Agency (Project STAR OANA), the Ministry of

Research and Innovation via a PCCDI grant (18PCCDI/2018) and Program NUCLEU LAPLAS.

ME acknowledges support from the Belgian Solar Terrestrial Center of Excellence (STCE). The

datasets used to test the IP cores are magnetic field records (Balogh et al., 1992) provided by

ULYSSES spacecraft; these data are publicly available from the Ulysses Final Archive

(http://ufa.esac.esa.int/ufa/) maintained by the European Space Agency.

References

Balogh, A.; Beek, T. J.; Forsyth, R. J.; Hedgecock, P. C.; Marquedant, R. J.; Smith, E. J.;

Southwood, D. J.; Tsurutani, B. T. (1992), The magnetic field investigation on the ULYSSES

mission - Instrumentation and preliminary scientific results, Astronomy and Astrophysics

Supplement Series, vol. 92, no. 2, p. 221-236

manuscript submitted to Earth and Space Science

Bruno R, Carbone V, Sorriso-Valvo L, Bavassano B. (2003), Radial evolution of solar wind

intermittency in the inner heliosphere. Journal of Geophysical Research (Space Physics)

108 1130. doi:10.1029/372 2002JA009615

Chang, T. (2015), An Introduction to Space Plasma Complexity, Cambridge University Press

De Dinechin F., and B. Pasca, (2011) "Designing custom arithmetic data paths with FloPoCo,"

IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18-27

Deak, N.; Creţ, O.; Echim, M.; Teodorescu, E.; Negrea, C.; Văcariu, L.; Munteanu, C.; Hângan,

A. (2018), "Edge computing for space applications: Field programmable gate array-based

implementation of multiscale probability distribution functions," Review of Scientific

Instruments, vol. 89, no. 12, p. 125005

Echim, M. M., Lamy, H., and Chang, T. (2007),Multi-point observations of intermittency in the

cusp regions, Nonlin. Processes Geophys., 14, 525–534, doi:10.5194/npg-14-525-2007

Echim, M., T. Chang, P. Kovacs, A. Wawrzaszek, E. Yordanova, Y. Narita, Z. Vörös, R. Bruno,

W. Macek, K. Mursula, and G. Consolini (2021), “Turbulence and Complexity of

Magnetospheric Plasmas,” chapter 5 of Space Physics and Aeronomy Collection Volume

2: Magnetospheres in the Solar System, Geophysical Monograph 259, First Edition.

Edited by Romain Maggiolo, Nicolas André, Hiroshi Hasegawa, and Daniel T. Welling.

© 2021 American Geophysical Union. Published 2021 by John Wiley & Sons, Inc., DOI:

10.1002/9781119507512, pp. 63–88

Fang, X. and M. Leeser (2016), "Open-source variable-precision floating-point library for major

commercial fpgas," ACM Transactions on Reconfigurable Technology and Systems

(TRETS), vol. 9, no. 3, p. 20

Frish, U., Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University

Press, Cambridge, UK., 1995

Govindu, G., Zhuo, V, Choi, S. and V. Prasanna (2004), "Analysis of high-performance floating-

point arithmetic on FPGAs," 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings., p. 149

Muller, J.-M., N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,

N. Revol and S. Torres (2018), Handbook of Floating-point Arithmetic (2nd edition),

Birkhäuser Basel

Muñoz, D. M., Sanchez, D. F., Llanos, C. H. and M. Ayala-Rincón (2010), "Tradeoff of FPGA

design of a floating-point library for arithmetic operators," Journal of Integrated Circuits

and Systems, vol. 5, no. 1, pp. 42-52

Munteanu, C., “Turbulent fluctuations and discontinuities in the solar wind: statistical properties

and possible effects on the terrestrial plasma environment”, Ph.D. Thesis, UNIVERSITY

OF BUCHAREST, Faculty of Physics, Doctoral School of Physics, Bucharest, 2017

Opincariu, L., Deak N., Creţ O., Echim M., Munteanu, C. and L. Văcariu (2019), "Edge

computing in space: Field programmable gate array-based solutions for spectral and

probabilistic analysis of time series," in Review of Scientific Instruments, 90, 114501,

https://doi.org/10.1063/1.5119231

https://doi.org/10.1063/1.5119231

manuscript submitted to Earth and Space Science

Pasca, P.M., High-performance floating-point computing on reconfigurable circuits, Ph.D. Theis

Lyon: Ecole normale superieure, 2011

Quirós-Olozábal, Á, González-de-la-Rosa, J.-J., Cifredo-Chacón M.-Á. and J.-M. Sierra-

Fernández (2016), "A novel FPGA-based system for real-time calculation of the Spectral

Kurtosis: A prospective application to harmonic detection," Measurement, vol. 86, pp.

101-113

Shyu K-K and Li M-H (2006), "FPGA Implementation of FastICA based on Floating-Point

Arithmetic Design for Real-Time Blind Source Separation," The 2006 IEEE International

Joint Conference on Neural Network Proceedings, Vancouver, BC, pp. 2785-2792, doi:

10.1109/IJCNN.2006.247185.

Teodorescu, E.; Echim, M. M. (2020), Open-Source Software Analysis Tool to Investigate Space

Plasma Turbulence and Nonlinear DYNamics (ODYN), Earth and Space Science,

Volume 7, Issue 4, article id. e01004

Wawrzaszek A, Echim M, Macek WM, Bruno R. (2015) , Evolution of intermittency in the slow

and fast solar wind beyond the ecliptic plane. The Astrophysical Journal Letters, 814,

L19

Wawrzaszek, A., Echim, M. (2021), On the Variation of Intermittency of Fast and Slow Solar

Wind With Radial Distance, Heliospheric Latitude, and Solar Cycle, Forntiers in

Astronomy and Space Science, 13 January 2021

https://doi.org/10.3389/fspas.2020.617113

	Key Points:
	Abstract
	1 Introduction
	2. Theoretical background, computational building blocks
	3 Design and Implementation of an FPGA solution to compute the flatness parameter
	Flatness computation block

	4 Flatness calculation with FPGA: experimental tests and results
	Bit-width computation
	Results

	Summary and perspective
	Acknowledgments, Samples, and Data
	References

