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Abstract

Intermittency is a fundamental property of space plasma dynamics, characterizing turbulent dynamical variables as well as

passive scalars. Its qualitative and quantitative description from in-situ data requires an accurate estimation of the probability

density functions (PDFs) of fluctuations and their moments, particularly the flatness, a normalized fourth order moment of the

PDF. Such a statistical description needs a sufficiently large number of samples to be meaningful. Due to inherent technological

limitations (e.g. limited telemetry bandwidth) not all samples collected on-board the spacecraft can be sent to the ground

for further analysis. Therefore, a technology designed to process on-board the data and to compute the flatness is useful to

fully exploit the capabilities of scientific instruments installed on robotic platforms, including nanosatellites. We designed,

built and tested in laboratory such a technology based on Field Programable Gate Arrays (FPGA) . The solution uses the

FloPoCo framework with customized arithmetic operators; the computation block is a pipelined architecture which computes

a new value of the flatness in each clock cycle. The design and implementation achieves optimization directives of the FPGA

resources relevant for operation in space, like area, energy efficiency, and precision. The technology was tested in laboratory

using Xilinx SRL16 or SRLC32 macros and provides correct results validated with test time series provided by magnetic field

data collected in the solar wind by ACE spacecraft. The characteristics and performance of the laboratory prototype pave the

way for a space qualified version.
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Key Points: 

• A solution based on the FPGA technology is designed and tested to compute the flatness 

parameter, a key measure of intermittency in space 

• The design is optimized with respect to resource usage and can be deployed on space 

qualified FPGAs to be operated on-board spacecraft 

• Tests with space-borne data give excellent results confirmed by independent scientific 

software tools applied on the same test data. 
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Abstract 

Intermittency is a fundamental property of space plasma dynamics, characterizing turbulent 

dynamical variables as well as passive scalars. Its qualitative and quantitative description from in-

situ data requires an accurate estimation of the probability density functions (PDFs) of fluctuations 

and their moments, particularly the flatness, a normalized fourth order moment of the PDF. Such 

a statistical description needs a sufficiently large  number of samples for the computation to be 

meaningful. Due to inherent technological limitations (e.g., limited telemetry bandwidth) not all 

samples collected on-board the spacecraft can be sent to the ground for further analysis. Therefore, 

a technology designed to process on-board the data and to compute the flatness is useful to fully 

exploit the capabilities of scientific instruments installed on robotic platforms, including 

nanosatellites. We designed, built and tested in laboratory  such a technology based on Field 

Programable Gate Arrays (FPGA) . The building principle is the classical estimation of PDFs and 

their moments, based on normalized histograms of a measure. The technical design uses the 

FloPoCo framework with customized arithmetic operators; the computation block is a pipelined 

architecture which computes a new value of the flatness in each clock cycle. The design and 

implementation achieve optimization directives of the FPGA resources relevant for operation in 

space, like area, energy efficiency, and precision. The technology was tested in laboratory using 

Xilinx SRL16 or SRLC32 macros and provides correct results validated with test time series 

provided by magnetic field data collected in the solar wind by ULYSSES spacecraft. The 

characteristics and performance of the laboratory prototype pave the way for a space qualified 

version of the laboratory design. 

 

Plain Language Summary 

The inherently limited resources onboard spacecraft (telemetry bandwidth, computing power and 

memory) allow that only a fraction of the scientific data are sent to the ground, thus available for 

scientific analysis. Complex strategies are put in place in order to select which fraction of data 

will be avalaible for scientist on grpound. Another approach is to perform the key data 

computations on-board the spacecraft and send the results to the ground. We designed a module 

able to perform such calculations to estimate the flatness parameter – a key statistical descriptor 

of data variability helping scientists to understand the turbulent dynamics of space plasmas.  

 

1 Introduction 

Space plasmas are natural laboratories where turbulent phenomena can be investigated in-situ at a 

level of detail not reachable on ground. Therefore, the investigation of space plasma turbulence 

has a many-folded impact. On the one hand, it helps understanding the inter-connections and the 

dynamical properties of the solar system plasma environment, with implications on the strategies 

to be developed in order to increase the resilience of space assets to natural solar-terrestrial hazards 

(or space weather). On the other hand it provides insight on the fundamental properties of 

turbulence as a universal phenomenon. The variability of data collected in turbulent space 

environments covers a large spectrum of spatio-temporal scales. A leading question in turbulence 

studies is how the energy is transferred between scales and is dissipated at the smallest ones. 

Intermittency is a key feature of turbulence. There is no universally accepted definition of 

intermittency, nevertheless, we adopt here the point of view that intermittency is the dynamical 
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property of a turbulent system to exhibit a high degree of fragmentation in the physical and 

dynamical space (Chang, 2015, see also recent a recent review by Echim et al., 2020). In other 

words, intermittency is the dynamical property of a turbulent system to be controlled  by “active” 

elements/structures covering a large spectrum of spatio-temporal scales, and whose 

structure/topology changes from scale to scale. The connection with the geometrical, or fractal, 

description of variability is straightforward. Indeed, intermittency is often considered to be a 

hallmark of the topological departure from self-similarity, thus susceptible to be described by 

multifractal analysis (Frisch, 1995,  see also Wawraszek and Echim, 2020). The tools adapted to 

assess and characterize intermittency from observational in-situ data collected in space at limited 

resolution are not trivial. 

We aim to develop such tools to help scientists to advance the current understanding of 

turbulence in magnetized collisionless plasmas, based on in-situ measurements performed by 

satellites. The plasma environments targeted by the technology discussed in this paper are the solar 

wind and the planetary magnetospheres, but can be  expanded to other types of data, including 

ground based or Earth observation space missions.  This study is part of a broader effort meant to 

build a semiautonomous device equipped with functional modules designed to perform on-board 

nonlinear analyses of turbulent fluctuations of plasma parameters. Based on its versatility and 

opportunities for optimization of resources we build a technology relying on Field Programable 

Gate Arrays (FPGA). Several modules of this device, the On-board Architecture for Nonlinear 

Analysis of data (OANA) are already released, like the IP cores modules devoted for the spectral 

and statistical analysis of fluctuations (Deak et al., 2018, Opincariu et al., 2019).  Here we discuss 

a new feature added to OANA, namely the FPGA technology designed to compute the moments 

of the probability distribution functions (PDFs) of fluctuations, namely the flatness parameter (see. 

its definition in the next section). As it will be described below, although the mathematical 

algorithm to compute the flatness is a standard one, its implementation in FPGA is not trivial and 

requires advanced tools like the appropriate integration of  floating point numbers. 

Indeed, the specification of the format and behavior of the variables represented in floating-

point strongly varies, depending on the application’s characteristics. An important property is the 

representation range. The vast majority of the programming languages support the most common 

floating-point formats of the IEEE-754 standard: single and double precision floating-point, and 

some of the operations are directly supported in hardware, by the Floating-Point Unit (FPU) found 

on the target architecture, if available. There are various implementations of this standard for 

FPGAs: some of them are fixed-width, according to the IEEE-754 standard, while others are 

custom-width. The IEEE-754 standard for floating-point computation supports several formats of 

floating-point numbers; the most widely used ones are listed in Table 1. 

 
Table 1. IEEE-754 2008 binary floating-point format 

Common name 𝒑 (significand 

digits or bits) 

we (exponent 

digits or bits) 

emin 

(in decimal) 

eMAX  

(in decimal) 

Max FP  

Half precision 11 5 -14 15 65504  

Single precision 24 8 -126 127 3.4  1038 

Double precision 53 11 -1022 1023 1.79  10308  

Quadruple precision 113 15 -16382 16383 1.18  104932 

 

The data to be processed by the FPGA technology presented in this study may be gathered 

by any type of sensor, although our primary goal is to use it in the context of solar system 

exploration missions. Thus, targeted data can be components of the magnetic and/or electric field, 
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plasma moments, etc., collected in-situ. The proposed architecture to compute the flatness is 

custom-width floating-point format created by means of the FloPoCo generator (De Dinechin and 

Pasca, 2011). The design of this architecture requires not only a set of custom floating-point 

hardware operators, but also an a priori analysis of the data to be acquired from the sensors in order 

to make decisions related to the size, latency, operating frequency, power consumption etc. of the 

system. All the design decisions related to the format of the floating-point numbers are presented 

hereinafter and supported by theoretical (mathematical) proofs. The paper is organized as follows: 

in section 2 we review briefly the main theoretical arguments and previous works in the field, in 

section 3 we describe the algorithm and the technical solution adopted to compute the flatness with 

an FPGA architecture. The paper concludes with a summary and perspective. 

 

2. Theoretical background, computational building blocks 

 

The statistical properties of turbulent fluctuations measured in-situ in space help unfolding the 

multi-scale structure of astrophysical plasma turbulence and intermittency. Traditionally, 

intermittency can be probed with four classes of methods: (1) estimating the anomalous scaling of 

the structure function, (2) searching for the non-Gaussianity features of the probability distribution 

functions and computing the flatness parameter, (3) determining a local intermittency measure 

from a wavelet representation of data and (4) from the multifractal spectrum (see, for instance, 

Wawrzaszek and Echim, 2020, for a recent review). Two analysis methods of this set provide a 

quantitative estimation of intermittency suitable for a semi-automatic algorithmic implementation: 

(i) computing the flatness (e.g., Bruno et al., 2003) and (ii) estimating the degree of multifractality 

(e.g., Wawrzaszek et al., 2015). The multifractal approach has a high level of complexity that 

requires computing resources not available for the space systems targeted by this study. Therefore, 

the quantitative estimator of intermittency adopted to be implemented in FPGA is the flatness. 

This is also a natural option as an FPGA solution is available for estimating the multi-scale 

probability distribution functions (Deak et al., 2018). However, the step from computing PDFs to 

estimating their moments with FPGA devices is not straightforward, as will be described below. 

Intermittency is often linked to the non-Gaussianity of PDFs and formation of leptokurtic 

wings (Bruno et al., 2003, see also Wawrzaszek and Echim, 2020). The flatness is a measure of 

the departure of a probability distribution function from a normal (Gaussian) distribution. 

Formally, the flatness is derived from a normalization of the fourth order moment of the PDF 

(Frisch, 1995). In order to compute the PDFs one has to define a measure of variability of the 

physical variable; as an example, let the targeted variable be the magnetic field intensity, B. Let 

also be this variable measured in-situ at a cadence t, resulting in time series of a total N samples. 

The measure is constructed from the incremental time differences of B computed from the 

respective time series at different time scales, τ: 

𝛿𝐵(𝑡, 𝜏) = 𝐵(𝑡 + Δ) − 𝐵(𝑡) =  𝐵(𝑡 + 𝜏𝛿𝑡) − 𝐵(𝑡)  (1) 

The Probability Density Distribution of B at scale  = t (an integer multiple, , of the 

measurement resolution t) is estimated, in its simplest form, as a normalized histogram computed 

for 𝛿𝐵(𝑡, Δ) for the particular scale . In the conventional approach, intermittency is investigated 

from the scaling behavior of the PDF moments, q, known as the structure functions (SF), defined 

as: 

𝑆𝐹𝑞 = 〈𝛿𝐵𝑞〉 = ∫ |𝛿𝐵(Δ)|𝑞𝑃(𝛿𝐵, Δ)𝑑𝛿𝐵
+𝛿𝑋𝑚𝑎𝑥

−𝛿𝑋𝑚𝑎𝑥
 (2) 
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where the integration is carried over the entire range of incremental measures (B) computed at 

scale . The flatness parameter, F, is then calculated from the fourth order structure function: 

𝐹 =
𝑆𝐹4

(𝑆𝐹2)2
 (3) 

In practical applications one needs to carefully define the size of the binning used to compute the 

histograms at the basis of PDF computation. Indeed, each bin has to be “populated” by a 

sufficiently large number of samples (in some applications, see, e.g., Echim et al., 2007, a 

minimum value is considered to be equal to 100 samples per bin). The estimation of the moments 

of the PDF are also affected by errors when only a smaller number of samples are available from 

measurements (Dudok de Wit and Krasnosel'skikh, 1996). Data gaps also alter the estimation of 

the flatness. In the current design we assume the data are uniformly sampled, no gaps are 

considered. Strategies for restauration of data with gaps exist (see, e.g., Munteanu et al., 2015), 

however, they will be considered for later stages of development. The greatest challenges for a 

FPGA implementation of the flatness algorithm result from the need to treat accurately floating 

point operations required by steps (1)-(3) described above. 

There are multiple implementations of floating-point arithmetic architectures on FPGAs. 

For example, VFLOAT (Fang  and Lesser, 2016) is an open-source variable precision floating 

point library, which provides basic operators (adder, multiplier, divider, reciprocal and square root) 

up to double precision for the two major FPGA vendors, Altera and Xilinx. The main advantage 

consists in the flexibility, since there is no specific target architecture. Others focus on tradeoff 

analysis (Munoz et al., 2010), allowing the user to choose from multiple parameters, like bit-width, 

area cost, elapsed time and power consumption, while providing basic operators, where the 

division and square root are implemented by two different algorithms. In Govindu et al. (2004) 

optimization of computing performance is the most important factor, which is obtained by 

optimizing the number of pipeline stages to obtain the best throughput rate, up to 200 MHz for the 

double precision operators. There are many more implementations, but two of the most 

appreciated, complete and freely available IP cores are the Xilinx Floating-Point Operator core1 

and the FloPoCo framework (Pasca, 2011; Dinechin and B. Pasca, 2011).  

The Xilinx FP core complies with most of the IEEE-754 standard, offering the most 

common floating point formats listed in Table 1; however, there are also some differences which 

appear because the aim is to provide a better balance between resource usage and functionality. 

One major feature is that the Xilinx FP core supports also non-standard floating-point formats. It 

can have at most 80 bits for a FP number, with the exponent width in the range of 4 to 16 bits, and 

the fraction part from 4 to 64 bits. 

FloPoCo (Floating-Point Cores) is an arithmetic core generator for FPGAs. It aims at 

creating new high accuracy operators with less resource usage and top performance. It can generate 

fully parameterizable FP operators; the user must specify the format of the FP number (the width 

of the exponent and significand), and optionally the target frequency, target device family, and 

some additional implementation optimization options (e.g. using logic or digital signal processing 

resources for the implementation of a multiplier, using distributed or Block RAM memory blocks, 

etc.). It also has some differences compared to the IEEE-754 standard. First, it uses a different FP 

format, even if the user specifies the single or double precision standard formats as parameters. 

Exceptions (zero, infinity or Not a Number (NaN)) are encoded differently, especially using some 

 
1 Xilinx, "LogiCORE IP Floating-Point Operator v7.0," 2 April 2014. [Online]. Available: 

https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf 
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additional bits, thus two more FP values are available for use, which are reserved in case of the 

IEEE-754 for these exceptions. Also, FloPoCo does not support subnormal numbers. 

The above mentioned floating-point cores for FPGAs can be used to obtain accurate FP 

computations; the choice of the most appropriate one depends on the design specifications. 

However, since the aim of our design is to perform as many optimizations as possible (“computing 

just right”, i.e. with the exact amount of computational resources necessary), FloPoCo is the 

chosen framework, because it offers more flexibility and optimization techniques than Xilinx FP 

core. 
 

 

 
 
Figure 1. Example of flatness calculation for a synthetic time series. The signal shown in the upper panel is derived by a 
multiplication by 103 of the magnetic field measurements performed by ULYSSES in the solar wind. The middle panel show the 
flatness calculated by INA software (Munteanu, 2017, see also http://www.storm-fp7.eu/index.php/data-analysis-tools); the 
lower panel show the flatness calculated with ODYN software (Teodorescu and Echim, 2020). 

There are a few implementations of Flatness on FPGA devices, but none in the field of 

solar system exploration. Shyu and Li (2006) propose an algorithm to compute  flatness and to 

measure non-Gaussianity in order to separate independent sources from their mixtures in the 

context of independent component analysis (ICA). The design implements its own FP arithmetic 

datapath to provide better accuracy and higher dynamic performance instead of using fixed-point 

http://www.storm-fp7.eu/index.php/data-analysis-tools


manuscript submitted to Earth and Space Science 

 

operations. However, the FP operations are simplified and instead of providing an exact value for 

the Flatness, the algorithm provides a value relative to the Gaussian variance to find the maximum 

non-Gaussianity. Quirós-Olozábal et al. (2016) compute the Spectral Kurtosis in order to detect 

the existence of low level harmonics in power distribution. This algorithm is implemented on a 

low-cost FPGA as a real-time analyzer. The authors designed the system mostly for smart grids to 

get faster responses regarding the power quality. The input for the Spectral Kurtosis processor is 

the output data from an FFT block, and it uses the Xilinx Floating-Point Core to compute the 

results in single-precision FP format. 

In these previous works the flatness is estimated from equation (3) and work with a fixed 

floating point format, on 32-bits. All the previous architectures use either simplified FP operators, 

or the Xilinx FP Core. Therefore, their results have either a limited accuracy, or an increased 

resource usage, as it will be shown later. In space applications, however, the emphasis is on 

resources and not on execution speed. Indeed, the data acquisition rate from most of space sensors 

targeted by our application, namely in-situ measurements in the solar system plasmas, is of the 

order of hundreds of Hertz, while most FPGAs have an operational frequency of a few hundreds 

of MHz. Thus, the main optimization criterion to be fulfilled is the occupied area in the FPGA 

chip. By minimizing the resource usage, it becomes possible to implement more designs in the 

same FPGA chip, thus increasing the overall level of parallelism in the digital signal processing 

algorithms run on the satellite. 

Various approaches to compute flatness on-ground are adopted by scientific software tools 

designed for data analysis. Two such solutions are provided by (i) the Integrated Nonlinear 

Analysis (INA) library (Munteanu, 2017, see also http://www.storm-fp7.eu] and (ii) the open 

source software ODYN (Teodorescu and Echim, 2020). These are publicly available software 

applications designed to extract various nonlinear data descriptors, including the flatness, from the 

analysis of time series available on ground, as higher order data products provided by space 

instrumentation. The mathematical kernels of the two software tools are similar, based on equation 

(3),  and are the starting point for the development of the FPGA solution presented here.  

The PDFs of the time series are computed for a number of N scales; each scale comprises 

a number of points equal to 2, where  takes values between min, in general equal to 0, and       

(max-1), where max is the smallest power of 2 for which 2max is still larger than the total length of 

the time series (Munteanu, 2017, Teodorescu and Echim, 2020). The PDFs are obtained by moving 

a sliding window of length 2 over the entire time series and by taking the differences defined by 

(1). The window is displaced by one point at each step, thus consecutive windows overlap. The 

normalized histogram of the differences/increments gives the PDF at that scale. For each PDF, at 

each scale, the flatness is computed with formula (3) above. An example of such calculations 

performed with INA and ODYN is shown in Figure 1.  

3 Design and Implementation of an FPGA solution to compute the flatness parameter 

 

The FPGA design for flatness calculation is a general-purpose one, however, its primary 

application field is defined for space applications in the framework of exploration of solar system 

plasma. Thus, the system must work on-board a satellite and compute the Flatness value of the 

data samples gathered by on-board sensors. We consider a number of N = 10000 sample points  

and we compute the Flatness value for a series of scales τ = {1, 2, 4, 8, 16, 32, 64, 128, 512, 1024, 

2048, 4096, 8192}, so we need to compute the differences (1) for each scale τ: B(t) – B(t-), where 

B(t) is the input data sample point at time 𝑡. Each incoming sample is represented in the Two’s 

http://www.storm-fp7.eu/
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Complement numbering system on 16 bits. The equation equation (3) can be rewritten as below, 

to simplify it for our design. 

 

𝐹 =

∑|Δ𝐵|4

𝑁 − 𝜏

(
∑|Δ𝐵|2

𝑁 − 𝜏 )
2  (4) 

 

𝐹 =
(𝑁 − 𝜏) × ∑|Δ𝐵|4

(∑|Δ𝐵|2)2
 (5) 

 

The  main steps of the computation are defined in Algorithm 1 that describes the implementation 

of equation (3) in a more procedural way. 
 

Algorithm 1. 

Flatness computation of data variance 

  

1. 𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 0,  𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 0,  𝐶𝑜𝑢𝑛𝑡 ← 0  

2. For each 𝑡 from 0 to 𝑁 

3.  Read measured data sample 𝑩(𝑡) at data acquisition rate (CLKA) 

4.  Save it in the corresponding resource 

5.  For each 𝜏 

6.   Δ𝑩(𝑡)  ← 𝑩(𝑡) − 𝑩(𝑡 − Δ)  

7.   𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟  ← 𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + |Δ𝑩(𝑡)|4  

8.   𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟  ← 𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + |Δ𝑩(𝑡)|2   
9.   𝐶𝑜𝑢𝑛𝑡  ← 𝐶𝑜𝑢𝑛𝑡 + 1   

10. 
  

𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠  ←
𝑆𝑢𝑚𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ×  𝐶𝑜𝑢𝑛𝑡

𝑆𝑢𝑚𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟2
 

11.  End for  

12. End for  

 

Steps 3 and 4 in Algorithm 1 present the data acquisition part (see Figure 2). They use the specific 

feature of Xilinx FPGAs allowing to store all the samples in slice look-up tables (LUTs), where 

each LUT is configured as a shift register using Xilinx SRL16 or SRLC32 macros. This way, by 

chaining them together, we obtain a large shift register, from where each required data sample is 

available, when computing the differences ΔB. This solution for Data Acquisition Block is similar 

to the one presented in Deak et al. (2018). 
 

 
Figure 2. FIFOs (LUTs configured as shift registers, SRL16 / SRLC32) providing access at the data samples with a step of τ (from 

Deak et al., 2018) 
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Flatness computation block 
 

The flatness computation block consists of a hardware implementation of steps 6-10 described in 

Algorithm 1. The main design includes a Flatness computation block for each scale . The Flatness 

value is a real number requiring floating-point arithmetic. However, some operations can be 

performed on integer arithmetic. In fact, the only operation where FP numbers are needed is the 

division; even the multiplication by the number of elements can be done in integer arithmetic. 

Thus, throughout the design, only three customized FP operators are needed: two for transforming 

the integers to FP numbers, and one for the division. The FloPoCo framework  (Pasca, 2011) 

includes a special operator, called Fix2FP, which takes as input a fixed-point format number, in 

our case, an integer, and transforms it in a floating-point format. We have used two of these custom 

operators from the FloPoCo framework: one for the nominator and one for the denominator, which 

constitute the operands of the floating-point division operator (see equation 6 below), FPDiv (the 

latter being the third operator). 

 

 
Figure 3 . The main block diagram of the design 

 

These FP operators are generated by FloPoCo and are fully customizable, both the fixed-

point ones (bit width and location of the decimal point) and the floating-point ones (bit width of 

mantissa and exponent, respectively). Thus, the specific FP format used in the design will always 

be the most efficient one. Figure 3 illustrates the block diagram of the Flatness computation 

module. The inputs to this block represent the number of elements already processed (Count from 

Algorithm 1) and the current data sample (ΔB(t)). The output is the Flatness value in FP format. 
 

 
Figure 4. The block diagram of the Flatness computation block. The thick vertical lines are the registers that delimit the stages of 

the pipeline 

The Flatness computation block is a pipelined architecture which computes a new value in 

each clock cycle, as illustrated by Figure 4. The FloPoCo framework automatically creates 

pipelined operators in order to divide the critical path delay and obtain higher speed, if not 

specified otherwise. The pipeline depth can differ inside each operator, depending on the 

complexity of the operation and the FP format (e.g. the FP division has a pipeline length of 12 for 

the IEEE-754 single precision format from Table 1, while transforming a 96 bit width fixed point 

to the same FP format, Fix2FP, takes 7 clock cycles). The FloPoCo operators may introduce 
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various delays, therefore additional pipeline registers are added in order to balance the various data 

paths of the data-flow graph. These pipeline registers are indicated in purple continuous lines in 

Figure . As the format of the floating-point numbers changes, the overall pipeline length of the 

Flatness computation block also changes: larger FP formats (more bits for the mantissa and 

exponent) increase the pipeline depth of the FloPoCo operators, thus it takes more clock cycles to 

obtain the final result. However, this is not a true limitation as the resolution of targeted sensors is 

well below the FPGA operational frequency. 

 

4 Flatness calculation with FPGA: experimental tests and results 

 

The technical approach adopted in our design is based on a bit-width evaluation of the flatness at 

hardware level, as detailed below. 
 

Bit-width computation 
 

The FloPoCo framework allows the hardware designer to customize the most important features 

of the arithmetic operators. Thus, we can the minimize the required size of the FP numbers in our 

design, and this way the amount of resources is guaranteed to be minimal. First, since the input 

sample, Xi, is on 16 bits, we define: 

 

𝑋𝑖 ∈ (−215, 215)   ⇒   Δ𝑋 ∈ (−216, 216)   ⇒    |Δ𝑋| ≤ 216. (6) 

 

Then, in case of the nominator: 

𝑥 = 𝑅𝑁(|Δ𝑋|) 

⇒    𝑥 ≤ 216,     𝑥 = 𝑀 ⋅ 2𝑒−𝑝+1 

⇒     𝑥4 ≤ 264 

⇒     𝑁 × ∑𝑥4 ≅ 𝑁 × 1000 ⋅ 264 ≤ 𝑁 × 274 ≤ 214 × 274 = 288 ≅ 3.095 ⋅ 1026 (7) 

 

As one can see, the nominator’s value is of the order of 1026 in the worst case, and the denominator 

will be slightly smaller. Thus, the architecture that implements the Flatness computation needs a 

FP format capable of representing 1026 (or 288) as the maximal value (otherwise overflow will 

occur). Table 1 illustrates the maximum FP number for each common FP format. For the case of 

the Flatness computation algorithm, half-precision is too small, and single-precision is too much. 

The best solution is to find a custom FP format, which is not necessarily an IEEE-754 standard, so 

that its precision is the minimum allowing a correct representation of the worst-case values of the 

nominator. The largest FP number can be written as in Muller et al. (2018) and it must be greater 

than 288 in order to perform computations without overflow: 

 
(2 − 21−𝑝) ⋅ 2𝑒𝑀𝐴𝑋 ≥ 288 (8) 

 

Thus, this formula depends both on 𝑝 and 𝑤𝑒. But 21−𝑝 is very small, and it can be left out to 

obtain a lower bound on the exponent: 

 

2𝑒𝑀𝐴𝑋+1 ≥ 288 ⇒ 𝑒𝑀𝐴𝑋 ≥ 87 (9) 
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From this, we can determine that 𝑒𝑀𝐴𝑋 = 87, which means that we need 8 bits for the exponent. 

 Another similar computation would be done for determining the precision of the FP 

numbers (the number of bits after the decimal point). One way to constraint this is to decide how 

big the maximal allowed error is. That is, if 𝑅𝑂𝑈𝑁𝐷 is one of the well-known rounding modes 

that are used in floating-point computations (round towards negative or round down, round 

towards positive or round up, round towards zero and round to nearest), and 𝑥 is a real number, 

the error 𝜖 is: 

 

|𝑅𝑂𝑈𝑁𝐷(𝑥) − 𝑥| = 𝜖 ≤ 𝑢𝑙𝑝(𝑥). (10) 

 

where ulp(x) indicates the unit in the last place of number x. 

 
Figure 5. Flatness for a sample data set for various values of 𝜏. The analysis is performed in the same signal as shown in Figure 1 

and gives similar results as the scientific software INA. 

 

The next step is to assume an upper bound for the Flatness value, for which we want 𝜖 to 

be smaller than a specified 𝜖𝑀𝐴𝑋. Since Flatness is used to quantify intermittency, thus departure 

from Gaussianity manifesting as deviations of the flatness from the reference value FG=3 

corresponding to a Gaussian PDF, we accept an upper bounding value of the flatness equal to Fmax 

= 24. Flatness values greater than Fmax will then be cut-off to Fmax but this is not a problem in 

practical solar system plasma exploration where the flatness takes rarely such extreme values. 

Therefore, using the definition of 𝑢𝑙𝑝 applied to equation (4), we obtain: 

 

𝑥 ∈ [23, 23+1) ⇒ 𝑢𝑙𝑝(𝑥) = 23−𝑝+1 ≤ 𝜖𝑀𝐴𝑋 (11) 
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For the 𝜖𝑀𝐴𝑋 we can define a small value, depending on how precise we want the result to be. For 

example, if we just want the result to have approximately 1 correct digit after the decimal point, 

then 𝜖𝑀𝐴𝑋 = 10−1 ≤ 2−4, so we get: 

 

23−𝑝+1 ≤ 2−4 ⇒ 𝑝 ≥ 8. (12) 

 

We have obtained the minimum value for 𝑝, which guarantees that 𝜖 will always be smaller than 

2−4.  

Based on equations (9) and (12), we obtain the minimum format for our FP arithmetic: 

(8, 8, −126, 127), which means that the significand p is on 8 bits, the exponent is on 8 bits (we), 

emin is -126 and eMAX is +127 (see Table 1). So the exponent is on 8 bits, and the significand also 

on 8 bits. This way, we reduce the format of the FP representation of our operands to a total of 16 

bits, with the desired precision. This is not a standardized format, but a custom one, made possible 

by the customization capabilities offered by FloPoCo. Due to the fact that the design is 

implemented in an FPGA device, we are able to “compute just right”: there is no need to adjust 

existing FP operators, but we allocate and use the exact amount of hardware that is necessary to 

implement our task. By contrast, in a regular Central Processing Unit (CPU) these operators are 

fixed and one needs to use those that approximate the best the operators that are needed in a specific 

application, thus wasting a significant amount of logic resources. 
 

Results 
 

To prove that the bit-width computation in our approach reduces the resource utilization, we have 

generated more results concerning the FPGA chip usage for various values of the resolution 

(𝜖𝑀𝐴𝑋). The FPGA devices include general logic resources, i.e. slice Look-Up Tables (LUTs), 

Flip-Flops, and RAM memory blocks (BRAM), but also specific blocks which are dedicated to 

Digital Signal Processing (DSP blocks) and which include embedded adders and multipliers able 

to work at high speed. The resource allocation obtained for each of these designs is described in 

Table 2. While the logic resources and the flip-flops increase when 𝜖𝑀𝐴𝑋 decreases, the DSP blocks 

usage doesn’t change, because DSP blocks are only used for integer multiplication. 
 
Table 2. Resource utilization for different 𝜖𝑀𝐴𝑋 values 

𝜖𝑀𝐴𝑋(if 𝑥 < 24) 
~decimal 

p Slice LUTs 
Flip-

Flops 

BRAM 

blocks 

DSP 

blocks 

2−4 0.0625 8 38177 41409 0 182 

2−7 0.0078125 11 40968 42279 0 182 

2−10 0.0009765625 14 44349 43526 0 182 

2−14 0.000061035 18 48995 45152 0 182 

2−20 9.53674316 × 10−7 24 58427 49382 0 182 

 

The technology was tested on a time series simulating data acquired by a space 

magnetometer. The data set included 10000 samples and is identical with the time series analyzed 

with INA (solar wind data from ULYSSES spacecraft, Balogh et al., 1992) and presented in Figure 

1. This time series is an input into the data acquisition module (see Figure 2) and forward processed 

by the flatness computation module described above. The Flatness parameter was computed for 

the same scales considered by INA and ODYN, with 𝜏 ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192}. The results are shown in Figure 5 and indicate an intermittent 

behavior. Indeed, the flatness takes values around 3 for the largest scales, then starts to increase 
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with decreasing scales. These results are fully consistent with the results provided independently 

by INA and ODYN scientific software, which confirms the FPGA application provides correct 

results.  
 

Summary and perspective 
 

Starting from a mathematical algorithm designed for space plasma time series analysis on-ground 

(available from the Integrated Nonlinear Analysis library as well as on open source technology, 

Teodorescu and Echim, 2020), we built IP cores for computing the flatness parameter for a signal 

that simulates data acquired on-board a spacecraft. The FPGA application is optimized and tested 

on XILINX FPGA board. The Flatness computation block is a pipelined architecture which 

computes a new value of the flatness parameter in each clock cycle. The application is optimized 

such that a minimum number of floating point operations are required. 

In order to achieve a minimal use of resources, the maximum value of flatness is limited to 

24. Thus, larger values of the flatness are cut-off to this maximal limit. Nevertheless, since a signal 

is considered intermittent at a scale if the flatness at that scale is larger than 3, this limitation does 

not have a negative impact on the operational goal of the FPGA device. In addition the design 

capture the variation of flatness of scales for a wide range of values and scales. The application 

achieves its goal to identify intermittency based on flatness values. Numerical tests performed on 

relevant signals demonstrate the technology correctly detects departure of the flatness from the 

Gaussian value for a significant range of scales. The results are confirmed by an independent test 

by INA and ODYN scientific software applied on the same signal.  

The release of an FPGA solution for computing the flatness is timely. Indeed, its usefulness 

goes beyond the goal of studying fragmentation in the phase space of a turbulent dynamic system, 

like solar system plasmas. Due to its simplicity and versatility the solution can be adapted for 

various other autonomous data analysis contexts where departure from “normal” behavior, in the 

sense of Gaussian statistics, is of interest. 
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