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Abstract

Tight oil and gas reservoirs have attracted an increasing amount of attentions and have become one of the focus of research

field in recent years. Tight sandstones have complex pore structures and narrow pores and throats with pore sizes varying from

nanometers to micrometers, and studying flow mechanisms in tight sandstones is of great importance to tight oil/gas reservoir

development. Reconstructing digital rock, which can comprehensively represent the petrophysical properties of tight sandstone,

is key to simulating the fluid flow in micro/nanopores. This paper proposes a new method of reconstructing 3D digital rock from

CT images of tight sandstones based on a deep convolutional generative adversative network (DCGAN), and 3D convolution

in the generator and discriminator are adopted to realize reconstruction from 1D data to a 3D digital rock model. The model

adopts pore area, volume, spatial distribution and connectivity, Fréchet inception distance score to evaluate the proposed model.

Studies show that when the training effect is slightly poor, the generated digital rock model will exhibit noise, which can be

reduced by postprocessing; when the training effect is good, DCGAN can accurately reconstruct the 3D digital rock model of

tight sandstones, and the reconstructed digital rock is very consistent with the pore size, geometric structure, and connectivity

of natural tight sandstones. When multiple 3D tight sandstone CT images are used for training, the DCGAN can learn the

pore structure characteristics of entire tight sandstone bodies, which have strong heterogeneous, and the porosity distribution

obtained from the generated digital rock is similar to that of the original tight sandstone.
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Key Points: 15 
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 The reconstructed 3D digital rock has the similar porosity distribution with the original 20 
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Abstract 23 

Tight oil and gas reservoirs have attracted many attentions and are one of the hottest research 24 

fields in recent years. Tight sandstones have complex pore structures and narrow pores and 25 

throats with pore sizes varying from nanometers to micrometers, studying flow mechanisms in 26 

tight sandstones is of significance to tight oil/gas reservoir development. Reconstructing the 27 

digital rock which can comprehensively represent petrophysical properties of tight sandstone is 28 

the key to simulate the fluid flow in micro/nano pores. This paper proposes a new method of 29 

reconstructing 3D digital rock from CT image of tight sandstones based on a deep convolutional 30 

generative adversative network (DCGAN), and 3D convolution in the generator and 31 

discriminator are adopted to realize reconstruction from one dimensional data to 3D digital rock 32 

model. Studies show that when the training effect is slightly poor, the generated digital rock 33 

model will have noise, which can be reduced by post-processing; when the training effect is well, 34 

DCGAN can accurately reconstruct the 3D digital rock of tight sandstones, the reconstructed 35 

digital rock is very consistent in pore size, geometric structure, and connectivity of natural tight 36 

sandstones. When multiple 3D tight sandstone CT images are used for training, the DCGAN can 37 

learn the pore structure characteristics of entire tight sandstones, and the porosity distribution 38 

obtained from generated digital rock are similar to original tight sandstones. 39 

Keywords: digital rock; tight sandstone; generative adversarial neural network; deep learning 40 

1 Introduction 41 

Unconventional oil and gas are important alternative energy in the future (Jia, 2017). 42 

Tight oil/gas reservoirs in China are mainly continental deposits, and a great deal of micro and 43 

nano-pores are widely developed with poor connections, complex structures and strong 44 

heterogeneity  (Yao et al., 2013; Li et al., 2017; Wang et al., 2019) , therefore, the seepage 45 

mechanisms in tight oil/gas reservoirs are quite complicated. It is necessary to study the 46 

microscopic flow mechanism and figure out its influencing factors for developing the tight 47 

oil/gas reservoirs efficiently and economically. Digital rock is an advanced technology to study 48 

the physical properties and flow behaviors insides of sedimentary rock (Berg et al., 2017), which 49 

will play an important role in the exploration and development of tight oil/gas reservoirs. 50 

In order to investigate the characteristics of sedimentary rock, the key is constructing a 51 

3D digital rock model which can accurately characterize the pore structure of micro and nano-52 

pores. At present, the methods of 3D digital rock reconstruction can be divided into two main 53 

categories: physical experiments and numerical reconstructions (Yao et al., 2013). Physical 54 

experiments have to use a high-resolution scanning instruments, these methods are time 55 

consuming with high cost (Izadi et al., 2017). The common physical experiments methods 56 

includes serial sectioning, magnetic resonance imaging (MRI) (Ouellette et al., 2015), X-ray 57 

computed tomography (Elbakri and Fessler, 2002), focused ion beam (FIB)-scanning electron 58 

microscopy (SEM) (Bera et al., 2011), and etc. Numerical reconstruction method reconstructs 59 

digital rock with computer based on the statistical information of pore structures, and can be 60 

divided into two categories: random field method and process-based method (Øren and Bakke, 61 

2002). The random field method also has multiple types, including Gaussian random field 62 

method(Yuan et al., 2010), simulated annealing method (Yeong and Torquato, 1998), Markov 63 

chain Monte Carlo Method (Wu et al., 2004), sequential indicator simulation method (Keehm et 64 

al., 2004) and multiple-point statistics method(Lei, 2020), and etc. 65 



 

 

Recently, artificial intelligent has been gradually widely applied in oil industry, including 66 

seismic data processing and interpretation (Cao and Wu, 2017; Imamverdiyev and Sukhostat, 67 

2019), well drilling (Chen et al., 2019; Noshi and Schubert, 2018), oil and gas exploitation 68 

(Ahmadi and Chen, 2019; Li et al., 2019). It is a trend that the whole oil industry will pay more 69 

attentions on intelligent system development. Generative adversarial networks (GAN) is a neural 70 

network model proposed by Goodfellow et al. (Goodfellow et al., 2014), which can capture the 71 

distribution of data and generate a data sample consistent with the distribution of real data. The 72 

main ideal of GAN is derived from the zero-sum game in game theory, the generator can learn 73 

the distribution of data through the continuous game between the generator and the 74 

discriminator, which can produce an output that is more consistent with real data. It has been 75 

widely used in intelligent fusion(Ma et al., 2019), intelligent generating(Wang et al., 2018), 76 

super-resolution reconstruction(Bulat et al., 2018), classification(Zhou et al., 2018), etc. It also 77 

has been used in the construction of 3D psychical models, such as face model (Gecer et al., 2019; 78 

Gecer et al., 2019), bed/chair/table model (Li et al., 2019), archaeological objects (Hermoza and 79 

Sipiran, 2018).  80 

As mentioned above, the GAN provides a new method for digital rock reconstruction, 81 

and different GAN model has been used in digital rock reconstruction. Mosser et al (Mosser et 82 

al., 2017; Mosser et al., 2018) firstly introduced GAN to reconstruct digital rock. They generated 83 

a 3D digital rock model (64×64×64) , and used autocorrelation function to evaluate the 84 

reconstructed digital rock, but the process of model training is time consuming. DCGAN adapts 85 

the convolutional neural network (CNN) as the generator and discriminator, which is very good 86 

at dealing with image processing problem (Radford et al., 2015). In 2018, Guan (2018) used 87 

DCGAN to generate 2D images rather than 3D models, and another GAN model, Wasserstein 88 

GAN (Arjovsky et al., 2017), was introduced for comparison in their presentation. Liu et al.(Liu 89 

et al., 2019)used Berea sandstone (64×64×64) and Estaillades carbonate (128×128×128) binary 90 

data respectively to train DCGAN model and for 3D digital rock reconstruction; Shams et 91 

al.(2020) coupled GAN and auto-encoder neural network (AE) for reconstructing a porous media 92 

with inter-grain and intra-grain pores. The function of GAN is producing 3D porous media 93 

(64×64×64) with inter-grain pores, and the AE (256×256) is to generate intra-grain pore in the 94 

images outputted from the GAN. Valsecchi et al.(Valsecchi et al., 2020)designed the generator 95 

with 3D convolution and the discriminator with 2D convolution for generating a 3D model with 96 

2D image stacks output (64×64), and three types of brainy image data was used to validate the 97 

model by two-point probability function and Minkowski functionals. The conditional generative 98 

confrontation network (CGAN) (Mirza and Osindero, 2014), which adds constraints to the 99 

original GAN by introducing a conditional variable ‘y’ into the generative model and the 100 

discriminant model to guide the generation of data, is another model for digital rock 101 

reconstruction. Feng et al.(2019a; 2019b) applied CGAN to reconstruct complete 2D core images 102 

(128×128) based on less information of images and real core data. Volkhonskiy et 103 

al.(2019)added autoencoders before the generator of CGAN to extract pore structure information 104 

and input it to the generator as constraints, and different natural core samples were used to 105 

evaluate its performance but the consuming time of generative model training is about 10 hours. 106 

Digital rock reconstruction with GAN is an emerging technology, there are many 107 

challenges need to overcome, such as a long training time, complex model, small size of 108 

generated model, and representativeness, generalization ability and interpretability are still weak. 109 

In this paper, a new method of digital rock reconstruction based on DCGAN is developed, and 110 

the 3D convolution networks are adopted in the generator and discriminator of DCGAN. The CT 111 



 

 

images of tight sandstones form Yanchang formation, Ordos Basin, NW China are used to 112 

validate the newly proposed model. The geometry and connectivity of pores in the reconstructed 113 

digital rocks are analyzed with three case studies. 114 

 115 

2 Methodology 116 

2.1 GAN 117 

As a classical unsupervised learning model, GAN combines the game theory and deep 118 

neural network, has some advantages those generative models don’t have. It avoids inference 119 

during training, and can produce a clearer sample. If the discriminator is well trained, the 120 

generator can learn the distribution of data perfectly in theory by training. The value function of 121 

GAN  ,V D G  is defined as (Goodfellow et al., 2014):  122 

             ~ ~
min max , log log 1

data zx p x z p z
G D

V D G E D x E D G z       
   (1) 123 

where x  is the real data; z  is the noise;  datap x  is the distribution of real data;  zp z  is the 124 

distribution of noise;  G z  is the output of generator;  D x  represents the probability that x  is 125 

real data judged by the discriminator. 126 

In the training process, backpropagation algorithm is used to optimize the parameters of 127 

network. When the distribution of real data and the distribution of generator is equal, the value 128 

function is the lowest, and the generative model can perfectly learn the data distribution. In order 129 

to avoid the generator falling into local minima, the discriminator will train several times while 130 

the generator updates once.  131 

DCGAN scales up GAN using CNN, and three changes were made to the structure and 132 

activation function of CNN. First, the pooling layer in conventional CNN is replaced by 133 

convolution. Then, the generator uses ReLU activation for all layers except the output layer, 134 

which uses tanh activation, but the discriminator uses Leaky ReLU activation in all layers. 135 

Finally, both the generator and the discriminator apply batch normalization for stabilizing 136 

training. 137 

2.2 Network architecture 138 

The schematic diagram of applying DCGAN for 3D digital rock reconstruction is shown 139 

in Figure 1, and the detail parameters of discriminator and generator are shown in Table 1. 140 

The discriminator is a CNN model to discriminate the input data is real data or the data 141 

from generator. It has four convolutional layers, and each convolutional layer consists of a batch 142 

normalization layer with momentum of 0.8, a drop layer with loss ratio of 0.25, and the Leaky 143 

ReLU with activation of 0.2. The last layer is a fully connect layer, its activation is sigmoid 144 

function. The structure of discriminator is shown in Figure 2.  145 

The generator receives a random noise conforming to normal distribution, and converts 146 

the random noise to a 1D vector by a fully connect layer, then reshapes the random noise to a 147 

four-dimensional vector. Three up sampling layers are used to enlarge the 3D images, the 148 

followed convolutional layer of each up sampling layer can learn the kernel by training, and then 149 

the data flows into batch normalization layer and ReLU activation. The last layer is a 150 



 

 

convolutional layer, and the activation function is tanh function. The momentum of batch 151 

normalization layer is set to 0.8. The structure of the generator used in this manuscript is shown 152 

in Figure 3.  153 

3 Data and plateform  154 

3.1 Data sets 155 

As shown in Figure 4, the Micro XCT-510 scanner was used to obtain the CT images of 156 

tight sandstones Yanchang formation, Ordos Basin, NW China. The resolution of CT images is 157 

1.22 μm. 158 

There are always some noises in the CT images due to the influence of equipment, 159 

environment, and the minerals of the rock itself. The image noises have significant influences on 160 

pore structure analysis, thus the image preprocessing must be conducted. The common methods 161 

of image denoising includes Gaussian filter, median filter, adaptive Wiener filter, mean filtering, 162 

and wavelet thresholding(Buades et al., 2005; Zhang and Desai, 2002). Here the median filter 163 

was used to remove the noise in CT images. After that, the images will be divided into pore and 164 

matrix two parts, and binary image can reduce the calculation time comparing with grey images. 165 

Considering the calculation ability of our computer, the data for training was sub-166 

sampled from the binary CT images. Binary CT images for training (32×32×910) are shown in 167 

Figure 5, the black is the pore and the gray is the matrix. According to the statistics of porosity 168 

of 910 core slices, the binary images with porosity less than 10% account for 60% of total CT 169 

images, indicating that most pores are small pores, which reflects strong heterogeneity of tight 170 

sandstone pore structures. The 2D images must to be transform into 3D data, and the 171 

normalization of binary data (0~255) also are also needed. The range of data after normalization 172 

is between -1 and 1 because the distribution of the tanh function ranges from -1 to 1. 173 

3.2 Platform 174 

Several platforms have been developed for machine learn, such as Tensorflow (Abadi et 175 

al., 2016), Keras (Gulli and Pal, 2017), Caffe (Jia et al., 2014), Pytorch (Paszke et al., 2017), 176 

Theano(Al-Rfou et al., 2016). In this paper, Keras is used to build the DCGAN model, which is 177 

an advanced neural network API written in Python and be coupled with Tensorflow or Theano as 178 

the backend. As the network has a complex structure and needs a large amount of calculation, the 179 

configuration of computer will have a great impact on the training and application of deep 180 

learning. A computer with a single NVIDIA GTX 1050 GPU was used in this paper. 181 

4 Results and discussion  182 

4.1 Case 1 183 

The input data is 3D binary image with the size of 323232, and the value function of 184 

the generator and the discriminator are optimized by Adam method. The learning rate is set to 185 

0.002, the exponential decay rate for the moment estimation is 0.5, the number of training epoch 186 

is 6000, and the batch data size is 1. The generated digital rock by is shown in Figure 6. 187 

Compared with the original digital rock, the generated digital rock has similar pores, but some 188 

isolated pores are also generated. Compared 9 pores in the original digital rock, there are 30 189 

pores in the generated digital rock. Figure 7 shows the distribution of pore area and pore volume 190 



 

 

of original digital rock and generated digital rock, which can be found that most of pores in the 191 

generated digital rock is the small pores. 192 

Removing all the isolated small pores with the pore volume less than 5 μm
3
 in the 193 

generated digital rock, only 9 large pores are left, which are same to the pores in the original 194 

digital rock. As shown in Table 2, the barycenter coordinates of the pores in the generated digital 195 

rock are very close to those in original rock, except for the pores nos. 1, 6, and 7. For other pores, 196 

the distances between the generated pores and original pores are less than 1 μm. In addition, the 197 

distributions of pore volumes and pore areas in the original digital rock and generated digital 198 

rock are very close, as shown in Figure 8. 199 

Two-point probability function can reflect the pore distribution insides of digital rock. As 200 

shown in Figure 9, the curves of two-point probability functions of the original digital rock and 201 

generated digital rock are very close to each other, which can demonstrate that the method of 202 

digital rock reconstruction based on deep learning is reliable, and can accurately reconstruct 203 

digital rock. The porosity of original rock and generated digital rock is about 4.5%, but the 204 

porosity of generated digital rock is a little higher, due to there are several isolated small pores in 205 

the generated digital rock. Even that, the reconstructed digital rock by deep learning can 206 

accurately represent the original digital rock. 207 

4.2 Case 2 208 

The input data is another 3D binary images with size of 323232, and the original 209 

digital rock is shown in Figure 11(a). Using the parameters of DCGAN obtained from training 210 

above, the generated digital rock reconstructed by deep learning is shown in Figure 11(b). As 211 

shown in Table 4, the barycenter coordinates of the pores in the original digital rock and 212 

generated digital rock are the same. 213 

As shown in Figure 11, the porosity of the original digital rock and generated digital rock 214 

is 46.8%, and the curves of two-point probability functions of the original digital rock and 215 

generated digital rock coincide. It could be concluded that a well-trained DCGAN can generate 216 

the same digital rock as the original input dataset. 217 

4.3 Case 3 218 

Different from only 32 slices of CT images used in case 2, total 910 slices of CT images 219 

are used for training DCGAN. The initial parameters for GCGAN are same to those in cases 1 220 

and 2, except the batch size in case 3 is 4 rather than 1. It means that four digital rocks with the 221 

size of 32×32×32 are used as the input data for DCGAN training, and also four digital rock with 222 

the size are generated. Figure 13 shows the four digital rocks generated by DCGAN after 223 

training. As the original digital rock with the size of 32×32×910 has strong heterogeneity, and 224 

the size of generated digital rock is different from the original digital rock, the two-point 225 

probability function is not suitable for comparing the difference of pore size distribution between 226 

generated digital rock and original digital rock. As shown in Figure 13, the distribution of area 227 

porosity in 2D images of the four generate digital rocks (324 slices) is similar to that in the 228 

original digital rock (910 slices). The images with porosity between 0% and 10% both account 229 

for about 60% of total images, and the small pores account for a larger proportion. 230 



 

 

5 Conclusions 231 

This paper proposed a new method of reconstructing 3D digital rock based on deep 232 

learning, and the DCGAN with 3D convolution in generator and discriminator is built for 3D 233 

digital rock reconstruction. The reconstructed digital rock is evaluated by the statistical results of 234 

pore size distribution and two-point probability function. The results show when DCGAN is well 235 

trained, it can generate a representative digital rock similar to original one. When the DCGAN is 236 

not well trained, the post processing such as image filtering can improve the accuracy of digital 237 

rock reconstruction. The well-trained DCGAN can generate the digital rock with different pore 238 

structures, but the porosity distribution is similar to the original digital rock. The reconstructed 239 

digital rock is helpful for study the characteristics of pore structures and flow mechanism insides 240 

of porous media. The future work can focus on improving the accuracy of reconstructed digital 241 

rock, reducing training time, strengthening model generalization ability, and model explanation 242 

and evaluation. 243 
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 390 

Figure 1 The schematic diagram of 3D digital rock reconstruction with DCGAN. 391 
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Figure 2 The structure of discriminator. 394 
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Figure 3 The structure of generator 397 
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 399 

Figure 4 CT images of tight sandstones from Yanchang formation, Ordos Basin, NW China ((a) 400 

3D view of core samples, (b) CT slice in XY direction, (c) CT slice in XZ direction, (d) CT slice 401 

in YZ direction) 402 
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 404 

Figure 5 The binary CT images of tight sandstones for training, and the size of images are 32×405 

32×910. 406 
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 408 

Figure 6 Comparison of the original digital rock (a) and the generated digital rock reconstructed 409 

by deep learning (b) 410 
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(a) (b)



 

 

 412 
Figure 7 Comparison of the pore area (a) and pore volume (b) in the original digital rock  413 
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 415 

Figure 8 Comparison of pore volume (a) and pore area (b) in the original digital rock and 416 

generated digital rock 417 
  418 



 

 

   419 

Figure 9 Two-point probability function of the original digital rock and the generated digital 420 

rock after denoising. 421 
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 423 

Figure 10 The original 3D digital rock (a) and the generated 3D digital rock reconstructed by 424 

deep learning (b) 425 
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 427 

Figure 11 Two-point probability function of the original digital rock and the generated digital 428 

rock reconstructed by DCGAN. 429 

  430 



 

 

 431 

Figure 12 Four generated 3D digital rock reconstructed by DCGAN. 432 

  433 

(a) (b)

(c) (d)



 

 

 434 

Figure 13 Comparison of porosity distribution between original digital rock and the generated 435 

digital rock. 436 
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Table 1 the parameter of DAGAN for 3D digital rock reconstruction 438 

Layer Type 
Filter 

number 
Kernel Stride Padding 

Batchnor-

malization 
Dropout Activation 

Generator 

1 Deconv 64 222 2 same Yes 0 ReLU 

2 Deconv 32 222 2 same Yes 0 ReLU 

3 Deconv 16 222 2 same Yes 0 ReLU 

4 Conv 1 333 1 same Yes 0 tanh 

Discriminat

or 

1 Conv 8 333 2 same Yes 0.25 Leaky ReLU 

2 Conv 16 333 2 same Yes 0.25 Leaky ReLU 

3 Conv 32 333 2 same Yes 0.25 Leaky ReLU 

4 Conv 64 333 1 same Yes 0.25 Leaky ReLU 

5 
Fully 

Connect 
4096 - - - - - Sigmoid 

  439 



 

 

Table 2 Comparison of barycenter coordinates of the pores in the original digital rock and 440 

generated digital rock. 441 

Pore 

no. 

Original digital rock Generated digital rock 
Euclidean 

distance 

(μm) 

Barycenter 

coordinate 

X (μm) 

Barycenter 

coordinate 

Y (μm) 

Barycenter 

coordinate 

Z (μm) 

Barycenter 

coordinate 

X (μm) 

Barycenter 

coordinate 

Y (μm) 

Barycenter 

coordinate 

Z (μm) 

1 0.83 0.55 1.94 0.99 0.52 3.28 1.35 

2 11.67 2.36 2.04 11.74 2.36 2.17 0.15 

3 36.60 0.94 1.97 36.23 0.85 1.83 0.40 

4 20.77 10.69 2.78 20.99 10.82 2.63 0.29 

5 15.93 31.85 1.56 16.16 31.83 1.60 0.24 

6 35.69 26.54 0.31 28.82 22.42 13.88 15.76 

7 2.44 1.22 18.30 0.00 1.22 20.74 3.45 

8 6.28 23.41 32.04 6.30 23.30 31.99 0.13 

9 21.62 3.36 35.49 21.70 3.35 35.48 0.08 

 442 

  443 



 

 

Table 3 The barycenter coordinates of the pores in the original digital rock and generated digital 444 

rock. 445 

Label 

Original digital rock Generated digital rock 
Euclidean 

distance 

(μm) 

Barycenter 

coordinate 

X (μm) 

Barycenter 

coordinate 

Y (μm) 

Barycenter 

coordinate 

Z (μm) 

Barycenter 

coordinate 

X (μm) 

Barycenter 

coordinate 

Y (μm) 

Barycenter 

coordinate 

Z (μm) 

1 2.00 0.80 1.40 2.00 0.80 1.40 0.00 

2 9.60 0.00 0.00 9.60 0.00 0.00 0.00 

3 21.58 17.21 20.35 21.58 17.21 20.35 0.00 

4 12.00 1.20 0.00 12.00 1.20 0.00 0.00 

5 7.60 4.40 0.00 7.60 4.40 0.00 0.00 

6 0.00 5.60 0.40 0.00 5.60 0.40 0.00 

7 3.60 6.00 0.00 3.60 6.00 0.00 0.00 

8 0.00 9.60 0.60 0.00 9.60 0.60 0.00 

9 2.40 9.60 0.60 2.40 9.60 0.60 0.00 

10 8.40 3.60 6.00 8.40 3.60 6.00 0.00 

11 31.20 24.00 12.00 31.20 24.00 12.00 0.00 

12 27.60 25.20 37.20 27.60 25.20 37.20 0.00 
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