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Abstract

Uncertainty in climate feedbacks is the primary source of spread in model projections of surface temperature response to

anthropogenic forcing. Cloud feedback persistently appears as the main source of disagreement in future projections while the

combined lapse-rate plus water vapor (LR+WV) feedback is a smaller (˜30%), but non-trivial source of uncertainty in climate

sensitivity. Here observation-based emergent constraints are adopted to evaluate the intermodel spread in these feedbacks. The

observed interannual variation provides a useful constraint on the long-term cloud feedback as evidenced by the consistency

between their global-mean values as well as their similar regional contributions to the intermodel spread. However, internal

variability does not serve to constrain the long-term LR+WV feedback spread, which we find is mostly associated with the

relative humidity response over the tropics. Model differences in hemispheric warming asymmetries, induced primarily by ocean

heat uptake differences, also contribute to the spread in water vapor feedback.
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Abstract 19 

Uncertainty in climate feedbacks is the primary source of spread in model projections of surface 20 

temperature response to anthropogenic forcing. Cloud feedback persistently appears as the main 21 

source of disagreement in future projections while the combined lapse-rate plus water vapor 22 

(LR+WV) feedback is a smaller (~30%), but non-trivial source of uncertainty in climate sensitivity. 23 

Here observation-based emergent constraints are adopted to evaluate the intermodel spread in 24 

these feedbacks. The observed interannual variation provides a useful constraint on the long-term 25 

cloud feedback as evidenced by the consistency between their global-mean values as well as their 26 

similar regional contributions to the intermodel spread. However, internal variability does not 27 

serve to constrain the long-term LR+WV feedback spread, which we find is mostly associated with 28 

the relative humidity response over the tropics. Model differences in hemispheric warming 29 

asymmetries, induced primarily by ocean heat uptake differences, also contribute to the spread in 30 

water vapor feedback. 31 

 32 

Key Points: 33 

Observed interannual variation provides a useful constraint to narrow the uncertainty in long-term 34 

cloud feedback. 35 

It is difficult to constrain the long-term LR+WV feedback uncertainty with available observations 36 

of interannual variability. 37 

Disagreements in the responses of tropical relative humidity and ocean heat uptake are responsible 38 

for the spread in long-term LR+WV feedback. 39 

 40 

 41 



Plain Language Summary 42 

How much the Earth warms in response to greenhouse gas increases depends on the Earth’s 43 

efficiency in restoring radiative equilibrium. This efficiency differs significantly among global 44 

climate models due to differences in feedback processes, particularly the responses of clouds, 45 

temperature and water vapor to the initial perturbation. One approach to narrowing the intermodel 46 

spread of feedbacks is to only consider models whose observable variability is consistent with 47 

available measurements. For example, the similar behavior of both interannual and long-term 48 

cloud feedbacks enables observations to effectively constrain cloud feedback. However, this 49 

approach does not work for the feedback resulting from changes in the vertical distribution of 50 

temperature and water vapor (LR+WV feedback). The global-mean LR+WV feedback uncertainty 51 

mostly comes from the tropics, where local relative humidity exhibits the largest intermodel 52 

disagreement. Model differences in meridional warming imbalance, stemming from divergent 53 

ocean energy absorptions, also account for the global-mean LR+WV feedback uncertainty. 54 

 55 

 56 
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1. Introduction 65 

The projected surface air temperature responses to anthropogenic forcing have a large spread 66 

among global climate models, primarily due to large uncertainties in climate feedbacks (Flato et 67 

al., 2013). Particularly, cloud feedback has persistently been identified as the largest source of 68 

intermodel spread in effective climate sensitivity (ECS; Dufresne & Bony, 2008; Vial et al., 2013; 69 

Zelinka et al., 2020). Although the cloud feedback appears positive in most models and thereby 70 

acts to amplify global warming, its magnitude differs substantially among models (Colman, 2003; 71 

Soden & Held, 2006; Soden et al., 2008; Zelinka et al., 2020). Accurately simulating clouds and 72 

their radiative responses has long been a stubborn challenge for climate modeling, largely because 73 

clouds depend on fine-scale physical processes that cannot be explicitly represented by coarse 74 

model grids. Although the representations of cloud processes have been improved in state-of-the-75 

art climate models, such as more accurate representation of supercooled liquid cloud water, the 76 

range of global-mean cloud feedback in the most recent generation of models has actually 77 

increased slightly (Bjordal et al., 2020; Zelinka et al., 2020). 78 

Another important component in understanding the uncertainty of ECS is temperature feedback 79 

induced by tropospheric warming, which includes contributions from a vertically uniform 80 

warming (Planck feedback) and departures from the vertical-uniform warming [lapse-rate (LR) 81 

feedback]. The latter constituent further leads to a large spread in water vapor (WV) feedback, 82 

since atmospheric moistening to first order follows the Clausius-Clapeyron relation. As these two 83 

components are so tightly coupled in models, it is physically logical to analyze the combined lapse-84 

rate plus water vapor (LR+WV) feedback, instead of each term individually (Held & Soden, 2000). 85 

Even though there is cancellation between LR and WV feedbacks in both magnitude and 86 

uncertainty, LR+WV feedback still possesses the second largest contribution to the intermodel 87 



spread of ECS (Dufresne & Bony 2008; Vial et al. 2013). Soden and Held (2006) noted that, 88 

individually, the global-mean LR and WV feedbacks are strongly related to the ratio of tropical to 89 

global-mean surface warming. However, the global-mean LR+WV feedback is largely driven by 90 

local model differences over the southern extratropics (Po-Chedley et al., 2018), highlighting the 91 

role of Southern Ocean heat uptake in determining the global-mean LR+WV feedback. 92 

Here we reexamine the sources of intermodel spread in cloud and LR+WV feedback, using 93 

conventional local feedback definition with global-mean surface air temperature anomalies. This 94 

allows us to clearly isolate contributions from uncertainties in local radiative responses and surface 95 

warming patterns, respectively. Compared to Po-Chedley et al. (2018), we find the global-mean 96 

LR+WV feedback uncertainty mostly comes from the tropics, where local relative humidity 97 

exhibits the largest intermodel disagreement, instead of the southern extratropics. We also find a 98 

weaker correlation between LR+WV and relative humidity fixed LR feedbacks than Po-Chedley 99 

et al. (2018). Additionally, we extend the well-established emergent constraint method (e.g., Klein 100 

& Hall, 2015) to these long-standing climate feedback challenges, to investigate its utility in 101 

narrowing the spread of these feedbacks, thereby refining the estimate of ECS. 102 

2. Data and Methodology 103 

Climate feedbacks represent the amplification or dampening of radiative flux anomalies to internal 104 

variabilities or externally forced changes in global-mean surface air temperature. Using 105 

observationally based radiative kernels derived from CloudSat/CALIPSO data (Kramer et al., 106 

2019), we decompose top-of-atmosphere radiative flux anomalies into radiation changes caused 107 

by variations in temperature, water vapor, albedo and cloud, following Soden et al. (2008). Here, 108 

cloud radiative response is diagnosed from change in cloud radiative effect corrected for cloud 109 

masking effects on non-cloud radiative responses. Note that the cloud radiative response is the 110 



sum of its longwave and shortwave components. Based on documented relationships between 111 

longwave and shortwave components for different cloud types (Webb et al., 2006), we further 112 

separate the cloud radiative responses into contributions from high, low and mixed clouds, 113 

following Soden and Vecchi (2011). The LR+WV radiative response is the sum of LR and WV 114 

radiative responses. Since differences in cloud climatologies can influence analyses of all-sky 115 

LR+WV feedback, we focus primarily on uncertainties in clear-sky LR+WV feedback in the main 116 

text, while further details of all-sky LR+WV feedback are provided in the supplemental material. 117 

Climate models (Table S1) from Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring 118 

et al., 2016), with r1i1p1f1 realization available for both piControl and abrupt-4xCO2 experiments, 119 

are evaluated in this work. Following Dessler (2013), interannual climate feedbacks are calculated 120 

as the linear regression slope of monthly deseasonalized global-mean radiative flux anomalies 121 

against monthly deseasonalized global-mean surface air temperature anomalies, using CMIP6 pre-122 

industrial control (piControl) runs. To obtain the interannual climate feedbacks as accurately as 123 

possible, the longest simulation length available for all models (200 years) is used. In the piControl 124 

runs, variations of global-mean surface air temperature are induced solely by internal variability 125 

in the climate system, which is primarily caused by El Niño–Southern Oscillation, especially on 126 

interannual timescales. No climate drift is noted in the time series of cloud or LR+WV radiative 127 

responses.  Climate feedbacks in response to long-term climate change are calculated as the linear 128 

regression slope of annual global-mean radiative flux anomalies against annual global-mean 129 

surface air temperature anomalies from 150-year experiments, where CO2 concentrations are 130 

abruptly quadrupled at the beginning and then held constant as the climate system responds 131 

(abrupt-4xCO2). Although the time-invariant feedback assumption adopted here is undermined by 132 

evolving pattern effects (e.g., Andrews et al., 2015; Chung & Soden, 2015; Andrews & Webb, 133 



2018; Dong et al. 2020), the assumption is still useful for investigating the intermodel spread, since 134 

no noticeable difference occurs between the spreads of feedbacks derived from regressions over 135 

years 1–150 and years 21–150 of abrupt-4xCO2 simulations (e.g., Zhou et al., 2015). 136 

To evaluate the model-simulated global-mean feedbacks, observation-based interannual emergent 137 

constraints are adopted. The observed interannual feedbacks are calculated using radiative fluxes 138 

from CERES Energy Balance and Filled (EBAF) Ed. 4.1 product (Loeb et al., 2018, 2019), vertical 139 

profiles of temperature and water vapor from ERA5 (Hersbach, 2020) and surface temperature 140 

from GISS Surface Temperature Analysis (GISTEMP v4; Lenssen, 2019; GISTEMP Team, 2020). 141 

The corresponding 95% confidence intervals are calculated using uncertainties (i.e., standard 142 

deviation) of the observed interannual feedbacks (i.e., linear regression slope) to provide observed 143 

uncertainty bounds. In addition, vertical profiles from version 6 Level 3 AIRS retrievals (Aumann, 144 

2003) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 145 

(MERRA-2; Gelaro, 2017) reanalysis are adopted for potential cross-validations. Because of the 146 

limited length of satellite observations, the observation-based estimates without (with) AIRS 147 

retrievals are conducted over the period of 2001 (2003) through 2019. 148 

3. Results 149 

3.1 Emergent constraints  150 

The emergent constraint method has been applied to help reduce the persistent intermodel spread 151 

of climate feedbacks (e.g., Hall & Qu, 2006; Qu & Hall, 2014). One key principle of the emergent 152 

constraint idea is that models failing to reproduce observed characteristics in unforced or historical 153 

simulations should not be trusted for future climate projection, especially if that characteristic in 154 

question is physically and statistically related on these timescales (Klein & Hall, 2015). Here, 155 



comparisons between global-mean interannual and long-term feedbacks are conducted. As shown 156 

in Figure 1a, there is a strong correlation (r = 0.84) between interannual and long-term cloud 157 

feedbacks. With a least-squares regression slope of 0.81, the intermodel spread of cloud feedback 158 

is comparable on these timescales, which differs from previous findings using CMIP5-era models 159 

(Zhou et al., 2015; Colman & Hanson, 2017). For instance, Zhou et al. (2015) found the model-160 

averaged global-mean long-term cloud feedback is smaller than its interannual counterpart. This 161 

results, in part, from a slight increase in long-term cloud feedback (Zelinka et al., 2020) and a 162 

decrease in global-mean interannual cloud feedback in CMIP6-era models. 163 

Since the global-mean long-term and interannual cloud feedbacks are closely related in both 164 

magnitude and uncertainty, it is possible to observationally constrain the former by identifying 165 

models with interannual cloud feedbacks that fall within the observed uncertainty (i.e., 95% 166 

confidence interval). In this case, the lower tier of models is inconsistent with observed uncertainty 167 

estimates. If one excludes those models, the intermodel spread of long-term cloud feedback could 168 

be narrowed by approximately one-third. Since the ECS of a model is tied to the strength of its 169 

cloud feedback (e.g., Zelinka et al., 2020), our findings suggest a low ECS is unlikely, consistent 170 

with conclusions by Sherwood et al. (2020). 171 

Figure 1b compares interannual and long-term LR+WV feedbacks. Although the correlation 172 

between global-mean interannual and long-term LR+WV feedbacks is statistically significant at 173 

the 99% level, virtually all models fall within the observed uncertainty. This is due to two reasons. 174 

First, the spread of long-term LR+WV feedback (1.32 ~ 1.67 W m-2 K-1) is only half of that of 175 

interannual feedback (1.07 ~ 1.73 W m-2 K-1). Second, the observational-interannual uncertainty 176 

is nearly equal to the intermodel spread. Additionally, the observed interannual LR+WV feedbacks 177 

differ considerably among different observational and reanalyses products, reflecting the large 178 



degree of uncertainty in available observations of temperature and humidity profiles (Kramer et 179 

al., 2021). Similar results are seen in all-sky LR+WV feedback (Figure S1a), with an even weaker 180 

correlation between global-mean interannual and long-term LR+WV feedback. 181 

Surprisingly, the spread of tropical-mean long-term LR+WV feedback (1.61 ~ 2.37 W m-2 K-1) is 182 

twice as large as the global-mean spread. This is counter-intuitive. Since tropical atmosphere has 183 

long been known for following well-documented processes (i.e., moist adiabatic lapse-rate and 184 

radiative-convective equilibrium; e.g., Santer et al., 2005), one might expect the spread of tropical-185 

mean LR+WV feedback to be smaller than the global-mean spread. This motivates us to further 186 

explore the sources of intermodel spread in these feedbacks. 187 

3.2 Intermodel spread analyses 188 

To quantify local contribution of feedbacks to the global-mean intermodel spread, a simple linear 189 

regression method is adopted: 190 

𝐹𝐵𝑙𝑜𝑐𝑎𝑙 = 𝑎𝐹𝐵𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑏 191 

Here, 𝐹𝐵𝑙𝑜𝑐𝑎𝑙 is the intermodel variation of local feedbacks, which is resolved at each grid point. 192 

The interannual (long-term) 𝐹𝐵𝑙𝑜𝑐𝑎𝑙  from each model is calculated in traditional way, by 193 

regressing deseasonalized (annual) local radiative response against deseasonalized (annual) 194 

global-mean surface air temperature anomalies, instead of local surface air temperature anomalies. 195 

In this way, we isolate indirect effects of local surface temperature change exerted on local 196 

radiative responses. 𝐹𝐵𝑔𝑙𝑜𝑏𝑎𝑙  is the intermodel variation of global-mean feedbacks, which is the 197 

same for each grid. The “a” is the contribution from local intermodel uncertainty to the global-198 

mean feedback spread. When 𝐹𝐵𝑙𝑜𝑐𝑎𝑙 spread is large and varies with 𝐹𝐵𝑔𝑙𝑜𝑏𝑎𝑙 , we can obtain a 199 

large value of “a”, suggesting a large contribution from local difference to the global-mean spread. 200 



The spatial distribution of this contribution will be referred to as “contribution pattern” hereafter. 201 

The “b” is the y-intercept of the linear regression, a meaningless parameter in this method. 202 

Figures 2a-b highlight the contribution from local cloud feedback differences to the spread in 203 

global-mean cloud feedback. The contribution patterns for interannual and long-term cloud 204 

feedbacks exhibit similar characteristics. Specifically, local feedback differences over the eastern 205 

Pacific and Southern Ocean contribute the most to the global-mean cloud feedback spread on both 206 

timescales. Additionally, most of regions with statistically significant contribution to the global-207 

mean cloud feedback spread are associated with low clouds. This supports the utility of the 208 

observed constraint on global-mean long-term cloud feedback, since an emergent constraint must 209 

be based on a coherent relationship between intermodel variations in an observable quantity and 210 

in its future projection (Klein & Hall, 2015). This consistency between interannual and long-term 211 

contribution patterns is also evident in both shortwave and longwave cloud feedbacks (Figure 2c-212 

f), although the magnitude of local contribution on long-term timescales is generally smaller than 213 

that on interannual timescales. As expected, the shortwave component dominates local 214 

contributions to global-mean, total cloud feedback (Figure 2a-d & S2a-d), given the considerable 215 

importance of low cloud feedback. 216 

A similar analysis is applied to the LR+WV feedback (Figure 3a-b & S3a-b). Generally, the spread 217 

of global-mean LR+WV feedback is driven by feedbacks over the tropics on both interannual and 218 

long-term timescales.  However, the contribution patterns are noticeably different on these 219 

timescales. For instance, the intermodel spread of long-term LR+WV feedback is driven by a 220 

hemispheric asymmetric contribution pattern which is not observed on interannual timescales.  221 

This difference highlights the challenge in using observed variability to constrain global-mean 222 

long-term LR+WV feedback, since it points to differences in these feedbacks on a physical level. 223 



Interestingly, the spread in global-mean long-term LR+WV feedback is partly reduced due to 224 

compensation between the northern and southern hemispheres (NH & SH). Models with an 225 

anomalously strong NH feedback tend to have an anomalously weak SH feedback and vice versa.  226 

This explains why the spread of global-mean long-term LR+WV feedback is considerably smaller 227 

than that of interannual counterpart, and why the spread of tropical-mean long-term LR+WV 228 

feedback is twice as large as that of global-mean feedback. 229 

Following Held and Shell (2012), we further decompose the LR+WV feedback into WV feedback 230 

caused by the vertical-uniform warming under fixed relative humidity (fixed-RH) condition 231 

(𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚 feedback), LR feedback under fixed-RH condition (or the sum of LR feedback and 232 

its corresponding WV feedback component under fixed-RH condition; 𝐿𝑅̃ feedback) and relative 233 

humidity (RH) feedback, as following: 234 

𝐿𝑅 +𝑊𝑉 =  𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚 +  𝐿𝑅̃ + 𝑅𝐻 235 

The contribution of local uncertainty to the spread of global-mean LR+WV feedbacks are shown 236 

for each component (Figure 3c-h). The decomposition reveals that the large uncertainties in 237 

LR+WV feedback over the tropics comes from intermodel uncertainties in RH feedback (Figure 238 

3a-b & 3g-h). In other words, the spread of global-mean LR+WV feedback is dominated by 239 

differences in the tropical RH feedback, with a correlation [0.94 (0.98)] between long-term, global-240 

mean (tropical-mean) LR+WV and RH feedbacks (Figure 1c & S1b). For the same reasons, the 241 

RH feedback also cannot be constrained with observations (Figure 1d & S1c). 242 

The local, offsetting extratropical contributions to the global-mean long-term LR+WV feedback 243 

spread mostly come from local uncertainties of 𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚  feedback (Figure 3a-d). The 244 

hemispheric asymmetry of 𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚  uncertainty contribution pattern also partly reflects the 245 



meridional warming asymmetry. Meanwhile, signals are weak in the uncertainty contribution 246 

pattern of 𝐿𝑅̃ feedback (Figure 3e-f). Similar patterns of local contribution occur under all-sky 247 

conditions (Figure S3c-h), although the contribution magnitude is larger in some cases. For 248 

instance, there are larger positive contributions from local uncertainties of all-sky 𝐿𝑅̃ feedback 249 

over the NH (Figure S3e-f), compared to those under clear-sky conditions (Figure 3c-f). These are 250 

primarily due to the above-mentioned differences in cloud climatologies, especially the 251 

representation of cloud top height. The differences in local contribution from clear-sky and all-sky 252 

𝐿𝑅̃ feedback spread suggest a much larger uncertainty of the simulated cloud top height occurs 253 

over the northern extratropics (NE) than the southern extratropics (SE). 254 

Our findings differ from the CMIP5 analyses by Po-Chedley et al. (2018) in a few ways. First, 255 

they showed that model differences in all-sky 𝐿𝑅̃ feedback over the SE drive the model variability 256 

in global-mean long-term all-sky LR+WV feedback. We find the contribution of 𝐿𝑅̃ feedback to 257 

the global-mean LR+WV feedback concentrated in the NH for all-sky condition (Figure S3e-f), 258 

and small overall. Instead, the uncertainty in LR+WV feedback mostly comes from the tropics, 259 

where local RH exhibits the largest intermodel disagreement, especially under clear-sky condition 260 

(Figure 3a-b & 3g-h). Additionally, their reported high correlation (r = 0.99) between all-sky 261 

LR+WV and 𝐿𝑅̃ feedbacks decreases by one-fourth in our analyses (Figure S1d). This discrepancy 262 

could be attributed to more consistent cloud climatologies over the SE in CMIP6-era models 263 

(Vignesh et al., 2020). However, it should be noted that the local feedback calculation is different, 264 

as their calculations use local surface air temperature anomalies instead of global-mean surface air 265 

temperature anomalies and thus are more strongly influenced by local warming asymmetries. 266 

The question then arises: Do differences in warming patterns modify these climate feedbacks? To 267 

answer this question, we extend our analysis to uncertainties in local surface air temperature 268 



changes, by cross-model regressing the last 20-years local surface air temperature change to 269 

quadrupling CO2 against the global-mean long-term feedbacks (Figure 4). In terms of the spread 270 

in long-term cloud feedback, positive contribution from local warming uncertainty is evident 271 

almost everywhere (Figure 4a). This roughly uniform positive contribution can be interpreted by 272 

the fixed anvil temperature for high cloud feedback (Figure S2f; Hartmann & Larson, 2002; 273 

Zelinka & Hartmann, 2010) and low cloud thermodynamic and stability mechanisms for shortwave 274 

cloud feedback (Figure 2d & S2d; Klein & Hartmann, 1993; Wood & Bretherton, 2006; Bretherton, 275 

2015; Qu et al., 2015). The distinct west-east contrast over the tropical Pacific has been noted in 276 

previous studies (Ceppi & Gregory, 2017; Andrews & Webb, 2018) and shown to modulate cloud 277 

feedback over the tropical eastern Pacific, further influencing the spread of global-mean cloud 278 

feedback. The high uncertainty contribution over polar regions is likely due to the high correlation 279 

between global-mean warming and polar amplification. In contrast, the spread of long-term 280 

LR+WV feedbacks is driven by a meridional asymmetry (Figure 4b & S4). This is consistent with 281 

the above-mentioned uncertainty contribution pattern of 𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚  feedback. The most 282 

noticeable contribution occurs over the Southern Ocean (Figure 4b), where uncertainty in ocean 283 

heat uptake plays an essential role in manipulating the regional warming extent. This is consistent 284 

with Po-Chedley et al. (2018). Under all-sky conditions, however, the local warming contribution 285 

occurs in the NE instead of the SE. This supports our previous interpretation that a larger 286 

intermodel difference in cloud climatologies occurs over the NE than the SE. To some extent, this 287 

can be attributed to the more accurate representation of supercooled liquid cloud water over the 288 

SE in CMIP6-era models (Zelinka et al. 2020). 289 

4. Conclusions and discussion 290 



Here observation-based emergent constraints are adopted to evaluate the intermodel spread in 291 

long-term cloud and LR+WV feedbacks. The results indicate that observed interannual variation 292 

provides a useful constraint to narrow the uncertainty in global-mean long-term cloud feedback. 293 

Similar regional uncertainty contributions on both interannual and long-term timescales reflect a 294 

consistent behavior of low cloud changes and bolster the effectiveness of the observed constraint. 295 

Additionally, the local contribution to the long-term cloud feedback spread is dominated by the 296 

shortwave, low cloud feedback.  297 

In contrast, the long-term LR+WV feedback cannot be constrained with observations of 298 

interannual variability. This arises for two reasons: i) the spread of global-mean long-term 299 

LR+WV feedback is only half as large as that of interannual feedback; and ii) the observed 300 

uncertainty from individual observation nearly equals to the intermodel spread of global-mean 301 

interannual LR+WV feedback. Additionally, there is a large discrepancy among different 302 

observations and reanalyses products on the value of interannual LR+WV feedback. The spread 303 

of global-mean long-term LR+WV feedback is dominated by the tropics, where the largest 304 

contribution comes from the uncertainties in local relative humidity (RH) feedback, with a 305 

remarkably high correlation between LR+WV and RH feedbacks. Local intermodel uncertainties 306 

over the northern and southern extratropics, which are associated with the WV feedback under 307 

vertical-uniform warming and fixed-RH condition, offset each other. As a result, the uncertainty 308 

of tropical-mean LR+WV feedback is twice as large as that of global-mean feedback. Model 309 

differences in hemispheric warming asymmetries, induced primarily by Southern Ocean (SO) heat 310 

uptake differences, provide a secondary contribution to the spread in long-term LR+WV feedback. 311 

The importance of uncertainty in RH feedback is highlighted in this work. However, what causes 312 

the intermodel uncertainty still remains unknown. Here, some potential causes are proposed. First, 313 



the tropical RH feedback uncertainty could be related to the diversity of convective schemes 314 

adopted by CMIP6 models. For example, differences in the convective adjustment to exceeded 315 

saturation and the autoconversion from cloud water to rain in convective systems can greatly 316 

influence RH distributions (e.g., Zhao, 2014; Zhao et al., 2016). Second, the asymmetric 317 

contribution pattern of RH feedback over the tropics on long-term timescales could also be 318 

attributed to the difference in Intertropical Convergence Zone (ITCZ) shift to anthropogenic 319 

forcing (Byrne et al., 2018), which is closely tied to the meridional warming asymmetry. Related, 320 

the asymmetric contribution pattern could also result from inherited double-ITCZ bias, since the 321 

negative contribution occurs over the southeastern Pacific and South Atlantic, where a fictitious 322 

ITCZ is simulated by vast majority of climate models. In this case, models with less (more) double-323 

ITCZ bias would be less (more) affected by the narrowed ITCZ under anthropogenic forcing and 324 

thereby a larger (smaller) RH feedback. These hypotheses add to the growing list of documented 325 

relationships between ECS and double-ITCZ bias in models (Tian, 2015; Webb and Lock, 2020). 326 

Third, given the close relation between convective aggregation strength and double-peak structure 327 

of tropical rainbelt (Popp and Bony, 2019) and the high negative correlation between convective 328 

aggregation and RH feedback (Bony et al., 2020) in observations, it is reasonable to suspect a 329 

physical causality between convective aggregation strength and RH feedback. Models with 330 

stronger convective aggregation would have larger double-ITCZ biases and therefore have smaller 331 

RH feedbacks. A detailed investigation of the causes of RH feedback uncertainty remains the 332 

subject of future work. 333 

While the pattern of local warming contribution to the global-mean long-term LR+WV feedback 334 

suggests the SO heat uptake plays a role, a direct connection is not immediately obvious. For 335 

example, less warming due to more SO heat uptake should lead to a smaller local LR+WV 336 



feedback, not the larger global-mean LR+WV feedback as we find. Hence, the SO heat uptake 337 

likely exerts its impact on the global-mean LR+WV feedback in indirect ways, for instance by 338 

suppressing ocean heat uptake and leveraging a larger fraction of surface warming over the 339 

northern extratropics via a weakened Atlantic meridional overturning circulation. Alternatively, 340 

the SO heat uptake may modulate the global-mean LR+WV feedback by amplifying the meridional 341 

warming asymmetry, which could lead to the ITCZ shift, thereby modifying the LR+WV feedback. 342 

In this case, our results could explain a common feature that models with the more ocean heat 343 

uptake are the models with the higher ECS (Armour, 2017), since models with the more ocean 344 

heat uptake would also have a larger global-mean long-term LR+WV feedback. 345 
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 511 
Figure 1. Scatterplots of global-mean interannual (a) cloud feedback, (b) LR+WV feedback and 512 
(d) relative humidity feedback versus their corresponding long-term feedbacks and (c) a 513 
comparison between long-term LR+WV and relative humidity feedbacks in 39 CMIP6 models. The 514 
lines denote observed interannual feedbacks, while the shadings show their corresponding 95% 515 
confidence intervals. The red horizonal dash lines highlighted the spreads of long-term feedbacks 516 
are based on observed emergent constraints using ERA5 vertical temperature and humidity 517 
profiles. 518 
 519 



 520 
Figure 2. Cross-model regressions of local (a-b) cloud feedback, (c-d) shortwave cloud feedback 521 
and (e-f) longwave cloud feedback against global-mean cloud feedback for both (a, c and e) 522 
interannual and (b, d and f) long-term timescales. Hatching indicates area where regression is 523 
statistically significant at the 95% level. 524 
 525 



 526 
Figure 3. Cross-model regressions of local (a-b) LR+WV feedback, (c-d) 𝑊𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚 feedback, (e-527 

f) 𝐿𝑅̃ feedback and (g-h) RH feedback against global-mean LR+WV feedback for both (a, c, e and 528 
g) interannual and (b, d, f and h) long-term timescales. Hatching indicates area where regression 529 
is statistically significant at the 95% level. 530 
 531 



 532 
Figure 4. Cross-model regressions of last 20-years local surface air temperature change of 533 
abrupt-4xCO2 runs to global-mean long-term (a) cloud feedback and (b) LR+WV feedback. 534 
Hatching indicates area where regression is statistically significant at the 95% level. 535 
 536 
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Table S1. A list of the CMIP6 climate models analyzed in this study. 
 Institution Model DOI piControl DOI abrupt-4xCO2 

1 
CSIRO-

ARCCSS 
ACCESS-CM2 doi:10.22033/ESGF/CMIP6.4311 doi:10.22033/ESGF/CMIP6.4237 

2 CSIRO 
ACCESS-ESM1-

5 
doi:10.22033/ESGF/CMIP6.4312 doi:10.22033/ESGF/CMIP6.4238 

3 AWI 
AWI-CM-1-1-

MR 
doi:10.22033/ESGF/CMIP6.2777 doi:10.22033/ESGF/CMIP6.2568 

4 BCC BCC-CSM2-MR doi:10.22033/ESGF/CMIP6.3016 doi:10.22033/ESGF/CMIP6.2845 

5 BCC BCC-ESM1 doi:10.22033/ESGF/CMIP6.3017 doi:10.22033/ESGF/CMIP6.2846 

6 CAMS CAMS-CSM1-0 doi:10.22033/ESGF/CMIP6.9797 doi:10.22033/ESGF/CMIP6.9708 

7 CCCma CanESM5 doi:10.22033/ESGF/CMIP6.3673 doi:10.22033/ESGF/CMIP6.3532 

8 NCAR CESM2 doi:10.22033/ESGF/CMIP6.7733 doi:10.22033/ESGF/CMIP6.7519 

9 NCAR CESM2-FV2 doi:10.22033/ESGF/CMIP6.11301 doi:10.22033/ESGF/CMIP6.11285 

10 NCAR 
CESM2-

WACCM 
doi:10.22033/ESGF/CMIP6.10094 doi:10.22033/ESGF/CMIP6.10039 

11 NCAR 
CESM2-

WACCM-FV2 
doi:10.22033/ESGF/CMIP6.11302 doi:10.22033/ESGF/CMIP6.11286 

12 THU CIESM doi:10.22033/ESGF/CMIP6.8849 doi:10.22033/ESGF/CMIP6.8807 

13 CMCC 
CMCC-CM2-

SR5 
doi:10.22033/ESGF/CMIP6.3874 doi:10.22033/ESGF/CMIP6.3731 

14 DOE E3SM-1-0 doi:10.22033/ESGF/CMIP6.4499 doi:10.22033/ESGF/CMIP6.4491 

15 
EC-Earth-

Consortium 

EC-Earth3-

AerChem 
doi:10.22033/ESGF/CMIP6.4843 doi:10.22033/ESGF/CMIP6.4519 

16 
EC-Earth-

Consortium 
EC-Earth3-Veg doi:10.22033/ESGF/CMIP6.4848 doi:10.22033/ESGF/CMIP6.4524 

17 CAS FGOALS-f3-L doi:10.22033/ESGF/CMIP6.3447 doi:10.22033/ESGF/CMIP6.3176 

18 CAS FGOALS-g3 doi:10.22033/ESGF/CMIP6.3448 doi:10.22033/ESGF/CMIP6.3177 

19 NOAA-GFDL GFDL-CM4 doi:10.22033/ESGF/CMIP6.8666 doi:10.22033/ESGF/CMIP6.8486 

20 NOAA-GFDL GFDL-ESM4 doi:10.22033/ESGF/CMIP6.8669 doi:10.22033/ESGF/CMIP6.8489 

21 NASA-GISS GISS-E2-1-G doi:10.22033/ESGF/CMIP6.7380 doi:10.22033/ESGF/CMIP6.6976 

22 NASA-GISS GISS-E2-1-H doi:10.22033/ESGF/CMIP6.7381 doi:10.22033/ESGF/CMIP6.6977 

23 NASA-GISS GISS-E2-2-G doi:10.22033/ESGF/CMIP6.7382 doi:10.22033/ESGF/CMIP6.6978 

24 CCCR-IITM IITM-ESM doi:10.22033/ESGF/CMIP6.3710 doi:10.22033/ESGF/CMIP6.3516 

25 INM INM-CM4-8 doi:10.22033/ESGF/CMIP6.5080 doi:10.22033/ESGF/CMIP6.4931 

26 INM INM-CM5-0 doi:10.22033/ESGF/CMIP6.5081 doi:10.22033/ESGF/CMIP6.4932 

27 IPSL IPSL-CM6A-LR doi:10.22033/ESGF/CMIP6.5251 doi:10.22033/ESGF/CMIP6.5109 

28 NIMS-KMA KACE-1-0-G doi:10.22033/ESGF/CMIP6.8425 doi:10.22033/ESGF/CMIP6.8348 

29 KIOST KIOST-ESM doi:10.22033/ESGF/CMIP6.5303 doi:10.22033/ESGF/CMIP6.5288 

30 MIROC MIROC6 doi:10.22033/ESGF/CMIP6.5711 doi:10.22033/ESGF/CMIP6.5411 

31 
HAMMOZ-

Consortium 

MPI-ESM-1-2-

HAM 
doi:10.22033/ESGF/CMIP6.5037 doi:10.22033/ESGF/CMIP6.5000 

32 MPI-M 
MPI-ESM1-2-

HR 
doi:10.22033/ESGF/CMIP6.6674 doi:10.22033/ESGF/CMIP6.6458 

33 MPI-M MPI-ESM1-2-LR doi:10.22033/ESGF/CMIP6.6675 doi:10.22033/ESGF/CMIP6.6459 

34 MRI MRI-ESM2-0 doi:10.22033/ESGF/CMIP6.6900 doi:10.22033/ESGF/CMIP6.6755 

35 NUIST NESM3 doi:10.22033/ESGF/CMIP6.8776 doi:10.22033/ESGF/CMIP6.8719 

36 NCC NorESM2-LM doi:10.22033/ESGF/CMIP6.8217 doi:10.22033/ESGF/CMIP6.7836 

37 NCC NorESM2-MM doi:10.22033/ESGF/CMIP6.8221 doi:10.22033/ESGF/CMIP6.7840 

38 SNU SAM0-UNICON doi:10.22033/ESGF/CMIP6.7791 doi:10.22033/ESGF/CMIP6.7783 

39 AS-RCEC TaiESM1 doi:10.22033/ESGF/CMIP6.9798 doi:10.22033/ESGF/CMIP6.9709 

 

 



 
Figure S1. (a-c) are same as Figure 1b, 1c and 1d, except for all-sky condition and (d) a 

comparison between long-term all-sky LR+WV and relative humidity fixed lapse-rate feedbacks 

in 39 CMIP6 models. 



 
Figure S2. Cross-model regressions of local (a-b) cloud feedback, (c-d) low cloud feedback and 

(e-f) high cloud feedback against global-mean cloud feedback for both (a, c and e) interannual 

and (b, d and f) long-term timescales. Hatching indicates area where regression is statistically 

significant at the 95% level. 

 



 
Figure S3. Same as Figure 3, except for all-sky condition. 

 



 
Figure S4. Same as Figure 4b, except for all-sky condition. 

 


