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Abstract

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window

into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in

anthropogenic activity represent an unprecedented event that yields a glimpse into both the past and a future where emissions

to the atmosphere are reduced. While air pollutants and greenhouse gases share many common anthropogenic sources, there

is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes due in large part to

their different lifetimes. Here, we discuss the lessons learned from the COVID-19 disruptions for future mitigation strategies

and our current and future Earth observing system.
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The COVID-19 global pandemic and associated government lock-
downs dramatically altered human activity, providing a window into
how changes in individual behavior, enacted en masse, impact at-
mospheric composition. The resulting reductions in anthropogenic
activity represent an unprecedented event that yields a glimpse into
both the past and a future where emissions to the atmosphere are
reduced. While air pollutants and greenhouse gases share many
common anthropogenic sources, there is a sharp difference in the re-
sponse of their atmospheric concentrations to COVID-19 emissions
changes due in large part to their different lifetimes. Here, we dis-
cuss the lessons learned from the COVID-19 disruptions for future
mitigation strategies and our current and future Earth observing sys-
tem.
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The effects of the COVID-19 pandemic and associated lock-1

down measures can be conceptualized as in Fig. 1. Changes2

in human activity led to rapid decreases in emissions; these3

changes can be thought of as going either backward in time4

to former anthropogenic emissions levels or forward in time5

to a set of emissions targets. However, because the emissions6

changes were rapid, the response of air quality and the carbon7

cycle are observable and can be used to inform effective mit-8

igation strategies. Early estimates of carbon dioxide (CO2)9

emissions changes suggest a total reduction for 2020 of about10

7% (1, 2). Despite significant changes in individual behavior,11

this equates to moving back only to 2011 emission levels (Fig.12

2a). Global nitrogen oxide (NOx) emissions decreased to ap-13

proximately 1999 levels, but this simple picture is complicated14

by the fact that the distribution of NOx sources has changed15

significantly since that time. NOx emissions have been decreas-16

ing for several decades in the US (3–7), since the mid-2000s17

in Europe (3, 7–9), and approximately seven to nine years in 18

China (3, 5, 7, 10). In these regions, the impact of COVID-19 19

on air quality may be better thought of as jumping ahead in 20

time to a period with stricter emissions controls (Fig. 2b). 21

In countries whose NOx emissions have been increasing, the 22

emissions shifted as far back as 2008. The magnitude and even 23

sign of COVID-related methane (CH4) emission changes is 24

currently unknown (Fig.2a) and is complicated by competing 25

effects such as increases in oil and gas storage and decreases 26

in maintenance activities. 27

Our goal, outlined in Fig. 1, is to present a first look at how 28

the change in human activity during the COVID-19 pandemic 29

led to reduced emissions, and in turn how air quality and 30

the carbon cycle responded to this rapid change. We present 31

lessons learned in how we might achieve the same level of 32
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DRAFTFig. 1. Illustration of the conceptual flow of this study. The COVID-19-induced reductions in human activity led to reduced anthropogenic emissions. That shift, equivalent to
moving forward or backward in time, shows us how the atmosphere, land, and ocean respond in a future scenario with stricter emissions controls. This analysis helps to identify
pathways to mitigate air pollution and climate change without tremendous sacrifice from individuals. Image credit: Chuck Carter / Keck Institute for Space Studies

reduced emissions in the future without relying on tremendous33

individual sacrifice. This paper is organized in three parts.34

First, we describe the changes in human behavior that occurred35

during the pandemic. Second, we discuss the implications of36

observed changes in emissions and concentrations for future37

mitigation strategies, with special attention to how local-scale38

changes (using the San Francisco Bay Area and the Los Angeles39

Basin as case studies) collectively affect global climate and40

global-scale observations support strategies to improve local41

air quality. Finally, we examine what the COVID-19 pandemic42

has taught us about future needs for an Earth observing system43

and future lines of research.44

1. Change in human activity during lockdowns45

To place the atmospheric effects of the pandemic in context, we46

first need to understand how human activity changed. Figure47

3 shows metrics for the strictness of government lockdown48

measures, vehicle traffic, air traffic, shipping, and electricity49

use. To highlight connections between the local and global50

scales, we include metrics focused specifically on two California51

urban areas (the San Francisco Bay Area and Los Angeles52

Basin), the US and other countries as a whole, and the world.53

Except in China, vehicle traffic and air travel all show54

similar patterns of a sharp decrease in mid-March (Fig. 3b,c),55

when lockdowns and other protective measures went into effect56

in most locations (Fig. 3a), followed by a slow recovery over57

the following months. While California urban areas remained58

near or below their pre-pandemic traffic levels throughout the59

boreal summer, driving mobility throughout the whole US as 60

reported by Apple increased nearly 200% between January 61

and July. The Apple mobility data was only made available for 62

2020, so it is not possible to determine whether this represents 63

a typical seasonal cycle in travel. Chinese air travel shows an 64

earlier decrease and recovery than other locations, consistent 65

with an earlier lockdown (Fig. 3a,b). Shipping at the Ports of 66

Los Angeles (LA) and Long Beach showed a decrease in total 67

container moves in February and March relative to January, 68

while the Port of Oakland that serves the San Francisco Bay 69

Area was less affected (Fig. 3b). In April and May, residential 70

electricity use was higher in 2020 than 2019 across the US, 71

while industrial and commercial use was lower (Fig. 3c,d). 72

Total electricity use across all sectors in 2020 was about 5% 73

lower than in 2019. 74

Taken together, these metrics paint a picture of disrup- 75

tion focused on specific sectors of activity associated with 76

government policies to restrict peoples’ movement. Thus, as 77

an experiment, the COVID-19 pandemic and associated lock- 78

downs primarily represent a test of the atmospheric response 79

to emissions from passenger vehicles and airline travel. 80

2. Observed changes in air quality and implications for 81

mitigation strategies 82

Air quality Observations. The COVID-19 lockdown measures 83

led to a clear and rapid decrease in NOx emissions (15, 16), 84

providing a glimpse of the past for many countries but also a 85

look ahead to the future under consistent, long-term emissions 86

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Laughner et al.
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reduction policies (Fig. 2b). To understand the effects on these87

reductions on air quality (AQ), we begin with a comparison88

of AQ changes in different parts of the world, followed by a89

detailed look at the city of LA as an example of urban-scale90

effects. Figure 4, panels (a) through (c) show TROPOMI91

NO2 columns for three megacities: Los Angeles, USA; Lima,92

Peru; and Shanghai, China. Compared to 2019, NO2 levels93

are substantially lower in 2020 in these cities after lockdown94

measures were in place. However, the relationship between95

NO2 column measurements and NOx emissions, as well as the96

response of secondary pollutants to changes in NOx, depend97

on a number of factors including time of year, meteorology,98

and chemistry; we use statistical (15) and data assimilation99

techniques that account for these factors to draw inferences100

about atmospheric composition changes from the satellite101

measurements.102

Changes in NOx emissions alter concentrations of secondary103

pollutants through shifts in photochemistry. Over highly pol-104

luted urban areas with high NOx concentrations, reducing105

NOx can increase ozone (O3) production by attenuating the106

removal of OH and increasing volatile organic carbon (VOC)107

oxidation, particularly during winter (17). In lower NOx envi-108

ronments, reducing NOx can reduce O3 production by slowing109

photochemistry. Additionally, lower NOx concentrations mean110

less NO is available to convert O3 to NO2. Thus, the impact of111

COVID-19-induced emissions reductions on O3 levels is highly 112

contextual. The response of particulate matter (PM) levels 113

to NOx emissions reductions are likewise highly dependent on 114

local sources and chemistry (18). 115

One major source of uncertainty in the responses of sec- 116

ondary pollutants to the COVID-19 lockdown measures is 117

the associated changes in anthropogenic VOC emissions, for 118

which we do not currently have good observational constraints. 119

Gasoline-powered vehicles are important sources of VOCs in 120

urban environments, and there were undoubtedly decreases in 121

alkanes, alkenes and aromatics from passenger vehicle traffic. 122

In that sense, the COVID-19 lockdowns are fundamentally 123

different from weekend-weekday differences, which are primar- 124

ily driven by decreases in NOx-dominant diesel traffic. In 125

addition, personal care and cleaning products have become im- 126

portant sources of VOCs in urban air (19), and the emissions 127

changes associated with changes in the use of these products 128

during COVID-19 are largely unknown. 129

Assuming climatological VOC emissions, an assimilation 130

system constrained primarily by satellite NO2 column observa- 131

tions (20) shows that O3 production efficiencies (OPEs, defined 132

as the change in tropospheric O3 mass divided by the change 133

in NOx emissions) shifted in response to the COVID NOx 134

emissions reductions, with the change in OPE being highly 135

variable in space and time. Figure 4d shows the February to 136

June average OPE for 20 megacities around the globe. Los 137

Angeles and Shanghai both have small positive OPEs, indi- 138

cating that ozone did decrease in response to NOx reductions 139

seen in Figs. 4a and c, but that it is overall not very sensitive 140

NOx during boreal winter and spring. Further analysis of the 141

Los Angeles Basin is provided below. Small and even negative 142

OPE values (i.e. an increase in O3 production per unit NOx 143

decrease) are found for most mid- and high- latitude cities for 144

this time period. In contrast, the OPE for Lima is positive 145

and large (3.5), indicating a strong sensitivity of ozone to 146

the NOx reductions in Fig. 4b. The large values of OPE 147

for cities in tropical developing countries are associated with 148

active photochemistry and efficient vertical transport from the 149

surface into the entire troposphere. 150

OPE values also vary in time, driven largely by seasonal 151

changes in incoming solar radiation. The mean OPE values 152

averaged over the 20 megacities globally are relatively con- 153

stant, ranging between 0.7 and 1.2. These global OPE values 154

primarily reflect the large OPEs in the tropics and southern 155

hemisphere subtropics (Fig. 4e), where seasonal changes in 156

irradiance are small. The median OPE values over the north- 157

ern hemisphere extratropical megacities, however, increase 158

from 0.12 in February to 0.27 in June due to more active 159

photochemistry as the midlatitudes transitioned from winter 160

to summer (Fig. 4f). 161

Spatial variations in O3 production associated with reduced 162

NOx emissions are seen not only globally, but also within 163

a single urban area. In the LA Basin between March and 164

April, substantial reductions in NO2 were observed at most 165

measurement sites, but coastal and inland locations had larger 166

decreases in O3 than the center of the basin (Figs. S1 and S2). 167

In addition to seasonality, meteorological variations at smaller 168

timescales also play an important role in OPE. Examination of 169

the O3 time-series (Fig. 5) shows a clear correlation between 170

elevated O3 concentrations and elevated temperature, which 171

was also seen in a preceding analysis of O3 variations in the 172

Laughner et al. PNAS | February 3, 2021 | vol. XXX | no. XX | 3
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LA Basin (21).173

The response of particulate pollution to the COVID emis-174

sions reductions likewise reveals signatures of both distinct175

chemical regimes and meteorological controls. PM2.5 (particles176

with diameter ≤ 2.5 µm) levels in the LA Basin were markedly177

lower than the historical average in March and April (Fig. 5),178

even before the onset of the COVID-19 lockdown measures179

in mid-March. Synchronously, the LA Basin experienced fre-180

quent stormy days with atypically high amounts of rainfall181

and increased ventilation of the Basin through higher-than-182

average wind speeds, likely leading to reduced PM2.5 levels183

through wet deposition and advective removal, respectively.184

Simulations of inorganic nitrate aerosol formation in the LA185

Basin under two emissions scenarios, business as usual and186

COVID-reduced, (Fig. 6) suggest a 20% to 30% decrease in187

the March to May period due to lower NOx emissions, with the188

chemistry shifting substantially towards NOx-limited under189

the COVID-reduced emissions scenario. Reduced secondary190

aerosol formation and a higher degree of wet removal than191

usual likely both contributed to the reduction in LA Basin192

PM2.5 levels from March to May. After that, PM2.5 concen-193

trations reverted to typical levels until mid-September, when194

massive wildfires significantly deteriorated the air quality in195

the Basin.196

Other measurements, such as carbon monoxide (CO), help197

to identify the sectors in which emissions were reduced. In198
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urban areas such as Los Angeles, more than 70% of CO emis- 199

sions are from mobile sources, with smaller contributions from 200

fossil-fueled power plants and other stationary sources (22). 201

As discussed in Section 1, lockdown measures had a very large 202

impact on vehicle miles traveled (VMT) in the LA Basin. This 203

resulted in a clear signal in CO emissions as measured by the 204

CLARS-FTS remote sensing spectrometer on Mt. Wilson (23), 205

overlooking the basin. Figure S4 shows that the CO column 206

abundance decreased by 37.5% in April, 2020 compared with 207

the April mean from 2012-2019. The LA downtown region, 208

where CO concentrations are normally the highest, experienced 209

the largest decrease. 210

Implications for air quality mitigation strategies. The goal of 211

improving air quality is ultimately to improve human health 212

and quality of life. In this section, we explore what lessons 213

we can learn from the COVID-19 period to inform future air 214

quality policies that rely on cooperative action rather than 215

individual sacrifice. We focus on questions arising from three 216

key results of our analysis. First, what are the implications of 217

the spatial and temporal heterogeneity in the O3 and PM2.5 218

responses to emissions reductions, at both the global and 219

urban scales? Second, what role does climate play in driving 220

AQ changes, independent of emissions? Third, what lessons 221

from the LA Basin case study can be applied globally, and 222

what are the limitations to doing so? 223

First, what can be learned from the heterogeneity of the 224

air quality (especially O3) response to emissions reductions? 225

Globally, the large, relatively constant OPEs of tropical and 226

subtropical megacities suggest that NOx emissions reductions 227

would be highly effective at reducing O3 levels throughout the 228

year in these locations, whereas in midlatitudes NOx decreases 229

primarily impact the summer O3 season, when OPE values 230

are high relative to the rest of the year. Cities with negative 231

OPE values should consider combined NOx and VOC controls 232

to minimize short-term increases in O3 until NOx concentra- 233

tions are below the point of peak O3 production. Urban areas 234

should also assess the potential co-benefits of decreases in 235

nitrate formation associated with NOx emissions reductions. 236
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The strong dependence of secondary pollutant formation on237

chemical regime (i.e. the concentration of precursors other238

than NOx, including VOCs) as well as the potential for changes239

in chemical regime induced by simultaneous changes in O3240

and PM2.5 concentrations (e.g. increased hydroperoxy radical241

availability for O3 production associated with decreased up-242

take on aerosols (24)) emphasize the need for integrated air243

quality policies that address multiple types of precursor emis-244

sions simultaneously. Finally, the large role of meteorology in245

controlling air quality (e.g. (18) and Fig. 5) must be taken246

into account when determining efficient and cost-effective mit-247

igation strategies.248

At the urban scale, the variability in observed changes249

in atmospheric composition within the LA Basin during the250

COVID-19 lockdowns provides new insights regarding the im-251

pacts of air quality policies on environmental justice concerns252

and human health. COVID-19-related air quality improve-253

ments were uneven across population subgroups in the Basin254

(21) as well as in other major urban areas (15, 25), likely255

driven by the closer proximity of low-income and minority256

populations to major emission sources such as large roads,257

industrial facilities, and ports (26, 27). Observing the health258

impacts of air quality changes under COVID-19 is compli-259

cated because people simultaneously changed the degree to260

which they sought health care. However, studies have applied261

concentration-response functions developed under pre-COVID-262

19 activity patterns to estimate the number of deaths and263

disease cases that could be avoided if long-term urban plan-264

ning and environmental policies were to achieve COVID-like265

levels of emissions reductions (28, 29). The resulting improve-266

ments in air quality-related health metrics are substantial,267

particularly with respect to PM2.5, which has an order of mag-268

nitude greater impact on premature mortality than O3 (30).269

Since air pollution is emerging as a risk factor for COVID-19270

severity (31), the COVID-19 experience itself is also highlight-271

ing the importance of air pollution mitigation for improving272

the overall health of populations, making people more resilient273

to unforeseen risk factors, including novel viruses, in the future.274

The second question generated from our analysis is what275

role does weather and climate play in the observed changes in276

air quality? Interpreting the changes of O3 and PM2.5 in the277

LA Basin during COVID-19 is complicated due to colder-than-278

average temperatures and significant precipitation in March279

and April and much warmer-than-average temperatures in280

early May. Separating meteorological effects from responses to281

emissions reductions must be a key part of follow-on studies282

of the COVID-19 time period for all locations (15).283

The LA Basin measurements, however, represent a unique284

dataset to compare the relative effects of the O3 climate penalty285

(i.e. the increase in O3 associated with warmer tempera-286

tures) against emission reductions. Although not related to287

the COVID-19 pandemic, multiple prolonged heatwaves in288

August-October aggravated the O3 pollution, set records in289

different parts of the LA Basin, and stretched the O3 season to290

early Fall. Similar record-setting heat impacted much of the291

western US (32). Additionally, intense wildfires throughout292

California and much of the western US had large impacts on293

PM2.5 levels in the LA Basin. These events demonstrate that294

climate change and extreme events can undermine air quality295

progress from emissions controls. A previous prediction of296

the O3 climate penalty in 2020 for the LA Basin estimated a297

basin-average temperature dependence of about 1 ppb K−1
298

and up to 12 ppb K−1 in downwind areas (33); however, pre- 299

liminary analysis suggests typical values of 1.8 to 5.8 ppb K−1
300

for the O3 season (May-Sep) in 2020 throughout the basin (Fig. 301

S3). Analysis to understand this discrepancy is ongoing. The 302

2020 wildfire impacts on PM2.5 are even greater than those 303

predicted for the end of this century in the first California Cli- 304

mate Assessment (34). Thus, the temperature-dependence of 305

pollutant formation and increases in emissions due to climate 306

change (e.g. temperature-driven evaporative emissions, air 307

conditioning-related electricity generation, chemical produc- 308

tion, or extreme wildfire events) mean that climate cannot be 309

considered a separate problem to air quality (35), and policies 310

that target both air quality and climate, such as the recent 311

California executive order requiring all new passenger vehicles 312

sold be zero emission vehicles (36), are critical to the future 313

health of both people and the planet. 314

Finally, what lessons from the LA Basin case study can be 315

applied globally? Los Angeles has seen decades of emissions 316

controls. In California as a whole, atmospheric levels of CO 317

and VOCs associated with passenger cars were reduced to 2% 318

of their pre-control levels by 2010 (37) and the entire diesel 319

truck fleet was converted to lower NOx and PM2.5 technologies 320

by 2020 (38). Passenger cars and light trucks now represent 321

only about 10% of total NOx emissions in the LA Basin, while 322

heavy-duty trucks and buses represent approximately 30% 323

(39). Thus it is not completely unexpected that the O3 and 324

PM2.5 impacts of the COVID-19 reduction in traffic in LA, the 325

majority of which was associated with passenger vehicles, are 326

small compared to meteorological influences. Due to the con- 327

tinuing success of emissions controls on transportation sources, 328

other sources of NOx (e.g., off-road diesel sources), VOCs 329

(volatile chemical products), and background O3 are becoming 330

relatively more important to the O3 budget in LA (19, 40). 331

Cities that still have a large fraction of emissions coming from 332

passenger vehicles should not expect meteorological effects to 333

overwhelm efforts to reduce pollutant formation from vehicular 334

emissions; rather, meteorology will set the lower bound of O3 335

and PM2.5 concentrations attainable solely through emissions 336

controls. 337

We note that the maximum COVID-19 disruptions in Cal- 338

ifornia were during spring, when both O3 and PM2.5 are 339

typically at their minimum levels and well below the U.S. am- 340

bient air quality standards. However, late-April and early-May 341

O3 levels were higher than in recent years in the LA Basin, 342

which raises the question of whether there might be a shift in 343

the seasonality of O3 concentrations in the future (40). More 344

work is needed to fully disentangle the effects of emissions, 345

meteorology, and climate change in this regard. 346

While most of the policy implications described here are 347

neither particularly new nor surprising, the COVID-19 event, 348

combined with extensive ground- and satellite-based obser- 349

vations, has allowed us to confirm our expectations of the 350

impacts of NOx emissions reductions on air quality and at- 351

mospheric composition to a degree never before possible. To 352

summarize, the major lessons learned are: 353

1. Atmospheric chemistry and other processes alter the effi- 354

cacy of emissions controls from month to month, city to 355

city, and even neighborhood to neighborhood. 356

2. Care must be taken when crafting mitigation policies 357
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to ensure disadvantaged neighborhoods benefit equally358

under new policies and that any pre-existing disparities359

are addressed.360

3. In a warmer future climate with strong limits on AQ361

emissions, climate-driven AQ responses can overwhelm362

local controls. Therefore, controls on GHGs should be363

included in air quality mitigation strategies.364

4. When applying our results from the LA Basin to other lo-365

cations, it is important to note that (a) passenger vehicles366

and light trucks now represent only about 10% of LA NOx367

emissions and (b) the peak COVID-19 emissions reduc-368

tion occurred outside of the typical O3 season (May-Sep).369

Additional work is required to fully understand how this370

result transfers to the summer months and to cities with371

a higher proportion of emissions from passenger vehicles.372

Nevertheless, points 2 and 3 are still generally applicable.373

3. Observed changes in GHGs and implications for mit-374

igation strategies375

GHG Observations. As with air quality, lockdowns associated376

with the COVID-19 pandemic illustrate the link between in-377

dividual activity and fossil fuel GHG emissions. However,378

surface transportation, where most of the reductions occurred,379

comprises only 21% of global CO2 emissions, while power gen-380

eration accounts for 44% (1). Thus, the large local changes in381

individual mobility, which represent a significant disruption to382

everyday life, had a limited global impact, with emissions go-383

ing back in time only about a decade (Fig. 2a). Furthermore,384

unlike air quality, which responds quickly to changes in source385

gases, the effect of emissions perturbations on atmospheric386

CO2 concentrations is buffered by its much longer effective387

lifetime. Observing the impact of COVID-19 on atmospheric388

CO2 at global-to-regional scales has therefore proven difficult.389

However, in urban areas with CO2 monitoring networks such390

as the San Francisco Bay Area, changes in both emissions and391

atmospheric concentrations were much larger; observations392

from the Bay Area are discussed in detail below.393

Our preliminary estimates suggest that the global reduction394

in anthropogenic CO2 emissions was 7.8% for Jan-August 2020395

relative to 2019 (2) (Fig. 7a). Reductions were greatest in396

April, recovering to just below 2019 levels by mid-August. The397

year-average decline of the global emission could be 5% to 10%398

(approx. 490 to 980 Tg C) depending on the intensity of the399

reduction during the remaining lockdowns and the timing of400

the return of economic activity to pre-pandemic levels.401

The impact on atmospheric concentrations, however, was402

much smaller. Because the CO2 lifetime is long in the Earth403

system, present-day concentrations reflect accumulated emis-404

sions over decades to centuries, as well as positive and negative405

feedbacks. The atmospheric CO2 mixing ratio has increased406

dramatically in the past decades. Current levels exceed 400407

ppm, having increased every year without fail since the mod-408

ern record began in 1958, when CO2 was just over 300 ppm.409

In addition, there is a clear seasonal cycle, driven by the ter-410

restrial biosphere, as well as natural interannual variability411

due to climate (e.g. tropical drought (41, 42)) and changes in412

atmospheric circulation patterns. Natural variability in terres-413

trial and ocean fluxes, which respond to concentration changes414

as well as to climate and human land use, can compensate415

for or magnify anthropogenic emissions changes. This reduces416

the detectability of a global signal of even quite large regional 417

emission changes. 418

Figure 7b shows both the observed mixing ratios at the 419

Mauna Loa observatory and simulated mixing ratios using the 420

Goddard Earth Observing System (GEOS) atmospheric model 421

that incorporates daily estimates of 2019 and 2020 emissions 422

from Liu et al. (2) This analysis shows that the impact of 423

COVID-19 emissions reductions on the total mixing ratio in 424

the atmosphere is quite small and hard to detect against the 425

background seasonality and the long-term increasing trend. 426

During early April, the time period with the sharpest emissions 427

decreases associated with COVID-19, the impact on CO2 at 428

Mauna Loa was only a fraction of a ppm, which is smaller 429

than interannual climate-driven changes caused by the El Niño 430

cycle (41). For context, over the past 5 years, CO2 at Mauna 431

Loa has increased by nearly 15 ppm. 432

Ocean and land biosphere feedbacks may play a crucial 433

role in reducing the atmospheric signal of CO2 emissions 434

reductions. One hypothesis is that carbon uptake by the ocean 435

will decrease with smaller carbon emissions. This hypothesis 436

is supported by the ensemble of model simulations shown in 437

Figure 8, which depicts the responses of ocean and terrestrial 438

carbon fluxes under both a typical emissions scenario and 439

COVID-19-like emissions (43). Although the land flux is 440

similar in both scenarios, ocean uptake decreases in response 441

to the reduced atmospheric CO2 growth rate (44). We find 442

that the ocean uptake reduction of approximately 70 TgC/yr 443

for 2020 offsets 7% to 14% of the reduction in anthropogenic 444

emissions. 445

In contrast with the minimal changes in the trajectory of 446

CO2 globally, much larger changes have been observed locally. 447

Turner et al. (45) compared 6 weeks of CO2 measurements 448

before and after mobility restrictions were enacted in the San 449

Francisco Bay Area and observed a 5-50 ppm decrease; from 450

this, they inferred a 30% decrease in fossil fuel CO2 emissions 451

over the period (Fig. 7c). When integrated over the first 452

six months of the year, COVID-19 restrictions represent an 453

almost 80% total reduction in CO2 emissions from vehicles in 454

the Bay Area relative to 2019. The decrease in mobility also 455

perturbed the daily and weekly cycle of emissions, with the 456

largest reductions occurring mid-week and during the morning 457

rush hour. The atmospheric CO2 signal was observable in an 458

urban area because of the proximity to the perturbed sources, 459

in contrast to the dilute, global signal. 460

The nature of the Bay Area human system means that traf- 461

fic emissions are a significant driver of near-field CO2 mixing 462

ratios. Other large urban areas also experienced significant 463

declines in emissions from ground transportation, with approx- 464

imately 70% reductions in New York and Beijing when the 465

lockdowns started (46). At the regional scale, other emission 466

sectors had more influence. Gurney et al. (47, 48) found that 467

weekly total US fossil fuel CO2 emission reached a maximum 468

departure of -19.5% (-18.2% to -21.6%) during the week end- 469

ing April 3, 2020, consistent with the initiation of state-scale 470

COVID-19 lockdown orders. The average fossil fuel CO2 emis- 471

sions decline for April and May, the two-month period with the 472

largest persistent reduction, was -15.8% (-14.3% to -17.8%), 473

with the largest decrease from gasoline-fueled transportation 474

(-30.2%), followed by electricity generation (-15.4%), aviation 475

(-62.2%), and industrial activity (-9.0%). Hence, while mobil- 476

ity sectors did have the largest decrease across the US, other 477
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Fig. 7. (a) Global CO2 emissions for 2019 and 2020. See SI for details. (b) Simulated
(black) and weekly average observed (red) CO2 at the Mauna Loa observatory (49)
during 2019 and 2020. A GEOS simulation assuming 2019 emissions levels in
2020 is shown as the solid black line along with a simulation incorporating estimated
2020 decreases (dashed black line). (c) CO2 emissions in the San Francisco Bay
Area before and after the COVID-19 lockdown, inferred through two techniques: an
inversion of BEACO2N network observations (“from CO2 measurements”) and traffic
data combined with estimates of fuel efficiency (‘from traffic”).

sectors also experienced anomalous declines. When including478

expectations for the remainder of 2020, the estimated an-479

nual fossil fuel CO2 emissions decline in the U.S. is projected480

to be -9.9% (-7.6% to -12.1%). These differences in local,481

regional, and global changes in emissions and atmospheric482

concentrations of CO2 emphasize the need for monitoring CO2483

at multiple scales.484

While there is a clear chain of causality tying COVID-19485

mobility restrictions to CO2 emissions, the impacts of COVID-486

19 on other major GHGs such as methane are less clear. The487

fossil fuel sector is indeed a major source of methane; however,488

methane emissions are not directly tied to fossil fuel combus-489

tion. Instead, they occur during the production, processing,490

and transport of oil and gas as well as from coal mining. The491

COVID-19 lockdowns imply a number of competing effects492

with respect to methane emissions. Oil production declined,493

but the demand for methane for heating and power genera-494

tion may not have changed significantly. Drilling of new wells495

decreased; at the same time, production and storage facilities496
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Fig. 8. Annual mean, globally integrated carbon dioxide fluxes predicted from the
CanESM5-COVID ensemble (43): (a) Sea-to-air CO2 flux (positive out of ocean; Pg
C yr−1), and (b) terrestrial net ecosystem production (NEP, positive into biosphere,
excludes land use change, Pg C yr−1). Black/gray lines derive from simulations forced
with SSP2-RCP4.5 CO2 emissions, while red/pink lines derive from simulations forced
with a 25% peak CO2 emissions reduction in 2020. See (43) for more details. Thick
lines are ensemble averages, and thin lines are individual ensemble members, each
with different phasing of internal variability.

may have reduced the maintenance frequency, leading to an 497

increase in leaks. In response to these uncertainties, NASA 498

organized an airborne campaign in the spring of 2020 to better 499

understand the processes controlling methane emissions during 500

COVID-19. The campaign aimed to leverage the recent work 501

of Duren et al. (50) who used an airborne imaging spectrome- 502

ter (51) to characterize methane emissions across California. 503

Analysis of these results is ongoing. 504

In addition to direct changes in methane emissions, the 505

growth rate of CH4 in the atmosphere will be impacted by 506

the shift in NOx chemistry seen in Sect. 2. In a model 507

incorporating the decreased NOx emissions associated with 508

COVID-19 (20), March to June monthly global averaged OH 509

concentrations decreased by 2% to 4%. Using the tropospheric 510

chemical methane lifetime from the Atmospheric Chemistry 511

Climate Model Intercomparison Project (ACCMIP) multi- 512

model mean (9.3 ± 1.6 year), a 4% OH reduction would 513

increase the methane lifetime by about 4 months, roughly 514

equivalent to a 22 Tg/yr ( 6%) increase in fossil fuel methane 515

emissions (Fig. 2). 516

Implications for GHG mitigation strategies. Though the effect 517

of COVID-19-induced lockdowns on the growth rate of atmo- 518

spheric CO2 was small, this event provided important informa- 519

tion on how the Earth system and human behavior respond to 520

a sudden shift in emissions, and demonstrates that restriction 521

of personal mobility is not an effective means of reducing at- 522

mospheric CO2. For methane, any decreases in emissions can 523

be counteracted by NOx reductions and the resulting increases 524

in lifetime, indicating once again the importance of designing 525

integrated climate and AQ mitigation policies. 526

The San Francisco Bay Area provides an example of how 527
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behavioral responses to the pandemic can offset potential528

emissions reductions. VMT in the Bay Area decreased in529

the first six weeks after safer-at-home measures were imposed,530

followed by recovery in the late spring and summer months. As531

of June 2020, VMT has largely recovered, reaching 83% of the532

baseline despite 40% of people in the Bay Area still reporting533

staying at home. One reason for the recent increases in VMT534

may be a combination of a reluctance to use and a reduction535

of services in public transit. Monthly ridership of the Bay536

Area Rapid Transit System (BART) saw an average of roughly537

400,000 riders daily on pre-pandemic weekdays. Ridership538

reductions relative to February 2020 peaked in April, with a539

93% decrease in BART usage. In contrast to personal vehicle540

use, BART ridership has recovered only slightly in recent541

months, with ridership in September still 87% below February542

levels (https://www.bart.gov/about/reports/ridership, last accessed543

29 Oct 2020).544

At the same time, COVID-19 has the potential to lead545

to local permanent emissions reductions. The Marathon546

Refinery, which represents roughly 10% of Bay Area indus-547

trial CO2 emissions (52), ceased operations permanently in548

2020 and is under evaluation for use as a renewable diesel549

processing facility (https://www.sfchronicle.com/business/article/550

Marathon-Petroleum-will-indefinitely-idle-15451841.php, last ac-551

cessed 29 Oct 2020).552

Complex recovery paths further complicate understanding553

the long-term effects of COVID-19 on CO2 (and CH4), but554

they also provide insights into the challenges of observing555

and verifying more intentional mitigation of emissions in the556

complex carbon energy system as the world addresses climate557

change. There are two key conclusions to draw from this558

analysis:559

1. Changes in both human behavior and the Earth system560

can counteract reductions in GHG emissions. While there561

were examples of positive feedbacks (e.g. the Marathon562

refinery closure), the net impact appears to be a partial563

offset of the emissions reductions. In particular, oceanic564

uptake of CO2 rapidly decreased, which immediately offset565

part of the anthropogenic emissions reduction. Therefore,566

we must expect that the ratio between the change in567

the atmospheric growth rate of GHGs and changes in568

emissions is less than one, and plan accordingly.569

2. Despite the major disruption that the COVID-19 pan-570

demic has caused in most people’s lives, it has had little571

effect on the trajectory of our future climate. The con-572

trast between stark emissions reductions across the trans-573

portation sector and the minimal impact on global CO2574

concentrations highlights the ineffectiveness of piecemeal575

or single-sector emissions reductions at slowing global ac-576

cumulation of GHGs. This paradox demonstrates the dire577

need for systemic change, rather than extreme modifica-578

tion of individual behavior, to effectively mitigate climate579

change. GHG emissions from all of the largest sectors:580

power generation, industry, transportation, and agricul-581

ture (1, 53) must be addressed to permanently move582

our CO2 and CH4 emissions back in time and effectively583

reduce their concentrations in the atmosphere.584

4. Earth observing system: successes and future vi- 585

sion 586

Understanding the global atmospheric response to COVID- 587

19 mitigation policies would not have been possible without 588

international investments in both ground-based and space- 589

based environmental sensors (54, 55). In the sections above, 590

we have shown that the current observing system, combined 591

with data assimilation and modeling frameworks that allow 592

us to tease apart the roles of COVID-induced emissions re- 593

ductions, meteorology, and biospheric processes, is able to 594

deliver an understanding of the processes mediating the pro- 595

duction, transport, and removal of air pollutants and GHGs. 596

At the same time, this analysis of COVID-19 impacts on the 597

atmosphere has revealed gaps in the observing system. 598

Quantifying the emissions, transport, and transformation of 599

atmospheric pollutants is a multi-scale challenge in both space 600

and time. An effective observing system must capture the 601

non-linearity in chemistry associated with changes in emissions 602

on urban scales and the subsequent impact of these changes 603

on regional and global scales. A specific gap in AQ observing 604

capability is high-quality, routine measurements of volatile 605

organic compounds. For GHGs, the global observing system 606

must simultaneously be able to break down the sector-by-sector 607

contribution to GHG emissions and detect the Earth system 608

responses to these emissions changes. These goals require 609

additional observations and measurements at finer spatial and 610

temporal resolution than currently available. 611

The current fleet of GHG observing satellites is limited to 612

narrow field-of-view instruments in low earth orbit, meaning a 613

given location is only observed once per day and the number 614

of locations observed is limited. While current air quality 615

observing satellites include wide swath instruments capable 616

of global coverage, they have still been restricted to at most 617

twice daily observations up until now. Over the next decade, 618

however, a new suite of geostationary sounders will provide 619

air quality data at unprecedented spatio-temporal resolutions 620

as part of a global air quality constellation (56). The first of 621

these sounders, the Geostationary Environment Monitoring 622

Spectrometer (GEMS), launched recently and will provide 623

hourly air quality measurements over Asia. The diurnally 624

resolved measurements should provide information to help 625

distinguish between various emissions sectors. GEMS will soon 626

be followed by TEMPO over North America (57) and Sentinel- 627

4 over Europe and North Africa (58). Similar plans are in 628

motion to launch next generation GHG observing satellites, 629

including geoCARB (59), GOSAT-GW (60), and CO2M (61) 630

which will provide much denser CO2 observations than the 631

current fleet of CO2 sensors. Other proposed missions, such as 632

the Atmospheric Imaging Mission for Northern Regions (62), 633

would bring a dense set of air quality and GHG observations 634

to the northern high latitudes, critical for understanding how 635

the boreal forest and permafrost respond to climate change. 636

The observing system of the future also needs to be able to 637

resolve lower atmospheric variability and extend the number 638

of species observed. The LA Basin AQ example showed the 639

importance of understanding the chemical regime that governs 640

O3 and PM2.5 formation, and of other tracer measurements 641

such as CO to disambiguate different sectors’ emissions. New 642

approaches will combine measurements from multiple sensors 643

to infer near-surface quantities relevant to AQ (63, 64). Aug- 644

menting the planned next generation of satellites, which cover 645
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the short wave infrared, near infrared, visible, and ultraviolet646

wavelengths, with thermal infrared sensors will aid in this.647

This could be feasible from meteorological sounders like IRS-648

MTG (65), though higher spectral resolution than currently649

planned for meteorological sounders is critical for quantifying650

near-surface O3. Retrievals of isoprene, the largest natural651

VOC source, have recently been demonstrated using thermal652

IR measurements from the Cross-track Infrared Sounder (CrIS)653

(63). Designing an isoprene-specific instrument with a lower654

limit of detectability than CrIS and concurrently measuring655

HCHO and NO2 would provide key information on chemical656

regimes relevant to O3 and secondary aerosol formation.657

Measurements of particulates, which according to the658

Global Burden of Disease are the leading environmental risk659

factor for mortality, have unique challenges relative to those of660

trace gases. Although advances in the retrieval of AOD from661

satellite measurements of solar backscatter (66, 67), coupled662

with observed relationships between AOD and PM2.5, are of-663

fering a new window into air quality assessment from satellite664

remote sensing (68, 69), challenges remain in observing how665

emissions changes such as those associated with COVID-19666

interventions interact with the PM2.5 chemical system. Given667

the dichotomy in the response to COVID-19 emissions re-668

ductions seen between urban and rural areas (Figs. S5–S7),669

working towards PM2.5 observations that cover both types of670

regions, either through wider in situ networks, new develop-671

ments in remote sensing (70, 71), or a combination of both672

(72, 73), will be important to understand the chemical factors673

controlling PM2.5 exposure.674

Though the ability of satellite measurements to provide675

global coverage is invaluable for monitoring global air quality676

and GHG burdens, a space-based system must be comple-677

mented with innovative in situ approaches. These approaches678

provide important information on the vertical distribution of679

atmospheric constituents (74) at small spatiotemporal scales680

to complement space-based column abundances, as well as681

measurements of critical species that cannot be measured by682

remote sensing techniques.683

Dense, low cost sensor networks such as the Berkeley684

BEACO2N network (75, 76) can play an important role in685

resolving urban-scale pollution. These networks effectively686

offer a mapping capability similar to the next generation of687

space-based observations, but through a distributed collec-688

tion of instruments, rather than a single imager. Section 3689

described how BEACO2N measurements informed estimates690

of CO2 emissions reductions due to COVID in the San Fran-691

cisco Bay Area. Other networks that have likewise observed692

high spatial variability in CO2 and pollutant gases as well693

as temporal variations caused by local emissions have been694

reported in Pittsburgh, PA, USA (77, 78), and Cambridge,695

UK (79, 80).696

Sensor networks can be especially useful in distinguishing697

between emissions from different sectors. Low cost sensors698

deployed at Heathrow Airport in the UK were used to refine699

a NOx emission inventory by constraining the emission ratio700

between NOx and CO2 (81). Another study in Pittsburgh, PA701

(82) that focused on the impact of COVID-19 found a 50%702

reduction in CO and NO2, leading to a 100% reduction in the703

typical PM2.5 enhancement from traffic during morning rush704

hours, but no significant change in industry-related CO and705

PM2.5 concentrations. These studies highlight a particular706

advantage of in situ networks over space-based observations: 707

not only do they offer higher temporal resolution than even 708

geostationary sensors, but they can measure at night and 709

early morning, when sunlight-observing spectrometers cannot. 710

Finding ways to integrate measurements from in situ networks 711

and Earth observing satellites will enable us to combine the 712

best aspects of both. One study (73) did so successfully and 713

reported greater accuracy and spatiotemporal detail in PM2.5 714

exposure estimates. 715

In between these neighborhood-level networks and orbiting 716

satellites, a system must include a component capable of 717

deploying in a rapid response mode to measure quickly-evolving 718

changes in the Earth system. Section 3, showed how the 719

response of the CH4 growth rate to the COVID-19 pandemic 720

is governed by both changes in emissions and lifetime. At the 721

global scale, these will be convolved and very challenging to 722

separate. The NASA aircraft campaign organized to study 723

methane emission processes during spring of 2020 will provide 724

critical, near-field data (unaffected by changes in lifetime) to 725

separate these factors. Such targeted observations that can be 726

deployed as needed must be part of future observing system 727

plans. 728

Given the focus on dense monitoring networks and high 729

spatiotemporal frequency satellite observations, it is clear that 730

the volume of data available will continue to grow in the 731

future. Data-driven modeling is a key tool to separate out 732

the various processes at work in the Earth system. There- 733

fore the development of infrastructure for synthesis of these 734

datastreams must accompany the deployment of new satel- 735

lite constellations and in situ networks. Another requirement 736

is the development of models that can seamlessly represent 737

the chemical environment from urban to global scales. The 738

MUlti-Scale Infrastructure for Chemistry and Aerosols (MU- 739

SICA) (83), is an example of the initial development of such 740

a framework. Data assimilation, which is the cornerstone of 741

modern numerical weather prediction, is a critical pillar for 742

the global analysis of air quality constrained by observations 743

and for CO2 flux estimate efforts. New initiatives like the 744

European Copernicus Atmospheric Modeling Service (CAMS) 745

(84) are providing an operational capacity for air quality while 746

new systems are focused on estimating both emissions and pol- 747

lutants (20, 85). Additional data assimilation tools are needed 748

that can integrate the growing datastreams and capture (1) 749

the evolving nonlinear relationships between the large suite of 750

chemical constituents, (2) the broad range of chemical lifetimes 751

and spatial scales involved, and (3) the offsetting responses 752

occurring in the Earth system. The development of these 753

tools as a community-based resource should be a component 754

of the emerging observing system to ensure that the broader 755

community can effectively exploit the observations to better 756

understand the changing Earth system. 757

Conclusion 758

The COVID-19 pandemic represents an unprecedented and 759

well-observed event that provides a glimpse into both the past 760

and a future world with drastically altered emissions to the 761

atmosphere. Much work remains to be done to understand in 762

detail the implications of this event for understanding human 763

interaction with the Earth system. However, the availability 764

of an unprecedented wealth of Earth observations during the 765

pandemic shows the value of current and future space-based 766
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and in situ sensors in understanding these interactions. Several767

key lessons are already apparent from these systems and the768

nascent integrated analyses presented here.769

The chemical regimes governing the response of air quality770

to emissions changes are quite variable in both space and time.771

Future actions to remediate air quality should consider the772

best course for a given location, and be careful about applying773

lessons from historically successful actions without accounting774

for differences between then and now. Even within a single775

city, spatial differences in the air quality response to emissions776

must be considered to ensure all neighborhoods benefit from777

air quality improvements.778

Despite the massive disruption to daily life around the779

world, the lockdowns resulting from the COVID-19 pandemic780

brought our CO2 emissions back in time by only nine years.781

Coupled with changes in ocean flux and human behavior that782

partly offset the reduction, the pandemic did not significantly783

reduce the growth rate of atmospheric CO2. Clearly, changes784

in individual behavior alone will not prevent our reaching a785

1.5°C warming. Sustained, systemic changes are required to786

curb our carbon emissions.787

Observations during the COVID-19 period show unam-788

biguously that improving air quality and preventing climate789

change are not separate problems; they are inextricably linked.790

Climate-driven extremes of temperature, drought, and wild-791

fires can overwhelm a half century of effort to improve air792

quality. Simultaneously, reduced NOx emissions can lead to793

longer CH4 lifetime through reduced OH concentrations, in-794

creasing methane’s warming potential. As depicted in Fig.795

1, strategies to achieve better air quality and reduce climate796

change can be informed by the results presented here and797

depend on solutions that treat these as two parts of the same798

goal, and not separate challenges.799

Materials and Methods800

Full methods are available in the SI. Analysis of LA Basin air qual-801

ity used data from CA Air Resources Board monitors, filtered for802

complete data records in the 2015 to 2020 period. Model simu-803

lations to derive OPE used multiconstituent assimilation in the804

MIROC-CHASER model. OPE calculated by comparing mod-805

eled O3 production difference between baseline and reduced 2020806

emissions. PM2.5 simulations used GEOS-Chem v9-02 with NOx807

emissions consistent with the OPE simulations.808

SF Bay Area CO2 emissions were estimated by (a) an inversion809

of BEACO2N network CO2 measurements using the STILT model810

(86) and (b) by the product of PeMS-measured VMT and fleet fuel811

efficiency. Global CO2 emissions estimates were derived from an812

array of near-real time data on power generation, industry, transport,813

and fuel consumption.814

Publicly available datasets will be listed in the SI. For other815

datasets, please contact the corresponding authors.816
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Additional figures24

Fig. S1. Change in 1 hr daily maximum (DM) NO2 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air

Basin.

Fig. S2. Change in 8 hr daily maximum (DM) O3 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air

Basin.
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Sites are ordered by longitude (from west to east)

Fig. S3. Average derivatives of O3 response vs. temperature between May and September at California Air Resources Board sites throughout the South Cost Air Basin for

years 2015–2020. Each group of bars is one site, and are ordered by longitude (west to east).
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Fig. S4. (a) Maps of CO column abundance (XCO) in excess of the background in the Los Angeles (LA) basin averaged for the month of April. Left panel (Normal): April

noontime average for 2012-2019. Right panel (COVID-19): April 2020 during lockdown. These maps are interpolated from the 33 surface observation targets by CLARS-FTS;

(b) The histogram of difference between XCO excess measurements in (a) for all the surface observation targets. The averaged XCO excess reduction is 37.5% on average

due to the lockdown order.
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Fig. S5. Average change in gas ratios for March 2020 between a model simulation using business as usual (BAU) NOx emissions and one using emissions based on NO2

observations for March 2020 (COVID-19). The gas ratio is described in Eq. (1); a value < 1 indicates NH3 limited nitrate aerosol formation; a value > 1 indicates NOx

limited aerosol formation.
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Fig. S6. Same as Fig. S7, but for April 2020.
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Fig. S7. Same as Fig. S7, but for May 2020.

Supporting Information Text25

Methods26

Public data. All public datasets used in this study are shown in Table S1.27

Equivalent Emissions Year Calculations. For the CO2 emissions in Fig.2a, we used 2005-2018 fossil fuel emissions from the28

Global Carbon Budget 2019 (12). For 2019, we assumed a +0.1% increase from 2018 based on Supplementary Data in Le29

Quere et al (13). For 2020 we used a 7% decrease from the 2019 value with a ± 1% uncertainty, based on Le Quere et al30

(13) and Liu et al (14). The 2020 emissions are 9.29 (± 0.10) GtC/yr; this corresponds to somewhere between 2010 (9.0531

GtC/yr) and 2012 (9.50 GtC/yr). For CH4, we use the anthropogenic emissions based on the EDGARv4.3.2 and GFED4.1s32

emissions inventories as published in the Global Methane Budget 2000-2017 (15). The emissions trajectory beyond 2017 is for33

illustrative purposes only and is not based on any data. For the global NOx emission trajectory in Fig. 2 we used 2005-202034

emissions from the assimilation system described in the subsection “Global ozone production efficiency calculation” below. The35

equivalent year of 1999 ± 3.5 years was determined by applying the percent reduction between the average emissions over36

2010-2014 and the 2020 emissions as determined by the assimilation system (-15.8%) to the 2010-2014 emissions from the37

CEDS and EDGAR5.0 inventories.38

For Fig 2b, we again used the NOx emissions from the assimilation system. For countries whose emissions have been39

monotonically increasing since 2005, we calculate the prior year with the same emissions as 2020. For countries whose emissions40

decreased over all or part of the 2005-2019 period, we use the 2015-2019 rate of decline to project emissions into the future.41

Human activity metrics. The human activity metrics in Fig. 3 include the Oxford Coronavirus Government Response Index42

(1), Opensky-derived flight data (2, 16, 17), Port of LA container moves (https://www.portoflosangeles.org/business/statistics/43

container-statistics, last accessed 30 Oct 2020), Port of Oakland container moves (https://www.oaklandseaport.com/performance/44

facts-figures/, last accessed 30 Oct 2020), Caltrans PeMS daily vehicle counts (http://pems.dot.ca.gov/, last accessed 28 Oct 2020),45

Apple driving mobility data (https://covid19.apple.com/mobility, last accessed 28 Oct 2020), and U.S. Energy Information Agency46

electricity consumption (https://www.eia.gov/electricity/data/browser/#/topic/, last accessed 10 Aug 2020).47

The CAADA Python package (18) was used to preprocess the PeMS vehicle counts and Strohmeier et al. (2) flight data,48

as well as download Port of LA and Port of Oakland container moves. For the purposes of Fig. 3, “Bay Area” is defined as49

Alameda, Contra Costa, Marin, San Mateo, San Francisco, Santa Clara, and Santa Cruz counties, while “LA” is defined as Los50

Angeles, Orange, Riverside, San Bernardino, Santa Barbara, and Ventura counties. For flight data, shipping data, and traffic51

data, daily values were normalized such that 15 Jan 2020 is 100% and monthly values were normalized such that Jan 2020 was52

100%. For electricity use data, each month’s value is the 2020 use as a percentage of 2019 use in the same month.53
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Dataset Used for Link Last access Citation

Oxford Stringency Index Human activity metrics https://www.bsg.ox.ac.uk/research/research-projects/

coronavirus-government-response-tracker

11 Nov 2020 (1)

OpenSky-derived flight data Human activity metrics https://zenodo.org/record/3928564 11 Nov 2020 (2)

Port of Oakland container moves Human activity metrics https://www.oaklandseaport.com/performance/

facts-figures/

11 Nov 2020

Port of LA container moves Human activity metrics https://www.portoflosangeles.org/business/statistics/

container-statistics

11 Nov 2020

Port of Long Beach container moves Human activity metrics https://www.polb.com/business/port-statistics/

#teus-archive-1995-to-present

10 Nov 2020

Caltrans PeMS Human activity & SF emissions https://pems.dot.ca.gov/ 11 Nov 2020

Apple mobility trends Human activity metrics https://covid19.apple.com/mobility 27 Oct 2020

US EIA electricity use Human activity metrics https://www.eia.gov/electricity/data/browser/#/topic/ 10 Aug 2020

CARB air quality data LA Basin analysis https://www.arb.ca.gov/aqmis2/aqdselect.php 11 Nov 2020

OMI NO2 columns Global model assimilation (OPE) http://www.qa4ecv.eu/ecv/no2-pre/data 11 Nov 2020 (3, 4)

TROPOMI NO2 columns Global model assimilation (OPE) http://www.tropomi.eu/data-products/nitrogen-dioxide 11 Nov 2020 (5)

MOPITT CO Global model assimilation (OPE) https://www2.acom.ucar.edu/mopitt 11 Nov 2020 (6)

OMI SO2 columns Global model assimilation (OPE) https://disc.gsfc.nasa.gov/datasets/OMSO2_003/

summary

11 Nov 2020 (7, 8)

MLS O3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/o3_product.php 11 Nov 2020 (9, 10)

MLS HNO3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/hno3_product.php 11 Nov 2020 (9, 11)

BEACO2N CO2 data SF CO2 emissions estimates https://beacon.berkeley.edu/ 11 Nov 2020

NOAA HRRR meteorology SF CO2 emissions estimates https://rapidrefresh.noaa.gov/hrrr/ 11 Nov 2020

Table S1. Public data sources used in this paper. The “Used for” column gives the part of the analysis in which that data was used.

6 of 12 Joshua L. Laughner, Jessica L. Neu, David Schimel, Paul O. Wennberg, et al.



TROPOMI NO2 timeseries. For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with native54

pixels of approximately 3.5 × 7 km2 for 2019 and 3.5 × 5.5 km2 for 2020, to a newly defined 0.01◦

× 0.01◦ grid (approximately55

1 × 1 km2) centered over each of the three cities: Los Angeles, Lima, and Shanghai. Before re-gridding, the data are filtered so56

as to use only the highest quality measurements (quality assurance flag (QA_flag) > 0.75). By restricting to this QA value, we57

are removing mostly cloudy scenes (cloud radiance fraction > 0.5) and observations over snow-ice. Once the re-gridding has58

been completed, the data is binned temporally during a 15-day rolling timeframe and spatially over the metropolitan area,59

which we loosely define as a 1◦

× 1◦ box over the city center. The rolling 75th percentile of the binned data during the first five60

months of 2019 annd 2020 are shown in top row of Figure 4. There is some evidence that the current TROPOMI operational61

NO2 product may have a low bias of 20 to 40% in polluted areas; much of this bias may be attributed to the air mass factor62

(19–21). We limit our analysis to relative trends, which reduces this uncertainty.63

LA Basin AQ analysis. The hourly ambient temperature and concentrations of PM2.5, NO2, and O3 in the South Coast Air64

Basin for the period of 1 Jan 2015 to 30 Sept 2020 were downloaded from the California Air Resources Board Air Quality Data65

Query Tool (https://www.arb.ca.gov/aqmis2/aqdselect.php). It should be noted that the 2020 data are preliminary, unvalidated,66

and subject to change. The following steps were taken for data analysis:67

1. Only the monitoring sites that had complete data between 2015 and 2020 were considered in this analysis. Near-road68

monitoring sites were not included in the analysis. Figure S8 and Table S2 show the location of the monitoring sites69

considered in this analysis and the parameters measured at each site, respectively.70

2. For every date and site, the 1hr daily maximum (DM) temperature, 24hr average PM2.5, 1hr DM NO2, and 8hr average71

DM O3 were calculated.72

3. For every date, the average of the above-mentioned parameters was calculated across all monitoring sites. 7-day moving73

averages were then calculated and presented by day of year in Figure 4 for 2020 and the average (± range) of [2015-2019].74

The background colors in Figure 4 illustrate the difference between the 7-day moving average temperature in 2020 and75

the average (±1σ) temperature in [2015-2019] by day of year.76

4. Using the data in step 2, the percent change in monthly average concentrations of 1hr DM NO2 and 8hr DM O3 between77

2020 and the average of [2015-2019] was calculated by month and site as shown in Figures S1 and S2.78

Global ozone production efficiency calculation. We evaluated the seasonal and regional changes in the global tropospheric79

ozone response to COVID-19 NOx emissions using a state-of-the-art chemical data assimilation system. Anthropogenic80

NOx emission reductions linked to the COVID-19 pandemic were estimated as the difference between 2020 emissions and81

climatological (baseline) emissions for 2010-2019 estimated from our decadal chemical reanalysis constrained by multiple82

satellite measurements. The assimilation system uses the MIROC-CHASER global chemical transport model and an ensemble83

Kalman filter technique (22). This approach allows us to capture temporal and spatial variations in transport and chemical84

reactions in the emission and concentration estimates. The results for 2020 were used previously to evaluate the air quality85

response to Chinese COVID-19 lockdown (23), and show reasonable agreements with the observed concentrations from in-situ,86

ozonesonde, and satellite ozone measurements globally for 2005-2018 (23) as well as for 2020 (Miyazaki et al., paper in prep.).87

In order to evaluate seasonal and regional differences in the ozone response, the ozone production efficiency (OPE) was88

estimated based on model sensitivity calculations using the 2020 and baseline emissions for February-July 2020. The OPE was89

calculated using the simulated global tropospheric ozone burden changes corresponding to changing NOx emissions (i.e., the90

COVID-19 emission anomaly); the analysis was performed separately for each of the selected megacities. The model simulations91

were conducted from the beginning to the end of each month for the time period February to June, 2020, using the same initial92

conditions. The simulated tropospheric ozone burden averaged over the last 5 days of each month was compared between the93

simulations using the 2020 and baseline emissions. The analysis thus provides information on monthly changes in the ozone94

response (Tg) to reduced NOx emissions (Tg per year) for each megacity separately.95

PM2.5 simulations. We used the GEOS-Chem (v9-02) model with a bi-directional NH3 flux scheme (24) at the nested resolution96

of 0.3125◦

× 0.25◦ latitude to explore the sensitivity of inorganic aerosol formation to NOx emission reductions in Los Angeles97

(118.239° W, 34.052° N) during COVID-19. Our detailed O3-NOx-VOC-aerosol simulations were driven by Goddard Earth98

Observing System (GEOS-FP 5.22.0) assimilated meteorological fields and include anthropgenic/biogenic/biomass burning99

emissions (25–27), gas-phase chemistry (28) and inorganic aerosol partitioning (29), wet/dry depositions (30–32) and transport.100

We first scaled anthropogenic NOx and SO2 emissions from HTAP v2 (25) (originally for the year 2010) to the year 2017 using101

satellite-derived SO2 and NOx emission reduction ratios (33) as our base emissions, which refer to emissions before lockdown102

during COVID-19. We scaled our base anthropogenic NOx emissions in March by BAU/COVID monthly NOx emission ratios103

from Miyazaki et al. (23) as our BAU/COVID emissions. In the COVID-19 simulations, the NOx emissions started to decrease104

on March 1st.105

We calculated the gas ratio (34) using Eq. (1):106

gas ratio =
[NH3] + [NH+

4 ] − 2[SO2−

4 ]

[HNO3] + [NO−

3 ]
[1]107
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Fig. S8. Location of South Coast Air Basin monitoring sites included in this analysis.
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Site Temperature O3 PM2.5 NO2

Anaheim X X X X

Azusa X X X

Banning airport X X X X

Central LA X X X X

Compton X X X

Crestline X X X

Fontana X X X

Glendora X X X X

La Habra X X

Lake Elsinore X X X X

LAX X X

Mira Loma X X X X

Mission Viejo X X

Pasadena X X

Perris X X

Pico Rivera X X X

Pomona X X

Redlands X

Reseda X X X

Rubidoux X X X X

San Bernadino X X X

Santa Clarita X X X X

South Long Beach X

Upland X X X X

West LA X X

Temecula X X X

Table S2. Parameters used from each South Coast Air Basin monitoring site.
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[NH3], [NH+

4 ], [SO2−

4 ], [HNO3] and [NO−

3 ] are in units of molar concentrations (mol m−3) and include both gas-phase and108

aerosol-phase. This gas ratio is an indicator of NH4NO3 production sensitivity to NOx emission change and NH3 emission109

change. Values > 1 indicate that NH4NO3 production is NOx limited; values < 1 indicate it is NH3 limited.110

SF Bay Area CO2 emissions estimates. To derive top-down emissions, Turner et al. (35) used 12 weeks of observational data111

from the BEACO2N network (36) to estimate the most likely CO2 fluxes from the San Francisco Bay Area before and during112

the shelter-in-place order (6 weeks of data before and 6 weeks of data during). Specifically, they estimated hourly fluxes at113

900-m spatial resolution over the region and solved for posterior fluxes as:114

x̂ = xa + (HB)T
(

HBH
T + R

)

−1
(y − Hxa) . [2]115

x̂ (m × 1) is the posterior emissions, xa (m × 1) is the prior emissions, y (n × 1) is the BEACO2N observations, H (n × m)116

is the matrix of footprints from HRRR-STILT, R (n × n) is the model-data mismatch error covariance matrix, and B (m × m)117

is the prior error covariance matrix.118

Turner et al. (35) used meteorological fields from the NOAA High Resolution Rapid Refresh (HRRR), to drive the Stochastic119

Time-Inverted Lagrangian Transport (STILT) model, a Lagrangian particle dispersion model. Those trajectories were then120

used to construct measurement footprints (H), representing the sensitivity of the measurement to a perturbation in emissions121

from a given location. Their prior emissions were adapted from previous work (37) with a biosphere derived from TROPOMI122

SIF observations (38). Upwind concentrations were taken from NOAA observations in the Pacific or AmeriFlux observations in123

California, depending on the endpoint of the back trajectory.124

To derive bottom-up emissions, total hourly vehicle flow and percentage of trucks were retrieved from http://pems.dot.ca.gov125

from approximately 1800 traffic counting stations hosted by the Caltrans Performance Measurement System (PeMS) for126

January to June in 2019 and 2020. These sites encompass all highway sites within the 2020 footprint of the Berkeley Air127

Quality and CO2 Network (BEACO2N), as described in Turner et al. (35). These stations count vehicle flow using magnetic128

loops imbedded in roadways and estimate truck fraction using calculated vehicle speed and assumptions about vehicle length129

(39). For hours during which fewer than 50% of measurements were reported, we fill in total vehicle flow gaps by using linear130

fits to nearest neighbor sites and gaps in truck flow using hour-of-day-specific linear fits between neighboring sites. We calculate131

both car and truck vehicle miles traveled (VMT) for each highway segment during each hour using segment lengths obtained132

from the PeMS database. VMT for highway segments within the BEACO2N footprint are summed to obtain regional highway133

truck and car VMT for every hour. VMT is then converted to CO2 using fleet estimates for fuel efficiency.134

US CO2 emissions estimates. Fuel consumption data from the U.S. Energy Information Administration (EIA) is used to135

generate weekly (Sat-Fri) estimates of FFCO2 emissions between January 2005 and the week ending September 18, 2020. The136

input data includes all petroleum fuel consumption by fuel type, natural gas consumption by sector, and coal consumption137

by sector. These are organized into six fossil fuel consumption sectors: 1) gasoline-fueled transportation; 2) commercial138

surface transportation (i.e. land and water); 3) aviation; 4) electricity generation; 5) industrial energy consumption; and 6)139

residential/commercial energy consumption. Standard CO2 emission factors are applied to the individual fuel types to achieve140

FFCO2 emissions (40). To facilitate comparison to emission values in 2020, all time-series of FFCO2 emissions are detrended.141

Comparison of weekly FFCO2 emissions in 2020 are made to the long-term (2005 to 2019) weekly detrended median values and142

their associated 15-member ensemble distribution. Statistical significance is defined by departures that exceed a) the 1st/3rd143

quartile of the weekly ensemble distributions from 2005-2019, referred to as “partly significant” and b) the maximum/minimum144

distributions of the same weekly ensembles, referred to as “significant”. The latter criteria are considered akin to a 2-sigma145

boundary for Gaussian statistics.146

Global CO2 growth rate simulations. The Goddard Earth Observing System (GEOS) is a flexible modeling and data assimilation147

system that has been widely used to study atmospheric composition and the carbon cycle (41). It includes the capability to148

simulate CO2 concentrations in near real time by extrapolating previous year’s biosphere and ocean fluxes (42). Here, we149

also include tracers that separately quantify the atmospheric impact of daily differences in fossil emissions between 2020 and150

2019 using country-level estimates from Liu et al. (14) that are spatially disaggregated to ∼10-km using information from the151

Emissions Database for Global Atmospheric Research (43).152

Global CO2 emissions estimates. We calculated the daily global fossil CO2 emissions in 2020 (updated to August 31st), as well153

as the daily sectoral emissions from power sector, industry sector, transport sector (including ground transport, aviation and154

shipping), and residential sector respectively. The estimates are based on a set of near real time dataset including hourly to daily155

electrical power generation data from national electricity operation systems of 31 countries, real-time mobility data (TomTom156

city congestion index data of 416 cities worldwide and FlightRadar24 individual flight location data), monthly industrial157

production data (calculated separately by cement production, steel production, chemical production and other industrial158

production of 27 industries) or indices (primarily Industrial Production Index) from national statistics of 62 countries/regions,159

and monthly fuel consumption data corrected for the daily population-weighted air temperature in 206 countries.160
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