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Abstract

In this study we identify a global seasonal bias in ocean color remote sensing reflectances (R rs , λ) using data from the

CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instrument aboard the CALIPSO (Cloud-Aerosol Lidar and

Infrared Pathfinder) satellite, in addition to Argo floats and in-water reflectance from the Marine Optical BuoY (MOBY) site.

The seasonal bias in R rs is present in the VIIRS (Visible Infrared Imaging Radiometer Suite), SeaWIFS (Sea-viewing Wide

Field-of-view sensor), and MODIS (Moderate resolution imaging spectrometer) satellites at all visible wavelengths and is larger

at longer wavelengths. Products derived from Rrs are affected by the bias to varying degrees, with particulate backscattering

varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from phytoplankton or dissolved

material varying by up to 15%. The seasonal bias is prominent in areas of low biomass (i.e., gyres) and is not easily discernable in

areas of high biomass. We found that the seasonal bias in Rrs is not caused by Raman scattering choice or implementation, nor

is it due to differences with satellite viewing angle. Biases in particulate backscattering are not affected by specific assumptions

used within Rrs inversion models. Changing the specific space/time averaging window in different processing levels of remote

sensing data and matchups were not the cause either. While we have eliminated several candidates which could cause the bias,

there are still outstanding questions about the role atmospheric correction plays. We provide evidence that the Bidirectional

Reflectance Distribution Function correction factor may control the observed seasonal bias to some extent, but does not preclude

the effect of the aerosol correction. We provide recommendations for work to be conducted in the near-future. In particular,

the use of CALIOP aerosol data may help improve the aerosol model used in atmospheric correction and the execution of more

simulations to discern the relative influence of atmospheric correction parameters. Community efforts are needed to find the

root cause of the seasonal bias because all past, present, and future data will be affected until a solution is implemented.
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Abstract (up to 400 words)

In this study we identify a global seasonal bias in ocean color remote sensing reflectances (Rrs, λ)

using data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instrument 

aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder) satellite, in addition to Argo

floats and in-water reflectance from the Marine Optical BuoY (MOBY) site. The seasonal bias in

Rrs is present in the VIIRS (Visible Infrared Imaging Radiometer Suite), SeaWIFS (Sea-viewing 

Wide Field-of-view sensor), and MODIS (Moderate resolution imaging spectrometer) satellites 

at all visible wavelengths and is larger at longer wavelengths. Products derived from Rrs are 

affected by the bias to varying degrees, with particulate backscattering varying up to 50% over a 

year, chlorophyll varying up to 25% over a year, and absorption from phytoplankton or dissolved

material varying by up to 15%. The seasonal bias is prominent in areas of low biomass (i.e., 

gyres) and is not easily discernable in areas of high biomass. We found that the seasonal bias in 

Rrs is not caused by Raman scattering choice or implementation, nor is it due to differences with 

satellite viewing angle. Biases in particulate backscattering are not affected by specific 
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assumptions used within Rrs inversion models. Changing the specific space/time averaging 

window in different processing levels of remote sensing data and matchups were not the cause 

either. While we have eliminated several candidates which could cause the bias, there are still 

outstanding questions about the role atmospheric correction plays. We provide evidence that the 

Bidirectional Reflectance Distribution Function correction factor may control the observed 

seasonal bias to some extent, but does not preclude the effect of the aerosol correction. We 

provide recommendations for work to be conducted in the near-future. In particular, the use of 

CALIOP aerosol data may help improve the aerosol model used in atmospheric correction and 

the execution of more simulations to discern the relative influence of atmospheric correction 

parameters. Community efforts are needed to find the root cause of the seasonal bias because all 

past, present, and future data will be affected until a solution is implemented. 

1 Introduction

Remote sensing reflectance (Rrs (λ); sr-1) is the fundamental measurement that links the

marine environment to satellite observations. Since the launch of the Coastal Zone Color Scanner

in 1978, satellite observations of Rrs and its derived products (chlorophyll; mg m-3, particulate

organic  carbon;  mg  m-3,  particulate  backscattering;  λ,  m-1,  particulate  absorption;  λ m-1,

phytoplankton absorption;  λ, m-1, dissolved organic matter;  λ, m-1) have been used to quantify

global net primary production (Behrenfeld and Falkowski, 1997, Westberry et al., 2008), global

carbon export and associated pathways for sinking (e.g., Siegel et al., 2014), particulate organic

carbon (Stramski et al., 1999, Evers-King et al., 2017), phytoplankton size (Kostadinov et al,.

2010, Loisel et al., 2006) and community composition (Uitz et al., 2010, Bracher et al., 2009,

Sathyendranath  et  al.,  2014,  Kramer et  al.,  2018,  Lange et  al.,  2020),  harmful  algal  blooms
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(Dierssen et al., 2015, Wei et al., 2008, Stumpf, 2001), phytoplankton carbon and physiology

(Behrenfeld  et  al.,  2005,  Behrenfeld  et  al.,  2009),  nitrogen  fixation  (Westberry  and Siegel.,

2006),  river plumes and suspended sediments (Stumpf,  1988, Yu et al.,  2019, Tao and Hill,

2019),  dissolved  organic  matter  (Hoge  and  Lyon,  2002,  Matsuoka  et  al.,  2017),  general

ecological dynamics (Dutkiewicz et al., 2020 and refs therein), and climate change (Henson et

al., 2010, Behrenfeld et al., 2016, Dutkiewicz et al., 2019). 

Accurate, low-uncertainty, unbiased satellite Rrs (λ) observations are critical to advance 

our understanding of the marine carbon cycle and to improve predictive power of ecological and 

climate models built from Rrs (λ) data, especially because so many products are derived from Rrs 

(λ). Recently we compared particulate backscattering (bbp) derived from MODIS-Aqua 

(Moderate Resolution Imaging Spectrometer) reflectances with bbp derived from the CALIOP 

(Cloud-Aerosol Lidar with Orthogonal Polarization) instrument aboard the CALIPSO (Cloud-

Aerosol Lidar and Infrared Pathfinder) satellite (Bisson et al., 2021). We found that the CALIOP 

bbp data clearly outperformed MODIS bbp, both in terms of median percent error and bias. 

Regional variations in MODIS bbp relative to CALIOP bbp were large (in some places exceeding 

50%), making it clear that further research is warranted. 

In this paper, we perform a global evaluation of ocean color observations [including 

MODIS, SeaWiFS (Sea-viewing Wide Field-of-view sensor), and VIIRS (Visible Infrared 

Imaging Radiometer Suite)] using CALIOP and Argo float bbp data. We find that ocean color Rrs 

is seasonally biased on global scales.  A similar seasonal bias is also found when evaluated at the

local scale of MOBY (Marine Optical BuoY) observations. We provide preliminary evidence 

that the bias arises from the bidirectional reflectance distribution function (BRDF) used to 

generate MODIS Rrs, combined with the aerosol correction residual effect. At the time of this 
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writing, no solution has been found to correct the seasonal bias. Ultimately, community input is 

needed to help correct the seasonal bias and advise atmospheric correction protocols for future 

satellite missions, such as PACE (Plankton, Aerosol, Cloud, ocean Ecosystem, (Werdell et al., 

2019).

2.0 Methods

We acquired satellite data from MODIS, VIIRS, SeaWiFS, and CALIOP. We compared 

these data at different processing levels with regional and local data using either autonomous 

profiling floats from the Argo program or observations from MOBY. The overall goal was to 

diagnose the observed seasonal bias by comparing a range of satellite observations at different 

places and times. 

2.1 Acquiring and processing ocean color data

All ocean color Rrs data were acquired from <oceancolor.gsfc.nasa.gov>. In particular, 

global level-3 9km daily MODIS and VIIRS Rrs (λ) data were downloaded over the time period 

2008-2017, where CALIOP data were also available.  Level-3 9km daily global SeaWiFS data 

were downloaded from 2008-2010 (the shared time period between SeaWiFS and CALIOP). We 

also downloaded 1-degree monthly averages of Rrs and bbp (GIOP product) from the overall 

MODIS mission.  Level-2 1km Rrs data were obtained in the South Pacific, Indian Ocean, and 

South Atlantic regions where there are also abundant Argo float observations over the seasonal 

cycle.  These data were used to facilitate comparisons with CALIOP and MODIS on finer scales.

Level-2 1km Rrs data also provided ancillary data regarding atmospheric aerosol optical 
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thickness (869 nm), solar zenith angle, photosynthetically active radiation (PAR), and the 

Angstrom parameter used in atmospheric correction schemes.

We retrieved level-2 MODIS Rrs paired with Rrs measured at the MOBY site from the 

NASA time series tool (https://seabass.gsfc.nasa.gov/timeseries/) and we calculated monthly 

averages of MOBY and MODIS Rrs at 412, 443, 531, 555, and 667 nm.  For MODIS, MOBY, 

SeaWiFS, and VIIRS, bbp is linked to Rrs through the semi-analytical relationship: 

R rs (λ )
0.52+1.7 R rs (λ )

= G1*[
bb( λ )

a (λ )+ bb (λ ) 
]+G2 *[

bb ( λ )

a (λ ) + bb (λ ) 
]

2

, 

 (1)

where the left side of the equation converts Rrs into its subsurface values (via Lee et al., 2002).  

On the right side of equation 1, G1 = 0.0949 and G2=¿ 0.0794 (Gordon et al. 1988), bb(λ) is total 

backscattering, and a(λ) is total absorption (i.e., the sum of seawater absorption, absorption from 

colored dissolved organic matter, non-algal particles, and phytoplankton). Total backscattering is

the sum of seawater backscattering (bbw) and particulate backscattering (bbp), which is 

approximated spectrally as an amplitude (Mbp) times a power-law function of wavelength (with 

exponent (γ):

bb (λ )= bbw ( λ ) + Mbp λ
-γ. (2)

Although there are several inversion algorithms available to generate bbp from Rrs, each with 

slightly different prescribed shapes for γ, we used the Generalized Inherent Optical Properties 
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algorithm in its default configuration (GIOP-DC, Werdell et al., 2013) because it has performed 

well in past work (Bisson et al., 2019) and because it is distributed through NASA’s Ocean 

Biology Processing Group for community use. GIOP-DC allows the user to choose various 

parameterizations for either absorption or scattering. These various parameterizations account for

different assumptions regarding relationships between Rrs, absorption, and scattering (Werdell et 

al., 2013).

Rrs needs to be corrected for the contribution of Raman scattering because bbp can 

otherwise have errors up to ~50% (Westberry et al., 2013). We note that the currently distributed

bbp and absorption products through NASA’s ocean color website have not been Raman 

corrected (future processing will include Raman-corrected products). Here, we have considered 3

options for treating the Raman issue: 1) no Raman correction, 2) correction following the 

empirical approach of Lee et al., (2013), and 3) correction following the Westberry et al., (2013) 

scheme that merges OMI (ozone mapping instrument) and MODIS data to more 

comprehensively assess Raman excitation in the full visible spectrum. Spectral ultraviolet data 

from the OMI sensor were retrieved and averaged monthly at four fixed wavelengths (305, 310, 

324, and 380 nm) from the Goddard Earth Sciences Data and Information Services Center (GES 

DISC). The Westberry et al., (2013) Raman scattering correction scheme also requires monthly 

averages of instantaneous photosynthetically active radiation (iPAR), which were acquired from 

<oceancolor.gsfc.nasa.gov>. Unless specified otherwise, Rrs products were corrected for Raman 

scattering following the Lee et al., (2013) scheme.

2.2 CALIOP bbp
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CALIOP is a light detection and ranging (lidar) instrument aboard the CALIPSO satellite 

that was launched with the intention of improving cloud and aerosol characterization. Like 

MODIS, CALIOP flies in the A-train constellation, but unlike MODIS, CALIOP was not 

launched with oceanographic research in mind. However, CALIOP data have since been used to 

generate bbp at 532 nm using polarization properties of this nadir-viewing lidar (see details in 

Behrenfeld et al., 2013). CALIOP provides a repeated global sampling of the oceans and 

retrieves independent assessments of the particulate backscattering coefficient (bbp, m-1). Ocean 

color satellites likewise retrieve bbp from Rrs, so it is possible to compare CALIOP bbp (532 nm) 

with bbp(λ) derived from MODIS-Aqua (Moderate Resolution Imaging Spectrometer) Rrs (λ) over

their shared time period where data are available (2008-2017).

We acquired daily CALIOP bbp data over the time period 2008-2017 from the Oregon 

State University Ocean Productivity website 

(http://orca.science.oregonstate.edu/lidar_nature_2019.php).  A scattering phase function of 0.32 

was used in calculating bbp from CALIOP observations, following Lu et al. (2020), Lacour et al. 

(2020), and Bisson et al. (2021). All CALIOP daily data were binned into monthly 9km grids for 

comparison with MODIS data. We also compared monthly averaged CALIOP and MODIS data 

binned to 1-degree grids. 

2.3 Argo float bbp

We used Argo data in this study because Argo floats provide independent in-situ 

measurements of bbp worldwide that are a useful asset with which to confront CALIOP and 

MODIS data. Vertical profiles of bbp (700 nm) from Argo floats were downloaded from the Argo

Data Assembly Centre (ftp://ftp.ifremer.fr/ifremer/argo/dac/ on 20 May, 2020) and processed as 
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in Bisson et al. (2019). In particular, vertical profiles of bbp were de-spiked with a 3-pt moving 

median and the reported bbp values were the median bbp value within the mixed layer depth 

(where density exceeded 0.03 kg m-3 compared to the density at 10m) of every profile. Previous 

work compared point-by-point matchups between Argo, MODIS, and CALIOP and found that 

CALIOP outperformed MODIS with respect to bbp retrievals [where median percent errors were 

25% for MODIS and 16% for CALIOP (Bisson et al., 2021)]. Here, rather than point-by-point 

comparisons, we compared the seasonal cycle of Argo bbp with MODIS and CALIOP. Because 

there are insufficient measurements of Argo bbp for any given month, we calculated monthly 

averages over the entirety of Argo sampling for specific regions. We extrapolated Argo bbp to 

531 nm for comparison with MODIS using bbp spectral slopes derived from collocated MODIS 

Rrs (λ).

2.4 Multivariate regression analysis on MOBY and MODIS data

Multivariate regression analysis (MLR) provides insight into the dependence of the Rrs

matchups on other supposedly independent variables that are accounted for in the atmospheric

correction. The atmospheric correction removes the radiometric effect of the atmosphere from

the satellite observations by removing the air molecule and aerosol absorption and scattering,

removing the ocean surface glint and white caps, and applying the BRDF to get the Rrs (Mobley

et al, 2016). We utilized a probabilistic programming Python library, PyMC3, which allows us to

infer a posterior distribution from observed data and a prior probability (Salvatier et al, 2016).

Using the MLR analysis, we modeled MODIS Aqua Rrs (Rrs¿, derived from satellite data after

the atmospheric correction) as a function of all other variables, including MOBY Rrs (Rrsmoby¿,

BRDF correction factor (fbrdf()), windspeed (W s), glint coefficient (LGN), column water vapor (
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Cwv),  column  ozone  (O3),  pressure  (Pr),  relative  humidity  (Rh),  angstrom coefficient  (α a),

aerosol optical depth (τ a), and solar zenith  (θsol), sensor zenith (θsen), and relative azimuth  (φ)

angles. The Rrs¿ model  is assumed to follow a Student’s t  distribution rather than a normal

distribution because in situ matchups rarely follow a normal distribution and because Student’s t

allows for additional degrees of freedom to compensate for strong outliers. This assumption is

in-effect similar to the outliers filtering procedure used in the vicarious calibration process at

MOBY by excluding points outside the inter-quantile range (Franz et al, 2007). Rrs¿ is modeled

as follows:

Rrs¿ St (μ , ν ) , [3]

where μ, and ν are the mean, and degree of freedom of the Student’s t distribution, respectively,

and μ is modeled as:

μ=β0 Rrsmoby+β1θsol+β2θ sen+β3φ+ β4W s+β5LGN+β6Cwv+β7Rh+β8O3+β9 Pr+ β10α a+ β11 τa+β12 f brdf+α

. [4]

Slope coefficients of each independent variable are given in [4] by β i, where α  is the intercept.

The prior distribution of  β i and  α  are assumed weakly informative with mean of zero and a

standard  deviation  of  100.  Since  the  magnitude  and  the  dynamic  range  of  each  variable  is

different, we scaled the data by subtracting the mean and dividing by the standard deviation of

each variable  (thus  all  the data  have a  mean of zero and a  standard deviation  of one).  The

intercept bias (α) then becomes zero. In this manner, the magnitude of the slopes become more
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meaningful, such that one unit of change of the dependent variable is equivalent to one unit of

change  of  the  independent  variables  when  a  specific  β i is  1  (which  means  a  1-to-1

correspondence between the two variables). 

3.0 Results

The primary result of a seasonal bias in MODIS bbp (and Rrs) on scales spanning from local to 

global is highlighted in Figure 1, where a red band highlights higher MODIS: CALIOP bbp ratio 

depending on the month (also see animation in Supplementary Figure 1). The Southern Ocean 

and the oligotrophic gyres in particular are places where the ratio of MODIS: CALIOP bbp 

changes dramatically throughout the seasonal cycle.

Figure 1. Monthly MODIS: CALIOP bbp at 532 nm. MODIS and CALIOP bbp are binned to 1-

degree monthly averaged grids.
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3.1 Bias diagnostic tests 

The observed bias between CALIOP and MODIS bbp (Figure 1) prompted a series of 

diagnostic steps to uncover the root cause (Table 1), largely aimed at answering whether MODIS

or CALIOP provided the most robust bbp record and diagnosing what causes the relative bias 

between sensors.  Because the magnitude of the bbp bias varies by season across latitudinal bands,

we considered processing steps that may be affected by solar geometry and associated variables. 

We asked a series of guiding questions and performed analysis to answer them: 

1. What effect does Raman scattering have on the seasonal bias? 

The relative importance of Raman scattering correction increases with increasing 

wavelengths and solar irradiance and it decreases with increasing biomass. Solar irradiance and 

biomass are seasonally variable, so it is plausible that Raman scattering could account for the 

observed seasonal bias. Longer wavelengths (~530-700) already have high uncertainty due to 

suboptimal signal to noise ratios and these longer wavelengths are used in inversion algorithms. 

Previous work (Westberry et al., 2013) found a bias between Raman-corrected Rrs and 

uncorrected Rrs that resulted in associated bbp differences up to 50%. The regions most affected 

by Raman scattering corrections were those with low biomass, such as the oligotrophic gyres 

(Figure 8 in Westberry et al., 2013). Variations in Rrs (667 nm) throughout the annual cycle may 

generate different quantities of Raman corrections based on season. We tested two different 

Raman correction schemes for MODIS Rrs and we tested uncorrected MODIS Rrs. We also tested

different wavelengths of bbp to see if the seasonal bias is more pronounced at longer wavelengths 

(Supplementary Figure 1). The presence of the seasonal bias in bbp was largely unaffected by 
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Raman choice or implementation (Supplementary Figure 2). However, the magnitude of the 

seasonal bias in bbp is enhanced when a Raman scattering correction is not applied 

(Supplementary Figure 2a-c).

2. Is the seasonal bias in bbp affected by parameterizations within the GIOP? 

We tested alternative parameterizations within the GIOP because the retrieval of bbp from 

ocean color is dependent on other assumptions within the inversion algorithm. In particular, 

absorption from phytoplankton and dissolved organic detrital matter will have different 

magnitudes depending on the season. Some parameterizations within the GIOP account for 

seasonality (e.g. changing spectral shape with biomass) and it is also possible to parameterize 

absorption or scattering constituents with a constant spectral shape that does not change based on

place or time. For example, choosing a constant power-law exponent for bbp spectral slope (as in 

Maritorena et al., 2002) will not change seasonally, while a bbp slope derived from Rrs band ratios

(as in Lee et al., 2013) will vary with the changing seasons. We altered the assumed spectral 

shape of absorption by phytoplankton (aph) and dissolved organic detrital material (adg), as well as

the bbp spectral exponent (Supplementary Figure 3).  We found that the seasonal bias in MODIS 

and CALIOP bbp is largely unaffected by changes to bbp, aph, and adg parameterizations in GIOP. 

3. Does Rrs processing level influence the seasonal bias in bbp? 

Different processing levels of Rrs reflect averaging of ocean color scenes over varied 

temporal windows. For example, at higher latitudes there can be multiple passes in a day at a 

particular location. Accordingly, a single ‘daily’ Rrs file may actually be a composite of various 

scenes from variable solar zenith angles. Thus, over the course of a season, the averaging of Rrs 
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into different products may be a potential source of the seasonal bias. We tested MODIS daily 

level-3 9km data for exact matchups with CALIOP, and monthly climatology data for comparing

patterns between the annual cycles of CALIOP and MODIS (Supplementary Figure 4) for all 

available data. We also tested MODIS level-2 1km imagery at particular regions to confirm that 

the bias existed at the lowest available Rrs processing level. We did not find any substantial 

differences in the bias based on processing level (Supplementary Figure 4). 

4. Do VIIRS and SeaWiFS bbp have a bias with CALIOP bbp?  

Looking into other (than MODIS) passive sensors was prompted by the idea that the 

satellite viewing geometry may be the cause of the apparent seasonal bias. MODIS and CALIOP 

are most sensitive to different scattering angles (MODIS: centered on 131º to 180º, 

https://aqua.nasa.gov/modis and CALIOP: 180º), so there could be differences in bbp solely 

because each sensor views a different part of the volume scattering function. Sensor differences 

when compared to CALIOP bbp may also arise from sensor specific calibrations. We therefore 

extended our analysis to include SeaWiFS and VIIRS data (Supplementary Figure 5). SeaWiFS 

and VIIRS have different viewing angles compared to MODIS, so we hypothesized that the 

magnitude of the bias may be affected by satellite viewing angle. Note that the passive satellite 

viewing angles change with season as the sun angle changes, potentially creating a seasonal 

trend. We found a similar seasonal bias in SeaWiFS and VIIRS data when compared to CALIOP

data (Supplementary Figure 5), implying that neither satellite viewing geometry nor sensor 

specific calibrations are a fundamental reason for the observed seasonal bias in Rrs (λ). 
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Table 1. Table of hypotheses used to diagnose the seasonal bias in initial observations of 

MODIS and CALIOP bbp.

Hypothesis Outcome Evidence

The bias is a function of wavelength No Figure S1
The bias arises from Raman scattering choice or implementation No Figure S2

The bias is caused by inversion assumptions (i.e., aph, adg, bbp). No Figure S3

The bias is a function of MODIS Rrs processing level. No Figure S4

The bias exists in SeaWiFS and VIIRS data. No Figure S5
The bias is regionally apparent over an annual cycle. Yes Figure 2
The bias is present at the MODIS calibration site, MOBY. Yes Figures 3, 4

To summarize, we found that the seasonal bias was not substantially affected by bbp 

wavelength choice (Supplementary Figure 1), or by which Raman scattering choice was used, 

including if no Raman scattering correction was applied (Supplementary Figure 2). The global 

seasonal bias in bbp was also sustained through changes in inversion algorithm assumptions 

(Supplementary Figure 3), as well as across Rrs processing levels [i.e., daily Rrs observations used

to compute daily bbp compared to monthly climatologies of bbp over the duration of the mission 

(Supplementary Figure 4)].  Finally, the seasonal global bias in bbp is not limited to MODIS, but 

is also found in SeaWiFS and VIIRS bbp data when compared to CALIOP bbp (Supplementary 

Figure S5). Given these findings, we proceeded to evaluate if the seasonal bias was present on 

local and regional scales (section 3.2).

3.2 Seasonal bias in bbp on regional scales 

The observed global seasonal bias between MODIS and CALIOP bbp (Figure 1) is 

particularly pronounced between 20S and 20N.  Within this region there were numerous Argo 

floats equipped with backscattering sensors in the South Pacific, allowing monthly averages of 

bbp to be constructed from 455 independent observations. Comparisons of Argo, MODIS, and 
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CALIOP bbp throughout an annual cycle in the South Pacific reveals a seasonal bias between 

MODIS and either Argo or CALIOP (Figure 2a). In particular, MODIS bbp (red line in Figure 2a)

is roughly parabolic across the annual cycle compared to CALIOP and Argo bbp, which exhibit 

little seasonal change. The exaggerated seasonality in MODIS, relative to CALIOP, results in a 

ratio between MODIS and CALIOP over the annual cycle that resembles what is found on global

scales for the average annual cycle. In particular, MODIS bbp exceeds CALIOP bbp in the Austral 

summer (by up to nearly 60%) relative to MODIS values in the Austral winter, which agree 

within 20% of CALIOP bbp (Figure 2b). We note that both CALIOP and MODIS bbp exceed 

Argo bbp in our South Pacific bin. CALIOP consistently overestimates Argo bbp by about 30% 

and MODIS overestimates Argo bbp by 30-100%, depending on the time of year. Argo and 

CALIOP measurements exhibit a relatively constant bbp throughout the year (as might be 

expected for the South Pacific Gyre, an area with little seasonal variability), whereas the 

symmetric seasonality pronounced in MODIS observations are difficult to reconcile with the 

biology of the region.

Solar zenith angle and photosynthetically active radiation (PAR) also exhibit a roughly 

parabolic shape with season that is symmetrical across the annual cycle, as expected (Figure 2c). 

Band ratios of Rrs are not greatly affected by the inclusion of Raman scattering (Figure 2d), but 

overall the ratio of Rrs (412 nm): Rrs (531 nm) is marked by a clear periodicity that is also present

in the aerosol optical thickness (AOT, Figure 2e) and angstrom parameter used within the 

atmospheric correction scheme (Figure 2f).  Broadly similar trends in the comparison of MODIS 

bbp with Argo and CALIOP bbp are present within the central gyre of the South Atlantic and 

Indian oceans (Supplementary Figures 6,7). For these regions, the summer months see a higher 

MODIS: CALIOP bbp ratio compared to winter months.
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Figure 2. Comparison of MODIS Level-2 data with CALIOP bbp and Argo bbp in the South 

Pacific (20S, 110-165W).  Note that MODIS and CALIOP data are for 2010, while the Argo data

are monthly averages for 2016 to present (due to insufficient data within any given year). a) bbp, 

531 nm. b) Ratio of MODIS:CALIOP bbp over the annual cycle of 2010. c) Photosynthetically 

Active Radiation (PAR) and solar zenith angle. d) Rrs ratios (shown for both Raman corrected 

following Lee et al., 2013 and without Raman correction). e) Aerosol optical thickness. f) 

Angstrom parameter.

3.3 The seasonal bias in bbp and Rrs at MOBY 

The Marine Optical BuoY (MOBY) is stationed off Lanai, Hawaii and collects water 

leaving radiance measurements that are used to compute Rrs, primarily for vicarious calibration 
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of satellites (Clark et al., 2003). Monthly averaged Rrs at various wavelengths between MODIS 

and MOBY exhibit discrepancies over the seasonal cycle (Figure 3). At shorter wavelengths (412

and 443 nm), discrepancies between MODIS (black line) and MOBY (red line) are slight (Figure

3a, b) and the general seasonal cycle is consistent between data sets. However, at longer 

wavelengths (531-667, Figure 3c-e), the seasonal cycle of MODIS Rrs is very different from that 

of MOBY. Differences between MODIS and MOBY are modest (< 20%) for Rrs observations 

between 412-555nm (Figure 3f-i), but at 667nm, the differences reach 40%. The biggest 

discrepancies between MODIS and MOBY Rrs are during the summer months for all 

wavelengths, but at Rrs (667 nm), there are also sizeable differences (20%) in December and 

January.
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Figure 3. Left panel: Monthly averaged MODIS (black) and MOBY (red) Rrs at 412, 443, 531, 

555, and 667 nm. Right panel: Corresponding MODIS: MOBY Rrs (black) relative to a ratio of 1 

(dashed line) for all months of the year. Note that all possible MOBY and MODIS data are used 

(n = 6171 observations total) rather than limiting the analysis to just MODIS and MOBY 

matches.

When MOBY and MODIS Rrs are used to derive bbp, the seasonal cycle observed between

the two sensors is markedly different (Figure 4). MOBY (black dotted line) and CALIOP bbp 

(blue solid line) exhibit weak seasonality at this location compared to MODIS (red line, Figure 

4a). Moreover, MODIS: MOBY bbp and MODIS:CALIOP bbp have the same general shape over 

the annual cycle, suggesting that MOBY and CALIOP bbp are more similar to each other than 

either one is to MODIS (Figure 4b). The seasonal bias between MODIS and CALIOP bbp (black 

solid line) is ~10% different compared to ~30% different between MODIS and MOBY bbp (black

dotted line) for the peak bbp difference between sensors (which occurs around May – August). 

These differences are largely because CALIOP bbp exceeds MOBY bbp (Figure 4b). Overall, the 

observed seasonal bias between MODIS and MOBY at this local site is consistent with the 

seasonal bias between MODIS and CALIOP on global scales. MODIS bbp greatly exceeds 

MOBY bbp during the summer months compared to the winter months in the Northern 

Hemisphere.
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Figure 4. Comparison of MODIS with CALIOP bbp and MOBY products at the MOBY site. a) 

monthly averaged MODIS (red), MOBY (black dashed line), and CALIOP (blue) bbp. b) 

MODIS:CALIOP (black solid line) and MODIS:MOBY (black dotted line) bbp at 531 nm. 

Dashed line indicates a ratio of 1. c) MODIS: MOBY bbp (531 nm, black line), MODIS: MOBY 

aph (443 nm, red line), MODIS: Moby adg (412 nm, blue line), MODIS: MOBY chlorophyll, 

green dashed line.

MOBY and MODIS Rrs are converted into other attributes besides bbp, including 

phytoplankton absorption (443 nm, aph, red line in Figure 4c), absorption from dissolved detrital 

organic matter (412nm, adg, blue line in Figure 4c), and chlorophyll (chl, green dashed line in 
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Figure 4c). In contrast to MOBY and MODIS bbp, all of the absorbing constituents derived from 

MODIS Rrs are lower on average compared to MOBY. Of all attributes, the difference between 

bbp exhibits the greatest dissimilarity between sensors, with differences up to 30%. However, 

differences in chlorophyll between the two sensors can reach 20% from March to April. Both adg 

(412) and aph (443) are affected by a seasonal bias in Rrs, but to a lesser extent and with 

differences between MOBY and MODIS adg and aph not exceeding 15% throughout the annual 

cycle.

3.4 Multivariate regression analysis findings

Results from the multivariate regression analysis (Figure 5) indicate a significant 

dependence on the solar and sensor zenith angle at almost all wavelengths, as well as on BRDF 

slope (β) across wavelengths. A β close to 0 indicates no correspondence with Rrs¿, while a 

negative β indicates an inverse relationship. Ideally, the β0, slope between Rrs¿ and Rrsmoby 

should be 1, while the slope for other independent variables should be 0 (indicating 

independence between the variables and the Rrs matchups). A deviation in β from 0 indicates a 

residual bias in the matchups due to improper correction to these parameters on their relationship

with Rrs¿.

At longer wavelengths, slopes for the optical depth and the angstrom coefficient increase.

At wavelengths 412 and 443 nm, other than the zenith angles, the BRDF correction factor has the

largest slope relative to the other parameters, indicating that the BRDF correction has the most

co-linearity with the Rrs  matchups. This BRDF slope decreases for longer wavelengths and the

slope of the Angstrom coefficient and the optical depth is more pronounced. Overall, the BRDF
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factor  slope  showed  a  consistent  and  statistically  significant  departure  from  the  zero  line.

However, the aerosol correction also plays a factor. 

Figure 5: Forest plot of the MLR slope coefficients for wavelengths 412, 443, 488, 531, 547,

555, 667, and 678 nm. The y-axis shows the β coefficients for each explanatory variable and the

x-axis shows the scale of these coefficients. The open circle represents the mode of the posterior,

while the error bar represents the 94% high density interval of the distribution.

4.0 Discussion 

On global, regional, and local scales, we have found seasonal variability in ocean color Rrs that 

stands in contrast to observations from CALIOP, Argo, and MOBY. In many locations, 

observations from ocean color Rrs (relative to the assets listed above) are roughly symmetrical 

over the annual cycle, making it difficult to reconcile these observations with known seasonal 

progressions in phytoplankton populations [which tend to be asymmetric with respect to the 
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seasonal cycle (e.g., Behrenfeld et al., 2013; Siegel et al., 2002)]. Seasonal symmetry is, 

however, expected in products directly dependent on solar geometry (including daylength, which

is directly proportional to solar zenith angle). Therefore, the observed shape in Rrs over the 

annual cycle strongly implies that the seasonal bias is not related to in-water processes and 

instead reflects an artifact stemming from processing. In this study we have eliminated many 

potential candidates causing the seasonal bias, but we have not yet identified the specific issue.  

Nevertheless, we can still examine the extent to which the bias is problematic for different 

regions and times. Here, we reflect on what is learned from cross-comparing observational 

platforms to discover the widespread seasonal bias in satellite ocean color observations.

4.1 Importance of additional assets to improve remote sensing 

In this study, we used CALIOP, MOBY, and Argo observations of bbp to primarily assess 

MODIS observations over an annual cycle from local to global scales. Without CALIOP data, 

we would not have identified the seasonal bias in ocean color observations and without CALIOP 

data there would be no way to quantify and describe the extent of the seasonal bias in bbp 

worldwide. Without MOBY data, there would be no way to confirm that the bias is present in Rrs

and not just products derived from Rrs. We also learn from MOBY that bbp is most strongly 

affected by the Rrs bias in comparison to chlorophyll, phytoplankton absorption, and dissolved 

organic matter absorption. Without Argo data, it would not have been possible to test the 

accuracy of MODIS and CALIOP on regional scales and, ultimately, to learn that CALIOP 

observations better describe the seasonal cycle in bbp compared to ocean color.  Thus, the 

importance of using additional assets to validate, improve, and assess uncertainties in remote 

sensing and its products cannot be overstated. For decades, a seasonal bias in ocean color 
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observations has existed but remained unknown. Only through the recent deployment of Argo 

floats equipped with backscattering sensors and recent retrieval developments to produce 

CALIOP bbp could the seasonal bias in Rrs from ocean color satellites be identified and described.

Closure in bbp has not been reached between passive remote sensing, in situ sampling, and

active remote sensing. We note that none of these platforms observe true bbp, as these sensors 

observe scattering at different viewing angles and are measuring only a portion of the volume 

scattering function. Although we cannot say exactly what causes the seasonal bias in MODIS Rrs,

we speculate that the reason CALIOP is not similarly biased is because lidar is a more direct 

measurement of bbp compared to ocean color, is not affected by sun zenith angle, and is less 

affected by the overlying atmosphere (including clouds, e.g., Hostetler et al., 2018 and references

therein). Ocean color Rrs is the signal remaining after removing surface glint, white-caps, 

atmospheric molecular and aerosol effects, and following BRDF correction.  In addition, 

deriving bbp from Rrs requires spectral assumptions regarding scattering and absorbing 

constituents in seawater. 

While satellite ocean color observations are undoubtedly biased on seasonal scales, both 

satellite ocean color and satellite lidar observations exhibit an overall biased in lower biomass 

areas. Argo bbp observations in oligotrophic regions (South Pacific, South Atlantic, Indian ocean 

gyres) are roughly 30% lower than CALIOP and up to 50% lower than MODIS. Previous work 

confirms this finding, as Bisson et al. (2021) found good correspondence between Argo, 

MODIS, and CALIOP for bbp > 0.001 m-1, but not for bbp < 0.001 m-1 (700 nm). The reason for 

the elevated MODIS and CALIOP bbp in these regions is also not fully understood. 

4.2 What can we learn about Rrs from diagnosing the seasonal bias? 
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In this study, we employed a series of diagnostic tests in an attempt to identify any 

underlying cause of the seasonal bias in satellite ocean color bbp. Despite testing ideas thought to 

have a large influence on bbp (such as Raman correction, assumed spectral shape of absorption 

and backscattering), we found that specific assumptions in Rrs inversions had little influence on 

the seasonal bias in bbp. Put simply, atmospheric correction schemes have a larger effect on Rrs- 

derived products than the models used to derive those products. 

The bias in Rrs is worse for longer wavelengths. Even though Rrs at 667 nm has relatively 

small signal overall, it influences bbp and chlorophyll substantially. For example, a seasonal bias 

at MOBY was not pronounced at lower wavelengths of Rrs, even though there existed a clear 

seasonal bias in bbp derived from Rrs at MOBY due to the strong bias of Rrs (667 nm). One reason

for the MOBY bias at 667 nm could be that surface MOBY measurements are extrapolated from 

observations > 1m depth and errors in this extrapolation can approach 80% at longer 

wavelengths (e.g., 650 nm, see Figure 7 of Li et al., 2016). Future inversion algorithms should 

consider adding weights by wavelength in the cost function (proportional to their uncertainty), 

which would give higher importance to Rrs at lower wavelengths (Werdell et al., 2018). 
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Figure 6. Global comparisons of backscattering derived from MODIS and CALIOP

4.3 Global implications of Rrs bias

Although the bulk of our analysis focused on the MODIS sensor, the seasonal bias in satellite

Rrs is present in SeaWiFS and VIIRS imagery as well. Findings from studies that rely on seasonal

analyses from any of these three sensors may thus need revisiting, especially if bbp or chlorophyll

were used. Places particularly affected by the seasonal bias are the low biomass areas (Figure 6), 

including Bermuda and the North Pacific, which are sites of long-term time series field 

observations (Steinberg et al., 2001, Freeland, 2007).  Low biomass regions are also affected for 

the months in which MODIS provides observations (Figure 6, bottom right panel). Areas with a 

large biological signal are not obviously affected to a substantial degree, including the North 

Atlantic, Arctic Ocean, and Gulf of Alaska. 
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Ultimately, the seasonal bias in satellite ocean color observations yields a seasonal signal in 

many regions that is inaccurate. Accurate seasonal measurements of bbp in particular are needed 

to characterize temporal dynamics of phytoplankton carbon (Graff et al., 2015) and particulate 

organic carbon. Phytoplankton carbon observations from satellites are used in many models, 

from net primary production to carbon export. Net primary production algorithms require growth

rates calculated from phytoplankton physiological states, commonly assessed using satellite 

Chl:Carbon ratios (Behrenfeld et al., 2005). Mechanistic carbon export models that use food-web

interactions rely entirely on the derivative of phytoplankton carbon over the annual cycle in order

to diagnose grazing rates and assess other loss terms (Siegel et al., 2014, Bisson et al., 2020). 

Using seasonally biased phytoplankton carbon from ocean color will thus likely affect 

quantification of carbon flux and net primary productivity in lower biomass areas. 

Phytoplankton size is another area where accurate bbp observations are especially needed over

the seasonal cycle. One particle size algorithm (Kostadinov et al., 2010) uses bbp observations to 

track changes in particle size distributions from month to month. This algorithm has been used 

widely in ecological and carbon cycle studies. A recent carbon export study found that including 

particle size in ecological models improved the performance of those models (Bisson et al., 

2020), but an incorrect seasonal cycle of particle size will introduce bias into the modeled 

results. Introducing seasonal error into carbon cycle models may create a particularly significant 

issue for oligotrophic areas dominated by picophytoplankton, which have been getting more 

attention for their role in carbon export (Richardson and Jackson, 2007, Richardson, 2019 and 

refs therein).  Oligotrophic regions may also be growing in areal extent due to climate change 

and they are predicted to continue growing in future years (Irwin and Oliver, 2009), making 

them a substantial element of the global ocean system.  If an artificial seasonality in 
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phytoplankton size is introduced by algorithms built from ocean color bbp, it will be difficult to 

predict the ecological fate of oligotrophic regions. 

Finally, the observed seasonal bias in chlorophyll from ocean color is problematic 

because chlorophyll is commonly used for assessing phytoplankton physiology and growth rate. 

Accurate determinations of phytoplankton growth rate are needed to produce accurate net 

primary production seasonal cycles. Chlorophyll is also commonly used to discriminate diatoms 

and phytoplankton functional types (Uitz et al., 2010, Soppa et al., 2014, Hirata et al., 2011). 

Given that our findings suggest chlorophyll seasonal biases of up to 20% (and perhaps more at 

locations other than MOBY), chlorophyll-based algorithms for phytoplankton functional types 

should be used with caution. Artificial seasonality in satellite chlorophyll may wrongly prescribe 

shifting phytoplankton communities within these empirically-derived models. A slightly better 

approach may come from using absorption spectra to characterize phytoplankton rather than 

chlorophyll (Chase et al., 2017) because phytoplankton absorption appears to be less affected by 

the Rrs bias. In all cases, the uncertainty due to the seasonal bias as described here should be 

quantified.

4.4 Recommendations 

At present, the remaining top candidates for the source of the seasonal bias in Rrs, which 

are shown to depend on angular geometry, are 1) instrument calibration, 2) atmospheric 

correction, 3) modeling of the water signal, and 4) vicarious calibration. The instrument 

calibration could introduce a bias into Rrs due to scan angle dependence, polarization correction 

(which is a strong function of scattering angle), and other non-linear effects, such as a 

temperature dependence, and significantly affect the determination of aerosol properties. 
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Atmospheric correction removes the perturbing signal arising from molecular and aerosol 

scattering (as well as absorption) and it also accounts for gaseous absorption (e.g., by ozone) and

ocean surface effects (e.g., glint and whitecaps). Some of these effects are not well-known or 

determined with sufficient accuracy, yielding angular-dependent Rrs errors. The retrieved signal 

from the water body, as viewed from space, needs to be corrected for diffuse atmospheric 

transmittance and normalized to yield Rrs in a reference geometry. This requires proper modeling

of bidirectional effects and interactions between the water body and the atmosphere. The current 

treatment could be improved by choosing a different BRDF (e.g., Park and Ruddick, 2005), 

taking into account the water-leaving signal backscattered by the atmosphere (Tanré et al., 1979),

including anisotropy of the sub-surface upwelling light field in the diffuse transmittance (Yang 

and Gordon, 1997), and incorporating Earth sphericity (Frouin et al., 2019; Ramon et al., 2019). 

The vicarious calibration process aims to reduce the average temporal systematic bias for in situ 

and satellite observations at MOBY, but vicarious calibration does not address seasonal bias 

issues due to the instrument or the atmospheric correction. For vicarious calibration to be 

effective, the modeled atmospheric contribution needs to be accurate. 

We note that our multivariate regression analysis found that slopes of the angstrom 

coefficient and aerosol optical depth were more pronounced at mid visible wavelengths, but less 

at shorter wavelengths.  Typically, the choice of aerosol model, presented as the angstrom 

coefficient, affects shorter wavelengths moreso than longer ones, due to the atmospheric 

correction assumptions of extrapolating the aerosol spectral dependence from the near-infrared 

wavelengths. However, the slopes representing the BRDF were more pronounced at 412 and 443

nm than the aerosols’ effect, suggesting a more complex underlying process that perhaps 

combine the effects of the BRDF and the aerosols correction, or more unknown parameters. The 
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dynamic range of the ocean and the aerosol signals also plays a role since the dynamic range of 

the Rrs can be orders of magnitude different from the blue end of the spectrum to the red end. 

Future work should explore different aerosol models and consider integrating CALIOP-derived 

aerosol optical depth information along with MODIS data (as in Kim et al., 2013, which showed 

substantial differences between CALOP and MODIS optical depth). 

Until a solution to the seasonal bias is identified and implemented, we recommend using 

CALIOP bbp data for global scale when possible. Although the focus of this manuscript has been 

on the seasonal bias in ocean color Rrs, we have previously found annually averaged regional 

differences in phytoplankton carbon from MODIS compared to CALIOP of up to 50% (Bisson et

al., 2021), especially in low biomass regions affected the seasonal bias. For this reason, studies 

should acknowledge the seasonal bias when interpreting spatiotemporal patterns in ocean color 

data. Despite CALIOP’s ~100m footprint and the fact that it does not provide the comparable 

spatial coverage as SeaWiFS, MODIS, and VIIRS, data from CALIOP can be averaged into the 

1-degree monthly bins that are a common spatiotemporal resolution of models. We also 

recommend using models that discriminate phytoplankton types and size with caution due to the 

revealed uncertainty in their input products (i.e., ocean color bbp, Rrs, and/or aph). 

5 Conclusion 

In this study we provide evidence for a global seasonal bias in satellite ocean color observations. 

Our findings can be summarized by the following points: 

 Independent global observations are critical to validate remote sensing products.
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 The entire record of satellite ocean color over the last few decades is likely 

significantly seasonally biased in low biomass regions.

 Particulate backscattering and chlorophyll are most affected by a seasonal bias in Rrs, 

while phytoplankton and dissolved detrital absorption are less affected. 

 The seasonal bias in Rrs is most pronounced at longer wavelengths (i.e., 667 nm).

 Community efforts should help identify the root source of the problem, as all past, 

present, and future data (from the PACE mission, for example) will be affected until a

solution can be implemented.
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Supplementary Figure Captions

Supplementary Figure 1. Monthly climatologies constructed from exact daily matchups between 

MODIS and CALIOP (written as ‘lidar’) bbp, binned to 9km. (a) Results for 531 nm. (b) Results 

for 443 nm. The Lee et al., 2013 Raman scattering correction scheme was applied to MODIS 

reflectances. (c) Daily maps of MODIS and CALIOP data showing a gap in the western pacific 

where there is no coincident overlap.
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Supplementary Figure 2. (a) Monthly climatologies of MODIS: CALIOP constructed from 

average monthly values of MODIS and CALIOP data, both at 1-degree bins. MODIS Rrs is 

corrected for Raman scattering using the Westberry et al., 2013 algorithm. (b) Monthly averages 

of the percent difference in MODIS bbp (531 nm) using the Westberry et al., 2013 algorithm 

relative to the Lee et al., 2013 algorithm for Raman scattering correction. (c) Monthly 

climatologies constructed from exact daily matchups between MODIS and CALIOP (written as 

‘lidar’) bbp (555 nm), binned to 9km. No Raman scattering correction was applied. 

Supplementary Figure 3, (a) Monthly climatologies of MODIS: CALIOP bbp constructed from 

exact daily matchups between MODIS and CALIOP (written as ‘lidar’) bbp, binned to 9km, 

where the ‘QAA’ algorithm for CDOM absorption was used to derive MODIS bbp. (b) Same as 

3a except that the GSM algorithm (a single value that is constant everywhere) was used for bbp 

slope compared to the spatially variant QAA algorithm used in all other figures. (c) Same as 3a 

except that the ‘Ciotti and Bricaud, 2006’ algorithm was used for phytoplankton absorption 

compared to the Bricaud 1998 algorithm that is typically used.

Supplementary Figure 4. (a). Monthly climatologies of MODIS: CALIOP constructed from exact

daily matchups between MODIS and CALIOP (written as ‘lidar’) bbp, binned to 9km. (b) 

monthly climatologies of MODIS: CALIOP constructed from monthly average values of 

MODIS and CALIOP bbp, binned to 1-degree.

Supplementary Figure 5. Daily matchups between CALIOP bbp and passive ocean color bbp, 

binned to 9km. (a) MODIS: CALIOP ratios throughout the annual cycle (over the period 2006 – 
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2017, the overlapping range), (b) SeaWiFs:CALIOP ratios throughout the annual cycle (from 

2006-2010, the overlapping range), (c) VIIRS:CALIOP ratios throughout the annual cycle (2006 

– 2017, the overlapping range). 

Supplementary Figure 6.  Comparison of MODIS Level-2 data with CALIOP bbp and Argo bbp in 

the South Atlantic (15-21S, 10-35W).  Note that MODIS and CALIOP are for 2010, while Argo 

data are monthly averages for 2016 to the present (due to insufficient data within any given 

year). (a) bbp, 531 nm. (b) Ratio of MODIS:CALIOP bbp over the annual cycle of 2010. (c) 

Photosynthetically Active Radiation (PAR) and solar zenith angle. (d) Rrs ratios (Raman 

corrected and not Raman corrected). (e) Aerosol optical thickness. (f) Angstrom parameter.

Supplementary Figure 7.  Comparison of MODIS Level-2 data with CALIOP bbp and Argo bbp in 

the Indian Ocean (10-25S, 55-95E).  Note that MODIS and CALIOP are for 2010, while Argo 

data are monthly averages for 2016 to the present (due to insufficient data within any given 

year).  (a) bbp, 531 nm. (b) Ratio of MODIS:CALIOP bbp over the annual cycle of 2010. (c) 

Photosynthetically Active Radiation (PAR) and solar zenith angle. (d) Rrs ratios (Raman 

corrected and not Raman corrected). (e) Aerosol optical thickness. (f) Angstrom parameter.
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