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Abstract

Recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL), have created tremendous excite-

ment and opportunities in the earth and environmental sciences communities. To leverage these new ‘data-driven’ technologies,

however, one needs to understand the fundamental concepts that give rise to DL and how they differ from ‘process-based’, mech-

anistic modelling. This paper revisits those fundamentals and addresses 10 questions often posed by earth and environmental

scientists with the aid of a real-world modelling experiment. The overarching objective is to contribute to a future of AI-assisted

earth and environmental sciences where DL models can (1) embrace the typically ignored knowledge base available, (2) function

credibly in ‘true’ out-of-sample prediction, and (3) handle non-stationarity in earth and environmental systems. Comparing

and contrasting earth and environmental problems with prominent AI applications, such as playing chess and trading in stock

markets, provides critical insights for better directing future research in this field.
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Abstract 7 

Recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL), have created 8 

tremendous excitement and opportunities in the earth and environmental sciences communities. To 9 

leverage these new ‘data-driven’ technologies, however, one needs to understand the fundamental 10 

concepts that give rise to DL and how they differ from ‘process-based’, mechanistic modelling. This paper 11 

revisits those fundamentals and addresses 10 questions often posed by earth and environmental 12 

scientists with the aid of a real-world modelling experiment. The overarching objective is to contribute to 13 

a future of AI-assisted earth and environmental sciences where DL models can (1) embrace the typically 14 

ignored knowledge base available, (2) function credibly in ‘true’ out-of-sample prediction, and (3) handle 15 

non-stationarity in earth and environmental systems. Comparing and contrasting earth and 16 

environmental problems with prominent AI applications, such as playing chess and trading in stock 17 

markets, provides critical insights for better directing future research in this field. 18 

Plain Language Summary 19 

Deep learning (DL) is an artificial intelligence (AI) technique that has already served the vast majority, if 20 

not all, of everyday society in tasks such as image recognition and language processing through 21 

smartphones. The recent unprecedented performance of DL in those tasks has accelerated applications 22 

in non-native areas such as earth and environmental sciences where knowledge-based modelling has 23 

dominated to date. A major challenge, however, is DL and knowledge-based modelling are rooted in 24 

different worldviews towards problem solving. This paper explains the ‘whats’ and ‘whys’ of DL from first 25 

principles, with an eye on applications since inception in environmental problems. An experiment is run 26 

to illustrate the fundamental differences between the two worldviews, and to shed light on some critical, 27 

but often ignored, issues DL may face in practice, largely arising from the fact that earth and 28 

environmental systems are complex with behaviors changing in ways that are physically explainable but 29 

not seen in the period of record due to uncertain factors such as climate change. Such issues must be 30 

addressed at the heart of the endeavor to develop DL techniques that embrace the knowledge base 31 

available, in anticipation of breakthroughs in an age of big data and computational power. 32 
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Key Points 37 

 DL is rooted in connectionism, hyper-flexibility, and vigorous optimization, which are alien to 38 

conventional knowledge-based modelling. 39 

 A knowledge base is essential to enable credible predictions of complex, open, partially observable, 40 

and non-stationary systems. 41 

 Bridging DL and earth and environmental sciences is still embryonic but has great potential in an age 42 

of big data and computational power. 43 
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1. The rise of deep learning 80 

The last decade has witnessed a tremendous rise in techniques called ‘deep learning’ (DL), under the 81 

umbrella of artificial intelligence (AI) and machine learning (ML), and their unprecedented performance 82 

in areas such as computer vision (Krizhevsky et al., 2017), natural language processing (Young et al., 2018), 83 

and gaming (Silver et al., 2018). These successes have motivated the application of DL across a wide range 84 

of disciplines, including medicine (Hosny et al., 2018), earth sciences (Reichstein et al., 2019), robotics 85 

(Torresen, 2018), engineering (Panchal et al., 2019), and finance (Lee et al., 2019). DL owes its exemplary 86 

success to the boom in computational power and the emergence of big data sources and associated data 87 

storage and sharing technologies.  88 

Earth and environmental sciences appear to be positioned to benefit profoundly from DL, as big data 89 

sources on a range of in situ and remotely-sensed variables are becoming increasingly available with the 90 

advances in sensing technologies (Reichstein et al., 2019). The storage volume of remote sensing data for 91 

earth observations is already well beyond dozens of petabytes, with transmission rates exceeding 92 

hundreds of terabytes per day. Datasets based on model outputs are rising; for example, the climate 93 

assessment dataset provided by the Coupled Model Intercomparison Project Phase 6 may reach 40 94 

petabytes (Eyring et al., 2016). Reanalysis climatic datasets have also grown; for example, NASA’s Modern-95 

Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) is ~400 terabytes (Gelaro 96 

et al., 2017). In addition, datasets generated via tens of thousands of citizen science projects are providing 97 

large and rich sources of ground-based data. 98 

This potential is shifting the attention of earth and environmental scientists and relevant funding agencies 99 

towards ML, as evidenced, for example, by the shift in research work presented at the American 100 

Geophysical Union (AGU)’s fall meetings, the largest assembly of earth and environmental scientists with 101 

more than 27,000 people in attendance and 25,000 presentations in 2019. The number of ML-related 102 

presentations has risen consistently—from 0.2% of total presentations in 2015 to 4.2% in 2020. In 103 

particular, this shift has been astonishing in the ‘non-linear geophysics’, ‘earth and space science 104 

informatics’, ‘natural hazards’, ‘hydrology’, and ‘seismology’ sub-fields, where 28 (2.1), 18 (5.1), 9 (1.3), 105 

7.5 (1.4), and 6.7% (0.9%) of total presentations, respectively, were related to ML in 2020 (2015).  106 

Recent successful applications of DL techniques to earth and environmental sciences include weather 107 

nowcasting and forecasting (Shi et al., 2015; Shi et al., 2017), satellite precipitation bias reduction (Tao et 108 

al., 2006), rainfall-runoff modelling (Kratzert et al., 2018; Feng et al., 2020; Ma et al., 2021), rain and snow 109 

retrieval from spaceborne sensors (Tang et al., 2018), downscaling hydroclimatic variables (Ducournau 110 

and Fablet, 2016), precipitation estimation (Tao et al., 2018; Pan et al., 2019), and surrogate modelling 111 

(Gu, et al., 2020; Yu et al., 2020; Vali et al., 2021). Unsuccessful applications, perhaps similar to many other 112 

areas, remain largely unreported in the peer-reviewed scientific literature but occasionally appear in other 113 

media (e.g., Wexler, 2017; Kolakowski, 2018; Rudin, 2019). 114 

Notably, most DL algorithms, formerly known as artificial neural networks (ANNs), have been around and 115 

widely applied in earth and environmental sciences since the early 1990s with the birth of domains such 116 

as Hydroinformatics (Abbott, 1991). These applications are documented in reviews by Gardner and 117 

Dorling (1998), Maier and Dandy (2000), Krasnopolsky (2007), Maier et al. (2010), Abrahart et al. (2012), 118 

Razavi et al. (2012a), Shen (2018), Bergen et al. (2019), and Reichstein et al. (2019). Arguably, however, 119 
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the uptake of DL to facilitate and advance earth and environmental sciences has not kept pace with data 120 

availability and computational power over the past three decades.  121 

But why? The challenges impeding the widespread application of DL to earth and environmental problems 122 

to date may be rooted in the fact that convincingly casting those problems, for which an extensive 123 

knowledge base is usually available, within the DL framework is often not straightforward. Moreover, the 124 

lack of interpretability and explainability of DL has been a major hindrance, as model developers need to 125 

be able to make sense of why a model functions the way it does, and to explain that to model users. These 126 

challenges can be further complicated in the absence of a solid understanding of the fundamentals of DL 127 

and how they differ from theory-driven, mechanistic modelling and prediction. Mechanistic modelling, 128 

also called process-based or knowledge-based modelling in this paper, has traditionally been the 129 

cornerstone of scientific advancement and policy support. 130 

And why this paper? Motivated by the recent breakthroughs by DL in its original areas of application, 131 

namely computer vision and natural language processing, this paper aims to address the persistent 132 

challenges facing DL applications in non-native areas related to earth and environmental sciences. With 133 

this overarching aim, this paper addresses 10 questions regarding the fundamentals of DL and its 134 

explainability and bridgeability to earth and environmental systems modelling: 135 

(1) What is DL and how did it evolve from ANNs? 136 

(2) How can we interpret the internal functioning of DL? 137 

(3) How can the complexity of DL be justified in light of the principle of parsimony? 138 

(4) Why is DL considered superior to other types of ML? 139 

(5) How can DL account for memory and time dependency? 140 

(6) How may DL and process-based models behave differently in out-of-sample prediction? 141 

(7) What can be the often ignored value of domain knowledge in DL? 142 

(8) Why is DL essentially different from process-based modelling? 143 

(9) What are the existing approaches to bridging DL and process-based modelling? 144 

(10) What can we learn from prominent DL applications such as gaming and the stock market?  145 

The structure of this paper is such that it best serves the reader when all sections are followed 146 

sequentially. However, an advanced reader could directly refer to a section designated to address a 147 

question of interest. Sections 2 through 7 address questions 1 through 6 and sub-sections 8.1 through 8.4 148 

address questions 7 through 10, respectively. A real-world hydrological modelling problem and multiple 149 

synthetic functions are used to explain complex concepts via simple examples. The contents of this paper 150 

are intended to be accessible to a wide audience from various fields under the umbrella of earth and 151 

environmental sciences. However, the views presented mainly arise from the author’s data- and theory-152 

driven research background in hydrology and water resources.  153 

2. Back to fundamentals 154 

2.1. Why ML and DL? 155 

ML, and in particular DL, is nowadays concerned with developing machines that improve their own 156 

performance in carrying out a given task over time by ‘learning’ from examples, with minimal human 157 

efforts to instruct the machines how to do so (Jordan and Mitchell, 2015). According to Goodfellow et al. 158 

(2016), however, the early efforts to generate AI were based on a knowledge base paradigm to instruct 159 
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machines with a formal set of step-by-step mathematical and if-then rules. Those efforts focused on 160 

carrying out tasks that were intellectually difficult for humans but straightforward for computers. 161 

Goodfellow et al. (2016) argue such efforts led to no major successes, and the AI of today is about enabling 162 

machines to perform tasks that humans perform intuitively and rather easily but have difficulty formally 163 

describing how they do so. Examples of such tasks include recognizing faces in a photo or comprehending 164 

spoken words. 165 

Not only did state-of-the-art AI divorce from the knowledge base, but it also completely separated from 166 

classic data-driven modelling rooted in statistics such as regression. This separation was a response to the 167 

need for models that are not constrained by the many assumptions typical statistical models hold. For 168 

example, traditional statistical modelling requires a formalization of relationships between variables and 169 

assumptions about functional shapes, distributions of variables, and their inter-dependencies, which 170 

enables hypothesis testing and the generation of confidence bounds. Conversely, in the ML context the 171 

underlying relationships in data may have any complex form, which is typically unknown a priori, and the 172 

data used may have any size and distributional properties (see Dangeti, 2017, p. 10-11).  173 

Because of these characteristics, ML is deemed suitable to pursue the longstanding ambition to build 174 

machines that work with minimal or no human supervision and imposed assumptions. As a result, ML 175 

techniques nowadays, and in particular DL, provide flexible tools that can adapt to a wide range of data 176 

and applications.  177 

2.2. Evolution of DL and major milestones 178 

It was 1957 when Frank Rosenblatt invented the first algorithm, termed ‘perceptron’ (Rosenblatt, 1957), 179 

which today forms the smallest computational unit of DL. A perceptron, alternatively termed a ‘neuron’ 180 

because of its resemblance to the basic working unit of the brain, is shown in Figure 1a and formulated 181 

as: 182 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1 + 𝑏)          (Eq. 1) 183 

where D is the dimension of input space, x is the input vector, w is a set of weights corresponding to the 184 

input vector, b is bias, and f is an ‘activation’ function. A perceptron has D+1 tunable parameters (i.e., D 185 

weights and one bias) and is basically nothing but a multiple linear regression augmented by an output 186 

function (f), which is non-linear. The form of the activation function was originally a step function, but 187 

now a range of monotonic functional forms, such as  ‘sigmoidal’, are used.  188 

The invention of perceptrons created significant excitement in the AI community and beyond. But, it soon 189 

became clear that a perceptron would not be able to map input spaces that are not linearly separable, 190 

such as the XOR problem (Minsky and Papert, 1969), rendering perceptrons of limited use in real-world 191 

applications. The reason for this inability is that the core of the perceptron is a linear regression.  192 

Efforts to overcome this barrier could have followed two different avenues. Perhaps the most intuitive 193 

avenue was to employ non-linear regression, by allowing the terms inside the parentheses in Eq. 1 to be 194 

of other algebraic forms such as quadratic. However, this was not a viable option in part because the user 195 

then would need to specify the form of non-linearity which is not typically known a priori, requiring 196 

possibly extensive trial-and-error.  197 
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The second avenue that led to today’s DL was to combine perceptrons both in parallel and in series to 198 

create so-called ‘multi-layer perceptrons’ (MLPs), as shown in Figure 1b, with the hope this more complex 199 

system could overcome the barrier. An MLP would then have many more tunable parameters than the 200 

perceptron. The first layer, also called the first ‘hidden’ layer, would have D.n1 weights and n1 biases, 201 

where n1 is the number of neurons in this layer. Similarly, the second hidden layer would have n1.n2. 202 

weights and n2 biases, and the last layer, called the ‘output’ layer would have nd-1.nd weights and nd biases, 203 

where nd-1 and nd are the numbers of neurons in the second-to-last and last layers, respectively, and d is 204 

the total number of layers. The total number of layers in an MLP and the number of neurons in each layer 205 

are ‘hyper-parameters’, to be specified by users. Also important is the choice of activation functions in 206 

each layer. Note that a linear activation function is typically only suitable for the last layer and, in general, 207 

any stack of linear layers is effectively equivalent to a single linear layer.  208 

MLPs are a prominent class of ‘artificial neural networks’ (ANNs), or simply ‘neural networks’ (NNs), a 209 

name reflecting their perceived resemblance to biological neural networks. MLPs, which are sometimes 210 

called ‘feedforward neural networks’ (FNNs), are the building blocks of a range of other ANNs developed 211 

later on, including ‘autoencoders’ (Bourlard and Kamp, 1988), ‘recurrent neural networks’ (RNNs; Elman, 212 

1990) and its popular variation ‘long short-term memory’ (LSTM; Hochreiter and Schmidhuber, 1997), 213 

convolutional neural networks (CNNs; Lawrence et al., 1997) , and generative adversarial networks (GANs; 214 

Goodfellow et al., 2014). 215 

 216 

Figure 1. (a) A perceptron and (b) a multi-layer perceptron with four inputs, two hidden layers, and 217 

three outputs. 218 

 219 

But, MLPs on their own did not go far and the field stagnated for many years because of the absence of 220 

an algorithm that could automatically derive from data the network weights and biases—a process 221 

referred to as ‘training’ in the AI community. It took until the mid-1980s when the first ‘back-propagation’ 222 

(BP) algorithm was invented to enable the training of MLPs with any network structure (Rumelhart et al., 223 

1986). This invention marked the beginning of the ‘second wave’ of popularity of ANNs. BP is essentially 224 

𝑏

𝑦

𝑥1

𝑥 

𝑥𝐷
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𝑤 
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an optimization algorithm, based on non-linear programing, that minimizes a loss function representing 225 

the goodness-of-fit of predictions to observations, such as the ‘sum of squared errors’, as follows: 226 

𝐹 = ∑ ∑ (𝑇𝑗
𝑘 − 𝑦𝑗

𝑘)
 𝑁

𝑗=1
𝑀
𝑘=1          (Eq. 2) 227 

where 𝑦𝑗
𝑘 is the output of neuron j in the output layer when the network is forced with input data sample 228 

k and 𝑇𝑗
𝑘 is the respective desired target. Also, M is the size of training data, and N is the number of 229 

neurons in the output layer.  230 

Different variations of BP rooted in first- (e.g., gradient descent) or second-order (e.g., Newton's method) 231 

optimization, or a combination thereof, now exist; see e.g., the Levenberg-Marquardt algorithm as 232 

implemented by Hagan and Menhaj (1994). These algorithms are fundamentally the same as optimization 233 

algorithms used nowadays for calibration of process-based models. The only difference is that, in the case 234 

of ANNs, and unlike most process-based models, the partial derivatives of the loss function with respect 235 

to weights and biases are analytically available and obtained through the ‘chain rule of differentiation’. 236 

More recently, derivative-free and metaheuristic optimization algorithms have shown promise in ANN 237 

training (e.g., Dengiz et al., 2009; Rakitianskaia and Engelbrecht, 2009; Razavi and Tolson, 2011), but have 238 

yet to become mainstream. 239 

The training of ANNs is an iterative optimization process, where the network parameters are updated 240 

after each iteration (called an ‘epoch’ in the ANN context), to minimize the loss function. This process can 241 

be via ‘batch training’, where at each epoch the entire batch of training data (i.e., all M input-output sets) 242 

are used. Alternatively, each epoch can follow ‘mini-batch training’ based on a subset of training or 243 

‘incremental/online training’ based on a single training data sample, chosen randomly or otherwise 244 

(Hagan et al., 1996). These two approaches, also commonly referred to as ‘stochastic gradient descent, 245 

are useful when the size of training data is large (Bottou, 1998; Bottou, 2010).  246 

In the late 1980s, after the invention of BP, MLPs were proven to be ‘universal approximators’ (Hornik et 247 

al., 1989). This proof indicated MLPs with only one single-hidden layer that possesses a sigmoidal 248 

activation function, and a linear output layer, would be able to approximate any function with any desired 249 

level of accuracy provided the number of hidden neurons is sufficient. Since then, the ‘universal function 250 

approximation theorem’ has been the fundamental driver of interest in MLPs across a variety of disciplines 251 

and applications. 252 

ANNs started receiving much attention in earth and environmental sciences in the early 1990s. The 253 

pioneering applications of ANNs include: Benediktsson et al. (1990), Badran et al. (1991), Stogryn et al. 254 

(1994), Bankert (1994), and Cabrera-Mercader and Staelin (1995) in the context of remote sensing of the 255 

environment; McCann (1992), Boznar et al. (1993), and Navone and Ceccatto (1994) in the context of 256 

atmospheric forecasting; and Kang et al. (1993), Hsu et al. (1995), and Minns and Hall (1996) in the context 257 

of hydrology modelling. Perhaps the most prominent and widely used application of ANNs in these fields 258 

has been related to the development of PERSIANN, or ‘Precipitation Estimation from Remotely Sensed 259 

Information using Artificial Neural Networks’ (Hsu et al., 1997; Sorooshian et al., 2000; Ashouri et al., 260 

2015), which has been maintained and updated for two decades (accessible at 261 

https://chrsdata.eng.uci.edu/). 262 

Despite all of these advances, investments in ANNs and therefore the popularity of ANNs saw a decline in 263 

the AI community beginning in the mid-1990s. This was perhaps triggered by failures to fulfill overly 264 

https://chrsdata.eng.uci.edu/
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ambitious or unrealistic promises by prominent AI scientists (Goodfellow et al., 2016) that brought about 265 

somewhat a negative reputation for ANNs (Duerr et al., 2020), as historically observed in ‘AI winters’ 266 

(Hendler, 2008). ANNs in earth and environmental sciences, however, remained fairly popular arguably 267 

until the mid-2000s. The focus of researchers in these fields was to find novel applications of ANNs across 268 

different earth and environmental problems. 269 

It took until early 2010s before the third wave of popularity and interest in ANNs hit, when the field was 270 

revived and renamed ‘deep learning’. ‘Depth’ is a recently popularized term and loosely refers to the 271 

number of hidden layers in ANNs. A related term is ‘width’, which loosely refers to the number of neurons 272 

in hidden layers. Now, a DL model simply refers to an ANN with more than a few hidden layers. All of the 273 

recent excitement around ANNs is despite the fact that the structure, formulation, and other properties 274 

of MLPs have remained unchanged since their inception, except for some minor modifications. So, one 275 

might ask: is DL merely a repackaging and rebranding of what existed before? The next section attempts 276 

to answer this question while reviewing the recent milestones. 277 

2.3. Latest developments and rebranding the field 278 

To better understand the recent developments in the field of ANNs, one first needs to know the history 279 

around the ‘depth’ concept. MLPs, since their inception, have been used with various numbers of hidden 280 

layers, that is with various depths. Most applications, however, remained limited to networks with only 281 

one hidden layer until very recently. For example, Razavi et al. (2012a) report that more than 90% of ANNs 282 

used for surrogate modelling in water resources literature have only one hidden layer. There was (and 283 

perhaps still is) no consensus about a proper network depth, because identifying the optimal network 284 

configuration for a given problem and dataset is challenging.  285 

Historically, some researchers favored ANNs with more than one hidden layer, arguing that they require 286 

fewer hidden neurons to approximate the same function (see e.g., Tamura and Tateishi, 1997). On the 287 

other hand, others asserted that single-hidden-layer ANNs are superior to those with more than one 288 

hidden layer with the same level of complexity (see e.g., de Villiers and Barnard, 1993). A discussion on 289 

this matter is available in Razavi et al. (2012a, pp 9-10). 290 

Three general reasons historically drove interests towards ANNs with a single hidden layer: (1) the 291 

universal function approximation theorem (Hornik et al., 1989), as it provided a compelling argument that 292 

such ANNs are fully capable of learning any function; (2) the principle of parsimony, as ANNs with fewer 293 

hidden layers are generally deemed less complex and more understandable; and (3) difficulty of training, 294 

as ANNs with more hidden layers are more complex to train (see e.g., de Villiers and Barnard, 1993). 295 

So, what recently shifted the status quo towards ANNs with multiple (typically many) hidden layers? 296 

Goodfellow et al. (2016) attribute the beginning of this shift to the work of Hinton et al. (2006), where 297 

‘unsupervised learning’ was used to pre-train deep ANNs. They show unsupervised learning could 298 

effectively initialize the network’s parameters such that the subsequent training efforts through BP would 299 

become more successful. In AI, unsupervised learning refers to a process where a model learns from 300 

‘unlabeled’ examples, which are technically inputs with no associated output. This is as opposed to 301 

‘supervised learning’ where examples (i.e., data points) are ‘labeled’, meaning the output associated with 302 

each input is available; this process is called ‘model calibration’ in the context of process-based modelling. 303 
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Now, one might ask how unsupervised learning can be of any help in supervised learning. A common 304 

method for this purpose uses ‘autoencoders’, which are a class of ANNs historically used for 305 

dimensionality reduction and feature learning (Bourlard and Kamp, 1988). An autoencoder is an MLP, 306 

typically trained by BP, with one or more hidden layers that receives input and aims to produce the same 307 

input as its output. In a typical autoencoder, the middle layer has fewer neurons than the dimension of 308 

input, thereby acting as a bottleneck that encodes the input data in a lower dimensional space. The signals 309 

in the middle layer preserve the information contained in the inputs, which will be decoded back to the 310 

original space in the following layers. Autoencoders can pre-train some layers of a deep ANN such that 311 

the weights of those layers capture the main features in input data before passing them to the next layers. 312 

After the pre-training phase by unsupervised learning, the ANN needs to be further trained in the 313 

conventional supervised manner, using the actual output data and algorithms such as BP. 314 

While the third wave of ANN popularity began by leveraging unsupervised learning to train deep ANNs, 315 

Goodfellow et al. (2016) argue the interest has gradually shifted back to the classic learning algorithms, 316 

such as BP, even for training deep ANNs. Those classic learning algorithms are now believed to work quite 317 

well in the DL context, perhaps due to the emergence of unprecedented computational power. In this 318 

regard, a game changer was the introduction of graphics processing units (GPUs) to the ANN community 319 

as a powerful tool to massively parallelize and thus expedite training algorithms (Raina et al., 2009). Such 320 

computational power has enabled the development of large ANNs, in terms of both depth and width. As 321 

such, ANNs with hundreds of millions (e.g., Devlin et al., 2018) or even a trillion parameters (e.g., 322 

Rajbhandari et al., 2019) are becoming common. 323 

Such a tremendous revival of the field of ANNs might seem at first surprising to those earth and 324 

environmental scientists who have known the field for a long time. This might be due, in part, to the fact 325 

that ANNs developed nowadays are fundamentally similar to those developed in the 1990s. Differences, 326 

if any in an application, are often in the details. For example, following Glorot et al. (2011), the tendency 327 

now is to use the rectified linear unit (ReLU), which is an unbounded function, instead of the standard 328 

‘sigmoidal’ activation functions (see Eq. 1). The recent boom in data science and cyberinfrastructure and 329 

in investments by mega companies, such as Google, in this field might explain this revival, resulting in 330 

huge successes in image processing (Krizhevsky et al., 2017) and speech recognition (Young et al., 2018). 331 

Perhaps recent rebranding of the field under the title of ‘deep learning’ might have been in part a 332 

marketing strategy (Duerr et al., 2020); while as cited in Schmidhuber (2015a), this term was first 333 

introduced by Dechter (1986) to ML and by Aizenberg et al. (2000) to ANNs. 334 

3. Geometrical Interpretation of DL 335 

ANNs have always struggled with explainability and interpretability. Extensive research efforts have 336 

endeavored to peer inside the ‘black box’ of ANNs, via various forms of sensitivity analysis (see Section 337 

3.4 of Razavi et al. (2021) for a review) or geometrical or other types of interpretations (e.g., Benítez et 338 

al., 1997; Tickle et al., 1998; Castro et al., 2002; Wilby et al., 2003; Xiang et al., 2005; See et al., 2008;Razavi 339 

and Tolson, 2011; Samek & Müller, 2019). Despite all these advances, the issues around explainability and 340 

interpretability of ANNs, and of many ML techniques in general, are as relevant today as ever (see Rudin, 341 

2019). 342 

This section utilizes a geometrical interpretation of ANNs to illustrate the internal functioning of ANNs 343 

and explain why deeper ANNs can be more powerful than ‘shallower’ ANNs in learning representations in 344 
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data. This interpretation is adopted in part from the work of Razavi and Tolson (2011), in which they recast 345 

ANNs with respect to a new set of more interpretable variables based on the network functional 346 

geometry.  347 

3.1. A perceptron 348 

An MLP is in principle made of a number of perceptrons. Consider an MLP with a single hidden layer with 349 

a sigmoidal activation function, as shown Figure 2a. Each hidden neuron, e.g., the rth neuron, is a 350 

perceptron whose output 𝑦𝑟
1 is multiplied by the weight 𝑤1,𝑟

  before entering the output neuron. This 351 

hidden neuron, when only having one input 𝑥1, forms a functional relationship such as that shown in 352 

Figure 2b. This ‘sigmoidal unit’ can be characterized by three variables: ‘slope’, ‘location’, and ‘height’. 353 

There is one-to-one mapping between these variables and the original network variables, 𝑤𝑟,1
1 , 𝑏𝑟

1, and 354 

𝑤1,𝑟
 , as shown in the figure. As such, one can directly control the shape of the sigmoidal unit through 355 

slope, location, and height, and where needed, map them onto the network’s original variables. The 356 

benefit of doing so is that, unlike the original variables, the new variables are geometrically interpretable 357 

and therefore more intuitive. 358 

Figure 2c shows the geometry of a perceptron with two inputs, 𝑥1 and 𝑥 . In this case, the resulting 359 

sigmoidal unit forms a plane that can be characterized by slope, location, and height, plus an additional 360 

variable called ‘angle’ that specifies the direction toward which the sigmoidal unit is facing. This geometry 361 

can be extended to perceptrons with three or more (say D) inputs, where the sigmoidal unit becomes a 362 

hyperplane, characterized by a slope, location, and height and D-1 angles. Full details of this geometrical 363 

interpretation, and how it works in practice, are available in Razavi and Tolson (2011). Now let us see in 364 

the following how ANNs can approximate any function by putting together a large number of such 365 

sigmoidal units. 366 

 367 
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 368 

Figure 2. (a) An MLP with a sigmoidal hidden layer and linear output layer. (b) The sigmoidal line formed 369 

by the rth hidden neuron when the network has only one input, x1. (c) The sigmoidal plane formed by the 370 

rth hidden neuron when the network has two inputs, x1 and x2. A sigmoidal line can be defined by three 371 

variables that are related to the original weights and biases: ℎ𝑟 is the ‘height’ of the tails, 𝑠𝑟 is the ‘slope’ 372 

of the tangent line at the inflection point, and 𝑑𝑟 is the ‘location’ of the inflection point with respect to 373 

the origin. A sigmoidal plane can be defined based on those three variables as well as 𝛼𝑟, which is the 374 

‘angle’ of the normal vector perpendicular to the plane. 𝑙𝑟
1 is the length of this vector. This geometry can 375 

be extended to MLPs with any number of inputs (see Razavi and Tolson, 2011). 376 

 377 

3.2. ANNs with one hidden layer 378 

Single-hidden-layer ANNs are capable of approximating any function by combining, in parallel, as many 379 

sigmoidal units as required. For example, suppose the underlying function to approximate is the sine 380 

function shown in Figure 3a. Three sigmoidal units, with equal heights, equal absolute slopes, and 381 

different locations, are required in parallel to represent the features of the function. These three units 382 

can be produced by the hidden layer of an ANN and feed into a linear output layer, where they are 383 

summed (superimposed) to approximate the sine function, as shown in Figure 3b.  384 

 385 
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 386 

Figure 3. (a) An original sine function and three sigmoidal units, each approximating a part of the sine 387 

function. (b) Output of the ANN that superposes the tree sigmoidal units. 388 

 389 

For problems with two or more inputs, the function approximation is not as straightforward. For example, 390 

suppose the objective in a two-input problem is to approximate the dome-like feature shown in Figure 391 

4a. A single-hidden layer ANN with four sigmoidal hidden neurons and one linear output neuron would 392 

be able to approximate the dome part of the surface, as shown in Figure 4b. This ANN would basically 393 

superimpose four sigmoidal units with equal heights, equal slopes, equal locations, but different angles 394 

(90° apart). The performance of this ANN, however, is unacceptable, as it creates erroneous features on 395 

the tails.  396 

But, can we rectify this issue by using more sigmoidal neurons? Figure 4c shows the performance of a 397 

network with eight sigmoidal units, all having the same heights, slopes, and locations, but different angles, 398 

45° apart. With more sigmoidal units at work, the performance at the tails is improved, producing less 399 

erroneous features. Almost 40 hidden neurons are required, as shown in Figure 4d, to generate smooth 400 

tails, similar to the original function shown in Figure 4a. This example provides a geometrical proof for the 401 

universal function approximation theorem of Hornik et al. (1989) because, in principle, any function could 402 

be approximated by a combination of such dome-like (i.e., basis) functions. The challenge, however, is 403 

that many (possibly an excessively large number of) hidden neurons may be required for a given problem 404 

to attain a desired level of approximation accuracy.  405 

 406 
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 407 

Figure 4. (a) Original dome-like function. Performance of ANNs with (b) four sigmoidal hidden neurons 408 

and a linear output neuron, (c) eight sigmoidal hidden neurons and a linear output neuron, (d) 40 409 

sigmoidal hidden neurons and a linear output neuron, and (e) four sigmoidal hidden neurons and a 410 

sigmoidal output neuron. 411 

 412 

3.3. So, why more than one hidden layer? 413 

As proven by Hornik et al. (1989), and geometrically shown in the example above, ANNs with a sigmoidal 414 

hidden layer and a linear output layer are capable of approximating any function with any desired level of 415 

accuracy. So, one may wonder about the need to have deeper ANNs. This section attempts to answer this 416 

question via an example. 417 

Let us look back at the original function we aimed to approximate in Figure 4a. Only four sigmoidal units 418 

were required, as seen in Figure 4b, to reproduce the dome-like feature at the center. One might ask: Can 419 

we stick to these four sigmoidal units and somehow smooth the tails? Yes, all that is needed is a second 420 

layer with a nonlinear activation function (e.g., sigmoidal) to deactivate any feature that is under a 421 

threshold. In other words, in this process, the geometry formed by the sigmoidal units in the first layer 422 

filters through another sigmoidal unit that bounds that geometry. Figure 4e shows how adding the second 423 

non-linear layer enables the network to reproduce the original function, with only four neurons in the first 424 

hidden layer. Similar to single-hidden-layer ANNs, those with two hidden layers can approximate any 425 

function by putting the dome-like functions side by side.  426 
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In general, shallower ANNs are special cases of deeper ANNs. As shown in the example, deeper ANNs can 427 

provide more flexibility while they may require fewer hidden neurons across the network for 428 

representation learning. However, the training of deeper ANNs has been historically much more difficult 429 

because of the now well-known problem of ‘vanishing and exploding’ gradients. This problem relates to 430 

the fact that the partial derivatives of a loss function (Eq. 2) with respect to weights and biases in first 431 

layers, obtained via the chain rule of differentiation, tend to become very small (i.e., close to zero) or very 432 

large (i.e., exponentially growing or fluctuating). Improved algorithms along with higher computational 433 

power have now eased that difficulty and made possible the training of very deep ANNs (Schmidhuber, 434 

2015b). 435 

Lastly, a related consideration about the proper number of hidden layers is about the fact that, in many 436 

problems, only a small part of the input space is active. In other words, some combinations of the different 437 

inputs might not occur in reality and therefore the accuracy of the ANN might not matter much in the 438 

regions of input space containing those combinations. For example, consider a case similar to one shown 439 

in Figure 4b, where the corners on the input space do not show up in the data available. A hydrological 440 

example is where snowfall and temperature are two inputs to ANNs. Because snowfall would never occur 441 

along with high temperature, the respective part of the input space always remains inactive. 442 

4. Relevance of Occam’s razor and equifinality? 443 

4.1. Issues with the complexity of ANNs 444 

ANNs are known for their hyper-flexibility in fitting data, owing to their enormous degrees of freedom. 445 

For example, consider a problem with five inputs and one output. A single-hidden-layer ANN with 10 446 

hidden neurons would have 71 tunable parameters (60 weights and 11 biases), and adding a second 10-447 

neuron hidden layer would result in a network with 181 parameters (160 weights and 21 biases). Compare 448 

that with linear or quadratic regression models for the same problem, which would have six or 21 tunable 449 

parameters, respectively. Such large degrees of freedom, manifest in large numbers of parameters, 450 

encountered in the field of ANNs do not seem consistent with a basic principle in statistical modelling: 451 

Occam’s razor. 452 

Occam’s razor, or principle of parsimony, indicates that simpler hypotheses or models should be preferred 453 

over more complex ones. In other words, those models that serve the purpose with as few parameters as 454 

possible should be chosen. However, many data-driven modellers, in particular in the field of ML, have 455 

arguably abandoned Occam’s razor. For example, ANN users typically do not try simpler model types such 456 

as regression for the problem at hand. And, when using ANNs, they do not necessarily look for the most 457 

parsimonious network. Note that some literature proposes systematic approaches to choose a network 458 

structure based on growing, pruning, or other strategies (e.g., Reed, 1993; Teoh et al., 2006; Xu et al., 459 

2006). In practice, however, such approaches have been of limited use and most ANN users choose the 460 

network structure on an ad hoc basis or by trial-and-error (see a survey by Razavi et al., 2012a). Recently, 461 

giant ANNs with hundreds of millions of parameters or more have become widespread (Devlin et al., 2018; 462 

Rajbhandari et al., 2019).  463 

In addition, equifinality, a common and widely discussed issue in process-based modelling (Beven and 464 

Freer, 2001; Khatami et al., 2019), is not generally discussed or considered an issue in the context of ANNs. 465 

Equifinality concerns the fact that, in most cases, different model structures and parameter values can 466 

lead to similar modelling results. In other words, model structure and parameters are not uniquely 467 
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identifiable from data (Guillaume et al., 2019). This is despite the fact that, loosely speaking, the level of 468 

equifinality of ANNs is much larger than other types of models because of their massively parallel nature 469 

in producing model outputs. 470 

So, how does DL handle the above issues? The answer is ‘indirectly’, by trying to avoid their undesired 471 

implications, which are overfitting and lack of generalizability. The former refers to a situation where a 472 

model fits the noise in the data rather than the underlying function. The latter refers to a case where the 473 

model does poorly in ‘out-of-sample prediction’, that is predicting situations unseen in the data used for 474 

model training. Various techniques are available in the ANN literature to address these issues, as outlined 475 

in the following. 476 

4.2. Leashing the hyper-flexibility of ANNs 477 

Techniques to control the hyper-flexibility of ANNs and to avoid overfitting fall under two general 478 

strategies, namely ‘early stopping’ and ‘regularization’. Before reviewing these strategies in this section, 479 

let us revisit the common data-splitting approach for calibration and validation of models.  480 

ANNs and traditional, mechanistic models have major differences in terms of calibration and validation. 481 

In traditional modelling practices, the available data are commonly divided into ‘calibration’ and 482 

‘validation’ datasets. The former is used to identify the model structure and parameters, while the latter 483 

is used to test the model performance in out-of-sample prediction.  484 

In ANN practices, however, the available data are typically divided into three sets, commonly referred to 485 

as ‘training’, ‘validation’, and ‘testing’ datasets. Any data chosen for ‘training’ and ‘testing’ in the ANN 486 

context are respectively treated like ‘calibration’ and ‘validation’ datasets in the traditional modelling 487 

context. The third, ‘validation’ dataset in the ANN context is needed to leash the hyper-flexibility of the 488 

network while training. The simultaneous use of ‘training’ and ‘validation’ datasets during ANN training 489 

may be best described within the ‘early stopping’ strategy, as follows. 490 

In the ‘early stopping’ strategy, the quality of fit to the ‘validation’ dataset is evaluated after each ‘epoch’, 491 

that is an optimization iteration trying to minimize the loss function on the ‘training data’ (see Section 492 

2.2). Empirically speaking, as the training error decreases over time, the validation error decreases as well 493 

for a while. However, at some particular epoch, the validation error may begin to increase while the 494 

training error may keep decreasing (see Figure 5). This epoch is deemed to mark the beginning of 495 

overfitting; thus, the user stops the training process. This strategy is therefore called ‘early stopping’ in 496 

the sense that the training stops early, before it can further improve the fit to the ‘training’ dataset (for a 497 

review, see Prechelt, 1998). When the training process stops, the generalizability of the trained network 498 

is assessed via out-of-sample prediction on the ‘testing’ dataset. 499 

 500 
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 501 

Figure 5. Illustration of ‘early stopping’. The loss function on the ‘training’ dataset generally decreases 502 

with more epochs, whereas the loss function on the ‘validation’ dataset decreases early on but begins to 503 

increases at some point, marking the commencement of overtraining. 504 

 505 

‘Regularization’ is another commonly used strategy to put a leash on the hyper-flexibility of ANNs. Unlike 506 

‘early stopping’, this strategy tries to minimize a ‘regularization function’ during training, to control the 507 

ANN flexibility and tailor it to the problem at hand. This strategy has roots in the theory of ‘Tikhonov 508 

regularization’ and typically views a more regularized model as one with a smoother response surface 509 

(Tikhonov and Arsenin, 1977; Johansen, 1997). A traditional regularization function in the ANN context is 510 

the sum of the square of all network parameters (Krogh and Hertz, 1991), based on the notion that, in 511 

general, the smaller the parameters of a neuron, the less activated it is. For example, in an extreme case 512 

where all parameters of a neuron are zero, that neuron becomes fully inactive and does not contribute a 513 

feature to the overall network response. Razavi and Tolson (2011) provide a more efficient regularization 514 

function, based on the geometry presented in Section 3, where the regularization function is the sum of 515 

squares of all of the slopes. This regularization function only targets and removes the unnecessary 516 

features, which are unsupported by data, from the overall network response.  517 

But how can one balance the goodness of fit and smoothness of the network response? In practice, this 518 

is a bi-objective optimization problem, where one objective is to minimize the error function and the other 519 

is to minimize the regularization function. These two objective functions are commonly integrated into 520 

one loss function via weighting schemes. Figure 6 shows how the two objectives compete in a real 521 

example. Ideally, one may wish to achieve a performance such as that shown in Figure 6e. Doing so is not 522 

trivial, however, because in practice the underlying function is unknown, available data are limited, and 523 

response surfaces are multi-dimensional and cannot be easily visualized. The Bayesian regulation method 524 

developed by MacKay (1992) and extended by Foresee and Hagan (1997) has proven useful to adaptively 525 

assign the weights associated with each function during training.  526 
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 527 

Figure 6. Illustrative example of how regularization works to leash the hyper-flexibility of ANNs. Plot (a) 528 

shows an extreme case with no regularization where the ANN overfits data. Plot (b) shows a case where 529 

the regularization function is added to the loss function but marginally weighted. Plots (c) through (e) 530 

show cases with incremental increases in the weight of the regularization function. Plot (f) shows the 531 

other extreme case where the regularization function is dominantly weighted, making the ANN 532 

effectively inactive. These plots are based on a real experiment, where the data sample was taken from 533 

the underlying sine function shown and polluted with random noise. 534 

 535 

A more advanced and recently developed regularization strategy is called ‘dropout’ (Hinton et al., 2012; 536 

Srivastava et al., 2014). ‘Dropout’ is a heuristic, particularly designed for deep ANNs, that randomly 537 

deactivates and then activates different neurons or groups of neurons at each epoch in the course of 538 

training. When a part of an ANN is inactivated in this process, the resulting network is called a ‘thinned’ 539 

network. The ultimate prediction after training with dropout is viewed as an approximation of the 540 

ensemble average of predictions by many independent ANNs. Basically, the many different thinned 541 

networks created throughout the process are assumed to represent ANNs with different configurations 542 

and parameters. This heuristic discourages neurons to co-adapt too much and, as such, is believed to 543 

avoid overfitting. 544 

5. Fundamental differences from other ML methods 545 

5.1. Local versus distributed representations 546 

Most ML methods, such as those based on kernel functions, are based on ‘local representations’. These 547 

methods, while forming connectionist networks like ANNs, represent each entity (e.g., a training sample 548 

point in the input space) via a single processing unit. For example, radial basis functions (Broomhead and 549 

Lowe, 1988), Gaussian emulator machines (Kennedy and O’Hagan, 2000), and support vector machines 550 

(Vapnik, 1998; Cherkassky and Ma, 2004) may use as many kernels as the number of training samples. 551 
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Each kernel typically has a limited radius of influence in the input space, and therefore only responds to 552 

inputs located in their local neighborhood.  553 

Conversely, a unique feature of ANNs is their ability to learn through ‘distributed representations’ (Hinton 554 

et al., 1986). They typically represent an entity via collective efforts distributed among multiple processing 555 

units (e.g., sigmoidal units). Unlike kernel functions, the sigmoidal units typically have large regions of 556 

influence (see e.g., Figure 2c) that overlap each other in the input space (see e.g., Figure 4b). The former 557 

figure shows that a sigmoidal unit influences the entire input space, by dividing it into three zones: lower 558 

tail, upper tail, and slope. The latter figure shows how the influences of four such sigmoidal units are 559 

superimposed to generate the network response.  560 

5.2. Implications for users 561 

The use of distributed representations has several practical implications. To the author’s knowledge, these 562 

include: 563 

 Transparency: The internal functioning of methods based on local representations is more 564 

transparent. Local representations are the most straightforward and easy-to-interpret way of 565 

learning, whereas distributed representations can be complex, often leading to emergent 566 

properties that cannot be easily explained by local representations (Hinton et al., 1986).  567 

 Learning difficulty: Distributed representations are more difficult and time-consuming to learn. 568 

In local representations, the role of each processing unit may be assigned independently of the 569 

other units, but in distributed representations, many processing units may be configured together 570 

in complex ways to represent a feature in the data.  571 

 Network size: Distributed representations need much smaller network sizes. In general, the size 572 

of the networks based on local representations is directly proportional to the size of the dataset, 573 

in most cases with a proportionality constant of one; that is, the number of processing units 574 

mirrors the number of training data samples. The size of networks based on distributed 575 

representations, however, depends on the complexity of features in the dataset, not its size. 576 

 Inexact interpolation or emulation: Networks based on distributed representations are generally 577 

‘inexact emulators’. This means they do not exactly fit the training samples to represent the 578 

features and patterns in the data. This is unlike some other ML methods, such as radial basis 579 

functions (Broomhead and Lowe, 1988) and Gaussian emulator machines (Kennedy and O’Hagan, 580 

2000), that are ‘exact emulators’, perfectly interpolating the training samples. Other inexact 581 

emulators include support vector machines (Vapnik, 1998; Cherkassky and Ma, 2004) and 582 

multivariate adaptive regression splines (MARS) (Friedman, 1991). Refer to Razavi et al. (2012a, 583 

Section 2.6.2) for a discussion on this issue. 584 

In addition, ANNs are essentially multi-output models because they can have as many output neurons as 585 

required for a given problem. This means a single ANN can simultaneously predict different variables while 586 

accounting for their possible cross-correlations. Many other ML methods are, however, single-output 587 

models. For example, in the case of support vector machines, one need to develop two independent 588 

models to be able to predict two different variables in a system. Refer to Razavi et al. (2012a, Section 589 

2.6.5) for an extensive discussion on this matter. 590 
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6. How to introduce order, time-dependency, and memory 591 

MLPs provide static mapping from inputs to outputs. However, many applications require mappings with 592 

a formal representation of time evolution and memory. To enable MLPs to do so, two general sets of 593 

tools, and combinations thereof, have been used in the literature: (1) tapped delay lines and (2) recurrent 594 

connections. These tools are explained in the following. 595 

6.1. Tapped delay lines 596 

A tapped delay line (TDL) consists of a certain number of time delay operators arranged in an incremental 597 

order (Figure 7a). TDLs can be installed on any internal connection weights of MLPs to represent time 598 

explicitly. The resulting ANN shown in Figure 7b, commonly referred to as a ‘time delay neural network’ 599 

(TDNN; Waibel et al., 1989), has been widely used in a range of time-series processing applications. As 600 

such, TDNNs possess a static memory with an adjustable length. This length can be viewed as a 601 

hyperparameter to be tuned during training, along with network structural properties such as the 602 

numbers of layers and neurons in each layer.  603 

Adding TDLs to an MLP significantly increases the number of tunable parameters. For example, a standard 604 

MLP with three inputs and 10 neurons in the first hidden layer would have 30 weights in that layer, while 605 

adding TDLs with a length of five to the inputs would result in an additional 50 weights (80 in total) to be 606 

trained.  607 

 608 
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  609 

Figure 7. (a) A tapped delay line (TDL), receiving the scalar x(t) at each time step t and outputting the 610 

vector [x(t), …, x(t-L)], where L is the length of the TDL. (b) A time delay neural network (TDNN) with one 611 

hidden layer and TDLs installed on the input and hidden layers. (c) A recurrent neural network (RNN) 612 

with one hidden layer and recurrent connections from the hidden neurons to themselves. In case of long 613 

short-term memory (LSTM) networks, the context unit contains three ‘gate layers’ that adjust the 614 

properties of the network’s memory. (d) A gate layer of an LSTM with four inputs, two outputs, three 615 

‘context’ signals that evolve through time steps. 616 

6.2. Recurrent connections 617 

TDLs, as described in Section 6.1, explicitly represent time with a memory unit of limited length. Unlike 618 

TDLs, recurrent connections, first introduced by Jordan (1986), enable ANNs to account for time evolution 619 

based on an implicit memory concept, which is theoretically of unlimited length and is highly context 620 

dependent (Elman, 1990). Recurrent connections receive the outputs of a layer at every time step and 621 
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feed them back to the same or some other layer in the next time step. Technically, they do so via a ‘context 622 

unit’ that stores those outputs in a set of delay boxes (Figure 7c). Recurrent connections can be installed 623 

on one or more layers (e.g., Jordan, 1986; Elman, 1990) or locally on some select neurons (e.g., Frasconi 624 

et al., 1992). 625 

An MLP enabled with recurrent connections is commonly called a ‘recurrent neural network’ (RNN). An 626 

RNN can possess many more tunable parameters compared to an MLP with the same number of layers 627 

and neurons. Using the example given in Section 6.1, an MLP with three inputs and 10 neurons in the first 628 

hidden layer would have 30 weights in that layer, whereas adding recurrent connections to that layer 629 

(e.g., Figure 7c) would add 100 more weights (130 in total) to that layer.  630 

Unlike TDNNs that possess a short-term memory, RNNs in theory can represent long-term dependencies 631 

in the input sequence as well. In practice, however, recurrent connections have difficulty representing 632 

long-term memory because they can easily get dominated by short-term memory. In other words, even 633 

very small features arising from short-term dependencies tend to mask features arising from long-term 634 

dependencies. In addition, RNNs are prone to the ‘exploding and vanishing’ gradients problem in their 635 

training (Bengio et al., 1994). This is because RNNs, even with a single hidden layer, are in principle deep 636 

networks implicitly possessing an infinite number of recursive layers.  637 

6.3. Gate layers to forget or preserve over time 638 

To explicitly account for and balance both short- and long-term dependencies in input sequences, 639 

Hochreiter and Schmidhuber (1997) introduced a new type of RNNs, called ‘long short-term memory’ 640 

(LSTM). They extended and further parametrized the ‘context’ (also called ‘cell’) such that the network 641 

can more explicitly control what information to hold over time and what to forget. The LSTM’s context 642 

unit modulates not only the outputs in the previous time step but also the inputs to the network in the 643 

current time step. It does so via three independent layers of neurons arranged in the so-called ‘forget 644 

gate’, ‘input gate’, and ‘output gate’ layers. The neurons of each ‘gate layer’ as shown in Figure 7d, at 645 

each time step, receive recurrent connections as well as the new input to the network, and generate their 646 

response between zero and one via using a logistic function. These responses are then multiplied by their 647 

respective signals flowing through the context, which means a value of zero would kill a signal whereas a 648 

value of one would fully preserve it. Due to the additional weights and biases in the gate layers, an LSTM 649 

typically has many more tunable parameters than a conventional RNN. 650 

LSTMs are now perhaps the most popular and widely used type of ANNs with memory. However, LSTMs 651 

took a long time (more than a decade) to become known and mainstream, particularly beyond their core 652 

computer science community. Their widespread application nowadays owes to recently developed 653 

software tools such as Python’s TensorFlow that efficiently implement variations of LSTMs for a range of 654 

problems.  655 

6.4. Training considerations when the order of data matters 656 

The training of memory-enabled ANNs, such as TDNNs, RNNs, and LSTMs is different from that of standard 657 

ANNs in terms of the way time-ordered data are presented to the network. To train standard ANNs, the 658 

data entries can be presented in any order even randomly, for example through stochastic gradient 659 

descent (Bottou, 2010). In memory-enabled ANNs, however, the data entries should be presented in order 660 
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of occurrence so that the structure of the time dependency is preserved. While this point might seem 661 

trivial, it requires careful attention in practical applications.  662 

Another point to consider in the training of memory-enabled ANNs is that all data entries are typically 663 

viewed to have equal importance, regardless of their location in the sequence. When used in an online 664 

operational forecast, however, the ‘forgetting factor’ approach can be used to discount older samples. 665 

This approach allows the network to adapt to non-stationary environments, where more recent data are 666 

more representative of the underlying processes than older data (Razavi and Araghinejad, 2009).  667 

Lastly, elements of TDNNs and RNNs can be combined in a variety of ways. A well-known combination is 668 

‘time-delay recurrent neural networks’ developed by Kim (1998) and used in various applications such as 669 

long-term precipitation forecasting in Karamouz et al. (2008); see Razavi and Karamouz (2007) for a 670 

comparison of MLP, TDNN, RNN, and TDRNN in the context of flood forecasting. While such combinations 671 

may show improved modelling power compared to other ML or statistical methods, the attribution of 672 

memory gains to the different elements can arguably be challenging, if possible at all.  673 

7. ML versus process-based modelling – An experiment 674 

ML has been extensively used to model systems for which process-based models are also available. 675 

Process-based models are based on the physics governing the underlying processes and are therefore 676 

typically evaluated based on both their physical realism and goodness of fit to data. ML, however, does 677 

not do much, if anything, with the underlying physics while reportedly doing a superior job in fitting data, 678 

even in out-of-sample prediction. A fairly large body of literature benchmarks ML techniques, particularly 679 

ANNs, against process-based models. Examples of such comparisons (directly or indirectly) in the context 680 

of hydrologic modelling include Hsu et al. (1995), Tokar and Markus (2000), Wilby et. (2003), Kratzert et 681 

al. (2018), Kratzert et al. (2019), Feng et al. (2020), and Ma et al. (2021). Some studies, such as Wilby et 682 

al. (2003), also detected correlations between the weights of an ANN and state variables of a process-683 

based hydrologic model as a way to verify that their ANN can capture the underlying processes in a 684 

hydrologic system. 685 

This section provides an experiment that runs and compares both types of models for the same problem 686 

and walks the reader through all of the steps involved. In particular, the processes around calibration and 687 

validation, role of physics, and interpretations of out-of-sample prediction are discussed. This experiment 688 

is performed in the context of hydrologic modelling, which has seen tremendous progress over the years 689 

with respect to both ML and process-based modelling.  690 

7.1. Data and models 691 

The case study used aims to model the hydrologic system of the Oldman River watershed in Alberta, 692 

Canada. This watershed has an area of 1434.73 km2 at Waldron's Corner with a long-term average 693 

temperature of 2.2 °C. On average, this watershed receives 611 mm of precipitation (rainfall + snowfall) 694 

annually and generates 11.7 m3/s of river flow. Figure 8 shows the 30-year long daily time series data 695 

used. The first 22 years were used for model ‘calibration’ (i.e., the ‘seen’ data in model development) and 696 

the last eight years for model ‘validation’ (i.e., the ‘unseen’ data in model development). The first three 697 

months of the calibration period were used for model spin-up. In the case of DL, the calibration period 698 

was further broken into ‘training’ (17 years) and ‘testing’ (5 years) periods, the latter for early stopping of 699 
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the training process to avoid overfitting. Note that, as explained in Section 4.2, the naming convention in 700 

the DL context for the ‘validation’ and ‘testing’ periods is often the other way around. 701 

To model this system, an LSTM configuration was chosen here as a state-of-the art DL model that accounts 702 

for time dependency and memory. The inputs to the LSTM model are daily precipitation and temperature 703 

(Figures 8a and d) and the output is the concurrent flow (Figure 8e). The LSTM structure was rather 704 

arbitrarily chosen to have one hidden layer with five neurons, resulting in 166 calibration parameters. For 705 

benchmarking purposes, a classic hydrologic model called HBV (Lindström et al., 1997), as implemented 706 

in HBV-SASK (Razavi et al., 2019), was used. HBV-SASK is based on a conceptualization of physical 707 

principles governing the water movement in a watershed using 12 calibration parameters. Each of these 708 

parameters has a physical interpretation and a physically justified feasible range (see Figure 9 and Table 709 

2 of Razavi et al., 2019). Full detail (including data) of this Oldman River watershed case study, which has 710 

been developed for educational purposes, is available in Razavi et al. (2019). 711 

 712 

 713 

Figure 8. Dataset used for the modelling experiment with ML and mechanistic modelling. (a) Measured 714 

precipitation time series (rainfall + snowfall). (b) Estimated rainfall time series (precipitation when 715 

0

10

20

30

40

50

60

70

1
/1

/1
9

79

1
/1

/1
9

80

1
/1

/1
9

81

1
/1

/1
9

82

1
/1

/1
9

83

1
/1

/1
9

84

1
/1

/1
9

85

1
/1

/1
9

86

1
/1

/1
9

87

1
/1

/1
9

88

1
/1

/1
9

89

1
/1

/1
9

90

1
/1

/1
9

91

1
/1

/1
9

92

1
/1

/1
9

93

1
/1

/1
9

94

1
/1

/1
9

95

1
/1

/1
9

96

1
/1

/1
9

97

1
/1

/1
9

98

1
/1

/1
9

99

1
/1

/2
0

00

1
/1

/2
0

01

1
/1

/2
0

02

1
/1

/2
0

03

1
/1

/2
0

04

1
/1

/2
0

05

1
/1

/2
0

06

1
/1

/2
0

07

1
/1

/2
0

08

1
/1

/2
0

09

0

10

20

30

40

50

60

70

1
/1

/1
9

79

1
/1

/1
9

80

1
/1

/1
9

81

1
/1

/1
9

82

1
/1

/1
9

83

1
/1

/1
9

84

1
/1

/1
9

85

1
/1

/1
9

86

1
/1

/1
9

87

1
/1

/1
9

88

1
/1

/1
9

89

1
/1

/1
9

90

1
/1

/1
9

91

1
/1

/1
9

92

1
/1

/1
9

93

1
/1

/1
9

94

1
/1

/1
9

95

1
/1

/1
9

96

1
/1

/1
9

97

1
/1

/1
9

98

1
/1

/1
9

99

1
/1

/2
0

00

1
/1

/2
0

01

1
/1

/2
0

02

1
/1

/2
0

03

1
/1

/2
0

04

1
/1

/2
0

05

1
/1

/2
0

06

1
/1

/2
0

07

1
/1

/2
0

08

1
/1

/2
0

09

0

10

20

30

40

50

60

70

1
/1

/1
9

79

1
/1

/1
9

80

1
/1

/1
9

81

1
/1

/1
9

82

1
/1

/1
9

83

1
/1

/1
9

84

1
/1

/1
9

85

1
/1

/1
9

86

1
/1

/1
9

87

1
/1

/1
9

88

1
/1

/1
9

89

1
/1

/1
9

90

1
/1

/1
9

91

1
/1

/1
9

92

1
/1

/1
9

93

1
/1

/1
9

94

1
/1

/1
9

95

1
/1

/1
9

96

1
/1

/1
9

97

1
/1

/1
9

98

1
/1

/1
9

99

1
/1

/2
0

00

1
/1

/2
0

01

1
/1

/2
0

02

1
/1

/2
0

03

1
/1

/2
0

04

1
/1

/2
0

05

1
/1

/2
0

06

1
/1

/2
0

07

1
/1

/2
0

08

1
/1

/2
0

09

-40

-30

-20

-10

0

10

20

30

40

1
/1

/1
9

79

1
/1

/1
9

80

1
/1

/1
9

81

1
/1

/1
9

82

1
/1

/1
9

83

1
/1

/1
9

84

1
/1

/1
9

85

1
/1

/1
9

86

1
/1

/1
9

87

1
/1

/1
9

88

1
/1

/1
9

89

1
/1

/1
9

90

1
/1

/1
9

91

1
/1

/1
9

92

1
/1

/1
9

93

1
/1

/1
9

94

1
/1

/1
9

95

1
/1

/1
9

96

1
/1

/1
9

97

1
/1

/1
9

98

1
/1

/1
9

99

1
/1

/2
0

00

1
/1

/2
0

01

1
/1

/2
0

02

1
/1

/2
0

03

1
/1

/2
0

04

1
/1

/2
0

05

1
/1

/2
0

06

1
/1

/2
0

07

1
/1

/2
0

08

1
/1

/2
0

09

0

100

200

300

400

500

600

1
/1

/1
9

79

1
/1

/1
9

80

1
/1

/1
9

81

1
/1

/1
9

82

1
/1

/1
9

83

1
/1

/1
9

84

1
/1

/1
9

85

1
/1

/1
9

86

1
/1

/1
9

87

1
/1

/1
9

88

1
/1

/1
9

89

1
/1

/1
9

90

1
/1

/1
9

91

1
/1

/1
9

92

1
/1

/1
9

93

1
/1

/1
9

94

1
/1

/1
9

95

1
/1

/1
9

96

1
/1

/1
9

97

1
/1

/1
9

98

1
/1

/1
9

99

1
/1

/2
0

00

1
/1

/2
0

01

1
/1

/2
0

02

1
/1

/2
0

03

1
/1

/2
0

04

1
/1

/2
0

05

1
/1

/2
0

06

1
/1

/2
0

07

1
/1

/2
0

08

1
/1

/2
0

09

Fl
o

w
   

   
   

   
   

   
   

   
   

   
Te

m
p

er
at

u
re

   
   

   
   

   
Sn

o
w

fa
ll 

   
   

   
  

R
ai

n
fa

ll 
   

   
   

To
ta

l P
re

ci
p

it
at

io
n

Simulation Period (daily)

1/1/1979 - 12/31/1995           1/1/1996 - 12/31/2000 1/1/2001 - 12/31/2008

Training                                                                    Testing                                     Validation

Calibration

(m
2
/s

) 
   

   
   

   
   

   
(°

C
) 

   
   

   
   

   
   

(m
m

) 
   

   
   

   
   

   
   

   
(m

m
) 

   
   

   
   

   
   

  
(m

m
)

(a)

(b)

(c)

(d)

(e)



24 
 

temperature ≥ 0 °C). (c) Estimated snowfall time series (precipitation when temperature < 0 °C). (d) 716 

Measured temperature time series. (e) Measured river flow time series. The training period was used for 717 

LSTM training, while the testing period was used for early stopping. The calibration (training + testing) 718 

period was used for HBV calibration. The validation period was used to evaluate the performance of 719 

both LSTM and HBV in out-of-sample prediction. 720 

 721 

7.2. Model performance in calibration 722 

The model calibration problem was cast as an optimization problem that tries to maximize the goodness 723 

of fit to data by tuning the model parameters, with the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 724 

1970) as the objective function. NSE is essentially a normalized version of mean squared errors computed 725 

as 1-[VAR(errors)/VAR(observations)]. As such, an NSE of one indicates a perfect fit, and an NSE of zero 726 

indicates the model prediction is not any better than the average of observations. As a rule of thumb, 727 

hydrologists often call an NSE of 0.7 and higher an acceptable fit. 728 

The LSTM model was calibrated using BP with the early-stopping strategy to avoid overfitting. In each 729 

epoch, the training period data were used to update the network parameters, while the testing period 730 

data were used to detect possible overfitting. Five independent replicates of LSTM calibration (with 731 

different initial random seeds) were conducted to account for possible variability of model performance. 732 

Figure 9a shows the training results of the five replicates compared to a case where the training would 733 

not have stopped. As expected, the LSTM performance keeps improving in training, whereas in testing it 734 

begins to significantly degrade at some point. The objective function in training came very close to one 735 

after many more epochs but with very poor performance in testing (not shown). 736 

The HBV-SASK model was calibrated by a multi-start Newton-type optimization algorithm. Similar to 737 

LSTM, five independent replicates of HBV-SASK calibration were run. Figure 9b compares the performance 738 

of HBV-SASK with that of LSTM in calibration. At this point, only check the performance of the ‘standard’ 739 

LSTM model in calibration. The figure shows all five replicates of LSTM outperform those of HBV-SASK. 740 

Note that the calibration performance of HBV-SASK shown herein is almost the best the author has 741 

achieved so far for this watershed. Based on these results, the superiority of LSTM over HBV-SASK in 742 

calibration is quite significant from a hydrologic modeling point of view. The performance of the two 743 

models in validation is discussed in Section 7.4, but before that let us discuss what information the two 744 

contained prior to calibration. 745 

 746 
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Figure 9. (a) The performance of LSTM in training, testing, and calibration (training + testing) periods 747 

before and after ‘overfitting’. Training of each replicate was stopped once overtraining began at epoch 748 

numbers ranging from 30 to 110 (left panel). Then, each replicate continued to complete 250 epochs in 749 

total to merely evaluate the impact of overfitting (right panel). (b) A comparison of LSTM and HBV in 750 

out-of-sample prediction. Standard LSTM and process-informed LSTM are discussed in Sections 7.4 and 751 

7.5, respectively.  752 

7.3. What about a priori information encoded in models? 753 

At this point, let us step back and investigate what we have achieved in terms of learning from data for 754 

both the LSTM and HBV-SASK models. The development of the LSTM model was not based on any a priori 755 

knowledge of how a watershed system works and the governing physical principles. As such, the model 756 

learned everything from scratch merely using examples from data. Basically, the model started with a fully 757 

randomized internal configuration controlled by a large number (i.e., 186) of parameters and then tuned 758 

those parameters to adapt the internal functioning of LSTM to the underlying real-world system 759 

represented in the data. Figure 10a shows the LSTM performance of arbitrarily chosen replicates before 760 

and after calibration. The model response to inputs before calibration seems to be completely random 761 

but, after calibration, the model response has learned to closely follow the underlying system response. 762 

Unlike LSTM, HBV-SASK encodes the expert knowledge available in the field of hydrology. This model is a 763 

collection of conservation of mass equations and process parametrizations that represent how 764 

hydrologists conceptualize the way a watershed works. This ‘physically based’ modelling structure is 765 

presumably able to emulate the behavior of any watershed by tuning only 12 parameters. Figure 10b 766 

shows how the model performs before calibration, with parameter values chosen to be at the midpoint 767 

of their ranges, and after calibration. The figure shows the ‘uncalibrated’ model responds reasonably to 768 

the inputs; it generally captures the timing of flows and emulates the low flow segments well but is overly 769 

responsive to large precipitation events, generating spurious spikes in flows. Calibration, either manual 770 

by expert knowledge or automatic as done here via optimization, can fix the discrepancies and fit the 771 

model output to observations. 772 

So, a fundamental difference between the two approaches is now clearer: using a process-based model 773 

is about directly using a wealth of expert knowledge available in a scientific field while using DL is about 774 

learning everything from scratch directly from data. This difference is manifest in the number of 775 

parameters that need to be tuned to achieve a reasonable performance. Notably, the LSTM model 776 

achieved a better performance in emulating observations after calibration, as evident in a comparison of 777 

Figures 10a and b. However, in any modelling exercise, one needs to ensure the model gives the right 778 

answer for the right reasons (Kirchner, 2006). That is why proper model evaluation in out-of-sample 779 

prediction is critically important, as discussed in the next section. 780 

7.4. Model validation: Standard versus true out-of-sample prediction 781 

In general, validation and verification of mathematical models are very challenging in some scientific 782 

disciplines, if possible at all (Oreskes et al., 1994). The standard practice, however, is to test the 783 

performance of the model under investigation in terms of reproducing some historical record not seen 784 

during model calibration (Klemeš, 1986a), a process called ‘out-of-sample prediction’ in this paper. Figure 785 

9b shows the results of such practice in the validation period set in Figure 8. In this case, both LSTM 786 

(standard) and HBV models do reasonably well from a hydrologic point of view, with LSTM outperforming 787 
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HBV across all replicates. In addition, and as expected, both models produced slightly lower NSE values in 788 

validation compared to those in calibration.  789 

The above so-called ‘model validation’ is inherently partial (Oreskes et al., 1994). While the performance 790 

of LSTM appears to be better than that of HBV in a ‘relative’ sense, one needs to take extra care before 791 

making such a conclusion. As argued by Klemeš (1986a) more than three decades ago, a strong 792 

assumption in this type of validation is that the conditions under which the model will be used will be 793 

similar to the conditions under which the model has been developed and calibrated. It is now well-794 

recognized that such an assumption may not hold, as many natural systems are essentially non-stationary 795 

(Milly et al., 2008; Razavi et al., 2015). Despite such recognition, this standard model validation practice 796 

has arguably remained unchanged (Beven, 2018).  797 

 798 

Figure 10. What does a model learn via calibration? Performance samples of (a) LSTM and (b) HBV 799 

before and after calibration for a select two-year period. 800 

 801 

Here, I took a sensitivity analysis approach via a what-if scenario question to test and compare the 802 

performance of both models in a ‘true’ out-of-sample prediction, basically under conditions that have not 803 

truly been seen in the process of model development and calibration. The question is how the system 804 

would behave if the average temperature warmed by 2 °C while everything else remained the same. To 805 

assess this scenario, both calibrated models were fed a new temperature time series obtained by adding 806 

2 °C to all daily temperature values of Figure 8d. These new ‘synthetic’ inputs roughly provide a picture of 807 

what might happen in this watershed under global warming. The modelling results under such scenarios 808 

are typically used to inform policy making for climate change adaptation. 809 

Now let us use the two different models to evaluate the possible changes in the watershed behavior in 810 

response to a 2 °C warming. Here, instead of looking at individual simulated time series, the possible 811 

change in the average seasonality of flows is of interest. First, look at Figure 11a to check the consistency 812 

of simulated flows for the historical period. Both models generally follow the observed seasonality, but 813 
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the range provided by the LSTM model is generally narrower and better encapsulates observations in both 814 

low and high flows.  815 

Under the new conditions, however, the two models show the two distinct behaviors shown in Figure 816 

11b. According to LSTM, peak summer flows would decline by about 25% on average and the time of the 817 

peak would shift backward by about a week, from the beginning of June to a time in the fourth week of 818 

May. According to HBV-SASK, however, the changes would be more pronounced. The peak flows would 819 

decline by about 35% on average and the flows might show two modes: the higher one at the beginning 820 

of May and the other at the beginning of June, at about the same time as the peak in the historical 821 

observations. Are such differences not sufficiently large so as to make the user skeptical about the 822 

modelling process? 823 

 824 

 825 

Figure 11. Long-term average daily flows throughout the year under (a) historical and (b) hypothetical 826 

conditions. The envelopes represent the daily ranges of flows obtained by the five replicates of each 827 

model. The curves were smoothed by a 20-year moving average filter. 828 

 829 

7.5. Injecting some physics into ML 830 

At this point, one may wonder about the possibility of ensuring that DL results be physically consistent, 831 

particularly under new conditions. Let us give it a try by recasting the modelling problem based on some 832 

understanding of the governing physics in hydrology. For example, physics tells us that the freezing point 833 

of water is around 0 °C and, therefore, this threshold could be used as an approximation to differentiate 834 

rainfall from snowfall on a daily basis, i.e., if the temperature on a day is above/below 0 °C, the 835 

precipitation on that day, if any, is considered to be rainfall/snowfall (see Figures 8b and c). This 836 

differentiation is actually a part of process parameterization in HBV, similar to many other hydrologic 837 

models, via a parameter called ‘temperature threshold’ (TT) for melting/freezing and separating rain and 838 

snow, with a feasible range from −4 to +4 °C (see Razavi et al., 2019 for details). The warming of a 839 

watershed would naturally change the rainfall to snowfall ratio, and so integrating this domain knowledge 840 

with the LSTM model makes sense.  841 
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Perhaps the most straightforward way of introducing the TT concept to LSTM is via pre-processing of the 842 

inputs. Therefore, a new LSTM model was developed and calibrated, called ‘process-informed LSTM’ in 843 

this paper, with three inputs: rainfall, snowfall, and temperature as shown in Figures 8b, c, and d. Similar 844 

to the original, the new LSTM model has one hidden layer with five neurons, resulting in 186 calibration 845 

parameters. The procedure for the calibration and validation of the process-informed LSTM was the same 846 

as for the ‘standard LSTM’, already explained in Sections 7.2 and 7.4. Figure 9b compares the performance 847 

of the process-informed LSTM with HBV and the standard LSTM. The figure shows the two LSTM models 848 

perform comparably well. Process-informed LSTM results in a slightly lower average NSE in validation but, 849 

with only five replicates, this small difference should be interpreted with caution. 850 

Figure 11b demonstrates the performance of the process-informed LSTM model in the ‘true’ out-of-851 

sample prediction. According to this model, the summer peak flows would decline by 20% on average and 852 

the time of peak would appear about two weeks earlier than in the historical record, in the third week of 853 

May. The process-informed LSTM model generated rising and falling limbs that are more consistent with 854 

those of HBV-SASK. Overall, however, the results of HBV-SASK under the new conditions are still quite 855 

different.  856 

7.6. So, what model should we trust: the ML or process-based model? 857 

Now the question is which one of the three models produced the most credible picture of possible 858 

watershed behavior under the new conditions. In practice, this question is very difficult to answer, if 859 

possible at all. In general, the prediction of such changes can be debated and might vary from one study 860 

to another, depending on the models and data used and disciplinary views. Perhaps, a definite answer 861 

would need to wait until the future has come and shown such possible changes. And, from a bigger-picture 862 

point of view, models of natural systems cannot be verified or validated in true out-of-sample prediction, 863 

because those systems are never closed and not everything can be represented in a model, as argued by 864 

Oreskes et al. (1994) nearly three decades ago. 865 

But, as scientists, we have our own perceptions and intuitions. These might be biased but still useful to 866 

provide a ground for building confidence in the credibility of a model. In the context of the case study 867 

given, previous research on the Canadian Rocky Mountains has indicated that warming alone will result 868 

in a considerable reduction in flows and earlier peaks in watersheds similar to the Oldman River 869 

watershed. A synthesis of research efforts under the Changing Cold Regions Network (CCRN; DeBeer et 870 

al., 2021) on the cold interior of western Canada indicates a shift in timing of the spring hydrograph rise 871 

and peak flows of nearly two weeks earlier by mid-21st century, and as much as one month by the late 872 

21st-century. These projections, which themselves are based on rigorous atmosphere-landsurface 873 

modelling, are consistent with the modelling results presented in the previous sections but cannot 874 

pinpoint the most accurate model. 875 

What is worrisome is the large divergence in behavior of models in response to expected, but yet to be 876 

seen perturbations, whereas those models produce comparable results in standard out-of-sample 877 

prediction. Broadly speaking, one might say any known consistency of a model with the known underlying 878 

physics can improve model’s explainability and interpretability, thereby helping us better explain the 879 

model behavior in response to such perturbations. Explainability and interpretability are fundamental 880 

assets in building trust in a model, and of course, physically-based models are advantaged in that respect. 881 

I would say mistrust in some data-driven modelling paradigms such as ANNs is a long-standing issue in 882 

part of our research community and stakeholders. I have heavily struggled with this issue as a researcher 883 
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who started his research career with ANNs almost 20 years ago and has also had the privilege to work 884 

extensively with process-hydrologists and physically-based modellers. I believe with the current 885 

momentum and excitement, an opportunity is arising to bring the two world views together and promote 886 

the dialogue between the champions of process-based modelling and those of machine learning, as 887 

already discussed by many authors (e.g., Reichstein et al., 2019). Doing so, however, requires an in-depth 888 

understanding and appreciation of the value of domain knowledge, as discussed in the next section. 889 

8. Discussion 890 

8.1. What is the typically ignored value of domain knowledge in DL? 891 

True out-of-sample prediction is nothing but ‘extrapolation’ beyond the observed data and behaviors used 892 

in model development and calibration. Extrapolation is a reality that many predictive models nowadays 893 

must face because of ‘non-stationarity’ in climate and the environment (Milly et al., 2008; Razavi et al., 894 

2015). Any purely regression-type model, including those arising from DL, would be disadvantaged in 895 

extrapolation as, by definition, extrapolating would require working in parts of the problem space for 896 

which they have not received any information. Conversely, mechanistic models may be salvaged in 897 

extrapolation by the domain knowledge encoded within them.  898 

But what does domain knowledge offer when it comes to extrapolation? The answer is the set of principles 899 

modulated via conservation laws (e.g., mass, energy, and momentum) and process parametrizations, 900 

which represent our perceptions of how two or more variables might be related (Gupta et al., 2012). Such 901 

principles have been developed and evolved over time based on extensive observation and research by 902 

scientists and practitioners. The limits of validity of such principles are typically known. In the following, 903 

the importance of taking advantage of those principles in modelling and prediction is discussed with 904 

respect to three aspects: conservation laws, monotonicity and rates, and feedback mechanisms. 905 

Conservation laws: In physics, a conservation law states that a specific measurable property does not 906 

change within an isolated system with time. Such a law is usually expressed as a ‘continuity equation’; 907 

that is, a differential equation equates the rate of change in storage within a control volume with the 908 

difference between what comes in and what goes out of the control volume. In land surface modelling, 909 

for example, conservation laws are built into mechanistic models to ensure water and energy balance is 910 

preserved in simulations over time. ML models, however, do not automatically account for such laws and, 911 

as a result, water or energy can be falsely introduced or lost in the course of simulation. 912 

Monotonicity and rates: The knowledge base includes the general characteristics of some causal 913 

relationships between various physical variables. For example, we know from basic thermodynamics that 914 

the relationship between melt rate and available heat is monotonic; that is, more heat causes a higher 915 

melt rate. Furthermore, we have some rough estimate of the feasible range of the rate of change in one 916 

with respect to the other. Similarly, from basic hydrology we know the causal relationships governing the 917 

way a hillslope stores and releases water are generally such that a positive correlation exists between 918 

water available in the soil and its contribution to flows; more water means more flows due to gravitational 919 

forces.  920 

Mechanistic models directly account for such knowledge on casual relationships. This knowledge is 921 

encoded in process parametrizations typically in the form of deterministic, monotonic functions, or rarely 922 

in hysteretic forms, with a limited number of parameters to be calibrated to the specific case study in 923 
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hand (Gharari and Razavi, 2018). However, in the case of hyper-flexible models such as ANNs, such 924 

functions need to be entirely derived from data, all from scratch, and ignoring the knowledge base related 925 

to those monotonic relationships. Therefore, extrapolation runs the risk that such relationships become 926 

non-monotonic and/or have unrealistic rates, producing erroneous behaviors. This risk is exacerbated by 927 

the fact that identifying and diagnosing such errors are very difficult, if possible at all. 928 

Feedback mechanisms: A real-world physical system is a combination of variables that interact over time, 929 

typically via a range of feedback mechanisms. Such feedback mechanisms control the internal dynamics 930 

of the system and are key to its evolution over time. For example, consider a coupled water-vegetation 931 

system in which precipitation, available soil moisture, and plant biomass interact in complex time-932 

dependent ways, even at times creating positive feedbacks that destabilize the system’s behavior 933 

(Rodriguez‐Iturbe et al., 1991; Scheffer et al., 2001). The knowledge base available about these feedback 934 

mechanisms is often built into mechanistic models, using differential equations (ordinary or partial) to 935 

describe the system dynamics. The representation of such dynamics in the making of models is important, 936 

particularly for long-term predictions and over long time scales.  937 

DL models are often unable to account explicitly for such long-term dynamics. If a particular dynamical 938 

behavior is present in training data, then DL can capture that behavior in its mapping from input onto 939 

output. DL however has no explicit mechanism to represent that dynamic under perturbed conditions 940 

beyond what has been recorded in the training data.  941 

Is mechanistic modelling immune to issues with extrapolation? Certainty not. While a discussion on the 942 

limitations and prospects of mechanistic modelling is beyond this paper, one solution to improve 943 

extrapolability of mechanistic modelling over time that is also relevant to ML is ‘space-for-time 944 

substitution’. This strategy is to investigate multiple or many sites simultaneously, instead of one, to infer 945 

a temporal trend for a site based on information from other sites that have different properties and/or 946 

experienced different conditions, assuming spatial and temporal variations are equivalent. For example, 947 

refer to Pickett (1989) and Blois et al. (2013) in the context of ecology and to Singh et al. (2011) in the 948 

context of hydrology. In the era of big data, ML can benefit significantly, explicitly or implicitly, from such 949 

strategies when spatio-temporal data across large domains are available. For example, Kratzert et al. 950 

(2019), Feng et al. (2020), and Ma et al. (2021) utilize the CAMELS dataset, which includes catchment 951 

attributes and hydrometeorological data across many different sites (Newman et al., 2014; Addor et al., 952 

2017), to improve the performance of DL in hydrological modelling applications. 953 

The bottom line is that mechanistic models are generally expected to be less prone to generating spurious 954 

behaviors in true out-of-sample prediction. Therefore, many domain experts may be inclined to trust 955 

physically based models as their behavior is constrained by physical laws that are perceived as unchanging 956 

with time. The points made in this section will become clearer in the next section, where the essential 957 

differences between DL and mechanistic modelling are discussed. 958 

8.2. Why is DL essentially different from process-based modelling? 959 

In the author’s view, the first principles of ANNs are rooted in connectionism, hyper-flexibility, and 960 

vigorous optimization. These characteristics are fundamentally different from the guiding principles of 961 

developing and calibrating mechanistic models, as described in the following: 962 
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 Connectionism is an approach that orchestrates a set of simple algebraic operations in a massively 963 

parallel manner to create a model that is able to carry out complicated tasks. Following this 964 

approach, ANNs represent the response of a system under consideration to an input by summing 965 

the collective efforts of many neurons, whose roles cannot be easily attributed to individual 966 

processes involved in that system. This is unlike mechanistic modelling where each part of a model 967 

is designed to be responsible for a specific process. 968 

 Hyper-flexibility is a characteristic of a model with excessive degrees of freedom, which can literally 969 

fit any dataset, and is not constrained by the many assumptions held by typical statistical models. 970 

ANNs are known to be hyper-flexible. Mechanistic models, however, have limited degrees of 971 

freedom depending on the knowledge base available about the processes being modelled. Ideally, 972 

mechanistic models tend to have just as many degrees of freedom as can be supported and 973 

constrained by available knowledge and data. 974 

 Vigorous optimization here refers to the practice of manipulating model parameters at any cost to 975 

maximize the goodness-of-fit to calibration data. The training of ANNs is all about minimizing an error 976 

function; that is, among two competing ANNs, the one producing smaller errors in calibration and 977 

validation is the winner. Optimization is also often an essential part of mechanistic modelling to 978 

calibrate model parameters. However, in mechanistic modelling, minimizing the errors is not the 979 

goal but a means to improve the realism of the model. In other words, unlike ANNs, physical 980 

feasibility of a parameter, its identifiability, and equifinality are key considerations in mechanistic 981 

modelling. 982 

The recognition of these fundamental differences is critically important when one aims to choose the right 983 

modelling paradigm for a purpose, compare the two paradigms in a case study, or attempt to bridge the 984 

two paradigms, possibly for improved modelling performance. The following section outlines the status 985 

quo for bridging the two paradigms and some emerging trends. 986 

8.3. How can we bridge DL and process-based modelling? 987 

The history of research on reconciling and bridging ANNs with mechanistic modelling dates back to the 988 

early 2000s or perhaps earlier. These efforts have generally had the objective of simultaneously leveraging 989 

the strengths of the two modelling paradigms to further our knowledge and predictive ability. Abrahart 990 

et al. (2012) reviewed such research in the context of hydrology and refer to it as ‘hybridization’. They 991 

introduced three possible approaches for this purpose, which herein are referred to as ‘surrogate 992 

modelling’, ‘one-way coupling’, and ‘modular coupling’. Seven years later, Reichstein et al. (2019) in an 993 

influential article in Nature re-introduced and proposed the notion of ‘hybrid modelling’ and the above 994 

three approaches as the next steps in earth science. In the following, these three approaches are 995 

explained, and then more modern existing approaches arising from research fields beyond earth and 996 

environmental sciences are discussed. 997 

Surrogate modelling, alternatively called metamodelling or model emulation, refers to the process of 998 

developing and applying a simpler, cheap-to-run model in lieu of a more complex, computationally 999 

intensive model (Razavi et al., 2012a). In this process, a data-driven surrogate, such as an ANN, is trained 1000 

on samples of a limited number of original model runs to approximate the model response surface. The 1001 

developed surrogate model can then be used in different frameworks in conjunction with the original 1002 

model, as reviewed in Razavi et al. (2012a), in multi-query applications such as optimization and 1003 
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uncertainty quantification. Example applications of ANNs as surrogates of mechanistic models include 1004 

Johnson and Rogers (2000), Broad et al. (2005), Behzadian et al. (2009), and Vali et al. (2020). 1005 

One-way coupling refers to the process combining a mechanistic model with an ML model such that the 1006 

output of the former feeds into the latter as input. A general rationale for such a combination is that a 1007 

mechanistic model may not be able to fully explain the observed data and, therefore, an ML model could 1008 

be of help in extracting any information left in the residuals of the mechanistic model. For example, 1009 

consider a case where a mechanistic hydrologic model is used for streamflow forecasting and, as 1010 

expected, some errors in model outputs are present. An ANN can be used to model such errors over a 1011 

historical period to provide some predictive ability on the errors for a time step into the future. Then, 1012 

running these two models in sequence may provide higher forecasting skills. Example applications of such 1013 

one-way coupling include Shamseldin and O’Connor (2001) and Anctil et al. (2003), and Li et al. (in review). 1014 

Modular coupling refers to cases where an ML model is used as a module/sub-model of a larger 1015 

mechanistic model or vice versa. The rationale for this type of coupling may be that a particular model 1016 

might have proven skills in representing a particular process and is therefore preferred, while other 1017 

processes are better represented by another model. Hydrologic examples are the work of Chen and 1018 

Adams (2006) and Corzo et al. (2009), in which ANNs are used as the routing module within a distributed 1019 

hydrological model. Another example is the work of Chua and Wong (2010) in which an ANN-based 1020 

hydrologic model takes the output of a kinematic wave model as one of its inputs. And, a recent example 1021 

is the work of Bennett and Nijssen (2020), in which a DL-based model for the simulation of turbulent heat 1022 

fluxes is built into a process-based hydrologic model. 1023 

Beyond the earth and environmental sciences community, the notion of bridging the knowledge base and 1024 

ML has a long history (e.g., see the ‘knowledge-based artificial neural networks’ by Towell and Shavlik 1025 

(1994)), but it has received significantly more attention recently. Different approaches mostly arising from 1026 

mathematics and computer science have been proposed under titles such as ‘theory-guided data science’ 1027 

(Karpatne et al., 2017), ‘informed machine learning’ (von Rueden et al., 2019), and ‘physics-informed 1028 

neural networks’ (Raissi et al., 2019), to name a few. Providing a full coverage of such approaches is well 1029 

beyond the scope of this paper, and many of them have been developed for specific application areas 1030 

with limited relevance to earth and environmental problems. Instead, in the following, I try to be selective 1031 

and explain three approaches that I found most relevant. 1032 

Regularizing ANNs via knowledge-based loss terms. A new regularization function can be developed 1033 

based on the available knowledge surrounding a given problem and be added to the loss function used in 1034 

training. For example, any violation of the conservation laws or monotonicity of relationships, as described 1035 

in Section 8.1, can be quantified and penalized during training. Refer to Stewart and Ermon (2017) for an 1036 

example application of this approach in the context of image processing. 1037 

Using mechanistic model runs to augment ANN training data. A mechanistic model can be used to 1038 

simulate the system under investigation under a range of conditions to generate ‘synthetic data’ to 1039 

augment the available training data. This approach may be particularly useful in guiding ANNs in 1040 

extrapolation beyond conditions seen in the original training data (see the discussion in Section 8.1). This 1041 

approach is based on the assumption that the mechanistic model used is sufficiently accurate—an 1042 

assumption that needs to be treated with caution. For an example of this approach in the field of systems 1043 

biology, see Deist et al. (2019). 1044 
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Integrating differential equations into ANNs. This approach is a very recent and perhaps the most 1045 

mathematically elaborate in terms of integrating the knowledge base into ANNs, primarily developed by 1046 

Raissi et al. (2019). It parametrizes the known differential equations describing a system and integrates 1047 

them into the body of ANNs. The integrated model is then trained to the available data, simultaneously 1048 

inferring the parameters of the differential equations and network weights. One could view this approach 1049 

as an extension to the knowledge-based loss terms described above where the new loss term penalizes 1050 

the network for deviations from those known differential equations. This approach still seems embryonic 1051 

but perhaps with great potential for scientific breakthroughs. 1052 

8.4. What can we learn from prominent DL applications? 1053 

As outlined in Section 1, DL has already been used across a wide range of disciplines and applications with 1054 

varying degrees of success. Here, and for context, consider two special and well-known cases of DL 1055 

applications: playing chess and predicting the stock market. DL has achieved incredible, superhuman-level 1056 

performance in chess and similar games (Silver et al., 2018), while its performance in stock market 1057 

prediction has been criticized despite its widespread application (e.g., Pearlstein, 2018). These opposing 1058 

outcomes may be explained as follows: 1059 

 Chess does not possess any properties of ‘complex systems’ (Bar-Yam, 1997), whereas financial 1060 

systems are essentially complex, with a wide range of agents interacting at a wide range of scales, 1061 

giving rise to emergent behaviors and even black swans. Any AI-based financial services themselves 1062 

would also be an agent influencing the stock market, even possibly inducing vicious cycles. 1063 

 Chess can be viewed as a closed system, as no exogenous factors influence any properties or 1064 

dynamics of the board and players, whereas stock markets are open systems and, for any analyses, 1065 

the assumed boundary conditions depend on the analyst’s judgement. 1066 

 Chess is a fully observable system, as the entire board, pieces, rules, and moves are seen by the 1067 

players, but stock markets are only partially observable and some controlling elements in the market 1068 

might be hidden to the analysts. 1069 

 Chess is stationary, as the properties and governing rules of the game remain constant over time, 1070 

whereas stock markets are non-stationary and their long-term dynamics and behaviors may change 1071 

in unpredictable ways driven by political, social, economic, or natural events. 1072 

So what? Earth and environmental systems arguably fall somewhere in between these two specific 1073 

applications with respect to their four fundamental and inter-related characteristics: such systems are 1074 

complex, open, partially observable, and non-stationary. Loosely speaking, understanding and predicting 1075 

earth and environmental systems face similar challenges to those of the stock markets in terms of those 1076 

four characteristics. However, unlike stock market systems that are conceived to be partially predictable 1077 

at best (Fama, 1970; Malkiel, 2003), the behaviors of earth and environmental systems are generally 1078 

believed to be predictable, with limits of predictability that have been improving as more knowledge and 1079 

data become available.  1080 

The comparisons above try to convey two points. First, the revolutionary success of DL in one field of 1081 

application cannot necessarily be extended directly to another field of application. The context matters, 1082 

and success depends on the characteristics of the problem at hand. Second, different disciplines may 1083 

cross-fertilize DL applications and learn from one another. However, cross-fertilization is non-trivial and 1084 
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requires more direct communications between experts in different disciplines about existing methods, 1085 

common issues, and ways forward. 1086 

9. Concluding remarks 1087 

Deep learning has perhaps by now served every researcher and practitioner in earth and environmental 1088 

sciences communities in tasks such as image and language processing, at least through their smart phones. 1089 

Such astonishing and within-reach technologies have boosted interest in DL, and in AI in general, within 1090 

these communities, evidenced by the significant growth in the number of their research papers on DL. 1091 

Many, including the author of this paper, believe the combination of AI with unprecedented data sources 1092 

and increased computational power will offer exciting new opportunities for expanding our knowledge 1093 

about various earth and environmental systems. Unsurprisingly, similar to many other innovations, AI and 1094 

particularly DL techniques are facing different views towards their future; for example, in the hydrology 1095 

context Nearing et al. (2020) suggest a DL-informed divorce from some of the current hydrological 1096 

theories while Beven (2020) advocates for the fundamental needs of a knowledge base in DL 1097 

interpretation.  1098 

It is certainly an exciting time for earth and environmental sciences to benefit from DL tools. Shen et al. 1099 

(2018) picture a bright future but articulate some important technical and cultural challenges to overcome 1100 

in the years to come, by more targeted educational and organization efforts. We need also to be mindful 1101 

of any possible risk of hype and over-excitement about the new potential tools. Arguably, still many 1102 

applications of DL in earth and environmental sciences have primarily focused on off-the-shelf 1103 

applications of methods largely developed by mathematicians and computer scientists to problems in a 1104 

new domain with no or limited considerations of the available domain’s knowledge base. The immediate 1105 

risk of such practices is that the popularity of AI tools in earth and environmental sciences would then 1106 

follow the ups and downs of these tools in the areas from which they originate and the software 1107 

developed for those purposes. There is also a greater risk, in the author’s view, as follows. 1108 

Let us flash back to more than three decades ago, when the prominent statistician George Box (1976, p. 1109 

797-798) warned about the “mathematistry” trap, “characterized by development of theory for theory's 1110 

sake, which since it seldom touches down with practice, has a tendency to redefine the problem rather 1111 

than solve it”. He argued that “there is unhappy evidence that mathematistry is not harmless. In such 1112 

areas as sociology, psychology, education, and even, I sadly say, engineering, investigators who are not 1113 

themselves statisticians sometimes take mathematistry seriously. Overawed by what they do not 1114 

understand, they mistakenly distrust their own common sense and adopt inappropriate procedures 1115 

devised by mathematicians with no scientific experience.” This sentiment was then echoed by the 1116 

prominent hydrologist Vit Klemeš (1986b, p. 177 and p. 185), who said “The danger increases with the 1117 

proliferation of computerized “hydrologic” models whose cheaply arranged ability to fit data is presented 1118 

as proof of their soundness and as a justification for using them for user‐attractive but hydrologically 1119 

indefensible extrapolations.” He continued, “The danger to hydrology from extrapolations based on 1120 

mathematistry is that they lead it on the path of bad science.” 1121 

The point here is that the risk of mathematistry seems to be just as fresh as it must have been back then, 1122 

particularly when it comes to the application of AI tools in earth and environmental sciences. Due to the 1123 

very nature of such tools, this risk may even well extend to their original areas of application, party 1124 

because of their lack of explainability and interpretability (see Rudin, 2019), to a point that such practice 1125 
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has been referred to as a form of modern “alchemy”; see Rahimi and Recht (2017) for the sentiment, 1126 

LeCun (2017) for a rebuttal, and Hutson (2018) for a summary. This point is not to undermine the benefits 1127 

of AI technology, particularly for earth and environmental applications. Instead, it calls for improved rigor 1128 

and better appreciation of the knowledge base available. After all, it has been long known in 1129 

environmental sciences that complex models can be made to produce virtually any desired behavior given 1130 

their large degrees of freedom, as articulated by Hornberger and Spear (1981) three decades ago. 1131 

Having such risks in mind, the new potential afforded by AI for earth and environmental sciences is great. 1132 

To realize this potential, we need to reconcile data-driven AI techniques and the theory-driven knowledge 1133 

base. The knowledge base is at the heart of ‘traditional programming’, which is still a major building block 1134 

of process-based or mechanistic modelling in earth and environmental sciences. Clearly, the traditional, 1135 

knowledge-based programming and AI are made up of two fundamentally different world views for 1136 

problem solving and, therefore, their reconciliation will not be straightforward. This paper tried to address 1137 

some critical questions in this regard and provide some perspective for this important endeavor, in 1138 

anticipation of new breakthroughs in earth and environmental sciences in an age of big data and 1139 

computational power. 1140 
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