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Abstract

We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with

warming. Using a radiative-convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed

vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms

of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of

the 0 to 30% differences in clear-sky sensitivity seen in climate and storm-resolving models. The results imply that convective

aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our

findings with relative humidity trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing

over time. These trends and their height variation merit further study.
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Key Points:10

• Climate sensitivity is sensitive to the assumed distribution of relative humidity.11
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• Tropical relative humidity trend in reanalyses yields an increase in climate sen-14

sitivity.15
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Abstract16

We study how the vertical distribution of relative humidity (RH) affects climate sensi-17

tivity, even if it remains unchanged with warming. Using a radiative-convective equilib-18

rium model, we show that the climate sensitivity depends on the shape of a fixed ver-19

tical distribution of humidity, tending to be higher for atmospheres with higher humid-20

ity. We interpret these effects in terms of the effective emission height of water vapor.21

Differences in the vertical distribution of RH are shown to explain a large part of the 10 %22

to 30 % differences in clear-sky sensitivity seen in climate and storm-resolving models.23

The results imply that convective aggregation reduces climate sensitivity, even when the24

degree of aggregation does not change with warming. Combining our findings with rel-25

ative humidity trends in reanalysis data shows a tendency toward Earth becoming more26

sensitive to forcing over time. These trends and their height variation merit further study.27

Plain Language Summary28

Equilibrium Climate Sensitivity is the change in surface temperature in response29

to a doubling of atmospheric CO2. We study how the assumed vertical distribution of30

relative humidity affects this sensitivity. Theoretical considerations show that the more31

moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding32

water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We33

emphasize the importance of climate simulations taking humidity into account, as it is34

largely responsible for the difference in projections among models without clouds. We35

note surprising trends in humidity – with substantial drying of the lower troposphere over36

the ocean – in the last four decades as reported by two reanalyses of meteorological ob-37

servations. Subject to the accuracy of these reconstructions, there appears to be a change38

with less moistening than expected, but with moistening/drying profiles which will con-39

dition Earth to become more sensitive to forcing over time. We stress the need for a study40

of observations to more critically evaluate these trends, and know better what models41

should aim for.42

1 Introduction43

The clear-sky response to an increase in greenhouse gases is a pillar of our under-44

standing of global warming (Manabe & Wetherald, 1967; Charney et al., 1979). It is gen-45

erally believed that this response is better described by an atmosphere whose relative,46

rather than absolute, humidity remains constant with warming.47

The distinction is crucial because in an atmosphere where the relative humidity (RH)48

is fixed, the response of surface temperature to radiative forcing (e.g., from changing CO2),49

is roughly twice as large as would be the case should absolute humidity be fixed. In an50

influential review of these matters, Held and Soden (2000) presented theoretical argu-51

ments and evidence from modelling in support of a constant relative humidity. At the52

time of their review, observations were insufficient to test this hypothesis, but Held and53

Soden concluded that “10 years may be adequate, and 20 years will very likely be suf-54

ficient, [. . . ] to convincingly confirm or refute the predictions”. It is now twenty years55

later.56

Taken at face value, two reanalyses of meteorological observations support this point57

of view, albeit less convincingly than we anticipated. This is shown in Fig. 1, where above58

600 hPa RH is increasing with warming, at a rate of 1 %/decade to 4 %/decade. Rather59

than attempting to establish the reliability of the trends – a task for which we lack ex-60

pertise – our aim is to estimate their implication for how Earth’s equilibrium climate sen-61

sitivity may be changing. How does a moister upper, or drier lower, troposphere make62

Earth more or less sensitive to forcing? Posing this question raises even more basic ques-63
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tions. For instance, to what extent does the given profile of RH matter for the clear-sky64

climate sensitivity, even if it remains constant with warming?65
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Figure 1. Mean profile (left) and linear trend over 40 years (solid, right) for ERA5 and JRA-

55 reanalysis data. Error bars show the 95% confidence interval for the gradient estimation.

Lighter and dashed parts indicate levels for which the null hypothesis of the trend being zero has

not been rejected (p-value > 0.01). The grey dashed line corresponds to what would be the trend

in relative humidity for a constant absolute humidity considering ERA5 tropical temperature

trend. Details about the trend analysis are given in SI.

If the water vapor pressure, e, changes to keep RH constant with warming, then66

the fractional vapor pressure change is given by the Clausius-Clapeyron equation, as67

δe

e
=

`v
RvT 2

δT, (1)

with `v the vaporization enthalpy, Rv the water vapor gas constant, and T temperature.68

To the extent the radiative response to an increase in water vapor depends on its frac-69

tional change, as for instance is the case for well mixed greenhouse gases (Huang et al.,70

2016), Eq. (1) predicts that this response – and hence the water vapor feedback – should71

be independent of RH. Support for this point of view is provided by observations and72

analyses that show outgoing long-wave radiation (OLR) varying linearly with T in a man-73

ner that is independent of RH (Koll & Cronin, 2018; Zhang et al., 2020). These same74

studies show, however, that the robustness of this relationship is mostly a feature of a75

colder atmosphere. In the tropics, where continuum emission by water vapor in the 800 cm−1
76

to 1200 cm−1 spectral (window) region becomes more important, RH begins to color the77

relationship between OLR and T . The tropics cover a substantial portion of the Earth,78

which raises the question as to whether a sensitivity of the water vapor feedback to the79

given profile of RH might in part explain differences (15 %, one sigma) in clear-sky feed-80

backs across climate models (Soden & Held, 2006; Vial et al., 2013), differences that are81

even larger across simulations designed to isolate the response of the tropical atmosphere82
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to warming (Medeiros et al., 2008; Becker & Wing, 2020). Questions such as these have83

not been the topic of much study. Past work has focused on cloud changes (Stevens et84

al., 2016; Sherwood et al., 2020), to a degree that can give the impression that clouds85

alone stand in the way of a meaningful quantification of how surface temperatures, T,86

respond to radiative forcing. Exceptional is the study by Po-Chedley et al. (2018), who87

argue that changes in RH in the southern-hemisphere extra-tropics are a large source88

of model spread; here we emphasize how and why such effects are also substantial in the89

tropics.90

The idea that the climate response is sensitive to the particular distribution of rel-91

ative humidity being held fixed, can be thought of as a form of state dependence. Per-92

haps for the reasons given above, most studies addressing this issue adopt a conceptual93

framework that only admit surface temperature as a state variable (Meraner et al., 2013;94

Knutti et al., 2017). So long as RH does not vanish, it plays no role.95

In the present article we report on our investigation of the influence of RH on cli-96

mate sensitivity using a 1D radiative-convective equilibrium (RCE) model, and highlight97

a phenomenon we call humidity–dependence. Such a model is attractive for our purposes98

because it captures (often with surprising fidelity) the behavior of more elaborated de-99

scriptions of the climate system in a physically transparent manner. In §2 we describe100

the model and methods. In §3 we compute the relative impact of a perturbation in the101

profile at different levels, as a function of RH. In §4 we simulate less idealized profiles102

of RH to understand and better quantify their effect on on the spread in clear-sky cli-103

mate sensitivity produced by more elaborated models. In §5 we return to the trends in104

the reanalysis RH to quantify their implications for our understanding of the clear-sky105

climate sensitivity. We conclude in §6.106

2 Model & Methods107

Calculations were performed using the 1D-RCE model konrad (Kluft et al., 2019;108

Dacie et al., 2019). We adopt a configuration that uses the RRTMG radiative scheme109

(Mlawer et al., 1997) and a hard convective adjustment (Dacie, 2020) following the moist110

adiabatic lapse rate. Only clear-sky calculations are performed. In a subset of calcula-111

tions discussed at the beginning of §3, we also used a uniform lapse rate. We used 500112

pressure levels between 1000 hPa and 0.5 hPa. Following the prescription of the Radia-113

tive Convective Equilibrium Model Intercomparison Project, RCEMIP (Wing et al., 2018),114

the solar constant is set to 551.58 W m−2 and the zenith angle to 42.05◦, resulting in an115

insolation of 409.6 W m−2. The surface albedo is 0.2. The ozone profile is defined accord-116

ing to RCEMIP guidelines (Wing et al., 2018), with additional coupling to the cold-point117

tropopause allowing the ozone layer to shift with troposphere deepening (Kluft, 2020).118

The RH follows a prescribed vertical distribution up to the cold-point above which the119

specific humidity is kept uniform at its cold-point value. The RH is defined with respect120

to saturation over water above 0 ◦C and with respect to saturation over ice below −23 ◦C.121

In between, a combination of both is used (ECMWF, 2018).122

A run is defined by its RH profile. It is composed of two equilibrium computations:123

(i) a spin-up with a constant surface temperature T0 = 300 K, (ii) a new equilibrium124

after applying a sudden doubling of the CO2 concentration. In (ii) the surface has no125

longer a fixed temperature but a fixed enthalpy sink, whose value is the top of the at-126

mosphere radiative imbalance at the end of the spin-up, as Kluft (2020) argues to be best127

practice. The Equilibrium Climate Sensitivity, S of our model is defined as the differ-128

ence between the second equilibrium surface temperature and T0.129

In §3, we discuss perturbation runs. In these, the tropospheric RH profile is uni-130

form except for a 600 m thick layer, where the RH is increased or decreased (the pertur-131

bation). A perturbation run is thus defined by a base RH, a perturbation pressure, and132
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Figure 2. Illustration of the perturbation runs method. The control run, with a base RH of

0.8, is shown in dashed black. Each color corresponds to a run with a perturbation δRH = 0.2

at a different level. The two left panels show the relative and absolute humidity profiles. The

right panel shows S for each perturbation run as a function of perturbation pressure alongside the

value of S for the control run (dashed vertical line).

a perturbation intensity δRH. The corresponding ’run’ without perturbation is called a133

control run. This is illustrated in Fig. 2. Arithmetic changes in RH are adopted, as they134

correspond to geometric changes in absolute humidity, to which (as a first approxima-135

tion) the radiative response is proportional, irrespective of the base RH.136

As a measure of the impact of a perturbation, we define the amplification factor137

a as the ratio of the S in the perturbation run, Sp, to the S in the corresponding con-138

trol run, Sc:139

a =
Sp
Sc
− 1. (2)

In reanalysis data, see Fig. 1, the RH profiles peak in the boundary layer and in140

the upper-troposphere and show a distinct minimum in the mid-troposphere. For this141

reason, we call such a profile C-shaped. In order to simulate a C-shaped RH profile, we142

developed the following piecewise model, in pressure coordinates (shown in Fig. 4):143

– Linear in the boundary layer, from the surface to the lower-tropospheric peak (low144

point);145

– Quadratic in the mid-troposphere, defined by 3 points: the two peaks and the hu-146

midity at 500 hPa (mid point);147

– Linear above the upper-tropospheric peak, defined by the upper-tropospheric peak148

(top point) and the cold-point (which is more strongly coupled to T than p).149

The advantages of such an RH profile is that it is defined by only 5 points, corre-150

sponding to parameters that are straightforward to interpret, and it catches the main151

feature of a realistic profile better than a uniform profile. Moreover, these parameters152

give us enough degrees of liberty to fit well AMIP and RCEMIP data, as detailed in §4.153

–5–
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3 Humidity–Dependence of S154

To understand how S varies with mean RH, we first perform runs with different155

uniform tropospheric RH profiles, both for the case of uniform and moist adiabatic lapse156

rates. Values of S for these runs are plotted in Fig. 3 (top panel). We find a robust in-157

crease in S with a moister troposphere. We decomposed S into contributions from the158

forcing and the feedback following Gregory et al. (2004). This shows that changes in S159

arise from changes in feedback as the forcing tends to be much smaller and of the op-160

posite sign.161

Let us use the effective emission height concept for the interpretation of our cal-162

culations. Let Φe be Earth’s infrared irradiance at the top of the atmosphere. It can be163

associated with radiant power emitted by a black body at a temperature, Te, such that164

Φe = σT 4
e , where σ is the Stefan-Boltzmann constant. We define the effective emission165

height to be the altitude ze such that T (ze) = Te. These ideas can be generalized to166

allow for spectrally specific effective emission heights, which we denote ze,λ, as done by167

Seeley and Jeevanjee (2021).168

To help understand the water vapor feedback, we first apply this concept to a case169

with a uniform lapse rate, dT/dz = −Γ, and grey radiation characterized by a single170

emission height. If an initial (positive) perturbation in CO2 causes an increase in the emis-171

sion height δze,i > 0, the troposphere (and surface) warms until T (δze,i) = Te to main-172

tain Φe. As a reaction to this warming, if RH is to remain fixed, the absolute humidity173

must increases following Eq. (1). The fractional increase in water vapor partial pressure174

δe/e will in turn lead to a further change in ze, which must be balanced by further warm-175

ing, increasing humidity, and so on. S, is the sum of the response from the initial forc-176

ing, plus this water vapor feedback.177

The increase in S with RH (Fig. 3) calls into question the line of reasoning (§1) lead-178

ing to the expectation that S is independent of RH. This may be indicative of contin-179

uum emission and absorption by water vapor in the window (800 cm−1 to 1200 cm−1)180

region, which increases non-linearly with absolute humidity (Koll & Cronin, 2018). This181

would give rise to a stronger humidity-dependence of S at high temperatures. We thus182

repeat our calculations at lower values of T0, at which the effect of the water vapor con-183

tinuum is negligible. Reducing the working temperature progressively reduces the sen-184

sitivity to RH – at T0 = 288 K S increases by only 25 % as RH increases from 0.1 to185

0.9 – consistent with the hypothesis that the unexpected behavior does indeed stem from186

the effect of continuum emission in the window region.187

The case of the moist adiabat (orange points and matrix in Fig. 3) introduces ad-188

ditional complications. A property of the moist adiabat is that the lapse rate monoton-189

ically decreases with temperature. This gives rise to three effects: (i) as the atmosphere190

warms the mean lapse rate becomes smaller (lapse-rate feedback); (ii) for the same sur-191

face temperature and mean lapse rate, the moist adiabatic lapse rate is associated with192

a temperature profile that is everywhere warmer than for the uniform lapse rate; (iii) the193

lapse-rate is less than the mean in the warmer, lower, troposphere but greater in the colder,194

upper, troposphere. The first effect gives rise to a negative feedback with warming (smaller195

S) as it implies that the temperature at the emission height warms more rapidly than196

at the surface. The second effect gives rise to a positive feedback (larger S) because a197

warmer atmosphere will (for the same RH) have a larger absolute humidity. The third198

effect implies a more bottom heavy humidity profile, which would suggest a slight reduc-199

tion in S.200

At low absolute humidities the negative lapse-rate feedback dominates. This ex-201

plains why in the upper panel of Fig. 3, for RH ≤ 0.75, runs with a moist-adiabatic202

lapse rate have a substantially smaller S. This difference becomes even more pronounced203

(as expected) if one uses the integrated water vapor (IWV) as the control variable. For204
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-0.0 -0.2 -0.4 -0.7 -0.5 -0.4 -0.3 -0.9 -1.9
0.2 -0.0 -0.2 -0.5 -0.3 -0.3 -0.3 -0.9 -2.1
0.3 0.2 0.1 -0.2 -0.1 0.0 -0.1 -0.7 -1.9
0.3 0.3 0.3 0.1 0.2 0.4 0.3 -0.2 -1.3
0.4 0.4 0.4 0.3 0.5 0.7 0.7 0.5 -0.4
0.3 0.4 0.4 0.4 0.7 1.0 1.2 1.1 0.5
0.3 0.3 0.4 0.4 0.7 1.1 1.4 1.7 1.4
0.2 0.3 0.4 0.4 0.7 1.0 1.4 1.9 1.9
0.4 0.4 0.6 0.7 1.0 1.4 1.8 2.4 2.8
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Figure 3. (Upper panel) S for different uniform tropospheric RH, and for experiments with

a uniform tropospheric lapse rate of 6.5 K km−1 or with a moist adiabatic lapse rate. Black

squared points correspond to experiments were integrated water vapor (IWV) was the closest to

50 kg m−2. (Lower panel) Amplification factor a (in percent) for 0.1 RH perturbation for different

humidities and different perturbation levels. Blue and red colors for changes larger than 0.5 % in

magnitude are indicative of the value’s range. Black lines represent the mid-tropospheric level at

which a changes sign.
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high humidities the second effect dominates. This occurs because for the chosen value205

of T0 the atmospheric window looses its transparency (Koll & Cronin, 2018), which is206

a self-amplifying effect that explains the sharp increase in S. To test our explanation we207

performed additional calculations with a smaller T0. As the above argument would an-208

ticipate, this reduces the sensitivity to RH (see Fig. S3 in the SI), a result that is also209

consistent with a ∂T0
S decreasing with T0, e.g., as shown by Meraner et al. (2013). Fi-210

nally, calculations (not shown) that adopt a constant moist adiabatic lapse rate (which211

cannot change with warming) also have a slightly reduced S as compared to calculations212

adopting a uniform lapse rate for the same value of IWV. In this case, there is no lapse-213

rate feedback and the IWV is the same. This supports our interpretation of the third214

effect, whereby the shape of the humidity profile also influences S.215

To assess how the shape of the RH profile influences S we perform perturbation216

runs as described in §2 (see also Fig. 2). Perturbation runs are performed with δRH =217

−0.1, 0.1, 0.2. From these the amplification factor, a per Eq. 2, is related to δRH through218

linear regression. Fig. 3 plots a from its regressed slope multiplied by δRH = 0.1. Val-219

ues are calculated for RH perturbations applied every 50 hPa to an otherwise constant220

RH profile. This sequence of height varying perturbation runs is computed for 0.4 ≤ RH ≤221

0.8. The impact of a positive RH perturbation is small, but discernibly positive (increas-222

ing S) in the upper troposphere, and negative (decreasing S) in the lower troposphere.223

Simulations where the perturbations are fixed relative to the profile of T – which in the224

mid and upper troposphere is, following Romps (2014), likely to be a more realistic rep-225

resentation of RH – lead to weaker changes in S, but imply a similar sensitivity to shape.226

Perturbations at lower values of p (equivalently lower T ) lead to larger increases in S.227

In every case, the higher the base RH, the stronger is the sensitivity to the humidity per-228

turbation. Moreover, the level of sign change rises with base RH.229

The perturbation runs are consistent with our earlier discussion, but not especially230

intuitive. To understand them, and test their robustness, we performed line-by-line ra-231

diative transfer using the ARTS model (Buehler et al., 2018), the results of which are232

provided graphically in the SI (Fig. S2). We find two opposing effects. In spectral re-233

gions where ze,λ is near the height of the RH perturbation, the change in ze,λ as water-234

vapor adjusts to warming is lessened. It is as if the fixed perturbation height helps an-235

chor ze,λ. In spectral regions where the effective emission height is well below the RH236

perturbation, the change in ze,λ as water-vapor adjusts to warming is heightened – in-237

creasing the strength of the water vapor feedback. The first (damping) effect explains238

the reduction in S associated with RH perturbations in the lower troposphere. It is also239

apparent at strongly absorbing wave numbers (rotational and ro-vibrational bands) for240

the perturbations in the upper troposphere. But for the latter case this reduction is more241

than offset by the second (amplifying) effect whereby the perturbation in the upper at-242

mosphere increases the changes in ze,λ in parts of the window-region where CO2 does243

not dominate.244

We call humidity–dependence the fact that the climate sensitivity depends on the245

relative humidity. Not only does the sensitivity depend on the overall humidity, or IWV,246

but also on the distribution of humidity, that is the shape of the RH profile.247

4 Implications for Model-Based Estimates of ECS248

Given the non-linearity of these effects, generalization is not automatic. Here we249

check whether results of the previous section can also be identified for less idealized per-250

turbations to RH profiles more similar to those observed and simulated by climate mod-251

els. For this purpose we use C-shaped RH profiles as defined in §2. To reduce their de-252

grees of liberty we additionally fix the low point to 925 hPa and set the slopes below the253

low point, and above the high point, to 2.0× 10−5 Pa−1 and −5.8× 10−5 Pa−1 respec-254

tively. These values are the mean of the parameters when fitting to RCEMIP profiles255
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(see following paragraphs). We additionally set the RH at the cold-point to be half its256

peak (upper-troposphere) value, the level of this cold-point being computed by konrad.257

Calculations (runs) were then performed to quantify the impact of changing the remain-258

ing parameters: Starting from a 0.7/0.4/0.85 (top/mid/low) profile, we: (i) shifted the259

whole profile; (ii) changed only the RH at the top of the atmosphere; (iii) changed only260

the humidity at 500 hPa; (iv) changed only the humidity in the lower atmosphere. Hu-261

midity profiles and resulting changes in S are presented in Fig. 4. Qualitatively the re-262

sponse to these perturbations agrees well with what was learned from the response to263

more idealized perturbations: (i & ii) S increases with an increase in the upper tropo-264

spheric RH, also when this is part of a general moistening; (iv) S decreases if RH increases265

are confined to the lower troposphere; and (iii) increases in RH in the middle troposphere266

lead to little change in S until a critical RH (associated with the closing of the window)267

is reached, at which point S begins to increases markedly. The same set of experiments268

have been performed with a C-shaped profile invariant in T in the upper-troposphere,269

to find very similar results (not shown).270

Figure 4. (Upper two rows) C-shaped RH profiles: Reference 0.7/0.4/0.85 (top/mid/low)

profile (top-left); ERA5 profile as computed for §5 (grey), and corresponding C-shaped fit (red)

(bottom-left). Four central panels correspond to the idealized experiments described in the first

paragraph of §4. Two right-most panels display the mean and extreme profiles of the AMIP (top-

right) and RCEMIP (bottom-right) datasets. (Lower panel) S for the idealized experiments and

for the experiments with a profile fitted to the AMIP or RCEMIP ensembles. Boxplots’ whiskers

are set to display the 5th and 95th percentiles. On this graph and for statistics, only one point

per model ”family” (i.e. issued by the same institute) is used, corresponding to the average of all

this family’s models. Red dashed line correspond to the S computed with ERA5 C-shaped fit RH

profile above.
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In a second step, we performed runs with RH profiles set to fit RCEMIP simula-271

tions using storm-resolving and general circulation models (Except for UKMO-CASIM272

whose humidity profile led to a runaway) on large domains with an SST of 300 K (Wing273

et al., 2020) and CMIP5 AMIP ensembles. The fit is done by retrieving the pressure and274

humidity of the five points defining our C-shaped profile. In particular, the low and top275

points coincide with the local maxima and the cold-point pressure is retrieved from the276

temperature profile. The mid point remains fixed at 500 hPa and the surface is taken as277

the lowest point available. This enables us to assess the effect of the humidity profile alone,278

all other things being equal.279

With RCEMIP RH profiles, we find a ±26% variation around the mean S value.280

The spread in feedback is −1.25 W m−2 K−1 to −3 W m−2 K−1, slightly smaller but com-281

parable to what is found by Becker and Wing (2020). We thus explain the surprisingly282

large spread in clear-sky sensitivity in RCEMIP as being in large part a response to dif-283

ferent RH profiles simulated by the models. Both differences in the IWV and the shape284

of the profiles contribute to the spread, the latter more so, as is also evident by compar-285

ing sensitivities calculated using ICON versus the UKMO RH profiles. To the extent that286

the inter-model spread in RH to different degrees of convective self-aggregation, as claimed287

by Becker and Wing (2020), our work suggests that different degrees of convective self-288

aggregation can influence the climate sensitivity, even if the convective self-aggregation289

does not change with warming.290

From CMIP5 AMIP output, we retrieved mean profiles over the tropical oceans (equa-291

torward of 30◦) averaged over the entire simulated period. As compared to RCEMIP RH292

profiles, those from the AMIP simulations are on average dryer, and thereby associated293

with a smaller S. The drier AMIP profiles are indicative of large-scale circulations driven294

by differences in surface temperatures, i.e., Hadley and Walker cells which give rise to295

the dry tropics. The AMIP simulations differ less in their humidity profiles and likewise296

show less spread in S, but even so differences approaching 10 % are evident297

Given observations of the RH profiles in the atmosphere, it should be possible to298

correct model estimates of climate sensitivity using calculations such as ours. From a299

comparison of Fig. 1 and Fig. 4, we note that the RCE models tend to be moister than300

the observations, the AMIP simulations are drier. Fitting the C-shaped humidity pro-301

file to the observations yields an S of about 2.25 K; this is smaller than that of most RCE302

models, but larger than for the AMIP models. Likewise, ECS estimates in early calcu-303

lations following the RH humidity profile used by Manabe and Wetherald (1967), would,304

due to an unrealistically dry upper atmosphere, be biased too low. However, for the lower305

humidities and temperatures used in that study, the fixed lapse assumption actually over306

compensates, leading to a larger sensitivity as seen in Kluft et al. (2019). This, along307

with the upper panel of Fig. 3, is illustrative of how the lapse rate feedback depends on308

the base state RH.309

5 Impact of RH Trends in Reanalysis Data310

Based on the above analysis we return to our initial question, which is how to in-311

terpret RH trends in the reanalysis products. The profiles presented in Fig. 1 are from312

the ERA5 (Hersbach et al., 2020), and the JRA-55 (Kobayashi et al., 2015) reanalyses313

of the past forty years (1979-2019) of meteorological observations. Relative and abso-314

lute humidity, as well as temparature, are averaged over tropical oceans (equatorward315

of 30◦). Trends regressed from monthly data are significant at several levels and consis-316

tent across both reanalyses. They are also evident in the difference between the mean317

profile in the first and last decade (not shown). We were surprised that RH at low lev-318

els was robustly decreasing – something that merits further investigation – even if av-319

eraged over height δRH ≈ 0. Our analysis does not tell us how strongly these trends320

influence the expected warming over the past forty years, but it does tell us that the pat-321
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tern of change, with moistening aloft and drying in the lower middle troposphere is con-322

ditioning the climate system toward greater sensitivity.323

6 Conclusions324

The response of the atmosphere to radiative forcing as a function of the assumed325

profile of relative humidity (RH) is explored using a one-dimensional radiative-convective326

equilibrium model. For profiles chosen to sample the range produced by state of the art327

climate and storm-resolving models run under idealized conditions, the calculated equi-328

librium climate sensitivity of our model (S) varies between 2 K to 3 K, depending on the329

RH profile, highlighting a humidity–dependence of the climate sensitivity: Moister at-330

mospheres were shown to have a larger S, increasingly so with warmer temperature, con-331

sistent with understanding of how water vapor influences the transmissivity of the at-332

mospheric window (Nakajima et al., 1992; Koll & Cronin, 2018; Seeley & Jeevanjee, 2021).333

S is further shown to increase with increasing humidity in the upper troposphere, but334

decreases with increases in humidity in the lower mid-troposphere.335

The use of a simple physical model, konrad, makes it easier to understand the ba-336

sic physics determining the outcome of our calculations. For instance, with the chosen337

framework it is possible to show how the the lapse rate’s influence on the total amount338

and vertical distribution of humidity for a given profile of RH influences S. We could also339

investigate how S depends on the shape of the RH profile, which expresses competing340

effects, whereby perturbations to the humidity can both reduce or increase the change341

in the emission height associated with changes in absolute humidity to maintain a con-342

stant relative humidity with warming. The former effect dominates when the humidity343

perturbation is near the emission height resulting in a slight reduction in S for bottom344

heavy humidity profiles.345

Our work emphasizes the importance of realistically representing the relative hu-346

midity profile when calculating climate sensitivity. Models that are too humid, partic-347

ularly in the mid- and upper-troposphere will have larger sensitivities, an effect which348

will amplify with increased warming. Convective self-aggregation modifies the mean rel-349

ative humidity profile, thereby reducing ECS, even if the degree of convective aggrega-350

tion itself does not change with warming. In this context, our study also encourages the351

use of RH as metric of the fidelity of the moist physics in climate models. To the extent352

climate models are unable to realistically represent the observed distribution of RH, our353

methods may make it possible to estimate the quantitative effect of these biases.354

Humidity profiles over tropical oceans as represented in reanalysis products, tend355

to be moister than those produced by models forced with observed SSTs, implying a larger356

clear-sky sensitivity. Three dimensional radiative convective equilibrium models, which357

are more physical – but less constrained by large-scale sea-surface temperature gradi-358

ents – tend to be more humid, but also have more divergent humidity profiles.359

Surprisingly large changes in RH are reported by the reanalysis products over the360

last forty years, changes which our calculations suggest will condition the climate sys-361

tem to be more sensitive to forcing in the future. This finding adds an additional dimen-362

sion to Knutti and Rugenstein’s (2015) statement that the feedback parameter is not con-363

stant, and that non-linearity in the system may be important when assessing Earth’s equi-364

librium climate sensitivity. The surprising trends in the reanalysis humidity products,365

particularly the drying in the tropical lower troposphere, reminds us of Held and Soden’s366

plea to be attentive to this issue, and merits the renewed attention of experts.367
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Supplementary Information
for Dependence of Relative Humidity on the Given Distribution of Relative Humidity

S. BOURDIN, L. KLUFT and B. STEVENS

1 Reanalyses’ Relative Humidity Trend Analysis

This document aims at describing more precisely the trend analysis on reanalysis data. It is avail-
able as a Jupyter Notebook at https://doi.org/10.5281/zenodo.4423267, along with the necessary
data.

Two datasets have been used for this analysis : ERA5 and JRA-55. ERA5 is available on the Cli-
mate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-
levels-monthly-means?tab=overview) and was in our case retrieved from a miror on the IPSL
servers because the amount of data necessary was very long to obtain through the CDS API.
JRA-55 was retrieve from their FTP server, now unavailable. Other means to access the data are
describe on their website : https://jra.kishou.go.jp/JRA-55/index_en.html.

1.1 Data pre-processing

1.1.1 ERA5

ERA5 relative humidity data was available in monthly files containing 6-hourly time step.
For each monthly files, using nco, we (1) averaged the data over each month (ncra
$mthfile r_${date}.nc), (2) extracted the tropical zone between +/- 30° (ncks -v r -d
latitude,-30.0,+30.0 r_${date}.nc r_$[date}.nc). Then concatenated all the data in one file
(ncrcat r_*.nc r_ERA.nc). We also retrieve the corresponding land-sea mask (lsm_ERA.nc).

A python script was apply to retrieve the mean tropical profile over oceans for each month (Note
: We did not apply a weighted average assuming grid cell area differences in this region was
negligible.) :

from dynamicopy import var_load
import numpy as np
import pickle as pkl
import os

# Load data
f = 'r_ERA.nc'
H = var_load('r', f)
P = var_load('level', f)

f_lsm = 'lsm_ERA.nc'
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lsm = var_load('lsm', f_lsm)
mask = lsm[0] < 0.1
H_masked = H * mask
H_masked[H_masked == 0.0] = np.nan

H_tropical = np.nanmean(np.nanmean(H_masked, -1), -1)

with open('H_tropical.pkl', 'wb') as handle:
pkl.dump(H_tropical, handle)

1.1.2 JRA-55

Monthly JRA-55 data was available on the FTP server, but in GRIB format. It was copied to
NetCDF using cdo -f nc copy $file ${file}.nc, then all the file were concatenated before cut-
ting the -30°/+30° latitude zone, and the same script was applied to obtain the tropical mean
profile.

1.2 Trend computation

The trends are computed using a linear regression, and dismissing the hypothesis that the trend
might be zero.

[1]: import pickle as pkl
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns

[2]: #Load data
##ERA5
with open("ERA/P_ERA.pkl",'rb' ) as handle :

P_ERA = pkl.load(handle)
with open("ERA/H_tropical.pkl", "rb") as handle:

H_trop_ERA = pkl.load(handle)
t_ERA = np.arange(len(H_trop_ERA))/12 + 1979 # Time axis in years
### Cut level above 100hPa
H_trop_ERA = H_trop_ERA[:,P_ERA >= 100]
P_ERA = P_ERA[P_ERA >= 100]

[3]: ## JRA-55
with open("JRA/P_JRA.pkl",'rb' ) as handle :

P_JRA = pkl.load(handle)
with open("JRA/H_tropical.pkl", "rb") as handle:

H_trop_JRA = pkl.load(handle)
t_JRA = np.arange(len(H_trop_JRA))/12 + 1979 # Time axis in years

To compute the trend, we use scipy.stats.linregress function, whose output is defined as fol-
lows in the documentation :

2



Returns
-------
slope : float

Slope of the regression line.
intercept : float

Intercept of the regression line.
rvalue : float

Correlation coefficient.
pvalue : float

Two-sided p-value for a hypothesis test whose null hypothesis is
that the slope is zero, using Wald Test with t-distribution of
the test statistic.

stderr : float
Standard error of the estimated gradient.

In particular, the “error” or uncertainty refers to the stderr which is the standard error for the
gradient estimation or 67% confidence interval, and the p-value is computed for a null hypothesis
where the slope is zero. We use 0.01 as a discriminating threshold for p-values, but p-values are
displayed for you to appreciate.

[4]: # Compute trend
##Function
def compute_linear_trend(time, H) :

trends, intercepts, p_values, stderrs = [], [], [], []
for p in range(np.shape(H)[1]) :

slope, intercept, r, p, stderr = stats.linregress(time, H[:,p])
trends.append(slope)
intercepts.append(intercept)
p_values.append(p)
stderrs.append(stderr)

return np.array([trends, intercepts, p_values, stderrs])

[5]: ## ERA
trends_ERA, intercepts_ERA, pvals_ERA, errs_ERA = compute_linear_trend(t_ERA,␣

↪→H_trop_ERA)
mtrends_ERA = np.ma.masked_array(trends_ERA, pvals_ERA > 0.01)

[6]: ## JRA
trends_JRA, intercepts_JRA, pvals_JRA, errs_JRA = compute_linear_trend(t_JRA,␣

↪→H_trop_JRA)
mtrends_JRA = np.ma.masked_array(trends_JRA, pvals_JRA > 0.01)

[7]: [Plotting commands]
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The figure above summarizes our trend analysis : On the left panel is the trend in both reanalysis
products, at each levels, with dashed line and transparent points where the p-value > 0.01 does not
allow us to conclude that the trend is not zero. Errorbars show 95% confidence interval (2× σ). On
the right panel is displayed the logarithm of the p-value for each trend computation, as compared
to the threshold.

1.3 Time series

Here we display a few time series to illustrate the trend. Dots indicate the monthly values, solid
line the yearly average of these values, and dashed line the linear trend corresponding to what is
above.

[8]: def yearly_avg(H) :
return np.array([np.mean(H[yr*12:(yr+1)*12],0) for yr in range(int(len(H)/

↪→12))])
H_ERA_yr = yearly_avg(H_trop_ERA)
H_JRA_yr = yearly_avg(H_trop_JRA)
yrs = np.arange(1979, 2020)

[9]: [Plotting commands]
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1.4 Decade differences

As an other way to check the robustness of the trend we observe here, we computed the differences
for both datasets at each levels * between the last (2010-2019) and the first (1979-1988) decades *
between the second-to-last (2000-2009) and the first decades. * between the last and the second
(1989-1999) decade.

[10]: [Plotting commands]

ax[0].plot((np.mean(H_trop_ERA[-120:],0) - np.mean(H_trop_ERA[:120],0))/3,␣
↪→P_ERA, c= sns.color_palette("deep")[3])

ax[0].plot((np.mean(H_trop_JRA[-120:],0) - np.mean(H_trop_JRA[:120],0))/3,␣
↪→P_JRA, c= sns.color_palette("deep")[2])

ax[1].plot((np.mean(H_trop_ERA[-240:-120],0) - np.mean(H_trop_ERA[:120],0))/2,␣
↪→P_ERA, c= sns.color_palette("deep")[3])

ax[1].plot((np.mean(H_trop_JRA[-240:-120],0) - np.mean(H_trop_JRA[:120],0))/2,␣
↪→P_JRA, c= sns.color_palette("deep")[2])

ax[2].plot((np.mean(H_trop_ERA[-120:],0) - np.mean(H_trop_ERA[120:240],0))/2,␣
↪→P_ERA, c= sns.color_palette("deep")[3])

ax[2].plot((np.mean(H_trop_JRA[-120:],0) - np.mean(H_trop_JRA[120:240],0))/2,␣
↪→P_JRA, c= sns.color_palette("deep")[2])

[...]

[10]:

Most of it is coherent, except for one noticeable difference with the second decade of ERA, where
we can see in the time series (for example at 800hPa) that relative humidity is lower during this
period, for a reason we do not know.
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2 Line-by-line analysis for Section 3
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Figure S2. Difference in the “humidity forcing” for RH perturbations at different pressure heights.

Figure S2 shows the change in the “humidity forcing” for relative humidity RH perturbations at
different pressure height. We define the humidity forcing as the difference in outgoing-longwave
radiation (OLR) between an atmosphere in present-day conditions and an atmosphere in which
the absolute humidity has been adjusted to a hypothetically 1-K-warmer temperature profile while
preserving the actual temperature. This way, we can quantify the radiative forcing of the moisten-
ing of the atmosphere alone. The two lines in Figure S2 show how RH perturbations at different
heights affect the humidity forcing: one can see that the change in OLR is increased in spectral
regions close to the perturbation. We interpret this as an “anchoring effect” of the perturbation
on the effecting emission height zε. For RH perturbations well above zε (300 hPa, yellowish line)
a stronger increase of the emission height — a stronger forcing — in the atmospheric window
overpowers this effect.
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3 ECS for different uniform troposheric RH and different surface tem-
peratures

In section 3 (§6) we write that decreasing T0 reduces the sensitivity to RH.

Figure S3. for a set of runs with different initial surface temperature T0 and different uniform
tropospheric RH. All were performed with a moist adiabatic Lapse Rate. Both plots display the
same data, but on different axes.

The left panel of Fig. S3 shows this phenomenon. In general, because of the tempera-
ture–dependence effect,as highlighted by Meraner, Mauritsen, and Voigt 2013, the atmosphere
is less sensitive for lowest temperature, as we can see in left panel of Fig. S3. This effect is even
stronger in our case when using T0 ≥ 300K, because of the closing of the atmospheric window for
such conditions.
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