Methane emissions offset net carbon dioxide uptake from an alpine peatland on the Eastern Qinghai-Tibetan Plateau

Haijun Peng¹, Jinshu Chi², Hu Yao³, Qian Guo¹, Bing Hong³, Hanwei Ding³, Yongxuan Zhu¹, Jie Wang³, and Yetang Hong¹

¹Institute of Geochemistry, Chinese Academy of Sciences ²Swedish University of Agricultural Sciences ³Institute of Geochemistry

November 22, 2022

Abstract

Peatlands store large amounts of carbon (C) and actively exchange greenhouse gases (GHGs) with the atmosphere, thus playing an important role in global C cycle and climate. Large uncertainty exists in estimating C and GHG budgets of the alpine peatlands on Qinghai-Tibetan Plateau (QTP), as direct measurements of carbon dioxide (CO₂) and methane (CH₄) fluxes are still scarce in this region. In this study, we provided $^{2.5}$ -year continuous CO₂ and CH₄ fluxes measured using the eddy covariance technique in a typical alpine peatland on the eastern QTP to estimate the net C and CO₂-eq fluxes and investigate their environmental controls. Our results showed that the mean annual CO₂ and CH₄ fluxes were -106 g C-CO₂ m⁻² yr⁻¹ and 35 g C-CH₄ m⁻² yr⁻¹, respectively. While considering the traditional and sustained global warming potentials of CH₄ over the 100-year time scale, the peatland acted as a net source of CO₂-eq (918 and 1712 g CO₂-eq m⁻² yr⁻¹, respectively). The net CO₂-eq flux was primarily influenced by soil temperature and global radiation variations. This study was the first assessment to quantify the net CO₂-eq flux of the alpine peatland in the QTP region using long-term eddy covariance measurements. Our study highlights that CH₄ emissions from peatlands can largely offset the net cooling effect of CO₂ uptake and future climate changes such as global warming might further enhance their potential warming effect.

1	Methane emissions offset net carbon dioxide uptake from an alpine peatland on the					
2	Eastern Qinghai-Tibetan Plateau					
3						
4	Haijun Peng ^{a,d,e} , Jinshu Chi ^{b,*} , Hu Yao ^{a,c,d} , Qian Guo ^{a,c,d} , Bing Hong ^{a,d,e,*} , Hanwei Ding ^{a,c,d} ,					
5	Yongxuan Zhu ^a , Jie Wang ^{a,c,d} , Yetang Hong ^a					
6						
7	^a State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese					
8	Academy of Sciences, Guiyang 550081, China					
9	^b Department of Forest Ecology and Management, Swedish University of Agricultural Sciences,					
10	Umeå, 90183, Sweden					
11	^c University of Chinese Academy of Sciences, Beijing 100049, China					
12	^d Bayinbuluk alpine wetland carbon flux research station, Chinese Flux Observation and					
13	Research Network					
14	^e CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China					
15	* Correspondence to J. Chi (jinshu.chi@slu.se) and B. Hong (hongbing@mail.gyig.ac.cn)					
16						
17	Key Points:					
18	• CH ₄ emissions offset the net CO ₂ uptake from an alpine peatland on eastern QTP					
19	• The alpine peatland showed a net radiative warming effect					
20	• Soil temperature and global radiation were dominant abiotic controls of net CO ₂ -eq flux					
21	variations					

22 Abstract

23 Peatlands store large amounts of carbon (C) and actively exchange greenhouse gases (GHGs) 24 with the atmosphere, thus playing an important role in global C cycle and climate. Large 25 uncertainty exists in estimating C and GHG budgets of the alpine peatlands on Qinghai-Tibetan 26 Plateau (QTP), as direct measurements of carbon dioxide (CO₂) and methane (CH₄) fluxes are 27 still scarce in this region. In this study, we provided ~2.5-year continuous CO₂ and CH₄ fluxes 28 measured using the eddy covariance technique in a typical alpine peatland on the eastern QTP to 29 estimate the net C and CO₂-eq fluxes and investigate their environmental controls. Our results showed that the mean annual CO₂ and CH₄ fluxes were -106 g C-CO₂ m⁻² yr⁻¹ and 35 g C-CH₄ 30 m⁻² yr⁻¹, respectively. While considering the traditional and sustained global warming potentials 31 32 of CH₄ over the 100-year time scale, the peatland acted as a net source of CO₂-eq (918 and 1712 33 g CO₂-eq m⁻² yr⁻¹, respectively). The net CO₂-eq emissions during the non-growing seasons 34 contributed to over 40% of the annual CO₂-eq budgets. We further found that the net CO₂-eq 35 flux was primarily influenced by soil temperature and global radiation variations. This study was 36 the first assessment to quantify the net CO₂-eq flux of the alpine peatland in the QTP region using long-term eddy covariance measurements. Our study highlights that CH₄ emissions from 37 38 peatlands can largely offset the net cooling effect of CO₂ uptake and future climate changes such 39 as global warming might further enhance their potential warming effect.

40

Keywords: Peatlands, radiative forcing, greenhouse gas fluxes, carbon budgets, eddy covariance,
Qinghai-Tibetan Plateau

1. Introduction

44	Carbon dioxide (CO ₂) and methane (CH ₄) are the two most important long-lived greenhouse
45	gases (LLGHGs) and together contribute to over 80% of the radiative forcing caused by
46	LLGHGs [WMO, 2018]. Peatlands cover only about 3% of the Earth's land surface area but store
47	over 500 Pg (10 ¹⁵ g) of carbon (C), accounting for one-third of the global soil C pool and about
48	70% of the atmospheric C pool [Gorham, 1991; Loisel et al., 2017; Turunen et al., 2002; Yu et
49	al., 2010]. It has been widely acknowledged that peatlands have played an important role in
50	regulating the global C and GHG cycles and climate change [Friedlingstein et al., 2019;
51	Frolking et al., 2011; Hopple et al., 2020]. Peatland ecosystems have the potential to mitigate
52	climate change by sequestering CO ₂ from the atmosphere into biomass and soils [Baldocchi and
53	Penuelas, 2019; Nugent et al., 2019; Stocker et al., 2017]; meanwhile, peatlands emit large
54	amounts of CH ₄ to the atmosphere during the peatland forming and growing processes
55	[Dommain et al., 2018; Kirschke et al., 2013], thus resulting in contrasting effects on radiative
56	forcing. Both pathways are sensitive to climate change and anthropogenic activities [Chen et al.,
57	2013; Frolking et al., 2011]; for examples, drought caused by both peatland drainage and low
58	precipitation [Fenner and Freeman, 2011; Swindles et al., 2019], peatland wildfires and burning
59	[Turetsky et al., 2015], and conversion for agricultural uses [Carlson et al., 2013; Dommain et
60	al., 2018] can shift the peatlands from net GHG sinks to sources. However, it should be noted
61	that the historical, current, and future contributions of peatlands to the global C budget and
62	radiative forcing are still uncertain due to limited knowledge of the synergistic feedbacks of CO ₂
63	and CH ₄ to climatic perturbation and anthropogenic activities [Luan et al., 2018; Petrescu et al.,
64	2015; <i>Stocker et al.</i> , 2017].

65	The uncertainty in CO ₂ and CH ₄ stoichiometry of peatlands could be attributed to a
66	variety of sources, such as the lack of reliable global peatland area estimates [Chaudhary et al.,
67	2017; Xu et al., 2018; Yu et al., 2010], difficulties in quantifying terrestrial anaerobic or
68	oxidative sources and sinks [Bridgham et al., 2013; Loisel et al., 2017; Poulter et al., 2017], and
69	the scarcity of both CO ₂ and CH ₄ flux measurements, especially from low-latitude and high-
70	altitude peatlands [Bridgham et al., 2013; Kirschke et al., 2013; Schaefer et al., 2016; Yu et al.,
71	2010]. To date, most of the peatland C fluxes have been measured in the northern high-latitude
72	(45-70°N) [Loisel et al., 2017; Turetsky et al., 2014]. Recent studies show that wetland
73	ecosystems in the subtropical and tropical regions have acted as C sinks, but their CH4 emissions
74	can offset net CO ₂ uptake under warm scenarios, thus contributing to a positive radiative forcing
75	[Dalmagro et al., 2019; Dommain et al., 2018; Liu et al., 2020]. Considering peatlands in the
76	low-latitude regions have a sizeable amount of C stocks and higher CH4 emissions and C
77	sequestration rates compared to the northern peatlands [Loisel et al., 2017; Nilsson et al., 2008;
78	Yu et al., 2010], the lack of C flux measurements from these areas could lead to large uncertainty
79	in the global peatland C and GHG budget estimations [X Liu et al., 2019; Schaefer et al., 2016;
80	Turetsky et al., 2015]. Therefore, more monitoring is needed to reveal the dynamics in peatland-
81	atmosphere C exchanges and dynamics.
07	The Dynamic mostley divide a costory margin of the Oinshei Tilester Distance (OTD) is the

The Ruoergai peatland in the eastern margin of the Qinghai-Tibetan Plateau (QTP) is the largest consecutive alpine peatland in the world, covering a total area of 4600 km² at an average elevation of 3400 meters above sea level [*Chen et al.*, 2014; *Xiang et al.*, 2009; *Yao et al.*, 2011]. The climate of the eastern QTP is influenced by the Asian monsoons and characterized by short, warm, and wet summer with high solar irradiation and long, cold, and dry winter, which promotes the growth of herbaceous plants and preserving of peat or organic material rich soils

88	[Hong et al., 2005; Peng et al., 2015]. The mean annual temperature in the QTP region has been
89	rapidly increasing at a rate of 0.27 °C per decade during 1961-2005, whereas global mean
90	surface temperature has risen only by 0.85 °C since 1880 [Tang et al., 2018; You et al., 2016].
91	Due to the rapid warming, glacier melting and retreats have provided more water for peatland
92	formation despite precipitation in the QTP region has not changed dramatically [Yao et al.,
93	2012]. As the biogeochemical processes regulating the CO ₂ and CH ₄ flux magnitudes are
94	temperature-dependent and sensitive to water availability [Hopple et al., 2020; Peichl et al.,
95	2014; Yuan et al., 2011; Yvon-Durocher et al., 2014], both fluxes have significantly been altered
96	due to climate change in the QTP region [Chen et al., 2013; Yang et al., 2014].
97	Temporal patterns of CO ₂ or CH ₄ fluxes and their dominant environmental controls have
98	been recently but separately explored over the Ruoergai peatland [Chen et al., 2021; X Liu et al.,
99	2019; Peng et al., 2019]. However, studies into ecosystem-level net CO ₂ equivalent flux (net
100	CO ₂ -eq flux, i.e., summing up CO ₂ and CH ₄ fluxes weighted by different global warming
101	potential metrics of CH ₄) and its overall environmental controls are still rare in this region. In
102	this study, we compiled ~2.5-year (32 months) continuous eddy covariance (EC) measurements
103	of CO ₂ and CH ₄ fluxes at a typical alpine peatland on the eastern QTP to (a) characterize the
104	temporal variations of net ecosystem exchanges of CO ₂ , CH ₄ , and their CO ₂ equivalents between
105	the alpine peatland and the atmosphere; (b) investigate the biophysical drivers of the net CO ₂ -eq
106	fluxes at different temporal scales; and (c) assess the overall net radiative forcing arising from
107	sustained CH ₄ emissions and concurrent net CO ₂ uptake from the alpine peatland on the eastern
108	QTP. To our knowledge, this study was the first to present a multi-year continuous dataset of
109	ecosystem-scale CO ₂ and CH ₄ fluxes over alpine peatlands on QTP, providing key information
110	for understanding the role of alpine peatlands in the global C balance and net radiative forcing.
110	for understanding the role of alpine peatlands in the global C balance and net radiative forcing.

112 **2.** Methods

113 2.1. Site description

114 The study site is at the Hongyuan Peatland Carbon Flux Monitoring and Research Station

115 (32°46' N, 102°30' E, 3510 m.a.s.l.) operated by the Institute of Geochemistry, Chinese

116 Academy of Sciences. The site is located in a valley on the eastern side of the Bai River in

117 Hongyuan County, Sichuan Province, China (Figure 1). The Hongyuan peatland has an area of

118 1.1 km² and the deepest peat deposition is around 6.5 m. It is a part of the Ruoergai wetland,

119 which covers 15% of the Ruoergai Basin area on the eastern QTP [Peng et al., 2019; Yao et al.,

120 2011] and stores approximately 0.48 Pg C, some of which have been formed since 15,000 years

ago [*Chen et al.*, 2014]. The long-term (1981-2010) meteorological data from the National

122 Benchmark Climate Station in Hongyuan (<u>http://data.cma.cn/</u>) showed that the mean annual

123 temperature and precipitation are 1.8 °C and 746 mm, respectively. The highest monthly mean

124 air temperature is typically observed in July (11.2 °C on average), whereas the lowest is in

125 January with a 30-year mean of -9.4 °C. More than 75% of annual precipitation usually occurs

126 during the growing season from May to September each year. The dominant plant species in

127 Hongyuan peatland are *Carex mulieensis* and *Kobresia tibetica*, and other abundant plant species

128 include Caltha palustris, Gentiana formosa, and Trollius farreri.

Figure 1: Location of the eddy covariance flux tower at Hongyuan peatland on the eastern Qinghai-Tibetan Plateau and its flux measurement footprint during daytime (orange lines) and nighttime (blue lines). The land cover data in panels (a) and (b) were retrieved from the Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (<u>http://www.csdb.cn</u>). The footprint contour lines in panel (c) are shown in increments of 20% from 50% (inner circle) to 90% (outer circle).

- 136 2.2. Eddy covariance and ancillary measurements
- 137 The EC tower was installed in the center of Hongyuan peatland, where the terrain is flat and the
- 138 average peat depth is 3.3 m. The flat area has a diameter of > 300 m, which provides a
- 139 homogeneous upwind fetch for the EC flux measurements (Figure 1). The EC sensors were
- 140 mounted at 2.5 m above the ground, consisting of a 3-D ultrasonic anemometer (WindMaster
- 141 Pro, Gill Instruments Limited, UK) for measuring wind components, an open-path infrared gas
- 142 analyzer (LI-7500A, LI-COR Biosciences, USA) for measuring carbon dioxide and water vapor
- 143 densities, and an open-path gas analyzer (LI-7700, LI-COR Biosciences, USA) for measuring
- 144 CH₄ concentrations. The LI-7500A was tilted 10° in the main wind direction to avoid water

145	accumulation on the lens. The raw EC data were recorded at 10 Hz using the LI-7550 data logger
146	(LI-7700, LI-COR Biosciences, USA). Other ancillary environmental measurements, including
147	global radiation (R_g), air temperature (T_{air}) and relative humidity (RH), precipitation (PPT), soil
148	temperature (T_{soil}) at three depths (10, 25, and 40 cm below the ground), and soil water content
149	(SWC) at a depth of 10 cm, were recorded by a HOBO U30 weather station installed near the EC
150	tower (Figure 1). Vapor pressure deficit (VPD) was calculated using the T_{air} and RH
151	measurements. The EC tower was powered by solar panels during daytime and lead-acid
152	batteries during nighttime or when solar radiation was low. A more detailed description of
153	instrumentation is presented in Peng et al. [2019].
154	
155	2.3. Flux data processing and radiative forcing calculation
156	The 10 Hz EC raw data were processed using the express mode in EddyPro® software (Version
157	5.1.1, LI-COR Biosciences, USA) to obtain the half-hourly averaged fluxes of CO ₂ and CH ₄ . A
158	detailed description of raw flux calculation was presented in Peng et al. [2019] and thus was not
159	repeated in this study. In brief, double rotation [Wilczak et al., 2001], block average [Gash and
160	Culf, 1996], and covariance maximization [Fan et al., 1990] were applied in the EddyPro
161	settings. Flux data were corrected for spectral attenuations [Moncrieff et al., 2004; Moncrieff et
162	al., 1997] and density fluctuations [Webb et al., 1980]. The 30-min CO ₂ and CH ₄ flux data were
163	filtered according to the EddyPro "0-1-2" quality check flagging policy [Mauder and Foken,
164	2004] that data with a flag of "2" were discarded. As spikes still occurred in the time series data,
165	half-hourly CO ₂ and CH ₄ fluxes were further removed if they were outside the range of mean \pm
166	$3 \times$ standard deviation over a moving window of 10 days. Moreover, the half-hourly CO ₂ and CH ₄
167	fluxes measured during the calm and stable atmospheric conditions, indicated by low friction

168 velocity (u_*) were discarded via the REddyProc online tool [*Wutzler et al.*, 2018] following the 169 procedures described in *Papale et al.* [2006]. The u_* thresholds ranged from 0.082 to 0.147 m s⁻¹ 170 at our site.

171	Gaps in CO ₂ flux were filled using the marginal distribution sampling (MDS) method
172	[Reichstein et al., 2005] implemented in the REddyProc online tool. The MDS look-up table
173	variables include global radiation, air temperature, and vapor pressure deficit. As CH4 emissions
174	are widely found to be controlled by soil temperature and water table level [e.g., Chen et al.,
175	2021; Rinne et al., 2018; Ueyama et al., 2020], the CH4 flux data were gap-filled by the
176	regression fitting approach using soil temperature and soil water content as environmental
177	drivers. More details are provided in our previous study [Peng et al., 2019]. The
178	micrometeorological sign convention was used in this study that positive and negative fluxes
179	indicated emission from and uptake by the peatland ecosystem, respectively.
180	The net radiative forcing of Hongyuan peatland was computed as the sum of the vertical
181	CO2 and CH4 fluxes in CO2 equivalents (defined as net CO2-eq flux) weighted by global
182	warming potential (GWP) of CH4. We applied both the traditional and sustained GWP (SGWP)
183	metrics, the latter of which has been recently used to determine the net radiative forcing of
184	several ecosystems by considering their persistent GHG emissions rather than the isolated pulse
185	emissions [e.g., Hemes et al., 2018; Hemes et al., 2019; Liu et al., 2020]. In this study, we chose
186	the CH ₄ GWP of 28 CO ₂ -eq (GWP-28) without the inclusion of climate-carbon feedbacks
187	[Myhre et al., 2013] and the SGWP of 45 CO ₂ -eq (SGWP-45) [Neubauer and Megonigal, 2015]
188	over the 100-year time horizon. A positive net CO2-eq value indicates an overall climatic
189	warming effect and vice versa.

190

191 2.4. Statistical and footprint analyses

192 Principle component analysis (PCA) was performed on the time-series data at the temporal 193 resolutions of 30-min (non-gapfilled), daily, and monthly to investigate the correlation structures 194 of the CO₂, CH₄, and net CO₂-eq fluxes with the environmental variables. Flux measurement 195 footprint was estimated using the two-dimensional footprint parametrization [Kljun et al., 2015]. 196 Roughness length (z_0) and zero-plane displacement height (d) were estimated as 1/10 and 2/3 of 197 the canopy height (0.1 m), respectively. Besides, other footprint model input includes wind 198 direction, standard deviation of lateral wind component fluctuations, friction velocity, Monin-199 Obukhov length, and atmospheric boundary layer height, i.e., 800 m and 200 m for daytime and 200 nighttime condition, respectively, for the eastern QTP region [Slättberg and Chen, 2020]. 201 202 2.5. Evaluation periods 203 During the study period from December 2013 to July 2016, the annual period is defined as the 204 calendar year, which is further divided into four seasons, i.e., soil thawing (ST), growing season 205 (GS), soil freezing (SF), and winter (W) based on the approaches described in Aurela et al. 206 [2002] and Lund et al. [2010]. The starting and ending dates for each season during the study 207 period were listed in the supplemental materials (Table S1). 208

209 3. Results

210 3.1. Environmental conditions

211 The environmental conditions showed distinct characteristics between the two full annual

212 periods (Figure 2). As shown in Figure 2a, T_{air} did not differ much between the two years (p >

213 0.05), but the mean R_g during 2015 was significantly larger than in 2014 (p < 0.05), especially

214 during the growing season. Compared to 2014, the year of 2015 was identified as a relatively 215 drier year, with 182 mm less PPT occurring during the growing season. However, the cumulative 216 PPT during the first half of the growing season (May-July) was similar in 2014 and 2015 (316 217 vs. 334 mm), and thus the largely reduced PPT mainly occurred from August 2015 (Figure 2b). 218 During the first half of the growing season, T_{soil} at the depth of 10 cm decreased by 1.0 °C from 219 2014 to 2015, forming a cooler and wetter soil condition over that period due to a slight increase 220 in PPT. In contrast to the growing season, T_{soil} at 10 cm deep was 1.8 times higher across the 221 entire non-growing season in 2015 compared to 2014. As expected, SWC mainly varied with 222

Figure 2: Monthly means (or sums) of environmental variables during the study period from December 2013 to July 2016 at Hongyuan peatland. (a) Monthly mean global radiation (R_g, red bars) and air 226 temperature (T_{air}, red dots); (b) monthly precipitation sums (PPT, cyan bars) and monthly mean vapor 227 pressure deficit (VPD, blue dots); and (c) monthly mean soil water content at a depth of 10 cm (SWC,

 $\begin{array}{ll} 228 & \text{green bars} \text{) and soil temperature } (T_{\text{soil}}) \text{ at the depths of } 10 \text{ cm (green dots)}, 25 \text{ cm (grey dots)}, \text{ and } 40 \text{ cm} \\ 229 & (\text{black dots}). \end{array}$

- 230
- 231 3.2. Temporal patterns of CO₂ and CH₄ fluxes
- 232 The measurements of net CO₂ and CH₄ exchanges between Hongyuan peatland and the
- 233 atmosphere extended across two full annual periods and ~2.5 growing seasons from December
- 234 2013 to July 2016 (Figure 3). The peatland was a net CO₂ sink from May or June to September
- each year but a net source of CH₄ throughout the entire study period. Combining both CO₂ and
- 236 CH₄ fluxes into CO₂ equivalents using the GWP-28 metric, the peatland acted as a net source of
- 237 CO₂-eq fluxes for 10 and 11 months during 2014 and 2015, respectively. The peak net CO₂-eq
- 238 uptake concurred with the largest CO₂ uptake in July each year, around which the highest
- 239 monthly CH₄ fluxes were also observed, i.e., in August 2014, July 2015, and July 2016. The
- 240 peak net CO₂-eq emission was observed at the end of the growing season each year, i.e.,
- 241 September 2014 and October 2015. While applying the SGWP-45 metric, the monthly net CO₂-
- 242 eq fluxes were all positive throughout the entire measurement period, illustrating that the
- 243 peatland was a net source of net CO₂-eq consistently in each month (Figure S1).

- Figure 3: Monthly sums of CO₂, CH₄, and net CO₂-eq (GWP-28) fluxes over the study period from
- 246 December 2013 to July 2016 at Hongyuan peatland. All flux components are in g CO₂-eq m⁻² month⁻¹
- 247 using CH₄ traditional global warming potential of 28 (GWP-28).
- 248
- 249 3.3. Seasonal, annual, and between-year variability of CO₂-eq fluxes
- 250 The net CO₂-eq flux (GWP-28) during the soil freezing period accounted for >40% of the annual
- net CO₂-eq value (GWP-28), exceeding the contribution from the growing season by 10-20%
- each year (Table 1). Moreover, the net CO₂-eq (GWP-28) emission during the wintertime was
- 253 17% and 21% of the annual CO₂-eq sums during 2014 and 2015, respectively. In both years, the
- 254 minimum contribution originated from the soil thawing period, which was also the shortest
- season (Table S1), were only 10% and 17% for 2014 and 2015, respectively. In contrast, the
- 256 SGWP-45 metric showed the most significant net CO₂-eq emissions occurring during the

growing seasons, 54% and 44% during 2014 and 2015, respectively (Table 1).

258

		CO ₂ flux		CH4 flux			Net C or CO ₂ -eq flux			
		Year	g C m ⁻²	g CO ₂ m ⁻²	g C m ⁻²	g CO ₂ -eq m ⁻² (GWP-28)	g CO ₂ -eq m ⁻² (SGWP-45)	g C m ⁻²	g CO ₂ -eq m ⁻² (GWP-28)	g CO ₂ -eq m ⁻² (SGWP-45)
	• *	2014	-146	-535	37	1381	2220	-109	846	1685
F	4	2015	-66	-242	33	1232	1980	-33	990	1738
c	ST	2014	14	51	0.8	30	48	15	81	99
2		2015	33	121	1.3	49	78	34	170	199
6	GS	2014	-209	-766	28	1045	1680	-181	279	914
C		2015	-186	-682	24	896	1440	-162	214	758
6	сĒ	2014	39	143	5.3	198	318	44	341	461
2	бГ	2015	60	220	4.9	183	294	65	403	514
Ţ	17	2014	10	37	2.9	108	174	13	145	211
`	W	2015	27	99	2.8	105	168	30	204	267

Table 1: Seasonal and annual CO₂ and CH₄ fluxes, and their CO₂ equivalents at Hongyuan peatland

*** Abbreviations: annual (A), soil thawing (ST), growing season (GS), soil freezing (SF), and winter (W).
 261

For each annual period, Hongyuan peatland acted as a sink for atmospheric CO₂ but a source of CH₄ to the atmosphere (Table 1). While considering the GWP-28 of CH₄, the annual

264 CO₂-eq flux was 846 and 990 g CO₂-eq m⁻² yr⁻¹ during 2014 and 2015, respectively, which was

almost doubled when applying the SGWP-45 metric (Table 1). The increased annual net CO₂-eq
emission during 2015 corresponded with the largely reduced CO₂ uptake and slightly lower CH₄
emission, compared to the year of 2014.

268

269 3.4. Controlling factors of net CO₂-eq flux

270 During the study period, the net CO₂-eq flux was dominantly varied with the CO₂ flux

271 component at half-hourly (r = 0.98, p < 0.001), daily (r = 0.86, p < 0.001), and monthly time

scales (r = 0.77, p < 0.001), whereas little correlation existed between net CO₂-eq and CH₄ flux

at all three temporal scales (Figure 4). The negative correlation between CO₂ and CH₄ fluxes,

274 representing a positive correlation between CO₂ uptake and CH₄ emissions, increased from half-

275 hourly to monthly scales (Figure 4d-f).

Among the six investigated environmental variables, R_g and T_{soil} were the strongest controlling factor of the half-hourly CO₂ and CH₄ fluxes, respectively (Figure 4a&4d). At the coarser temporal resolutions, i.e., daily and monthly timescales, T_{soil} became the most influencing abiotic control of both CO₂ and CH₄ fluxes (Figure 4b, c, e, f). Overall, R_g and T_{soil} were the dominant environmental factors influencing net CO₂-eq fluxes (GWP-28) at half-hourly and daily intervals; however, no significant environmental control was found for the monthly net

282 CO₂-eq flux (Figure 4f). Following the SWGP-45 metric, the correlation structures did not vary

283 much from the GWP-28 metric, except that SWC was significantly correlated with the monthly

284 net CO_2 -eq fluxes (Figure S2).

Figure 4: PCA loading plots (a-c) of the correlation structures of GHG (net CO₂-eq, GWP-28), CO₂, and CH₄ (CO₂-eq, GWP-28) fluxes, and measured environmental variables and their correlation matrix (d-e) at half-hourly, daily, and monthly temporal scales. Environmental variables include global radiation (R_g), air temperature (T_{air}), precipitation (PPT), vapor pressure deficit (VPD), and soil temperature (T_{soil}) and soil water content (SWC) both at the depth of 10 cm measured during the study period from December 2013 to July 2016 at Hongyuan peatland. Values in the correlation matrix are the correlation coefficients and significant correlations (p < 0.001) are labeled using the red fonts.

294	During the growing season, bin-averaged responses of net CO ₂ -eq fluxes to different R_g
295	classes illustrated that the net CO ₂ -eq uptake (negative CO ₂ -eq flux) was significantly enhanced
296	by the increasing R_g before reaching light saturation where R_g was around 500 W m ⁻² (Figure
297	5a). Meanwhile, T_{air} (5-15 °C) and PPT positively affected the net CO ₂ -eq uptake and emission
298	rates, respectively (Figure 5b and 5c). The relationship between net CO ₂ -eq flux and VPD
299	showed that the net CO ₂ -eq uptake quickly increased with VPD up to a threshold of ~ 0.66 kPa,
300	beyond which the net CO ₂ -eq uptake started to decrease (Figure 5d). Additionally, the net CO ₂ -
301	eq flux during the growing season showed similar responses to T_{soil} (> 5 °C) and SWC (> 0.44
302	$m^3 m^{-3}$) as to T _{air} and PPT, respectively (Figure 5e and 5f). During the non-growing seasons, net

303 CO₂-eq generally increased with T_{soil} and the lower SWC range (e.g., 0.16-0.28 m³ m⁻³) (Figure 304 5e and 5f).

305 As the CO_2 flux component was dominantly driving the variations in net CO_2 -eq fluxes, 306 its sensitivity to the environmental parameters was similar to the responses of net CO₂-eq flux 307 (Figure S3). Whereas for CH₄ flux, we observed that CH₄ emissions during the growing season 308 were linearly increasing with T_{soil} and exponentially increasing with T_{air}, which were also 309 inhibited at the high VPD range (> 1.7 kPa) (Figure S4). Moreover, CH₄ emission sensitivities to 310 R_g, T_{soil}, and SWC were noted only during the soil freezing period. The environmental responses 311 of net CO₂-eq fluxes for the SGWP-45 metric did not differ much from the GWP-28 metric 312 (Figure S5).

Figure 5: Bin-averaged half-hourly net CO_2 -eq flux against environmental variables during the periods of winter (W), soil thawing (ST), growing season (GS), and soil freezing (SF) at Hongyuan peatland. The

- 316 error bars show the standard errors of the bin averages.
- 317

319 4.1. CH₄ emissions offset the net cooling effect of CO₂ uptake

320 On an annual basis, our CO₂ and CH₄ flux measurements demonstrated that Hongyuan peatland 321 was a net sink for atmospheric CO₂, a source of atmospheric CH₄, and an overall net C sink. The 322 mean annual net C sink strength (71 g C m^{-2} yr⁻¹) during the study period was within the range of C accumulation rates (35-171 g C m⁻² yr⁻¹) during the recent decades for the alpine peatlands in 323 324 the Ruoergai Basin [e.g., Hao et al., 2011; X Liu et al., 2019; Wang et al., 2015], which further 325 confirms that the recent C accumulation rates of peatlands in this region are almost four times 326 larger than their Holocene averaged values [Wang et al., 2015; Zhao et al., 2014]. Within the C 327 balance, C loss via CH₄ emissions was relatively lower compared to the magnitude of net CO₂ 328 uptake.

329 While considering the GWP and SGWP of CH₄ over the 100-year time scale, CH₄ 330 emissions have exceeded the net cooling effect of CO₂ uptake by 2.5-4 times each year, resulting 331 in the net positive radiative forcing and a potential warming effect of Hongyuan peatland. 332 Moreover, considering the net positive radiative forcing is ~4 times stronger regarding the GWP 333 and SGWP of CH₄ over the 20-year time horizon (84 and 96, respectively), the GHG emissions 334 from Hongyuan peatland would have a more substantial warming effect over a shorter time 335 scale. The consistently positive annual net CO₂-eq fluxes estimated using two different GWP 336 metrics over both short- and long-time scales revealed that CH₄ emissions from the alpine 337 peatlands are a crucial land-atmosphere C exchange component in the net CO₂-eq flux and 338 greenhouse gas budgets.

A large portion (~60% and 40% for GWP-28 and SGWP-45) of the annual net CO₂-eq flux was observed during the soil freezing and winter periods when the environmental conditions were unfavorable for plant growth. During these cold periods, soil respiration was expected to be

342 the dominant process that released CO₂ into the atmosphere [X Liu et al., 2019] and meanwhile 343 the peatland was still emitting CH₄ via anaerobic decomposition of soil organic matters [*Peng et* 344 al., 2019]. Moreover, winter was not dormant in terms of CO_2 and CH_4 production, even though 345 T_{soil} at 10 cm depth and T_{air} dropped below zero for 98% and 76% of the wintertime of 2014 and 346 2015, respectively. During the wintertime, CO₂ and CH₄ emissions from peatlands can still occur 347 through the frozen or snow-covered soils via diffusion and transportation through the chimney 348 effect led by dead plant tissues and ice cracks and also through the burst emissions caused by 349 rapid soil thawing and freezing [Alm et al., 1999; Mastepanov et al., 2008; Song et al., 2020]. 350 The important CO_2 -eq emission during the non-growing season was in accordance with previous 351 studies, which have recently highlighted that the overall C and GHG budgets may be 352 underestimated without an accurate assessment for the non-growing season [Aurela et al., 2002; 353 *Commane et al.*, 2017; *Natali et al.*, 2019; *Song et al.*, 2015]. 354

355 4.2. Abiotic controls of net CO₂-eq flux

356 Compared to 2014, the largely enhanced annual CO_2 -eq source strength during 2015 was 357 attributed to the elevated CO₂-eq emissions during the non-growing season and slightly reduced 358 net CO₂ uptake during the growing season. Our PCA and sensitivity analyses revealed that 359 global radiation and soil temperature were the primary influencing factors of net CO₂-eq flux 360 variabilities. More specifically, we found that clouds (indicated by low Rg) strongly reduced the 361 net CO_2 -eq uptake by blocking the incoming solar radiation and thus primarily reducing 362 photosynthesis [*Alton*, 2008]. Meanwhile, precipitation could also stimulate soil respiration 363 during the drier years (e.g., 2015 in this study) due to the increased soil moisture and thus 364 contributed to the overall reduced net CO₂ uptake [*Öquist et al.*, 2014; *Yuan et al.*, 2014].

Additionally, the higher SWC during the soil thawing and winter periods in 2015 could have
stimulated CO₂ and CH₄ emissions from the peatland compared to the other two years (Figures
S6&8).

368	Low soil temperature was expected to slow down the processes of photosynthesis,
369	ecosystem respiration, and CH ₄ production simultaneously in peatland ecosystems. However, the
370	positive correlation between T _{soil} and net CO ₂ -eq uptake during the growing season indicated its
371	primary role in enhancing photosynthesis relative to CO ₂ and CH ₄ emissions at the alpine
372	peatlands in the QTP region [Hao et al., 2011]. This also explained the between-year variability
373	of net CO ₂ -eq uptake (Figures S6-9). Indeed, the observed positive effect of T_{soil} on CH ₄
374	emissions, which has been widely found in this region [e.g., Chen et al., 2008; Song et al., 2015]
375	and worldwide [e.g., Dalmagro et al., 2019; Drollinger et al., 2019; Treat et al., 2014; Zhao et
376	al., 2016], amplified the sensitivity of net CO ₂ -eq emission to T _{soil} during the non-growing
377	season but did not switch the overall relationship between net CO_2 -eq and T_{soil} during the
378	growing season.
379	Furthermore, the net CO ₂ -eq uptake was inhibited under hot and dry conditions (i.e., high
380	VPD) as a result of the declined CH ₄ emissions and net CO ₂ uptake (Figure S3-4). As CO ₂ and
381	CH4 fluxes were tightly coupled at daily and monthly scales due to their strong connection in
382	biogeochemical processes, we also found that higher CO2 uptake could lead to higher CH4
383	production in peatland ecosystems, most likely due to the promoted root exudates [Hatala et al.,
384	2012; Shoemaker et al., 2012]. Therefore, it is critical to investigate the environmental controls
385	on the net CO ₂ -eq flux that integrated the soil biogeochemical and plant physiological processes

and thus provided an overall view of how the changing environmental conditions in peatland

387 ecosystems affected the net C and GHG balances.

389	4.3. C and GHG budgets of alpine peatlands on the QTP under global change
390	The alpine peatlands on the QTP typically act as net C sinks considering the C gains and losses
391	involved in the biogeochemical and physiological processes in the peatland ecosystem [Chen et
392	al., 2014; X Liu et al., 2019]. However, peatlands can be strong sources of net CO ₂ -eq and thus
393	result in net positive radiative forcing while taking the GWP and SGWP of other greenhouse
394	gases into account. As peatlands in this region could also be significant sources of N_2O [e.g.,
395	Chen et al., 2013; H Liu et al., 2019; Marushchak et al., 2011], which has 265 times stronger
396	GWP than CO ₂ , the net positive radiative forcing of alpine peatlands on QTP would be further
397	enhanced if combining N ₂ O flux into the GHG budget. One recent model study also showed
398	similar results to this study that the significant CH4 emissions from wetlands even offset the
399	entire regional GHG balance on the QTP [Jin et al., 2015]. Therefore, the non-CO ₂ GHG
400	emissions from peatlands play an important role in the regional GHG budgets by potentially
401	switching the alpine peatlands from a radiative cooling to a warming effect.
402	The C and GHG balances of the Ruoergai peatland are sensitive to the rapid climate
403	warming on the QTP, which has been widely observed during the last decades [Yang et al., 2014;
404	Yao et al., 2012; You et al., 2016]. As the warmer temperature has been found to accelerate CH ₄
405	emissions from peatlands in the Ruoergai Basin by promoting both anaerobic and aerobic
406	metabolisms [Cui et al., 2015; Yang et al., 2014], it is expected that the Ruoergai peatland will
407	emit more CH ₄ to the atmosphere and result in more offsetting to both the radiative cooling
408	effect and the carbon sink strength of peatland ecosystems in the warmer scenarios. In addition,
409	glacier melting and permafrost thawing in response to the rising temperature could lead to more

peatland formations in this region [*Luan et al.*, 2018; *Yao et al.*, 2012], which will create more
CH₄ emission hotspots in the future.

412 The Ruoergai peatland is also challenged by drainage resulting from both increasing 413 human disturbances and intensified headward erosion of large numbers of tributaries. Many 414 peatlands have been drained for animal husbandry or mined for fuels primarily due to the 415 growing population (1.5 times larger) in the Ruoergai Basin since the 1960s [Yao et al., 2011], 416 resulting in 18-31% of peatland degradation [Chen et al., 2014; Yao et al., 2011]. Besides, rapid 417 increases in runoff have caused many river diversions and thus incised an extensive amount of 418 peatlands, leading to enhanced peatland degradation [Li et al., 2015]. Drainage can further alter 419 the GHG and C balances by affecting hydrology, soil, and vegetation composition in the 420 degraded peatland ecosystems [Gyimah et al., 2020]. For example, the increased soil temperature 421 and decreased soil water content associated with peatland drainage could reduce CH₄ emissions 422 and net CO₂ uptake in the QTP region [Yang et al., 2014; Yang et al., 2017; Zhou et al., 2017], 423 which would strengthen the positive radiative forcing of the alpine peatlands in this region. 424 Therefore, investigations on the effects of peatland drainage and restoration are greatly needed to 425 identify the role of alpine peatlands in regional and global C and GHG cycles under the 426 circumstances of climate change and anthropogenic disturbances in the future.

427

428 **5.** Conclusions

429 During the study period, our 2.5-year continuous eddy covariance flux measurements showed 430 that the typical alpine peatland on the eastern QTP acted as a net sink for atmospheric CO₂, a net 431 CH₄ source, and an overall net C sink. When considering their potential influence on radiative 432 forcing, the CH₄ emissions considerably offset the radiative cooling effect of the peatland net

433 CO₂ uptake, thus altering the peatland to a net CO₂-eq source and causing a potentially warming 434 effect. Our analysis further demonstrated that global radiation and soil temperature were the 435 main environmental drivers that influenced the alpine peatland net CO_2 -eq flux variabilities from 436 half-hourly to annual time scales. Besides, we found that both CH₄ and CO₂ emissions during the 437 soil freezing and winter periods have contributed significantly to the annual net CO₂-eq fluxes, 438 suggesting that the non-growing season C emissions are extremely important for assessing the 439 overall C and GHG budgets of the alpine peatlands in the QTP region, particularly in a warming 440 climate. The extended long-term continuous GHG monitoring is advocated to further investigate 441 the feedback between the alpine peatlands and global change.

442

443 Acknowledgments

444 This research was funded by the Strategic Priority Research Program of Chinese Academy of

445 Sciences (Grant No. XDB40010300), the National Natural Science Foundation of China (Grant

446 Nos. 41907288, 41673119, and 41773140), and the Science and Technology Foundation of

447 Guizhou Province (Grant Nos. [2019]1317 and [2020]1Y193). H. P. was supported by the "Light

448 of West China" Program and the CAS Scholarship. J. C. gratefully acknowledges funding from

the Kempe Foundations (grant no. SMK-1743).

450

451 Data availability statement

- 452 Datasets and codes for this research will be available at the GitHub repository link
- 453 <u>https://github.com/HaijunPeng/Carbon-balance-QTP-peatland</u> upon publication.
- 454
- 455 **References**

- 456 Alm, J., S. Saarnio, H. Nykänen, J. Silvola, and P. J. Martikainen (1999), Winter CO₂, CH₄ and
- N₂O fluxes on some natural and drained boreal peatlands, Biogeochemistry, 44(2), 163186, doi: 10.1023/A:1006074606204.
- 459 Alton, P. B. (2008), Reduced carbon sequestration in terrestrial ecosystems under overcast skies
- 460 compared to clear skies, Agric. For. Meteorol., 148(10), 1641-1653, doi:
- 461 10.1016/j.agrformet.2008.05.014.
- 462 Aurela, M., T. Laurila, and J.-P. Tuovinen (2002), Annual CO₂ balance of a subarctic fen in
- 463 northern Europe: Importance of the wintertime efflux, J. Geophys. Res. Atmos.,
- 464 107(D21), doi: 10.1029/2002jd002055.
- Baldocchi, D., and J. Penuelas (2019), The physics and ecology of mining carbon dioxide from
 the atmosphere by ecosystems, Global Change Biol., 25(4), 1191-1197, doi:
- 467 10.1111/gcb.14559.
- 468 Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang (2013), Methane emissions
- 469 from wetlands: biogeochemical, microbial, and modeling perspectives from local to
 470 global scales, Global Change Biol., 19(5), 1325-1346, doi: 10.1111/gcb.12131.
- 471 Carlson, K. M., L. M. Curran, G. P. Asner, A. M. Pittman, S. N. Trigg, and J. Marion Adeney
- 472 (2013), Carbon emissions from forest conversion by Kalimantan oil palm plantations,
 473 Nat. Clim. Change, 3(3), 283-287, doi: 10.1038/nclimate1702.
- 474 Chaudhary, N., P. A. Miller, and B. Smith (2017), Modelling past, present and future peatland
 475 carbon accumulation across the pan-Arctic region, Biogeosciences, 14(18), 4023-4044,
 476 doi: 10.5194/bg-14-4023-2017.
- 477 Chen, H., S. Yao, N. Wu, Y. Wang, P. Luo, J. Tian, Y. Gao, and G. Sun (2008), Determinants
 - 478 influencing seasonal variations of methane emissions from alpine wetlands in Zoige

479	Plateau and their implications, J. Geophys. Res. Atmos., 113(D12), doi:
480	10.1029/2006jd008072.
481	Chen, H., X. Liu, D. Xue, D. Zhu, W. Zhan, W. Li, N. Wu, and G. Yang (2021), Methane
482	emissions during different freezing-thawing periods from a fen on the Qinghai-Tibetan
483	Plateau: Four years of measurements, Agric. For. Meteorol., 297, 108279, doi:
484	10.1016/j.agrformet.2020.108279.
485	Chen, H., et al. (2014), The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau
486	during the Holocene and their future fate, Quat. Sci. Rev., 95, 151-158, doi:
487	10.1016/j.quascirev.2014.05.003.
488	Chen, H., et al. (2013), The impacts of climate change and human activities on biogeochemical
489	cycles on the Qinghai-Tibetan Plateau, Global Change Biol., 19(10), 2940-2955, doi:
490	10.1111/gcb.12277.
491	Commane, R., et al. (2017), Carbon dioxide sources from Alaska driven by increasing early
492	winter respiration from Arctic tundra, PNAS, 114(21), 5361-5366, doi:
493	10.1073/pnas.1618567114.
494	Cui, M., A. Ma, H. Qi, X. Zhuang, G. Zhuang, and G. Zhao (2015), Warmer temperature
495	accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without
496	changing methanogenic community composition, Sci. Rep., 5(1), 11616, doi:
497	10.1038/srep11616.
498	Dalmagro, H. J., P. H. Zanella de Arruda, G. L. Vourlitis, M. J. Lathuillière, J. de S. Nogueira, E.
499	G. Couto, and M. S. Johnson (2019), Radiative forcing of methane fluxes offsets net
500	carbon dioxide uptake for a tropical flooded forest, Global Change Biol., 25(6), 1967-
501	1981, doi: 10.1111/gcb.14615.

502	Dommain, R., S. Frolking, A. Jeltsch-Thömmes, F. Joos, J. Couwenberg, and P. H. Glaser
503	(2018), A radiative forcing analysis of tropical peatlands before and after their conversion
504	to agricultural plantations, Global Change Biol., 24(11), 5518-5533, doi:
505	10.1111/gcb.14400.
506	Drollinger, S., A. Maier, and S. Glatzel (2019), Interannual and seasonal variability in carbon
507	dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria, Agric. For.
508	Meteorol., 275, 69-78, doi: 10.1016/j.agrformet.2019.05.015.
509	Fan, S. M., S. C. Wofsy, P. S. Bakwin, D. J. Jacob, and D. R. Fitzjarrald (1990), Atmosphere-
510	biosphere exchange of CO ₂ and O ₃ in the central Amazon forest, J. Geophys. Res.
511	Atmos., 95(D10), 16851-16864, doi: 10.1029/JD095iD10p16851.
512	Fenner, N., and C. Freeman (2011), Drought-induced carbon loss in peatlands, Nat. Geosci.,
513	4(12), 895-900, doi: 10.1038/ngeo1323.
514	Friedlingstein, P., et al. (2019), Global carbon budget 2019, Earth Syst. Sci. Data, 11(4), 1783-
515	1838, doi: 10.5194/essd-11-1783-2019.
516	Frolking, S., J. Talbot, M. C. Jones, C. C. Treat, J. B. Kauffman, ES. Tuittila, and N. Roulet
517	(2011), Peatlands in the Earth's 21st century climate system, Environ. Rev., 19, 371-396,
518	doi: 10.1139/a11-014.
519	Gash, J. H. C., and A. D. Culf (1996), Applying a linear detrend to eddy correlation data in
520	realtime, Boundary Layer Meteorol., 79(3), 301-306, doi: 10.1007/bf00119443.

- 521 Gorham, E. (1991), Northern peatlands: Role in the carbon cycle and probable responses to
- 522 climatic warming, Ecol. Appl., 1(2), 182-195, doi: 10.2307/1941811.

523	Gyimah, A., J. Wu, R. Scott, and Y. Gong (2020), Agricultural drainage increases the
524	photosynthetic capacity of boreal peatlands, Agric. Ecosyst. Environ., 300, 106984, doi:
525	10.1016/j.agee.2020.106984.
526	Hao, Y. B., X. Y. Cui, Y. F. Wang, X. R. Mei, X. M. Kang, N. Wu, P. Luo, and D. Zhu (2011),
527	Predominance of precipitation and temperature controls on ecosystem CO ₂ exchange in
528	Zoige Alpine Wetlands of southwest China, Wetlands, 31(2), 413-422, doi:
529	10.1007/s13157-011-0151-1.
530	Hatala, J. A., M. Detto, and D. D. Baldocchi (2012), Gross ecosystem photosynthesis causes a
531	diurnal pattern in methane emission from rice, Geophys. Res. Lett., 39(6), doi:
532	10.1029/2012gl051303.
533	Hemes, K. S., S. D. Chamberlain, E. Eichelmann, S. H. Knox, and D. D. Baldocchi (2018), A
534	biogeochemical compromise: The high methane cost of sequestering carbon in restored
535	wetlands, Geophys. Res. Lett., 45(12), 6081-6091, doi: 10.1029/2018GL077747.
536	Hemes, K. S., S. D. Chamberlain, E. Eichelmann, T. Anthony, A. Valach, K. Kasak, D. Szutu, J
537	Verfaillie, W. L. Silver, and D. D. Baldocchi (2019), Assessing the carbon and climate
538	benefit of restoring degraded agricultural peat soils to managed wetlands, Agric. For.
539	Meteorol., 268, 202-214, doi: 10.1016/j.agrformet.2019.01.017.
540	Hong, Y. T., B. Hong, Q. H. Lin, Y. Shibata, M. Hirota, Y. X. Zhu, X. T. Leng, Y. Wang, H.
541	Wang, and L. Yi (2005), Inverse phase oscillations between the East Asian and Indian
542	Ocean summer monsoons during the last 12000 years and paleo-El Niño, Earth Planet.
543	Sci. Lett., 231(3), 337-346, doi: 10.1016/j.epsl.2004.12.025.

544	Hopple, A. M., R. M. Wilson, M. Kolton, C. A. Zalman, J. P. Chanton, J. Kostka, P. J. Hanson,
545	J. K. Keller, and S. D. Bridgham (2020), Massive peatland carbon banks vulnerable to
546	rising temperatures, Nat. Commun., 11(1), 2373, doi: 10.1038/s41467-020-16311-8.
547	Jin, Z., Q. Zhuang, JS. He, X. Zhu, and W. Song (2015), Net exchanges of methane and carbon
548	dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100, Environ. Res. Lett., 10(8),
549	085007, doi: 10.1088/1748-9326/10/8/085007.
550	Kirschke, S., et al. (2013), Three decades of global methane sources and sinks, Nat. Geosci.,
551	6(10), 813-823, doi: 10.1038/ngeo1955.
552	Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid (2015), A simple two-dimensional
553	parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8(11), 3695-
554	3713, doi: 10.5194/gmd-8-3695-2015.
555	Li, ZW., ZY. Wang, G. Brierley, T. Nicoll, BZ. Pan, and YF. Li (2015), Shrinkage of the
556	Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau, Catena,
557	126, 155-163, doi: 10.1016/j.catena.2014.10.035.

- 558 Liu, H., D. Zak, F. Rezanezhad, and B. Lennartz (2019), Soil degradation determines release of
- nitrous oxide and dissolved organic carbon from peatlands, Environ. Res. Lett., 14(9),
 094009, doi: 10.1088/1748-9326/ab3947.
- 561 Liu, J., Y. Zhou, A. Valach, R. Shortt, K. Kasak, C. Rey-Sanchez, K. S. Hemes, D. Baldocchi,
- and D. Y. F. Lai (2020), Methane emissions reduce the radiative cooling effect of a
- subtropical estuarine mangrove wetland by half, Global Change Biol., doi:
- 564 10.1111/gcb.15247.
- 565 Liu, X., D. Zhu, W. Zhan, H. Chen, Q. Zhu, Y. Hao, W. Liu, and Y. He (2019), Five-year
- 566 measurements of net ecosystem CO_2 exchange at a fen in the Zoige peatlands on the

- 567 Qinghai-Tibetan Plateau, J. Geophys. Res. Atmos., 124(22), 11803-11818, doi:
- 568 10.1029/2019jd031429.
- 569 Loisel, J., S. van Bellen, L. Pelletier, J. Talbot, G. Hugelius, D. Karran, Z. Yu, J. Nichols, and J.
- 570 Holmquist (2017), Insights and issues with estimating northern peatland carbon stocks
- 571 and fluxes since the Last Glacial Maximum, Earth-Sci. Rev., 165, 59-80, doi:
- 572 10.1016/j.earscirev.2016.12.001.
- 573 Luan, J., S. Liu, J. Wu, M. Wang, and Z. Yu (2018), The transient shift of driving environmental
- 574 factors of carbon dioxide and methane fluxes in Tibetan peatlands before and after
- 575 hydrological restoration, Agric. For. Meteorol., 250-251, 138-146, doi:
- 576 10.1016/j.agrformet.2017.12.248.
- 577 Lund, M., et al. (2010), Variability in exchange of CO₂ across 12 northern peatland and tundra
 578 sites, Global Change Biol., 16(9), 2436-2448, doi: 10.1111/j.1365-2486.2009.02104.x.
- 579 Marushchak, M. E., A. Pitkämäki, H. Koponen, C. Biasi, M. Seppälä, and P. J. Martikainen
- 580 (2011), Hot spots for nitrous oxide emissions found in different types of permafrost
- 581 peatlands, Global Change Biol., 17(8), 2601-2614, doi: 10.1111/j.1365-
- 582 2486.2011.02442.x.
- 583 Mastepanov, M., C. Sigsgaard, E. J. Dlugokencky, S. Houweling, L. Ström, M. P. Tamstorf, and
- 584 T. R. Christensen (2008), Large tundra methane burst during onset of freezing, Nature,
 585 456(7222), 628-630, doi: 10.1038/nature07464.
- 586 Mauder, M., and T. Foken (2004), Documentation and instruction manual of the eddy covariance
 587 software package TK2, 1-67.

588	Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers (2004), Averaging, Detrending, and
589	Filtering of Eddy Covariance Time Series, in Handbook of Micrometeorology, edited by
590	X. Lee, W. J. Massman and B. E. Law, Springer Netherlands.
591	Moncrieff, J. B., J. M. Massheder, H. de Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat,
592	S. Scott, H. Soegaard, and A. Verhoef (1997), A system to measure surface fluxes of
593	momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188-189(0), 589-
594	611, doi: 10.1016/S0022-1694(96)03194-0.
595	Myhre, G., et al. (2013), Anthropogenic and Natural Radiative Forcing, in Climate Change 2013:
596	The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
597	Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D.
598	Qin, GK. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and
599	P. M. Midgley, Cambridge University Press, Cambridge, United Kingdom and New
600	York, NY, USA.
601	Natali, S. M., et al. (2019), Large loss of CO ₂ in winter observed across the northern permafrost
602	region, Nat. Clim. Change, doi: 10.1038/s41558-019-0592-8.
603	Neubauer, S. C., and J. P. Megonigal (2015), Moving Beyond Global Warming Potentials to
604	Quantify the Climatic Role of Ecosystems, Ecosystems, 18(6), 1000-1013, doi:
605	10.1007/s10021-015-9879-4.
606	Nilsson, M., J. Sagerfors, I. Buffam, H. Laudon, T. Eriksson, A. Grelle, L. Klemedtsson, P. E. R.
607	Weslien, and A. Lindroth (2008), Contemporary carbon accumulation in a boreal
608	oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes,
609	Global Change Biol., 14(10), 2317-2332, doi: 10.1111/j.1365-2486.2008.01654.x.

- 610 Nugent, K. A., I. B. Strachan, N. T. Roulet, M. Strack, S. Frolking, and M. Helbig (2019),
- 611 Prompt active restoration of peatlands substantially reduces climate impact, Environ. Res.
 612 Lett., 14(12), 124030, doi: 10.1088/1748-9326/ab56e6.
- 613 Öquist, M. G., K. Bishop, A. Grelle, L. Klemedtsson, S. J. Köhler, H. Laudon, A. Lindroth, M.
- 614 Ottosson Löfvenius, M. B. Wallin, and M. B. Nilsson (2014), The full annual carbon
- 615 balance of boreal forests is highly sensitive to precipitation, Environ. Sci. Technol. Lett.,
- 616 1(7), 315-319, doi: 10.1021/ez500169j.
- 617 Papale, D., et al. (2006), Towards a standardized processing of Net Ecosystem Exchange
- 618 measured with eddy covariance technique: algorithms and uncertainty estimation,
- 619 Biogeosciences, 3(4), 571-583, doi: 10.5194/bg-3-571-2006.
- 620 Peichl, M., M. Öquist, M. O. Löfvenius, U. Ilstedt, J. Sagerfors, A. Grelle, A. Lindroth, and M.
- 621 B. Nilsson (2014), A 12-year record reveals pre-growing season temperature and water
- table level threshold effects on the net carbon dioxide exchange in a boreal fen, Environ.

623 Res. Lett., 9(5), 055006, doi: 10.1088/1748-9326/9/5/055006.

- 624 Peng, H., B. Hong, Y. Hong, Y. Zhu, C. Cai, L. Yuan, and Y. Wang (2015), Annual ecosystem
- 625 respiration variability of alpine peatland on the eastern Qinghai–Tibet Plateau and its
- 626 controlling factors, Environ. Monit. Assess., 187(9), 550, doi: 10.1007/s10661-015-4733-
- 627

x.

628 Peng, H., Q. Guo, H. Ding, B. Hong, Y. Zhu, Y. Hong, C. Cai, Y. Wang, and L. Yuan (2019),

- 629 Multi-scale temporal variation in methane emission from an alpine peatland on the
- 630 Eastern Qinghai-Tibetan Plateau and associated environmental controls, Agric. For.
- 631 Meteorol., 276-277, 107616, doi: 10.1016/j.agrformet.2019.107616.

632	Petrescu, A. M. R., et al. (2015), The uncertain climate footprint of wetlands under human
633	pressure, PNAS, 112(15), 4594-4599, doi: 10.1073/pnas.1416267112.
634	Poulter, B., et al. (2017), Global wetland contribution to 2000-2012 atmospheric methane growth
635	rate dynamics, Environ. Res. Lett., 12(9), 094013, doi: 10.1088/1748-9326/aa8391.
636	Reichstein, M., et al. (2005), On the separation of net ecosystem exchange into assimilation and
637	ecosystem respiration: Review and improved algorithm, Global Change Biol., 11(9),
638	1424-1439, doi: 10.1111/j.1365-2486.2005.001002.x.
639	Rinne, J., et al. (2018), Temporal variation of ecosystem scale methane emission from a boreal
640	fen in relation to temperature, water table position, and carbon dioxide fluxes, Global
641	Biogeochem. Cycles, 32(7), 1087-1106, doi: 10.1029/2017GB005747.
642	Schaefer, H., et al. (2016), A 21st-century shift from fossil-fuel to biogenic methane emissions
643	indicated by ¹³ CH ₄ , Science, 352(6281), 80-84, doi: 10.1126/science.aad2705.
644	Shoemaker, J. K., R. K. Varner, and D. P. Schrag (2012), Characterization of subsurface
645	methane production and release over 3 years at a New Hampshire wetland, Geochim.
646	Cosmochim. Acta, 91, 120-139, doi: 10.1016/j.gca.2012.05.029.
647	Slättberg, N., and D. Chen (2020), A long-term climatology of planetary boundary layer height
648	over the Tibetan Plateau revealed by ERA5, paper presented at EGU General Assembly
649	2020, Online.
650	Song, C., et al. (2020), A microbial functional group-based CH4 model integrated into a
651	terrestrial ecosystem model: model structure, site-level evaluation, and sensitivity
652	analysis, J. Adv. Model. Earth Syst., 12(4), e2019MS001867, doi:
653	10.1029/2019ms001867.

654	Song, W., H. Wang, G. Wang, L. Chen, Z. Jin, Q. Zhuang, and JS. He (2015), Methane
655	emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution
656	of the nongrowing season, J. Geophys. Res. Biogeosci., 120(8), 1475-1490, doi:
657	10.1002/2015jg003043.
658	Stocker, B. D., Z. Yu, C. Massa, and F. Joos (2017), Holocene peatland and ice-core data
659	constraints on the timing and magnitude of CO2 emissions from past land use, PNAS,
660	114(7), 1492-1497, doi: 10.1073/pnas.1613889114.
661	Swindles, G. T., et al. (2019), Widespread drying of European peatlands in recent centuries, Nat.
662	Geosci., 12(11), 922-928, doi: 10.1038/s41561-019-0462-z.
663	Tang, L., X. Duan, F. Kong, F. Zhang, Y. Zheng, Z. Li, Y. Mei, Y. Zhao, and S. Hu (2018),
664	Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan
665	Plateau since 1980s, Sci. Rep., 8(1), 7331, doi: 10.1038/s41598-018-25683-3.
666	Treat, C. C., W. M. Wollheim, R. K. Varner, A. S. Grandy, J. Talbot, and S. Frolking (2014),
667	Temperature and peat type control CO ₂ and CH ₄ production in Alaskan permafrost peats,
668	Global Change Biol., 20(8), 2674-2686, doi: 10.1111/gcb.12572.
669	Turetsky, M. R., B. Benscoter, S. Page, G. Rein, G. R. van der Werf, and A. Watts (2015),
670	Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8(1), 11-14, doi:
671	10.1038/ngeo2325.
672	Turetsky, M. R., et al. (2014), A synthesis of methane emissions from 71 northern, temperate,
673	and subtropical wetlands, Global Change Biol., 20(7), 2183-2197, doi:
674	doi:10.1111/gcb.12580.

675	Turunen, J., E. Tomppo, K. Tolonen, and A. Reinikainen (2002), Estimating carbon
676	accumulation rates of undrained mires in Finland-application to boreal and subarctic
677	regions, The Holocene, 12(1), 69-80, doi: 10.1191/0959683602hl522rp.
678	Ueyama, M., T. Yazaki, T. Hirano, Y. Futakuchi, and M. Okamura (2020), Environmental
679	controls on methane fluxes in a cool temperate bog, Agric. For. Meteorol., 281, 107852,
680	doi: 10.1016/j.agrformet.2019.107852.
681	Wang, M., et al. (2015), Higher recent peat C accumulation than that during the Holocene on the
682	Zoige Plateau, Quat. Sci. Rev., 114, 116-125, doi: 10.1016/j.quascirev.2015.01.025.
683	Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction of flux measurements for density
684	effects due to heat and water-vapor transfer, Q. J. R. Meteorolog. Soc., 106(447), 85-100,
685	doi: 10.1002/qj.49710644707.
686	Wilczak, J. M., S. P. Oncley, and S. A. Stage (2001), Sonic anemometer tilt correction
687	algorithms, Boundary Layer Meteorol., 99(1), 127-150, doi: 10.1023/a:1018966204465.
688	WMO (2018), WMO Greenhouse Gas Bulletin No. 14: The State of Greenhouse Gases in the
689	Atmosphere Based on Global Observations through 2017.
690	Wutzler, T., A. Lucas-Moffat, M. Migliavacca, J. Knauer, K. Sickel, L. Šigut, O. Menzer, and
691	M. Reichstein (2018), Basic and extensible post-processing of eddy covariance flux data
692	with REddyProc, Biogeosciences, 15(16), 5015-5030, doi: 10.5194/bg-15-5015-2018.
693	Xiang, S., R. Guo, N. Wu, and S. Sun (2009), Current status and future prospects of Zoige Marsh
694	in Eastern Qinghai-Tibet Plateau, Ecol. Eng., 35(4), 553-562, doi:
695	10.1016/j.ecoleng.2008.02.016.

- Ku, J., P. J. Morris, J. Liu, and J. Holden (2018), PEATMAP: Refining estimates of global
- 697 peatland distribution based on a meta-analysis, Catena, 160, 134-140, doi:
- 698 10.1016/j.catena.2017.09.010.
- 699 Yang, G., H. Chen, N. Wu, J. Tian, C. Peng, Q. Zhu, D. Zhu, Y. He, Q. Zheng, and C. Zhang
- 700 (2014), Effects of soil warming, rainfall reduction and water table level on CH₄ emissions
- from the Zoige peatland in China, Soil Biol. Biochem., 78, 83-89, doi:
- 702 10.1016/j.soilbio.2014.07.013.
- 703 Yang, G., et al. (2017), Qinghai–Tibetan Plateau peatland sustainable utilization under
- anthropogenic disturbances and climate change, Ecosyst. Health Sustainability, 3(3),
- 705 e01263, doi: 10.1002/ehs2.1263.
- Yao, L., Y. Zhao, S. Gao, J. Sun, and F. Li (2011), The peatland area change in past 20 years in
 the Zoige Basin, eastern Tibetan Plateau, Front. Earth Sci., 5(3), 271, doi:
- 708 10.1007/s11707-011-0178-x.
- Yao, T., et al. (2012), Different glacier status with atmospheric circulations in Tibetan Plateau
 and surroundings, Nat. Clim. Change, 2(9), 663-667, doi: 10.1038/nclimate1580.
- 711 You, Q., J. Min, and S. Kang (2016), Rapid warming in the Tibetan Plateau from observations

and CMIP5 models in recent decades, Int. J. Climatol., 36(6), 2660-2670, doi:

- 713 10.1002/joc.4520.
- 714 Yu, Z., J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt (2010), Global peatland
- 715 dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37(13), doi:
- 716 10.1029/2010gl043584.

- Yuan, W., et al. (2014), Multiyear precipitation reduction strongly decreases carbon uptake over
 northern China, J. Geophys. Res. Biogeosci., 119(5), 881-896, doi:
- 719 10.1002/2014jg002608.
- Yuan, W., et al. (2011), Thermal adaptation of net ecosystem exchange, Biogeosciences, 8(6),
- 721 1453-1463, doi: 10.5194/bg-8-1453-2011.
- 722 Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-
- 723 Duc, and P. A. del Giorgio (2014), Methane fluxes show consistent temperature
- dependence across microbial to ecosystem scales, Nature, 507(7493), 488-491, doi:
- 725 10.1038/nature13164.
- Zhao, J., M. Peichl, and M. B. Nilsson (2016), Enhanced winter soil frost reduces methane
 emission during the subsequent growing season in a boreal peatland, Global Change
 Biol., 22(2), 750-762, doi: 10.1111/gcb.13119.
- 729 Zhao, Y., Y. Tang, Z. Yu, H. Li, B. Yang, W. Zhao, F. Li, and Q. Li (2014), Holocene peatland
- 730 initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern
- 731 Tibetan Plateau, The Holocene, 24(9), 1137-1145, doi: 10.1177/0959683614538077.
- 732 Zhou, W., L. Cui, Y. Wang, and W. Li (2017), Methane emissions from natural and drained
- peatlands in the Zoigê, eastern Qinghai-Tibet Plateau, J. For. Res., 28(3), 539-547, doi:
- 734 10.1007/s11676-016-0343-x.