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Abstract

We describe a three-dimensional discrete fracture hybrid model (DFHM) that returns forecasts of both induced seismicity and

of power generation in an Enhanced Geothermal System (EGS). Our model considers pore-pressure increase as the mechanism

driving induced seismicity, similarly to other hybrid models, but it employs discrete fracture modelling for flow and heat that

allows accurate and realistic transient solutions of pore pressure and temperature in fractured reservoirs. Earthquakes and flow

are thus considered as closely coupled processes. In the DFHM model, the creation phase of an EGS is described as a Markovian

process with a transitional probability that encapsulates the irreducible uncertainty with regards to induced seismicity. We

conditioned this transitional probability on field observations from the 2006 EGS project in Basel, achieving a good match

with observations of seismicity evolution. Specifically, our model effectively reproduces and explains the observed long-term

exponential decay of seismicity after the well was shut in, suggesting that pore pressure diffusion in a critically stressed fractured

reservoir is sufficient to explain long-lasting post-injection seismic activity as observed in Basel. We then investigate alternative

injection scenarios, using Monte Carlo simulations to capture the uncertainties in fault locations and stressing conditions. We

show that the number of induced events depends not only on the total injected volume but also on the injection strategy.

We demonstrate that multi-stage injection schemes are superior to single-stage ones, since the former are associated with less

seismic risk and can generate at least the same revenue in the long term.
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SUMMARY

We describe a three-dimensional discrete fracture hybrid model (DFHM) that re-

turns forecasts of both induced seismicity and of power generation in an Enhanced

Geothermal System (EGS). Our model considers pore-pressure increase as the mech-

anism driving induced seismicity, similarly to other hybrid models, but it employs

discrete fracture modelling for flow and heat that allows accurate and realistic tran-

sient solutions of pore pressure and temperature in fractured reservoirs. Earthquakes

and flow are thus considered as closely coupled processes. In the DFHM model, the

creation phase of an EGS is described as a Markovian process with a transitional

probability that encapsulates the irreducible uncertainty with regards to induced

seismicity. We conditioned this transitional probability on field observations from

the 2006 EGS project in Basel, achieving a good match with observations of seis-

micity evolution. Specifically, our model effectively reproduces and explains the

observed long-term exponential decay of seismicity after the well was shut in, sug-

gesting that pore pressure diffusion in a critically stressed fractured reservoir is

sufficient to explain long-lasting post-injection seismic activity as observed in Basel.

We then investigate alternative injection scenarios, using Monte Carlo simulations
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to capture the uncertainties in fault locations and stressing conditions. We show that

the number of induced events depends not only on the total injected volume but

also on the injection strategy. We demonstrate that multi-stage injection schemes

are superior to single-stage ones, since the former are associated with less seismic

risk and can generate at least the same revenue in the long term.

Key words: Induced Seismicity; Enhanced Geothermal Systems; Numerical Mod-

elling; Probabilistic Forecasting; Discrete Fractures Modelling;

1 INTRODUCTION

In the context of the exploitation of deep geothermal energy, induced earthquakes are both
a blessing and a curse. Shearing of existing fracture zones of all scales is a unique tool that
permanently alters the permeability of rock volumes, such that fluids can circulate through
them more efficiently (Jefferson W. Tester Brian J. Anderson & Jr., 2006; Giardini, 2009),
creating a lasting heat exchanger in the deep underground. This is the typical pathway to
create so-called Enhanced Geothermal Systems (Evans et al., 2004; Jefferson W. Tester Brian
J. Anderson & Jr., 2006), also referred to as Hot Dry Rock and Deep Heat Mining, in the
crystalline basement, typically at a depth of 3 − 5 kilometres and temperatures upwards
of 150°C. This geothermal reservoir stimulation will mobilise existing fractures through the
injection of moderate amounts of fluids (typically a few tens of thousands of cubic metres of
water) at high overpressures, a process that usually takes several days or weeks to complete
(Häring et al., 2008; Evans et al., 2004; Gaucher et al., 2015). Induced micro-earthquakes
(ML < 2.0) are also an important tool to monitor and image processes within the evolving
reservoir (Häring et al., 2008; Hirschberg et al., 2015) and thus contribute to steering the
operations.

Induced seismicity is, however, also a curse and often the biggest obstacle to a successful
geothermal project, and a major challenge also for other GeoEnergy applications (Atkinson
& Eaton, 2020; Ellsworth, 2013; Grigoli et al., 2017; Lee et al., 2019). In general, induced
seismicity can be linked to: both conventional and non-conventional hydrocarbon production,
geothermal energy exploitation, mining operations, water impoundment, CO2 sequestration
and natural gas storage operations ( (Grigoli et al., 2017)). These activities can alter the stress
field of the shallow Earth’s crust by pore pressure changes, or volume and/or mass changes
inducing or triggering seismicity (Ellsworth, 2013). Moreover, they can be a nuisance or even
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a danger to the local population, which can strongly undermine the societal acceptance of a
project (Trutnevyte & Wiemer, 2017; Grigoli et al., 2018; Hirschberg et al., 2015). In some
cases, they even pose a seismic risk too large to accept (Giardini, 2009; Mignan et al., 2015).
Examples of projects that have been abandoned due to induced seismicity are the Basel and
St. Gallen geothermal projects (Switzerland), the Castor offshore gas storage project (Spain),
the Blackpool fracking-related operations (UK), the Pohang geothermal project (South Ko-
rea), waste-water injection wells in the US and Canada, and, finally, the Groningen gas field
(Netherlands). The combined economic losses associated with the loss of operation due to
induced seismicity likely exceeds €30 billion to date. These failed projects highlight the key
challenges related to induced seismicity: despite greatly intensified research efforts by many
groups over the past decades, the fundamental physical understanding associated with complex
chemical-thermal-mechanical interactions and the complex boundary conditions governing in-
duced seismicity are still not sufficiently understood to allow for enough accurate forecasts
and mitigation (Yeck et al., 2017; Goebel & Brodsky, 2018; Trutnevyte & Wiemer, 2017;
Grigoli et al., 2018; Candela et al., 2018).

EGS technology is widely considered as a highly attractive source of ‘green’ energy (i.e. low
carbon and close to renewable energy). EGS technologies in principle would allow geothermal
energy production to be no longer confined to volcanic or hydrothermal regions but to become
a valuable resource for many regions. However, induced seismicity related to the stimulation
of EGS reservoirs has been a major setback for the development of the technology, since
investors need not only to consider the risk of drilling an under-performing well, but also
the seismic hazard and its social aspects. The failed Basel EGS project in 2006 highlighted
the challenge related to induced seismicity (Giardini, 2009; Häring et al., 2008). Following
a widely felt and slightly damaging magnitude Mw 3.2 event and a subsequent risk analysis
(Baisch, S., Carbon, D., Dannwolf, U., Delacou, B., Devaux, M., Dunand, F., Jung, R., Koller,
M., Martin, C., Sartori, 2009), the project was terminated. A more recent instructive example
of the state of the art and current challenges related to EGS projects is the Mw 5.5 Pohang
(South Korea) earthquake in November 2017. Grigoli et al. (2018) and Kim et al. (2018)
have proposed that the event was likely induced by repeated stimulation activities related
to a nearby EGS creation, in a first attempt in Korea to exploit deep geothermal energy.
According to an assessment by the Korean Ministry of the Interior and Safety, the earthquake
left 1,800 people displaced and 135 injured as well as damaging 57,000 structures that cost
around 144.5 billion won (€110 million), making it the most catastrophic induced earthquake
related to deep geothermal energy exploitation (Lee et al., 2019). Last but not least, induced
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seismicity in EGS context also needs to be considered not only during the stimulation, but
also during the operation and post-operational phase of EGS reservoirs (Mignan et al., 2019).
However, the example of Soultz-sous-Forrêt shows that limiting induced seismicity is possible,
albeit with a negative impact on production (Schill et al., 2017).

To advance EGS technologies and allow for their widespread deployment, we need to de-
velop the ability to optimise the use of induced seismicity as a tool for reservoir stimulation,
while also keeping the risk posed by induced earthquakes to an acceptable level. Our study
is tackling this highly challenging balancing act in possibly the most quantitative way to
date: given a stimulation strategy for the wells of an EGS, our model enables near-real-time
applications to forecast induced seismicity as required for Probabilistic Seismic Hazard and
Risk Assessments (PSHAs) while simultaneously forecasting the maximum expected electri-
cal power generation, which is useful for Probabilistic Reservoir Performance Assessments
(PRPAs). We can then analyse and optimise the trade-off between safety and performance
and study optimal reservoir stimulation and operation strategies. Last but not least, our EGS
reservoir simulator can be used to study and understand the fundamental processes that
govern induced seismicity and reservoir creation.

1.1 Existing approaches to model EGS systems

Induced seismicity models in general, and reservoir models for EGS in particular, can broadly
be grouped into three classes (e.g. Gischig & Wiemer (2013); Gaucher et al. (2015); Király-
Proag et al. (2016)): statistical, physics-based and hybrid. In general, statistical models for
induced seismicity (e.g. Hainzl & Ogata (2005); Bachmann et al. (2011); Mena et al. (2013);
Mignan et al. (2017); Broccardo et al. (2017)) are conceptually and computationally simple
and include aleatory uncertainty. They are often very robust and perform surprisingly well
(Mena et al., 2013; Király-Proag et al., 2016, 2018). However, they do not explicitly account
for the complex and interacting geo-mechanical, hydraulic, chemical and physical processes
governing induced seismicity (e.g. fluid flow in fractures, permeability changes, and stress
interaction) and typically do not allow the economical success of a reservoir stimulation to
be assessed. Physics-based models on the other hand (e.g.Olivella et al. (1994); Bruel (2007);
Kohl & Mégel (2007); Baisch et al. (2010); Rinaldi et al. (2015); McClure & Horne (2011);
Deb & Jenny (2017a,b) do consider underlying physical processes to a variable degree, and
are assumed to perform better when operational conditions change substantially, such as
for the shut-in period, and for long-term forecasts. However, these models are often difficult
to calibrate, carry large uncertainties due to the limited knowledge on faults and relevant
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stressing conditions, and carry high computational expense, typically precluding their use in
near-real-time applications.

Sharpness is a property of forecasts that indicates how concentrated the predictions from
a model are (Gneiting et al., 2007). Although stochastic models can easily be calibrated to
return the marginal distribution of induced seismicity observed in EGS (Shapiro & Dinske,
2009; van der Elst et al., 2016), they are rather not sharp since they provide little insight to
the mechanisms actually causing induced seismicity and they do not differentiate between sce-
narios. Forecasts of induced seismicity are expected to be sharper with a deterministic model,
but are typically too complex to be effortlessly calibrated (White et al., 2018). This explains
why the usage of purely physics based models is limited to testing scenarios (Ucar et al.,
2018; Wassing et al., 2014; Riffault et al., 2018) and for inferring induced seismicity sequences
(Yoo et al., 2021; Farkas et al., 2021). Similar limitations are apparent when predicting the
enhancement of permeability during the creation phase (Pritchett, 2015; AbuAisha et al.,
2016), the thermal revenue during the production phase (Llanos et al., 2015; Wang et al.,
2019), the overall success of an EGS project over many phases (Li et al., 2019; Liao et al.,
2020), and inferring initial thermal conditions (Vallier et al., 2019).

When data from an EGS reservoir are limited, then less sharp but simpler models are pre-
ferred for assessments (O’Sullivan & O’Sullivan, 2016; Olasolo et al., 2016). The network of
fractures inside an EGS reservoir is an inhomogeneity that has a pivotal role on the spatiotem-
poral respond of the reservoir to wells’ operations. As a result, modeling discrete fractures is
one of the desired features from EGS simulatiors (Sanyal et al., 2000). Completely neglecting
the effect of fractures when data are limited is not advised. Several methods exist for model-
ing fractured reservoirs (Lemonnier & Bourbiaux, 2010; O’Sullivan & O’Sullivan, 2016; Berre
et al., 2019). The discrete fracture models reproduce the widest range of observed responses
in fractured reservoirs (Blessent et al., 2011; Vitel & Souche, 2007; Egya et al., 2019; Berre
et al., 2021) thanks to their fidelity to fracture-fracture and fracture-wells intersections.

Hybrid models, also called stochastic models, are a mix between physical models and
statistical models, and aim to exploit the benefits of both approaches Gischig & Wiemer
(2013); Gischig et al. (2014); Rinaldi & Nespoli (2017); Zbinden et al. (2020); Langenbruch
et al. (2018). The goal of hybrid model development is to include some first-order physical pro-
cesses and replace more complex physical considerations with statistical methods or stochastic
processes. In our case, the first-order physical process that we are representing is fluid flow
with pore-pressure diffusion inside a fracture network. As discussed in detail in subsequent
chapters, hybrid models in essence consider seismicity as a Markovian process, where probable
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earthquakes are treated as so-called ’seeds’. The properties of the seeds are sampled with the
transition probability of the Markovian process, and the hidden mechanism triggering the
seeds is modelled by numerically solving a set of deterministic governing equations.

We believe that a discrete representation of fractures within hybrid reservoir models is a
critically important step needed for advancing not only reservoir modelling, but also seismic-
ity and power-generation forecasting, and this is the focus of this study. Fracture networks
dominate flow and hence temperature distribution in the reservoir, and they also control the
space-time-magnitude evolution of induced seismicity. The highly important but also highly
sensitive nature of their effect is illustrated in Fig. 1, where the steady-state pressure diffu-
sion is simulated with the adaptive Hierarchical Fracture Representation (Karvounis & Jenny,
2016) for three fractured rocks that should have identical televiewer logs (i.e. the same frac-
tures interface the two boundary sides) and the minimal differences in their fracture networks
would not be detectable before a stimulation. Three fracture networks are depicted in Fig.
1, where the one at the left is from the outcrop in Hornelen, Norway (Bour, 2002), while
the middle and the right network differ from it only by one and three small fractures that
have been manually added in sensitive areas. Because single fractures can allow for flow into
areas that without this fracture would not be activated at all, these minor changes result in a
highly non-linear response in quite different pressure distributions, different fault reactivation
patterns and different seismicity.

We argue here that in order to understand and model the induced seismicity and the reser-
voir properties, it is critically important to explicitly consider the discrete fracture networks.
Figure 1, however, also illustrates the limitations in deterministically forecasting the stimula-
tion of a reservoir: because any given model will never have the necessary detailed knowledge
on fracture distribution and stressing levels at faults, a single model can be substantially
wrong. Therefore, we propose here that in order to represent the uncertainties adequately,
probabilistic modelling using Monte Carlo simulation is needed and allows us to describe the
average expected behaviour of the system, averaged over many possible realisations. We then
not only describe the mean behaviour of a reservoir, but can also characterise the uncertainty
in this assessment, a critical input when computing probabilistic seismic hazard and risk.

There is one additional implication from the non-linear dependence on the fracture network
shown in Fig. 1: because the a-priori uncertainties before a stimulation are inherently large and
cannot be substantially reduced by geological or geophysical characterisation (e.g. (Broccardo
et al., 2020)), seismicity and reservoir forecasting models must be re-calibrated on the fly as
new data emerges. We have developed our stochastic discrete fracture model presented here
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Figure 1. Steady state pressure diffusion is simulated with HFR-Sim (Karvounis & Jenny, 2016) for
three fracture networks, where a 1MPa pressure difference is applied at their side boundaries. Although
the networks look identical as they differ by only a few tiny fractures, in practice they would return
very different observations due to their large differences in connectivity. A discrete fracture model can
efficiently simulate such scenarios.

with this need in mind, such that it can be readily used within so called ’Advanced Traffic
Light Systems’ (ATLSs) that automatically and dynamically adapt the seismicity forecast as
new data during a stimulation are collected (Mignan et al., 2017; Grigoli et al., 2017).

2 GOVERNING EQUATIONS FOR THE DISCRETE FRACTURE HYBRID MODEL
(DFHM) AND FORECASTS WITH IT

We consider here the two most important phases in the lifetime of an EGS power plant when
decisions on induced seismicity and reservoir development strategies need to be taken. These
two phases are the reservoir stimulation phase, where the permeability of the EGS reservoir
is artificially enhanced, and the operation phase, where the heat stored inside the reservoir
is extracted and converted into electrical energy. Activities during the stimulation phase of
course influence the operational phase.

In this section, we introduce a hybrid reservoir and induced seismicity modelling approach.
What is new about this is that it combines embedded discrete fracture modelling for mod-
elling flow and heat transport with stochastic modelling of induced seismicity. We then apply
the model to investigate the effectiveness of different reservoir stimulation and operation
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strategies. Our model will allow us to simultaneously optimise seismic safety and reservoir
performance (in terms of heat revenues) of the future EGS.

A three-dimensional (3D) EGS domain Ω ∈ R3 is considered that consists of a low-porosity
and low-permeability hot porous medium (e.g. granite), which is fractured. The stimulation
and production strategy q(t) is the rate of fluid volume at each moment t that either has been
injected (t ≤ t0) or will be injected (t > t0), where t0 is always the present moment. It is
arbitrarily decided that q > 0 for injections. We assume the future flow rate q(t) to be the
only parameter controlled by the operators of the EGS.

Below, scalar variables are written with standard type, vectors in bold type, and tensors
in upper-case bold type with an accent, while random variables are given with a bar above
them. For example, K̂ (x, t) is the permeability tensor at the point x ∈ Ω and for time t,
and M̄w is the moment magnitude of an induced event. Probabilities are denoted with P,
probability density functions (PDF) with f, and cumulative density functions (CDF) with F.
For example, if P

(
M̄w ≥ Mw

)
is the probability of a randomly drawn M̄w being greater or

equal than a value Mw, the CDF of M̄w is

FM̄w
= F (Mw) = 1− P

(
M̄w > Mw

)
≈ 1− 10−b(Mw−Mwmin ), (1)

and the PDF of Mw is

fM̄w
= f (Mw) = P

(
∥M̄w −Mw∥ < dMw

)
=

dFM̄w

dMw
, (2)

To represent the frequency-size distribution of earthquakes, we use a power law distribution
commonly referred to as the Gutenberg-Richter distribution (Gutenberg & Richter, 2010),
log10(N) = a − bMw, where b is a constant representing the relative size distribution and
a the activity rate. The rate can be truncated by expert choice at an upper bound, the
maximum magnitude Mmax. Finally, sequences of discrete values are written in braces where
the subscript denotes the index of the first value in this sequence and the superscript denotes
the index of the last one. For example, a sequence that includes the moment magnitudes from
the n-th to the m-th event can be written as {Mw}mn = {Mwn ,Mwn+1 , . . . ,Mwm}. Also, it
holds that {X,Y }mn = {{X}mn , {Y }mn } and {X}m1 = {X}m = {X1, X2, . . . , Xm} for any two
sequences X and Y .
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2.1 Conservation of mass and energy

The conservation of mass and energy for the single-phase fluid inside the fractures of a reservoir
Ω, and the conservation of energy for the solid rock inside Ω can be expressed as

∂

∂t
(ρϕ) +∇ · ρ

u︷ ︸︸ ︷(
−K̂

µ
(∇p− ρg)

)
= ρ(q + qf ), (3)

∂

∂t
(ϕρh) +∇ · (ρhu) = ẇq + ẇf + ẇr, (4)

and
∂

∂t
((1− ϕ)ρrhr) +∇ ·

(
−Λ̂ · ∇T r

)
= ẇs − ẇr, (5)

respectively, where ϕ is porosity, K̂ is the permeability tensor, ρ and µ the density and
viscosity of the fluid, u the Darcy’s velocity, g the gravitational vector, qf the volumetric
source/sink flux of the incompressible fluid away from the bottom of the casing shoes, h and
hr the specific enthalpy of the fluid and the solid phase, respectively, ρr and T r the density
and the temperature of the solid medium, ẇr the rate of heat transported from the solid to
the fluid’s phase, ẇq is the heat exchange rate through the wells, ẇf other heat sources, ẇs

is the rate of other heat source terms inside Ω, and Λ̂ is the heat conductivity. The heat
exchange between the fluid and the solid phase is proportional to the temperature difference
between them; i.e. ẇr = C(T r − T ), where C is a heat exchange coefficient. Heat conduction
inside the fluid filling the fractures is neglected.

The total thermal energy Eth recovered from the solid phase and over a period of time tl

is

Eth = −
∫ tl

0

∫
Ω
ẇqdV dt. (6)

Only a portion of the extracted Eth can be converted into electrical energy Ee. The efficiency
η, which is the ratio of electrical power generated by the EGS power plant over the extracted
thermal power from the reservoir, depends on the temperature of the produced water Tout

and hence the total electrical energy produced over a period tl is

Ee = −
∫ tl

0
η

∫
Ω
ẇqdV dt. (7)

The pair of modelling parameters K̂ and ϕ are simply called hydraulic properties below,
and their enhancement is one of the goals of a stimulation. Ideally, the final permeability
inside Ω is high enough to produce Ee at commercially interesting rates and not be too
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inhomogeneous, which would promote the development of preferential flow paths that limit
the overall Ee.

2.2 Simplifications and discrete fracture modelling

For simplicity, all the material properties ρ, µ, ρr and Λ̂ are considered constants, and grav-
itational effects are neglected. EGS reservoirs are characterised by highly inhomogeneous
hydraulic properties and by highly anisotropic K̄ due to fractures, which usually have a domi-
nant effect for flow. Aligned to other approaches for the modelling of EGS during stimulation,
a linear relationship between ϕ and p is considered, and mass conservation is modelled by a
diffusion process for p. In particular, when seismicity does not occur and p is continuous, then
eq. (3) results in the linear diffusion

S
∂

∂t
(p) +∇ ·

u︷ ︸︸ ︷(
−K̂

µ
∇p

)
= q + qf , (8)

where S is storativity.
Domain Ω is decomposed into two subdomains Ωd and Ωf , in a way that allows the

adaptive Hierarchical Fracture Representation (a-HFR) modelling approach to be employed
(Karvounis & Jenny, 2016). The set Ωf consists of Nf important fractures that are going
to be treated discretely and Ωf = Ωf

1 ∪ · · · ∪ Ωf
Nf

, where Ωf
i is the i-th discrete fracture.

The set Ωd, which in a-HFR is simply called the “damaged matrix”, is the rest of Ω. Here,
Ωd is three-dimensional, and it surrounds the two-dimensional manifolds for the Nf discrete
fractures of Ωf . Porosity is modelled as

ϕ ≈


ϕd
0 + ρ̈fα(p− p0), ∀x ∈ Ωd

1 + α(p− p0)/b
f
i ∀x ∈ Ωf

i ,

(9)

where ρ̈f is the fracture density inside Ωd and is defined as the total fracture surface area
per unit of volume, α is a compressibility constant for fractures, ϕd

0 is the porosity of the
damaged matrix when p = p0, and bfi is the mechanical aperture of the i-th discrete fracture.
Storativity in eq. (8) then equals S = dϕ/dp.

For directions along Ωf permeability kf is considered isotropic and significantly larger than
the isotropic permeability kd of the damaged matrix Ωd. The limit scenario, where fractures
are smooth parallel plates distanced by bfi , is less frequently observed and expected in the
reservoirs of EGS. Thus, kf is not a function of bfi here, and it is at most its theoretical
maximum kf ≤ (bfi )

2/12.
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Effective permeability in Ωd is sensitive to the inter-connectivity of its underlying network
of fractures, as shown in Fig. (1) and upscaling diffusivity is not a straightforward task. Here
and since Ωd consists only of less important fractures, the detailed geometry of the underlying
fractures is neglected. Underlying fractures are assumed to be interconnected enough for kd

to be higher than the permeability of the solid medium. Significantly higher kd are expected
only when an interconnected subset of underlying fractures exists that only consists of frac-
tures with high permeability. The percolation threshold defines when interconnectivity is the
most likely scenario and such thresholds are going to be considered later. For example, the
percolation threshold for randomly positioned discs that follow a power law size distribution
and can have any orientation, increases with increasing density

ρ
′
3 = π2ρ̇⟨R3⟩, (10)

where ρ̇ is the number of discs per unit of volume and ⟨R3⟩ is the third statistical moment of
the radii R of the discs (Mourzenko et al., 2005).

2.3 Sampling induced seismicity and its effect on permeability

Hydroshearing due to increased pressure is considered to be the main mechanism of induced
seismicity in EGS and is here considered to be the only mechanism for increasing permeability.
Whenever the two planes of a fracture slip relatively to each other and over a segment of the
fracture Ωs, then both the mechanical aperture bf and the permeability kf increase at the
ruptured surface Ωs. In general, these increases happen only along the ruptured surface Ωs

and are irreversible. For the size |Ωs| and its Mw, it holds that

log10 (M0) = log10 (G|Ωs||ds|) ≈ 1.5(Mw + 6.03), (11)

where M0 is the seismic moment, G is the shear module, and ds is the mean slip parallel to
the Ωs (Kanamori, 1977). According to the Mohr-Coulomb failure criterion, a hydroshearing
event with hypocentre xs and source time ts happens when

p(xs, ts) = pf =
C0 − τ

µs
+ σn, (12)

where pf is the failure pressure of the fracture, µs and C0 the friction and the cohesion of
the fracture, and σn and τ the normal and shear stresses at xs, which depend on the Cauchy
stress tensor and the unit pole vector of the fracture n that is normal to Ωs. For simplicity,
the right-hand side of the failure criterion is considered steady in time and pf is a function
of only x, but in general this right-hand side can change both with pressure (e.g. poro-elastic
effects) and with time (e.g. stress transfer). Such mechanisms are not considered here.
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In our model, induced seismicity, fluid flow and pressure propagation are strongly coupled:
shearing on existing fractures (i.e. earthquakes) modulates flow, which in turn may induce
future shearing events.

The considerable uncertainty in forecasting induced seismicity is a result of the fact that
the density and shape of the existing fracture network is not known in any detail away from the
borehole, nor is the stress distribution on these fractures. To address and model these inherent
uncertainties, we employ a stochastic modelling approach initially proposed by Gischig &
Wiemer (2013) and Goertz-Allmann & Wiemer (2013). Our approach captures the overall
statistical distribution of faults but also captures the randomness in the occurrence time,
magnitude and location of each individual event.

We exploit as input the observation that Mw from past EGS stimulations follows a
Gutenberg-Richter-like distribution consistent with eq. (1). Traditionally, the b-value in eq.(1)
is calibrated and then the probability of any sequence of {Mw}m can be approximated, where
the size of the expected sequence Neq is also associated with a certain probability conditioned
on the planned injection q. Here, M̄w are also expected to be sampled with a calibrated form
of eq. (1), but this time a more detailed catalogue ¯{Θ}Neq

= {Mw,xs, ts,Ωs, b
f , kf}Neq is

sampled and the size Neq is restricted by the deterministic solution of eq. (3) and the sampled
hydraulic changes {bf , kf}Neq .

With a view to simplifying the PDF with the elements of the catalogue that are sampled,
the following simplifications are considered: i) M̄w, b̄f and k̄f are independent of all random
properties, and M̄w is sampled as in eq.(1), ii) x̄s ∈ Ω̄s, and the size of Ω̄s depends only on
the sampled M̄w. Overall, the PDF for sampling the catalogues here is simplified to

fΘ̄ = f(Mw,xs, ts,Ωs, b
f , kf |q)

≈ f(ts|xs,Ωs, q) · f(xs,Ωs|Mw) · f(bf , kf ) · fM̄w
, (13)

where only the source time ts depends on q and due to the criterion (12) the probability of
an event existing with t̄s, given q, and the orientation of Ωs is

f(ts|xs,Ωs, q)dt ≈
∫ ∞

0
δ(p(xs, t)− pf ) · f(pf |xs,Ωs)dpf , (14)

where dt is an infinite small time period around ts, δ is the Dirac delta function that is non-
negative only when the solution of eq. (3) p equals pf , which is treated as a random property
with its own PDF f(pf ).

Although past hybrid models never formalised their stochastic part as is done here, all
hybrid models are Markovian processes with a transitional PDF fΘ̄ that is simplified by
considering conditional independencies as in eq. (13). Once all PDFs are calibrated and trained
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on the basis of collected observations, then it is possible to sample seismicity by simply
forecasting the hidden mechanism p. Different hybrid models can use similarly calibrated
PDFs. Thus, their differences and their performance depend on their forecasts for p. Discrete
fracture modelling can offer accurate and precise modelling of breakthrough times and of the
next source time ts of a synthetic catalogue. Here, focus is not on calibrating the PDFs, but
on exploiting the accurate and precise predictions of breakthrough times for p that discrete
fracture models, as can be provided by a-HFR.

2.3.1 Optimising EGS development

During reservoir stimulation, EGS developers need to balance seismic safety considerations
and the economical viability of the project. Important decisions on the stimulation strategy
need to be taken not only in the planning phase but also in near-real time and despite consid-
erable uncertainty. One of our goals is to provide operators with real-time decision support.
The requirements of the operator can be quantified by a utility function U(f , q), where f is a
vector of uncertain variables that are not yet observed.

To enable decision support, our embedded discrete fracture hybrid model (DFHM) com-
bines the deterministic modelling as described in subsection 2.2 and the stochastic modelling
as in subsection 2.3. A forward simulation with this DFHM and for a given q returns samples of
equally probable fk = {{Θ}Neq , Emax

e }k, and most important properties for our optimisation
are

(i) Neq is the total number of induced earthquakes;
(ii) the maximum expected Mw; and
(iii) Emax

e the electrical generation for the forecasted hydraulic properties of {Θ}Neq and
for the circulation rate that maximises Ee.

A Bayesian approach is followed for predicting the utility functions given q(t)

U(q) = ⟨U(q)⟩ ≈ lim
M→∞

1

M

M∑
k=1

U(fk, q), (15)

where M is the sample size of independent forecasts, fk is the k-th forecast returned by DFHM,
and the approximation above is actually a Monte Carlo (MC) integration. The approximated
U is associated with a statistical error ±δU that depends on the variance and which equals

δU =
1

M

√√√√ M∑
k=1

U2(fk, q)−MU2. (16)

We can now search for the q(t) that maximises their respective utility function. For any
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two stimulation strategies it is assumed that q1 is more preferable than q2, if and only if
U(q1) ≥ U(q2)+ δU(q2)+ δU(q1). This way, comparison between different q can be performed
before the two MC integrations reach the same accuracy, and for M ≫ 1.

Note that during the production phase, any line search method can return the optimum
rate that maximises Emax

e . Here, the Brent algorithm, offered by the GSL library, has been
employed (Gough, 2009).

3 IMPLEMENTATION AND ACCELERATION OF DFHM

We will now describe the implementation of DFHM in some detail. The overall framework is
implemented as a C++ code. The EGS simulator HFR-Sim solves eqs. (3)-(5) with the a-HFR
approach, and it can estimate the evolution of pressure and temperature for a given fracture
network, which evolution is necessary for Eth and Eel. The implemented stochastic seismicity
model (referred to below as the ’seed’ model) considers completely 3D disc-shaped discrete
ruptures, and it is sequentially coupled with the flow solvers of HFR-Sim. To accelerate the
calculations, a variation of the Adaptive Implicit Method (AIM) has been implemented in
HFR-Sim.

As explained in section 2, the goal of DFHM is to approximate expected utility functions
that depend on both Emax

el and Mmax
w by simulating M different scenarios. At each time step

with step size ∆t that HFR-Sim solves for p in eq. (3), then the seed model samples an arbitrary
number of induced seismicity events, and finally the hydraulic properties of the a-HFR model
are updated according to the sampled seismicity. The final a-HFR model, which superimposes
on the initial permeability field the enhanced permeability of the Neq sampled hydrosheared
fractures, is then employed for finding the circulation rate that maximises electricity and the
amount of this maximum electricity Emax

el .

3.1 Deterministic modelling

The EGS simulator HFR-Sim employs the adaptive hierarchical fracture representation (a-
HFR), specially designed for dynamically changing fracture networks (Karvounis & Jenny,
2016). Here, the main characteristics are briefly described. The details of the simulator can
be found in the literature (Karvounis & Jenny, 2016; Karvounis, 2013).

In HFR-Sim, the damaged matrix and the solid rock continuum are discretised with two
identical 3D structured meshes, and discrete fractures are treated as 2D manifolds meshed
with a 2D structured mesh embedded in the 3D cells of both the damaged matrix and the
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solid rock continuum. The final mesh is the combination of all these structured meshes and
consists of N cells filled with fluid (fractures and damaged matrix) and Nr cells for the solid
rock. Ωi is the subdomain of the i-th damaged matrix cell and Ωr

k is the subdomain of the
k-th rock volume.

Mass and heat transport inside Ω are modelled by implementing the finite volume method
for each cell of the mesh. For each cell i filled with fluid, the mean values of pressure Pi = ⟨p⟩

and temperature Ti = ⟨T ⟩ inside the cell are approximated. For each cell k of the solid rock,
only its mean temperature is approximated as Tr,k = ⟨T r⟩, and a linear relationship between
temperature and enthalpy is considered. Mass exchange and heat transfer due to advection
are possible only between the N cells. Heat transfer due to conduction is possible between all
pairs of N +Nr cells that share a boundary.

The superscript n (when applicable) denotes the time step to which this value corresponds.
For example, Pn

i is the mean pressure inside the i-th cell and by the end of the n-th time
step.

3.1.1 Numerical modelling of flow and heat transport with HFR-Sim

The discretised forms of eqs.(3)-(5) in HFR-Sim are: for incompressible mass conservation in
the N degrees of freedom (dofs)

V n+1
i − V n

i

∆t
=

N∑
j

Fn+1
ij︷ ︸︸ ︷

Cn
ij

(
Pn+1
j − Pn+1

i

)
+ Qn+1

i , (17)

for heat advection inside the fluid in the N dofs

Vi
Ti

n+1 − Ti
n

∆t
= −

N∑
j

Fij
−→
Tij

n+1

+
1

chρ

Nr∑
k

Cr,ki(T
n+1
r,k − Tn+1

i )

+
Wn+1

i

chρ
, (18)
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and for heat conduction inside the solid continuum in the Nr dofs

Vr,kρ
rcrh

Tn+1
r,k − Tr,k

n

∆t
=

Nr∑
l

Kkl(T
n+1
r,l − Tn+1

r,k )

−
N∑
i

Cr,ki(T
n+1
r,k − Tn+1

i )

+ Wn+1
r,k , (19)

where Vi and Vr,k respectively are the total volume of fluid and of rock inside the corresponding
cells, Cij and Fij are the transmissibility between and the volumetric flow rate between two
fluid cells, Kkj is the constant coefficient for heat flux due to conduction between rock cells k

and j, −→Tij represents the upwind scheme for temperature, where

−→
Tij =

Ti, if Fij ≥ 0

Tj , otherwise
, (20)

boundary conditions from the governing eqs. are captured by Qi, Wi and Wr,k, and finally Cr,ki

is a heat coefficient for heat flux due to conduction between the solid and the fluid continua.
Note that the mesh generator of HFR-Sim calculates the values not only of Cij and Kkj , but
also of Cr,ki for the given geometry and material’s properties (Karvounis, 2013). However,
HFR-Sim does not assume upscaling techniques for the permeability of the damaged matrix
or for the efficiency with which the damaged matrix exchanges heat with the solid. Users are
expected to provide the necessary input.

Based on the above, the DFHM employs HFR-Sim and solves implicitly for the N values
of Pn+1

i in (17). Changes in the mean fluid volume are modelled as

V n+1
i − V n

i =

∆V0︷ ︸︸ ︷
V n+1
i,0 − V n

i,0+|Ωi|Si(P
n+1
i − Pn

i ), (21)

where |Ωi| is the size of the cell, Si is its storativity, and ∆V0 ̸= 0 when new void volume is
created in or along Ωi due to seismicity at the n-th time step. When the i-th cell corresponds to
a newly added discrete fracture and Pn

i is not initialised, then the value of Pn
i is interpolated

from the surrounding pressure values, and it is then corrected for the seismic pumping pressure
drop, which is user-defined. The set of N linear equations that is derived by combining eqs.
(17) and (21) is numerically solved with an iterative algebraic multigrid method (AMG) from
the Trilinos package (Heroux et al., 2005) and the implicit solution p is approximated.

During the production phase, the DFHM considers the steady-state solution of (17), which
is again solved with an AMG solver, and employs the steady-state volumetric flux Fij for
modelling heat advection. Heat exchange between the damaged matrix and the solid rock
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cells is modelled as

ẇr =
60

(1/ρ̈f )2
|Λ̂|(T r − T ), (22)

which is a source term similar to how mass transfer is modelled by a 3D dual-rate model.
Here, where the two cells are going to be identical, coefficient Cr,ki equals the product of
(60ρ̈2f |Λ̂|) with |Ωi|. Then and for each time step, HFR-Sim combines (18) and (19) into one
linear system of N + Nr equations and implicitly solves both for Tn+1

i and Tn+1
rk

. HFR-Sim
solves the set of N + Nr linear equations from eqs. (18)-(20) with a KLU direct solver also
from the Trilinos package Heroux et al. (2005).

3.1.2 Adaptive implicit solutions for overpressure

In principle, the computational cost of an AMG linear system solver increases linearly with
the number of dofs, and hence the overall cost for a DFHM Monte Carlo integration should
increase linearly not only with the number of simulated scenarios, but also with the size of
the linear system that the AMG needs to solve and with the average number of necessary
time iterations. Still, the dense computations required even by a fast solver like AMG can be
an important bottleneck.

A significant reduction in the number of time iterations is easily achieved with the adaptive
step size method, where the time step ∆t increases by a certain factor ∆tB when diffusion is
linear. Here, ∆t increases when there is a lack of considerable seismicity and the boundary
conditions do not change. If this is not the case, then ∆t resets to a small value ∆t0. Eventually,
fewer time iterations are required for periods with low rates of seismicity.

A variation of the Adaptive Implicit Method (AIM) (Thomas & Thurnau, 1983; Russell,
1989) is employed for reducing the number of unknowns that need to be solved with the AMG.
In the traditional AIM, a subset of dofs is treated implicitly and the rest of them are treated
explicitly. There, a (2g + 1)3-stencil is employed for the discretised diffusion equation, where
g ≥ 1 (e.g. 27-stencil for g = 1). The explicit solution of each cell for the next time iteration is
a linear combination of its neighbouring ((2g + 1)3 − 1) solution, and after m time iterations
it is the linear combination of its (1 + 2gm)3 − 1 neighbouring solutions. The weighting of
each neighbouring solution is such that it defines the accuracy of the explicit solution, and a
maximum time step ∆tCFL exists up to which a stencil can return stable explicit solutions.

Here, the parabolic nature of the diffusion process is exploited, where cells that are ex-
pected to be virtually unaffected by the diffusion process are not solved at all, i.e. neither
implicitly nor explicitly. To this end, pre-processing is required before each time step. Users
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choose a very low value for the diffusing property δpmin, and as before, a ’stencil’ is considered
and its ∆tCFL is found for each cell.

Damaged matrix cells are separated into three subsets A, B and C, where set C is made up
of the cells to be omitted from this iteration’s calculations. Cells belonging to discrete fractures
or wells, always belong in A. Also part of A are the cells penetrated by a fracture or a well, as
well as the cells with mean pressure that has been greater or equal to (δpmin+p(t < 0)) during
the simulation. Classification of the remaining damaged matrix cells in B or in C is based on
the relation of ∆t to the CFL condition and the size of the stencil. The ratio ∆t/∆tCFL shows
how many more time iterations are required for modelling diffusion explicitly, and n∗ is the
total number of such iterations for the i-th cell. Set B consists of all the cells whose stencil after
n∗ iterations does not include a cell from A. Set C consists of the remaining damaged matrix
cells. No flux condition is assumed along the boundaries of B with C, unless the boundaries
of Ω are reached by B.

The domain decomposition described above can be efficiently implemented for the equidis-
tant structured meshes of the DFHM. From all cells that are newly added in A, a graph search
is initiated and it estimates for all non-A cells the maximum number of explicit iterations mi,
for which their stencil (1 + 2gmi)

3 does not require set A. Considering the typical index-
ing (i1, i2, i3) for structured meshes, where integer ik is the position of the cell at the k-th
direction, then mi can be quickly found:

gmi = min
∀(j1,j2,j3)∈A

(
min

k=1,2,3
(|ik − jk|)

)
. (23)

Eventually, the set B consists of all cells with mi ≤ n∗ and mi needs to be updated only when
the set A changes.

3.2 Stochastic modelling

The stochastic modelling of induced seismicity is the element of the DFHM that generates
the input for the deterministic modelling. As in previous hybrid models (Gischig et al., 2014;
Karvounis et al., 2014; Rinaldi & Nespoli, 2017), the ’Seed model’ approach is employed, which
allows hybrid models to be operated as Markovian processes with a Bayesian network for their
transitional probability. For each hybrid simulation a set of seeds is sampled, where each seed
represents a potential hypocentre of an induced earthquake rupturing a discrete fracture.
Subsection 3.2.1 describes how an initial set of seeds is sampled at the beginning of each
simulation. How induced seismicity is modelled given an HFR-Sim solution Pn

i is explained in
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3.2.2, and finally how the hydraulic properties for the HFR-Sim simulation change thereafter
is presented in 3.2.3.

3.2.1 Initiation of a set of seeds

In line with other hybrid models, the implemented DFHM requires as its input the domain
Ωseed ⊃ Ω, inside which seeds with density ρ̇s are to be sampled, the b-value of the Gutenberg-
Richter law, a pair of friction µ and cohesion C0 that are fixed, a scalar σ2 ≥ 0, the range
[Mwmin ,Mwmax) from which moment magnitudes are to be sampled, and finally, the direction
and stress magnitude of the principal stresses. For the sake of simplicity, three orthogonal
vectors are defined that are parallel to the principal stress direction and their length is equal
to the respective average principal stress ⟨σ1⟩, ⟨σ2⟩ and ⟨σ3⟩.

Based on the above input and by using a random number generator, the DFHM samples
the following properties per seed:

(i) a hypocentre x̄ ∈ Ωseed that follows a uniform distribution in Ωseed according to ρ̇s;
(ii) a unit vector n̄ that is normal to the ruptured surface, it points upwards and follows a

uniform distribution in a subset of [0, 2π], which vector is going to be the pole of the discrete
fracture that will be added to the model only when the seed has a large ruptured surface and
is triggered by excessive pressure;

(iii) a moment magnitude

M̄w = Mwmin − (Mwmax −Mwmin)
log10(m̄w)

b
, (24)

which M̄w follows the distribution of eq. (1), and it is estimated by sampling a random number
m̄w ∈ [0, 1) from a uniform distribution; and

(iv) three principal stresses σ̄1, σ̄2 and σ̄3, where each principal stress follows a normal
distribution around the size of its average value |⟨σk⟩| and a standard deviation equal to
the product of σ2 and this mean size. The principal directions are fixed and parallel to the
orthogonal vectors ⟨σ1⟩, ⟨σ2⟩ and ⟨σ3⟩.

Finally and using the above sampled properties, one can estimate a traction vector t̄ and
from it a failure pressure p̄f for each seed, where

t̄ =

3∑
k=1

(σ̄kn̄)

|⟨σk⟩|
⟨σk⟩,

and p̄f can be estimated from eq. (12) from the sampled properties, where σ̄n = |(t̄n̄)n̄| and
τ̄ = |t̄ − σ̄nn̄|. Similarly to past implementations, a new traction vector is sampled for all



20

seeds and until a meaningfully large positive p̄f is sampled. A necessary criterion for ending
the resampling of traction for a seed is that the seed does not satisfy the failure criterion
of eq.(12) for a friction incremented by a small value δµ defined by the user. An important
differentiation of this seed model from the past models is that seeds are allowed to be sampled
in sets. Each set can have a different mean orientation, similar to how natural fractures are
observed, and a different maximum angle, where only seeds within this angle deviation from
the mean orientation are sampled.

In the DFHM, the Box-Muller algorithm is implemented to obtain one normally dis-
tributed random value from one uniformly distributed random number (Box & Muller, 1958).
A different sequence of pseudo-random numbers is used for each DFHM simulation, and at
least nine such random numbers are required per seed, i.e. three for x̄, two for n̄, one for
m̄w, and three for the three normally distributed principal stresses. Note, however, that all
possible pseudo-random numbers are still discrete values with an equal spacing between them.
This results in discrete values of Mw, which however are not equally spaced. Especially when
the range of interest [Mwmin ,Mwmax) is large or the b-value small, then this can lead to a
small sample space of large discrete values for Mw. Here, this issue is treated by sampling
a sequence of uniformly random numbers, until a number is drawn that is less than 1 − ϵ,
where ϵ is a low enough number. Each time the stopping criterion is not satisfied, then the
Mw that corresponds to ϵ is temporarily considered as the new Mwmin . The final M̄w equals
the summation of all temporary Mwmin and the last sampled M̄w. No correlation between
ρ̇s and the fracture density ρ̈f is considered here. Of course, both friction and cohesion can
be considered random and not fixed, and spatial variations of ρ̇s, ρ̈f and of the average pole
vector could be correlated and in line with field observations.

The value of ρ̈f is usually representative only of the observable area around the drilled
rock, and therefore here it is not considered an acceptable indicator of ρ̇s. Aside from all this
and as depicted in Fig. 1, discrete fracture simulations can be very sensitive even to tiny local
variations of ρ̈f , and the hybrid model here does not consider repeating events.

3.2.2 Updating the synthetic catalogue of induced seismicity

Every time the set of eqs. (17) is solved, a solution vector Pn+1 is obtained, where the i-th
element of this vector is an approximation of the mean pressure p inside Ωi. In the DFHM,
this solution Pn+1 is employed for approximating p at the hypocentres of the seeds. For each
seed, the cell of the damaged matrix Ωi is found, inside which cell the hypocentre of the seed
lies, and the pressure at this hypocentre is considered equal to Pn+1

i . It is assumed that p
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satisfies the conditions for the mean value theorem for definite integrals, and since a point
must exist somewhere in Ωi with pressure equal to Pn+1

i , then any hypocentre inside this cell
can have this pressure.

Accelerated updates are the main advantage of avoiding a linear interpolation for each
seed. A linear interpolation, although simple for structured cells, is much less straightforward
when the effect of fractures and wells and of their orientations needs to be considered. When
the errors from the suggested approach need to be diminished, then employing a finer mesh
with smaller |Ωi| sizes can be sufficient.

The set of seeds, for which the failure criterion (12) is satisfied given Pn+1 is collected and
the synthetic catalogue of the DFHM simulation is updated with their hypocentres and their
moment magnitudes. Their source time is the simulation moment to which the (n+1)-th time
step corresponds. Here, seeds must not be triggered twice, nor are their properties affected by
previously triggered seeds; however, these criteria could easily be changed.

For the sake of simplicity, gravitational effects are neglected, and the sampled properties
of the seeds stay the same throughout a DFHM simulation. The b-value of the Gutenberg-
Richter distribution is assumed constant and not dependent on stress, in contrast to what is
proposed in Goertz-Allmann and Wiemer (2013). Stress changes due to earthquake-earthquake
interaction (i.e. static Coulomb stress changes) are neglected, nor do we consider poro-elastic
effects, although again both effects could be readily added to the framework.

3.2.3 Updating the deterministic flow model

We assume disc-shaped ruptures Ωs that are centred around each sampled x̄s, and the corre-
sponding n̄ is normal to them. A constant stress drop ∆τ is considered for all events. In this
case, Eshelby (1957) has shown that the radius of these discs can be expressed as

R̄s =
3

√
7 · M̄0

16 ·∆τ
, (25)

where M̄0 is derived from the right-hand side of eq. (11). Also, the same post-rupture me-
chanical aperture b̄f = bf and permeability k̄f = kf are considered for all events.

Only triggered seeds with R̄s > Rmin are explicitly treated by HFR-Sim as a discrete
fracture, where Rmin is a user-defined value. A disc-shaped fracture is meshed around x̄s, and
hydraulic properties bf and kf are assigned to it. It is important to ensure that Rmin is large
enough to ensure that fractures penetrate more than one damaged matrix, otherwise ill-posed
systems of equations are possible.

For the rest of the triggered seeds with R̄s ≤ Rmin, a homogenisation is performed, and the
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permeability of damaged cells increases as the number of triggered hypocentres inside them
increases. The permeability of the damaged cells increases in a stepwise manner according
to its density ρ

′
3. Initially, the hypocentres inside each grid are divided into the maximum

possible number of subsets. Each subset must have ρ
′
3 > ρ

′
c, where ρ

′
c is a user-defined value.

Once exceeded, an interconnected network of discs inside the cell is more likely than an
unconnected one. Permeability equal to kf is considered for all such interconnected subsets
and a homogenisation approach similar to that suggested by Oda (1985) is employed, where
each subset increases kd by a portion of kf equal to the portion of the void volume V i that
corresponds to the subset. For the sake of simplicity, the percolation criterion is ρ

′
c = 3.6 for

cells that are not penetrated by a discrete fracture and ρ
′
c = 1.8 otherwise. The former value is

close to the converged solution for a scenario where discs can have any orientation, their sizes
follow a power law and the diameters of the discs can be up to the grid-block size (Mourzenko
et al. (2005)).

Finally, HFR-Sim updates all transmissibilities Cij in eq. (17) and the next timestep of
the DFHM can be simulated.

4 EXEMPLARY DETERMINISTIC DFHM SIMULATIONS

We now use our hybrid EGS reservoir simulator DFHM described in sections 2 and 3 for
single-scenario (one forward run) calculations, to highlight potentials and limitations of the
model, but also to gain insights into the EGS reservoir creation process and its relationship
to induced seismicity. In section 5, we will then consider probabilistic calculations that use
numerous Monte Carlo realisations to capture uncertainties.

Two different EGS scenarios are considered and simulated with DFHM. In subsection 4.1,
the results from simulating both the creation and the production phase of an EGS doublet are
presented. In subsection 4.2, induced seismicity is modelled for a stimulated but abandoned
well that stays shut for several years after its stimulation, inspired by the situation of the
Basel EGS project, where seismicity restarted some years after shut-in of the well in 2011.

All properties of the initial geological model considered both here and in the next section
are summarised in Tables A1-A3. This initial geological model is in agreement with many of
the initial properties of a real stimulated EGS reservoir, the abandoned EGS reservoir BS1
in Basel (Häring et al., 2008). However, note that we are here not aiming for an optimised fit
to the Basel observations, but use Basel as a known starting point for simulations of realistic
systems. In this and the next section, all shown pressures are over-pressures; i.e. the pressure
change compared to the initial pressure of the formation p(t ≤ 0).
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4.1 DFHM simulation for the creation and the production phase of an EGS doublet

The scenario of a doublet is considered, where the casing shoes of the two parallel wells
are 250m apart from each other and are aligned to the direction of maximum horizontal
stress. Each well is stimulated with a strategy similar to the stimulation strategy of BS1, but
somewhat idealised by smoothing the observations. The total volume of injected water is the
same as for the stimulation of BS1, that is approximately 12,000 m2. Initially, one well is
stimulated, then this well stays shut for a period of few days, and then the stimulation of
the second well begins. Seismicity from both well stimulations is modelled for a period of 40
days. The DFHM simulation of the creation phase returns the simulated pressure logs for the
casing shoe (CSH), a simulated seismicity, and a discrete fracture network (DFN). Then, the
DFHM is employed for simulating the production phase for the resulting DFN and for a fixed
pressure difference of 20 MPa between the two stimulated wells.

In Fig. 2, the selected injection strategy in litres per second is plotted in the top row (2A),
while the results from the DFHM model are plotted below it both for the creation and the
production phase.

The simulated CSH pressure (2B) is unrealistically high during the first day of each
stimulation and it exceeds 500 MPa, but it quickly reduces to more realistic values as the
number of seismic events increases. Such unrealistically high pressures are due to the rather
coarse mesh around the well source, due to the misrepresentation of the geological model close
to the well, and due to the fact that a stimulation strategy in the end is going to be the one
that the reservoir allows.

Seismicity does not occur immediately with the injection onset, but the first induced
events occur after a few hours (2 B and C). The rate of seismicity is the highest during
injection; however, earthquakes also continue in the days after shut-in, decaying gradually
as also observed in natural systems. Note that the second stimulation produced only about
70 percent of the number of events simulated in the first one. However, it also produced the
largest event simulated, a magnitude Mw = 3.2, by chance the same magnitude as observed
in Basel in 2006. The injectivity index of the wells, the ratio of injected water per unit of
overpressure, drops with seismicity and with each new injection step.

In Fig. 3, snapshots of the simulated hypocentres in map view and cross-sectional view,
as well as the overpressure distribution and the traces of the sheared fractures are plotted for
6 times. These times correspond to the 6 vertical dashed grey lines in the well logs shown in
Fig. 2. As expected, seismicity initially occurs only close to the well and in locations where
a significant increase of overpressure occurred. Note that the shape of the events cloud is
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somewhat complex and ragged, and it would look quite different for different realisations
of stochastic seed sets. This is an expected and desired consequence of the randomly drawn
seeds and their ability to channel overpressure, as already explained in Figure 1. The resulting
distribution of overpressure is even less homogeneous, since it depends both on the sheared
DFN and on the duration of diffusion inside a large fracture. The fronts of overpressure
and of hypocentres do not travel with the same speed. By the end of the first stimulation
(t = T2), overpressures are simulated for distances up to 2 times further than the furthest
hypocentre. For the shut-in period from T2 until T3, the Kaiser effect is reproduced, i.e. the
rate of seismicity close to the second well is significantly reduced.

By the end of the 40-day period, both seismicity clouds have merged into one cloud,
seismicity is modelled both away and in between the wells, and the overpressure front is
smoother as pressure diffuses outwards.

The final enhanced DFN created by the stimulation and its enhanced hydraulic properties
can now be employed for simulating the production phase for different flow rates between
the wells. The impedance between the two wells is estimated at 2.75 l/(sMPa) and the
temperature of the injected water is set to 60oC. The production rate that maximises Ee over
a period of 40 years is found at 19.5 l/s, following a line optimisation with a Brent algorithm
where the pressure between the two casing wells cannot exceed ∆Pmax = 20 MPa.

At the bottom frames of Fig.2, the temperatures of the fluid produced for Fmax and for
the optimum flow rate are plotted, as well as the breakthrough curve of the optimum rate of
Ee. In the latter plot, the rate of Ee is plotted for three different conversion efficiencies

η ≈


1.− (Tc + 273.)/(Th + 273)

0.00052 · Th + 0.032

0.078795 log (4183 · (273.+ Th)4183)− 1.00081

(26)

where Tc and Th are the temperature of the injected and of the produced water, respectively.
Also plotted is the Carnot’s theoretical maximum η, and two are empirical fits for η (Jefferson
W. Tester Brian J. Anderson & Jr., 2006; Zarrouk & Moon, 2014). All optimisations are
performed for the logarithmic fit of η Zarrouk & Moon (2014) and power generation is not
allowed for produced temperatures below 100°C. The latter restriction is not only realistic
but also necessary given that η exceeds the Carnot’s maximum for low Th.

Also, the time evolution of the temperature of the produced water is simulated with HFR-
Sim for this scenario. Snapshots of the evolution of temperature are shown in Fig. (4) for the
surface that connects the two wells. In these snapshots, the rapid decline of the produced Th

is explained; although the realised set of discrete fractures creates an interconnected network
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Figure 2. Well logs, synthetic catalogue and evolution of power generation from the demonstrative
simulation of an EGS doublet.
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Figure 3. Snapshots of hypocentres and of pore-pressure evolution from the demonstrative simulation
of an EGS doublet. Hypocentres that happened during the corresponding time segment are coloured
as black dots and are bigger for felt events (Mw ≥ 2). The cloud of past seismicity is coloured blue for
the first well and red for the second.
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Figure 4. Cross-sectional view of the reservoir (at the surface y = 0 ), colour-coded are 4 snapshots
of the temperature distribution. Black lines indicate the projected traces of the discrete fractures that
ruptured during reservoir creation.

of fractures that penetrates both wells, overall the flow is not dispersed at the whole reservoir
and a short channel, or shortcut, is created instead. The hot rock around this path cools down
more rapidly due to the large flow rates that it circulates and it accelerates the decline of Th.
Note that the flow rate of 55 l/s is for ∆Pmax and is the value at which the Brent algorithm
initialises.
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4.2 Long-term seismicity evolution

We now evaluate the long-term behaviour of seismicity after short-term, high-pressure in-
jections into crystalline basement rocks. There is limited empirical data, because few high-
pressure injections in basement rock exist in the first place, good and long-term monitoring
is rare and in some cases the wells then entered the operational phase. Observations from
Cooper Basin (Baisch et al., 2006) and Basel (Bachmann et al., 2011; Herrmann et al., 2019)
suggest, however, that seismicity may continue for many years, a consequence of continued
pressure diffusion and a result of the fact that many faults have been brought close to failure
by the injection. Bachmann et al. (2011) estimated that in Basel, seismicity is decaying expo-
nentially, indistinguishable from the almost universally observed Omori-type decays following
tectonic mainshock (Ogata, 1999). This decay was estimated in 2011 by Bachmann et al.
(2011) to last about 15 years, an observation confirmed by the seismicity still ongoing in 2018
(Herrmann et al., 2019), So far, however, to our knowledge, the long-term decay of seismicity
following fluid injection has not been modelled. Here, the DFHM is employed for testing the
effect of diffusion on the long decay of induced seismicity.

We consider the 2006 injection in Basel, now assuming that only one well is stimulated
for 6 days, kept shut for 6 hours and ultimately opened indefinitely. The parameters for
the stochastic model are provided in Tables A2 and A3. If we use the the same frictional
parameter δµ considered in subsection 4.1, seismicity decays away quite rapidly. To make the
model reproduce a decay lasting years, we consider a smaller friction parameter δµ, 50 times
less than the one considered in subsection 4.1. This represents in essence a more ”critically
stressed” scenario.

The resulting simulated long-term decay of seismicity is plotted in Fig. 5 in a log-log
plot of number of events as a function of time. The observed seismicity from Basel (Kraft
& Deichmann, 2014) is also plotted. Although a proper calibration of DFHM’s parameters
was not performed, the DFHM still returns a long-term decay of seismicity that resembles
the Omori-like decay going on for years, as observed in Basel. After the 3rd day following
the shut-in and re-opening, the seismicity of the DFHM decays with a decline rate close to
−1.3, which is close to the decay exponent rate reported for Basel (Bachmann et al., 2011).
Therefore, our model is inherently able to reproduce the long-term behaviour of seismicity,
suggesting that the observed long-term seismicity is caused by continued migration of the
overpressure cause by the injection.
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5 EXEMPLARY PROBABILISTIC DFHM SIMULATIONS

The DFHM model is now employed for Monte Carlo (MC) simulations to assess the efficiency
of three different stimulation strategies, as well as to characterise the variability expected in
seismicity and reservoir productiveness. MC simulations allow us to study numerous realisa-
tions of a system, and alternative strategies, even if we have only one realisation in nature.
Therefore, they allow us to not only characterise the mean behaviour of a system, but also its
variance around the mean as well as the sensitivity to input parameters.

The considered initial geological model and the numerical parameters are again as de-
scribed in Tables A1-A3. We set up the model such that it considers several of the observations
collected before stimulating the Basel-1 well. First of all, the well’s orientation is close to the
true trajectory. Secondly, the fracture Ωf

1 represents the ruptured surface of the Mw 1.4 event,
a known event recorded by the Swiss Seismological Service in 2006 and during the cementing
of BS1. This event was found very close to both the casing shoe and to an important fracture
through which a significant portion of injected water entered the reservoir. Initial hydraulic
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parameters for the damaged matrix and Ωf
1 belong to the family of solutions for which HFR-

Sim reproduces the reservoir’s behaviour before the stimulation (Ortiz R. et al., 2011). The
density of fractures ρ̇f , the stress orientation and the orientation of the ruptured planes take
into account the reported geophysical logging from the Basel-1 well (Valley & Evans, 2009;
Ziegler et al., 2015). The measured vertical, maximum and horizontal stresses at the bottom
of the well are considered to be the mean three principal stresses everywhere in Ω (Häring
et al., 2008). The critical stresses for seed faults are limited to p̄f ≤ 30 MPa, considering this
as the maximum overpressure that the pumps used in Basel could deliver.

Each simulation uses the identical modelling parameters but is based on a newly generated
set of random seed fractures. While the overall density of faults is kept constant, the location,
orientation, size and stress state of all seed faults are randomly assigned in each simulation run,
representing the natural variability in these largely unknown parameters during stimulation.
In addition, MC simulations make it possible to not only determine the optimal distance and
strategy for stimulating the two wells of an EGS doublet, but also to assess the trade off
between seismic safety and electricity or heat generation. It would be possible to extend MC
simulations to also consider the uncertainty in each model parameter, a step needed for a full
uncertainty quantification in a probabilistic hazard study. Here, however, we want to focus on
the effect of the DFN.

In section 5.1, the injection strategy employed for the stimulation of Basel-1 is considered
and compared with the results of two alternative stimulation strategies, often referred to by
the community as ’soft stimulation’ strategies (Meier et al. (2015); EU project DESTRESS,
2016-2020). Statistical analysis of the three MC simulations makes it possible to compare these
strategies with regard to the induced seismicity they create on average, and to assess whether
the differences observed are statistically significant. Next, we evaluate the average effectiveness
of different risk mitigation (or intervention) strategies for quickly mitigating risk in simulations
(section 5.2). Finally, the underling processes related to one of the soft-stimulation strategies
is verified in section 5.3.

Note that the aim here is not to describe the current status of the reservoir in Basel or
to reach conclusions about its future. Only the orientation of Ωf

1 , the density of seeds ρ̇s, and
the b-value of seismicity are based on observations collected during the stimulation (2nd day
of stimulation). The rest of the input parameters were processed from data collected before
the stimulation itself and almost no rigorous effort for inverting the parameters has been
performed. In a way, results shown here for the stimulation strategy of Basel-1 are nothing
more than a very late forecast of induced seismicity in Basel-1.
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5.1 Seismicity expected from Basel-1 and soft stimulation strategies

Here, three different injection strategies are considered, and induced seismicity is forecasted
for each of them. The first stimulation strategy q1 is the one from the Basel-1 well, which
is also considered in section 4.1 and where injection happens always throughout the single,
400-m long open segment of the well. The ’soft’ q2 and ’softer’ q3 injection strategies consider
a multi-stage injection with four stages. In this case, the four quartiles of the well are each
stimulated separately, with a one-day delay before stimulating the next segment, and with
the same injection profile for each segment. More precisely, the profile of the injection at each
quartile of the soft scenario is equal to one quarter of the profile q1 and hence q2 ≈ (q1/4).
The profile of the injection of the softer scenario considers an eighth of q1, but it lasts twice as
long as q1, and therefore q3 ≈ (q2(t/2)/2). Eventually, the same cumulative volume of almost
12, 000 tons of water is injected in all three scenarios; the injection strategies are plotted in
the top row of Fig. 6.

Induced seismicity due to each stimulation strategy is forecasted for M = 250 different sets
of random seeds’ parameters. However, the same set of randomly drawn seeds is employed here
for each of the strategies. This enables one-by-one comparison of scenarios. As an example, the
simulated well logs and synthetic catalogues are plotted in Fig. 6 for three DFHM simulations.
The simulated pressure, the shape of the seismic cloud and the sequence of induced seismicity
are quite different, even though the same set of seed faults is considered in all three scenarios.

To allow for a more quantitative analysis, we now simulate the first 90 days for each strat-
egy and repeat the calculation for 250 sets of seeds. The normalised density distribution of
simulated events as a function of distance and time is plotted in Fig. 7 for all three stimulation
strategies. The density plots confirm the general patterns already visible in the individual sim-
ulations shown in Fig. 6 with four peaks of seismicity visible for the multi-stage stimulations.
For all three stimulation strategies, seismicity is concentrated within 200 m of the well but
can occur as far out as 450 m, and the softer q3 stimulation appears to be limited to 400 m,
but this difference is based on very few events and may not be statistically significant.

During the injection, the seismicity overall and the densest seismicity (in orange and red)
migrate outwards, and a Kaiser effect is visible once the injection stops. The first decile of
seismicity (area in orange) continues dispersing outwards when injection stops, but only for a
few days. After that, seismicity is more likely at intermediate distances than in the furthest
or nearest stimulated regions.

It is noteworthy that in the multi-stage simulations q2 and q3, the shape of the density
plots changes with every new segment, illustrating that they are affected by the previous
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Figure 6. Simulated well logs in terms of pressure (top row), CSH Pressure (middle row) and time-
distance migration of simulated seismicity (bottom row) for the same set of seeds and for three different
stimulation strategies (three columns). Note that the time axis is scaled with the duration of the
stimulation in each column.

segment. Specifically, seismicity in stages 2-4 does not always begin near the well but can also
resume at some distance, while each stage reaches out to even further distances. For example
in q3, seismicity on the 17th day is more likely to resume where the previous stage ended
than near the well, while on the 29th day, seismicity is equally likely close to and away from
the well but not in between. Ruptured surfaces that penetrate the next stages can explain
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the injection well and at a certain moment given the considered stimulation.

situations where seismicity seems to resume from where the previous stage ended. Repeated
events are not considered and a seed can fail maximum once.

Interestingly, the outward migration of the quantiles is closer to linear than to square-root
dispersion. The square-root migration is expected from normal diffusion where a single dif-
fusivity exists (e.g. Shapiro & Dinske (2009)) and linear migration when seismicity disperses
with a constant speed. Such steady, linear migrations are not unexpected in geothermal reser-
voirs and have been attributed to several mechanisms such as elastic stress transfer, slow
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and aseismic slip, fracture creation, thermal effects and changes in the permeability structure
(Goebel & Brodsky, 2018). Here, changes in the permeability structure and pore-pressure
diffusion are sufficient mechanisms for linear migration.

We now analyse the result with respect to its implications for the maximum expected
earthquake and the number of events above a given magnitude threshold. Following the sug-
gestion by Gischig & Wiemer (2013), we differentiate between the maximum possible event
(the true Mmax used typically in PSHA studies), the maximum observed in a given stimula-
tion and the maximum expected, defined as the mean of the maximum observed in multiple
simulations. The maximum possible earthquake in our simulation is set to the tectonically
possible maximum at magnitude 6.5; however, randomly drawing such a result is extreme
unlikely. Gischig & Wiemer (2013) and also van der Elst et al. (2016) have shown that hy-
brid models will reproduce the observation by McGarr (1976) that the maximum observed
magnitude scales linearly with the logarithm of the total injected volume. Our DFHM re-
sults likewise result in this scaling relationship, as in Fig. 8a. The median and the range of
the maximum expected magnitude as a function of the cumulative injected volume for the
Basel-1 stimulation shows a linear increase with volume during the injection, reaching a mean
expected magnitude of about 3.31. However, with 5 percent probability also a magnitude of
3.7 is possible. Thus, the observed maximum of Mw=3.2 is well within the simulated range.
Once the injection stops, the maximum expected increases by about 0.1 to 0.2 magnitudes
(Fig. 8) due to the continued and exponentially decaying seismicity. Note that we do not
assume a stress-dependent b-value, which would increase the chance of large events after shut
in (Goertz-Allmann & Wiemer, 2013). We also do not directly model earthquake-earthquake
interactions, which have been shown by Catalli et al. (2016); Rinaldi & Nespoli (2017) to
contribute a substantial fraction of additional events, nor we consider repeating events and
overlapping ruptured surfaces.

Comparisons of the same quantiles from the two softer stimulations showed little deviation
from the Basel-1 case, and hence these stimulations are not plotted. Stimulations deviate
more clearly in the post-injection, where a significant increase of Mmax

w is less likely when
stimulating in segments than in the Basel-1 scenario. This increase of Mmax

w due to post-
injection seismicity in the Basel-1 scenario is captured in Fig 8a, where the vertical step
change at the end of each quantile is for the Mmax

w at the end of the 90th simulated day.

A clear differentiation of the strategies is observed both for the mean number of sim-
ulated events and for the dispersion of seismicity, as can be seen in Fig. 8b, where again
each discontinuous vertical jump quantifies the increase during stages and at the end of the
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90th simulated day. For each first segment, the expected number of events increases linearly
with the injected volume and with similar rates. With each new segment, however, this rate
decreases and hence the expected seismicity depends both on the injected total volume and
on how it is injected. Overall, both soft stimulations generate in our simulation fewer seismic
events both during and after injection, with the softer stimulation demonstrating the lowest
total rate of seismicity of water volume, about 550 events, so only half of the one for the
massive, single-stage injection. Note that after shut in, the softer stimulations have only a
fraction of the seismicity of the full Basel-1 stimulation.

Also in Fig. 8b, the mean dispersion of seismicity is plotted with the total injected volume.
On average, seismicity for the same injected volume migrates the slowest with Basel-1. How-
ever, migration in post-injection overcompensates this so that the Basel-1 stimulation reaches
out the furthest.

The correlation between the stimulation strategy and some of the characteristics of seis-
micity is analysed further in Fig. 9. All 3 × 250 simulated scenarios are represented by a
dot in the space of Mmax

w , number of events Neq, and furthest migration for the seismicity.
All stimulation strategies can create large events, and clearly visible is that the q1 strategy
produces substantially more events, However, the most interesting feature of Fig. 9 is the at
first counter-intuitive observation that for each of the strategies, the number of stimulated
events is inversely correlated with the maximum magnitude. We interpret this observation
such that if larger events with magnitudes of 3.5 occur during the stimulation, they will dom-
inate the fracture network, pressure distribution and flow. Pressure will be distributed over a
larger region but at lower overpressures, creating fewer events. The newly created fault will
itself increase void volume and reduce pressure, leading to few events. However, these findings
remain somewhat speculative, because ruptures of a magnitude of 3.5 or larger can exceed
the computational domain and hence their effects may be incorrectly represented here. Such
boundary issues explain the bifurcation of Mmax

w with distance; in other words, the model
returns a positive correlation between them when boundary effects due to large Mmax

w are
absent. Interestingly though, the considered injection does not affect the relationship between
these two properties and it depends mainly on the seeds sampled with fΘ̄.

We now establish whether the difference in the total number of observed events is sta-
tistically significant. We plot the returned kernel density of Neq, Mmax

w , and the distance for
the three injection strategies in Fig. 9. Considering that both the b-value and the cumulative
injected volume is the same for all scenarios, a seismogenic index model (Shapiro et al., 2010)
would predict similar mean numbers and variations. However, we observe that stimulations
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Figure 9. The pairwise relationship for the simulated number of events Neq, the maximum simulated
event Mmax

w and the furthest hypocentre are plotted for all scenarios and all injection strategies in
the lower diagonal, while the kernel-density estimate of each parameter by using Gaussian kernels is
plotted in the upper diagonal. Percentiles of Mmax

w and the probability of Mmax
w > 3.5 are provided

for each strategy.

q2 and q3 are substantially lower in their total number of events than q1 and the distribu-
tions significantly different with >99.9 percent confidence. All three densities have a negative
skewness which decreases as the stimulation becomes softer. On the other hand, the skewness
is positive both for Mmax

w and the furthest hypocentre, but injection strongly affects only the
former. In summary, according to our DFHM simulation, the least hazard should be expected
from softer multi-stage simulations as defined in q3 and the most seismic hazard results from
Basel-1-like stimulations. Later it will be shown that multi-stage stimulations can generate
more electricity than Basel-1 too.
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5.2 Strategies for rapid mitigation of risk after a Basel-1-like stimulation

Risk mitigation measures applied in near real time are an important part of Health and Safety
assessment and of reducing the overall risk of any EGS project. Past EGS projects have relied
on a traffic-light system that will reduce or terminate injections once a certain magnitude or
vibration threshold is reached (e.g., Baisch et al. (2019); Häring et al. (2008)). As seismicity
will not stop immediately after stopping the injection (e.g. Fig. 5), action must be taken
early enough to avoid the predefined acceptance threshold potentially being exceeded. The
more conservative a traffic-light system is set up, the safer the operation will be; however, it
will also have a reduced chance of being commercially viable. A key parameter in setting up
traffic lights is the effectiveness of mitigation action, and so far there have been few studies
addressing these questions based on reservoir simulations. Opening the well immediately after
the injection is considered to be an efficient way of reducing induced seismicity at that time
(Baisch et al., 2006; McClure & Horne, 2011); however, it has been argued after the Basel
project, for example, that immediate shut in is not a good strategy, since sudden stress changes
can trigger larger events.

We perform MC simulations for four distinct choices for mitigating risk. The considered
risk mitigation scenarios are: one scenario where the well is kept shut indefinitely (q = 0 l/s),
two scenarios where fluids are produced at rates q = −2 l/s and q = −5 l/s for a period
of 10 days before shutting the well indefinitely, and a scenario where the well is left open to
bleed off. In the last mitigation scenario, q is a function of the overpressure at the casing shoe
and of the atmospheric conditions at the surface. Here, a linear relationship is assumed for
modelling bleed-off conditions, where q is proportional to the overpressure at the casing shoe
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and changes with rate I = −0.8 l/s per MPa of overpressure. In this way, the casing shoe
relaxes towards hydrostatic pressure.

The number of simulated events after the injection of 12,000 m³ of water and for all
considered scenarios for mitigating risk are plotted in Fig. 10.

Out of the four risk mitigation strategies, namely keeping the well shut in, is found to be
the least efficient with the largest number of post-injection events modelled with it. Opening
the well is found to be the most efficient with approximately 35% less post-injection seismicity
than keeping the well shut. Neither of the two strategies with steady production achieves such
a reduction, although the cumulative water volume extracted is larger than when the well
is opened. We interpret this result such that the high water production immediately after
opening the well, when the seismicity rate is highest, is the key to reducing seismicity rates
quickly. We suspect that production with 10 l/s or more would be as efficient or even more
so than the open-well strategy, but it may not be operationally easy to achieve. This result
also highlights the need for rapidly implementing risk mitigation strategies.

Finally, an MC simulation is performed with the DFHM for the scenario, where injection
continued as originally planned. In this scenario, 90 l/s is injected for another 6 days. This is
the maximum rate that the pumps in Basel could inject in that time. All 250 simulated scenar-
ios returned Mmax

w ≫ 3.5. This finding confirms the findings of the SERIANEX Risk Study
(Baisch, S., Carbon, D., Dannwolf, U., Delacou, B., Devaux, M., Dunand, F., Jung, R., Koller,
M., Martin, C., Sartori, 2009) and subsequent analysis (Gischig & Wiemer, 2013) reporting
that establishing an EGS given the selected injection strategy and the seismic response to
injections was and is not feasible.

5.3 Optimal strategy for stimulating EGS doublets successfully

Finally, we evaluate the maximum electricity that can be safely extracted for each of the stim-
ulation strategies presented in subsection 5.1, as well as the necessary seismicity for achieving
certain energy production targets. We perform MC simulations considering EGS doublets
where the two wells of each doublet reach the same depth, have the same orientation and are
always stimulated with the same strategy.

For the first well, we use the same MC simulations presented earlier in Fig. 6. This setup is
appropriate because it shows many common desired features, i.e. long dispersion of seismicity,
Mmax

w < 3.5, and many common large fractures in their sheared DFN. The final pressure
solution, the sheared DFN and the resulting hydraulic properties from each sample and each
injection strategy are the initial conditions for the respective MC simulations afterwards.
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Six discrete locations for the second well are now considered, and M = 30 different sets
of seeds are initialised and comparisons between different inter-well distances and stimulation
strategies are almost always possible, although larger errors around the mean are expected
with such low M . DFHM simulations and optimisations are performed for each set of seeds,
for each stimulation strategy and for each discrete location of the second well. Out of these
M ×3×6 = 540 DFHM simulations, an equal number of random DFNs are employed and out
of them an equal number of optimal evolutions of produced temperature is obtained by finding
with a Brent algorithm the maximum electricity, as in section 4.1. Therefore, the expected
electricity from each stimulation is the maximum value out of all these optimal values.

The results of these 18 MC simulations and optimisations are shown in Fig. 11, where
electrical power is always averaged over a period of 25 years, and with the conversion efficiency
η suggested by Zarrouk & Moon (2014) and in eq. (26).

Expected seismicity (Fig. 11a) increases with the distance between the two wells, up to the
point where the two stimulations are independent of each other and a similar mean seismicity
is expected from each. Increasing the distance between wells from 250 to 700 m will increase
the seismicity by 50-100 percent, depending on the choice of the stimulation strategy. The
Basel-1-like stimulation strategy q1 is, as expected, again the most seismically active, while
the least seismicity is expected from the softer stimulation q3, reduced by about half compared
with q1.

Contrary to seismicity, which never decreases with increasing distance, the expected
impedance of the reservoir shown in Fig. 11b involves a local minimum around 350 m to
445 m. The impedance seems to depend less on injection strategy, especially when there is a
larger well spacing. Note that the forecasted impedance is estimated only from the sheared
DFN and for the resulting permeability. Frequently, a target impedance of 0.1 MPa/(l/s)

is considered for EGS (Rybach, 2010). This impedance is not achieved by any of the DFHM
simulations and for the properties of Table A3. Reaching this target impedance would likely
require pre-existing highly permeable structures within the reservoir, which is a piece of in-
formation that if it had been known in 2006 could have been included by considering these
structures in the initial fracture model on top of which the fractures from the seeds are su-
perimposed.

The distances returning the largest produced electricity in MW (11c) coincide broadly with
the distances for lowest impedance. Optimal distances are within the range [280 m, 440 m]

for stimulations with q2 and q3, and [360 m, 520 m, ] for q1. Neglecting seismic hazard as a
limiting factor, either of q1 and q2 can be the stimulation with maximum expected power.
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to the rest of the figures where the bars show the error, bars around the mean impedance show the
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Stimulation strategies q1 and q2 are always more productive when compared with q3. Note
that systems with well distances of more than about 500 m are rapidly producing very little
electricity energy, because of the high impedance of the reservoir and resulting energy needs
for pumping. Also noteworthy is the fact that at 0.8 MW the overall maximum energy output
of this systems under ideal conditions remains well below the targets for the Basel EGS (3
MW electric). This target was very unlikely to be reached with 11, 000 m3, unless a large and
highly permeable structure happened to pre-exist between the wells, a scenario not considered
here in the initial reservoir model.

In a final normalisation effort shown in Fig. 11d now adds the seismicity aspect to the
optimisation. We ask the question how to generate the maximum electrical power with the
minimum number of felt or potentially damaging earthquakes. Therefore, we normalise the
power output by the number of magnitude M>= 2.0 events needed on average to stimulate the
reservoir. Using this metric, soft stimulation strategies q2 and q3 are about twice as effective
when compared with q1, and distances < 400 m are preferable.

6 DISCUSSION AND CONCLUSIONS

6.1 Uniqueness of DFHM

The ability to reliably forecast the seismicity and transmissivity generated when injecting
fluids under high pressure into granitic underground is critical for the successful deployment
of EGS technology (Hirschberg et al., 2015). Prominent and costly failed projects over the
past 15 years (Giardini, 2009; Lee et al., 2019) and also the current lack of upcoming EGS
projects illustrate the fact that currently, forecasting tools are unable to achieve this goal.

The 3D DFHM model and reservoir simulator introduced in the previous sections repre-
sents in our judgement a novel and highly advanced coupled reservoir simulator approach.
Its uniqueness lies in a combination of features targeted to enhance its usefulness for a wide
range of applications, and builds on these enhancements:

(i) DFHM implements a hybrid approach that balances accurate representation of first-
order physical processes (such as fractures and diffusion) with stochastic elements that make
computations feasible but most of all allow us to represent the inherent uncertainties in our
knowledge of in-situ fault locations, orientation, sizes and stress/strength conditions. Sim-
ilarly to other hybrid models (Goertz-Allmann & Wiemer, 2013; Gischig & Wiemer, 2013;
Karvounis et al., 2014; Rinaldi et al., 2015; Jin & Zoback, 2017; Langenbruch et al., 2018),
DFHM considers seismicity as a Markovian process with a transition probability, the PDF of
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which is fΘ̄, which encapsulates all of the uncertainty and is conditioned on pore-pressure dis-
tribution. Contrary to other hybrid models, DFHM simulates pore-pressure distribution with
an EGS simulator that can consider individual fractures and fracture networks of almost any
geometrical complexity and returns accurate solutions of the pore-pressure diffusion problem.
This ability allows for a much more realistic (in terms of geology and physics) representation
of relevant processes in EGS reservoirs.

(ii) DFHM can be used deterministically (e.g. Figs 3 and 4) be calibrated to a set of
observations for an understand of the process, or to explore scenarios; however, it can also
be used probabilistically by deploying Monte Carlo simulations spanning a wide range of
uncertainties (e.g. Figs 7 and 8). The ability to represent uncertainties is critically needed
not only as the input for probabilistic seismic hazard assessment when low-probability but
high-consequence events dominate the risk profile (Mignan et al., 2015; Broccardo et al., 2020;
Bommer et al., 2015) but also for meaningful sensitivity studies and for the difficult decision-
making process when there are uncertainties in near real time. Monte Carlo simulation allows
us for example to judge whether observed differences between injection strategies (Fig. 8), for
example, are statistically significant.

(iii) DFHM is able to also provide solutions for temperature (Fig. 4) and heat revenues
(Fig. 11), using the same fracture network, thus making it possible to address directly and
consistently the challenging problem of balancing energy output and seismic safety.

(iv) The DFHM code is computationally optimised such that it can run and scale on high-
performance computers, thereby making it possible to address major problems of substantial
temporal and spatial complexity rapidly. Speed is a critical parameter if real-time applications
as part of data-driven adaptive traffic light systems (Király-Proag et al., 2018; Grigoli et al.,
2017) are tackled. Real-time risk assessment is indeed a critical community need (e.g. Lee et al.
(2019), because the a priori uncertainties before stimulation are very considerable (Broccardo
et al., 2020) and can only be reduced substantially once data from the actual stimulation
become available (Broccardo et al., 2017; Mignan et al., 2017). The code can also be extended
to include additional physical interaction mechanisms such as poro-elasticity or Coulomb stress
interactions. Note that while we have focused here on processes related to EGS, the overall
DFHM approach can be applied or extended to other GeoEnergy applications.

The combination of these features sets DFHM apart as a sophisticated and holistic reservoir
simulator that allows users to address a wide range of problems related to EGS systems
and beyond. In this publication we have illustrated its capabilities, as well as some of the
limitations, which are discussed in more detail below. Overall, we feel that DFHM advances
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the state of the art in modelling coupled reservoir processes substantially, opening up new
capabilities for scenario modelling, process understanding, probabilistic analysis and real-time
decision support. The DFHM simulator is available under a GNU GPL V3 licence from the
authors. Obviously, the DFHM model also has numerous limitations, which we discuss in the
final section of this paper.

6.2 Implications of DFHM numerical experiments: multi-stage, soft stimulations and
mitigation strategies

In this study we performed a number of numerical experiments with DFHM, not only to
demonstrate its usefulness and limitations but also to address important and unresolved ques-
tions related to the creation and operation of EGS reservoirs. A first important result of our
analysis is the fact that, based on our DFHM modelling, multi-stage stimulations (’soft stimu-
lations’) are more efficient in creating an EGS reservoir even if they inject the same total fluid
volume. Multi-stage stimulations have been proposed as a more efficient and more controlled
way to stimulate a reservoir (McClure & Horne, 2014; Meier et al., 2015), and our study is
the first to our knowledge that provides a quantification of this effect. Our simulations show
that multi-stage stimulation will create only about half of the seismicity (Figs 8b and 9) and
offer lower reservoir impedance (Fig. 11b) and therefore can produce more electricity and heat
for a given acceptable seismic risk. This finding is quite different from the forecast made by
existing statistical or hybrid reservoir models that assume the seismicity in essence to be a
site-specific constant (e.g. a ’seismogenic index’ (Mignan et al., 2017; Shapiro et al., 2010)). In
our simulation, Basel-like ’massive’ stimulations that do not target individual well segments
are up to 2 times more likely to exceed Mmax

w > 3.5 than multi-stage stimulations, where a
constant b-value is assumed. In other words, Basel-like stimulations are only half as likely to
lead to a successful project that will maintain public acceptance and would allow a return
on investment. The optimal distances for the multi-stage injections are found to be ≈ 360 m

(Fig. 11); there is only a small and statistically insignificant advantage of ’softer’ (i.e. injection
q3) stimulations that will inject with lower flow rates and pressures over a longer time (Fig.
11). Note that we did not consider the Coulomb stress or poro-elasticity-based interaction
of stages due to creep or opening of cracks. Adding these mechanisms, as suggested in the
limitation sections, would be an important future enhancement to our modelling capability.

An additional benefit of multi-stage stimulation can be seen from Figure 8, namely that
the seismicity occurring after the stimulation is over is significantly less and also the continued
spatial growth of the reservoir is less than for a single stage. For massive injections q1, about
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20% of seismicity occurs after the termination of the injection, while for strategies q2 and
(especially) q3, this fraction is less then 2%. The continued migration of the fluid overpressure
and seismicity likewise is substantially less (Figure 8b). Together, these factors result in the
desired feature of a higher degree of ’controllability’ of a stimulation, because once mitigation
actions are taken, the reaction of the system is more immediate. We also speculate (but have
not yet tested this hypothesis) that the surprisingly (i.e. decade-) long ’aftershock’ sequence
seen in Basel observations and in our models (Figure 5) would be substantially shorter (i.e. a
more rapid decay parameter) for multi-stage, softer stimulations. The physical reason for all
these differences is connected to the lower overpressure needed in multi-stage and softer stim-
ulations (Figure 7): it takes a long time before rock volumes under high levels of overpressure
in tightly packed basement rocks return to background levels of pressure through pressure
diffusion.

With respect to the best mitigation strategies when seismicity exceeds threshold levels,
our simulations show that the strategy of opening the well immediately after the injection
leads to the most rapid reduction in the induced seismicity rate (Fig. 10). Our modelling thus
supports the decision in 2006 to open the BS1 well in Basel. Pumping out from the well can be
effective too if pumping rates are high enough, and it can be beneficial in the long run when
natural bleed off is lower. Besides, we demonstrate that pore-pressure diffusion is a sufficient
mechanism for explaining decade-long sequences of induced seismicity as observed in Basel
(Fig. 5).

In summary, our results suggest that future EGS systems should focus on multi-stage
stimulations and consider lower-pressure, but longer-lasting injections. Our simulations are
limited to only four adjacent segments; however, we also show that the expected electricity
revenue given that the reservoir impedance is quite limited, at about 0.7 MW (Figure 11).
More stages, using for example horizontal or inclined well set-ups, should offer additional
benefits with respect to limiting seismic hazard, increased controllability while also making it
possible to scale up to commercially more interesting systems capable of generating 3-5 MW
of electrical energy. Ideally, multi-stage stimulations would also be able to identify and avoid
unsuitable fractures, fractures that would result in above-average seismicity or in thermal
shortcuts.

6.3 Implications of DFHM numerical experiments: Understanding of the process

Our simulations show that in realistic fracture networks such as the one modelled in Figs
6-7, seismicity during the injection migrates in a steady linear way outwards from the injec-



46

tion point. Our modelling results can be explained by pore-pressure diffusion combined with
permeability enhancement in a 3D fractured medium. Normal diffusion in a single diffusivity
medium would result in square-root migration outwards, and has been proposed as a rele-
vant mechanism (e.g. Shapiro & Dinske (2009)). Our modelling results are more in line with
(Goebel & Brodsky, 2018), who observed linear migration in a number of injection cases, in-
cluding Basel, but did not pinpoint a single mechanism, and hypocentre accuracy is a limiting
factor in observational studies. Our results confirm numerically that anomalous 3D diffusion,
which consists of several convoluted small 2D linear diffusion processes, can explain such de-
viations from the square-root migration and we speculate that this may be common or even
the dominating mechanism in reservoirs. Finer DFHM simulations with a larger sample of
seeds would be needed to reach conclusions regarding the expected rule for migration and its
variance.

Especially for Basel-style massive stimulation, three approximately linear trends are qual-
itatively observed. The first one is the increase of the distance with the highest likelihood to
be stimulated as the injection duration increases with time (Fig. 7). The other two are the
increase of the expected number of events Neq with the injected volume and the increase of
the median for Mmax

w .

In our modelling, not all combinations of Neq, Mmax
w are equally expected. As a matter

of fact, a negative correlation is observed because when a large Mmax
w is simulated, then a

lesser number of triggered events is simulated afterwards (Fig. 9). This correlation cannot
be explained by methods like the Extreme Value Theory (van der Elst et al., 2016) or the
seismogenic index (Shapiro et al., 2010) that consider Neq as a variable independent of earlier
Mmax

w .

Our modelling results also confirm the assessment of the SERIANEX Risk Study (Baisch,
S., Carbon, D., Dannwolf, U., Delacou, B., Devaux, M., Dunand, F., Jung, R., Koller, M.,
Martin, C., Sartori, 2009) that the prematurely ended stimulation in Basel in 2006 was insuf-
ficient to create a commercially viable reservoir. If the same injection was to be repeated for
the second well BS-2, then the resulting EGS could at best reach half the target impedance
and half of the target generation of electrical energy.

The linear relationship between Neq and the injected volume, scaled by a site-specific
constant (e.g. a seimogenic index), is a common assumption in many first-order methods for
predicting induced seismicity rates (Shapiro et al., 2010; Mignan et al., 2017). This simple
model is surprisingly very much in line with observations (Király-Proag et al., 2016, 2018;
Mignan et al., 2017). However, our DFHM simulation shown in Figures 7-11 allow for a more
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differentiated analysis. A linear relationship between seismicity and fluid volume injected exists
only for the Basel-1 massive stimulation scenario (Fig. 8b), and is very much in line with the
data. In this case, the seismicity response to a cubic metre of injected water is represented
effectively by a constant. However, when modelling multi-stage injections, this linear response
breaks down (Figure 8b) and fewer events than expected occur in later stages. We speculate
that in multi-stage injections, interactions with already stimulated areas could decrease the
seismicity rate. The injection rates and stimulation strategy influence the number of events,
but seem to have little influence on the stimulated volume.

We observed a wide variation of possible Neq in different Monte Carlo runs (Figure 9b),
namely variations by about a factor of two. This variability is a consequence of the fact that
even with identical fault density and stressing condition, small differences in fault orientation
and connectivity can make a substantial difference to the pressure distribution (Figure 1).
This suggests that a seismogenic index must also vary quite substantially even when injection
is happening into near identical reservoirs.

6.4 Forecasting long-term EGS operations, potentials and limitations

Stakeholders prioritise differently the challenges related to induced seismicity since they seek
reliable decisions for many different operations. For instance, regulators and the public may
mainly be interested in forecasting the Mmax

w and Neq, while for insurance industries the
primary focus may be on convincingly classifying a damaging Mmax

w as induced or triggered,
and for EGS investors it will be on the levelised cost of electricity expected (Mignan et al.,
2019). Issues arise when the meta-models applied by different stakeholders are too loosely
correlated, making their combination less likely to be true. Holistic approaches like the DFHM
return strongly correlated multi-objective forecasts since a common hidden mechanism is
considered.

As is the case with all models and meta-models, they return useful forecasts only after
inverting the model’s parameters and tuning its hyper-parameters. The tuning of the hyper-
parameters could be done by finding from their space the values that minimise a cost function
like the mean squared error of the forecast (also known as a ’Brier score’) or by maximising
the conditional probability

P (f |U,S:t) =
P(f |S:t) · P(U |f ,S:t)

P(U |S:t)
, (27)

for the cases where the utility forecast U is realised due to f , P(f |S:t) is the marginal dis-
tribution of the transition between states, P(U |f ,S:t) the likelihood-base rate of how well
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the forecasts’ hyper-parameters discriminate between different outcomes and different past
situations, and P(U |S:t) a marginal distribution that indicates how well the tuned forecast
distinguishes between different situations. As in Murphy & Winkler (1987), the forecast is
considered calibrated when the expected utility that depends on the marginal distribution of
final states P(f) equals U .

Here, examples of parameters are the properties of the fluid, of the solid materials, of the
well and of the reservoir. Many of these can be assessed through traditional techniques of
reservoir engineering (e.g. an initial model) or their range of probable values is small and is
characterised by low entropy even when they are stochastic (e.g. the post-shearing aperture
of a fracture bf ). There are also parameters like the b-value that have irreducible uncertainty
and can be assessed by their maximum likelihood or through a Bayesian approach (Broccardo
et al., 2017). Examples of hyper-parameters of the DFHM are the parameters controlling the
shape of the transitional PDF fΘ̄ such as the distribution of fracture points xs, as well as the
cohesion and the friction considered. Last but not least, the number of degrees of freedom and
boundary conditions at the model’s boundaries can also be treated as hyper-parameters, since
this is a forecasting problem and not an inversion problem where accurately reproducing past
observations is important. Especially when real-time forecasts are sought, the increase in the
maximum forecasting likelihood may not justify the computational load required by handling
a more complex model and reaching the same state of forecasting ability P (f |U,S:t).

Single-phase flow is a significant limitation of the current model. Although multi-phase
flow can be accurately modelled with embedded DFMs (Hajibeygi et al., 2011; Ţene et al.,
2017), here such an extension would be associated with a significant increase in the model’s
parameters since the saturation of each phase would need to be inverted and calibrated for
all degrees of freedom. In the simulations presented here, these starting conditions were never
really an issue since an intact reservoir was considered with hydrostatic conditions, and the
principle of superposition could be employed for the single-phase pore pressure.

Discretisation issues arise both because of the well model, which is inappropriate for
tiny time steps when diffusivity is very low compared with the grid size, and because of the
homogenisation of small induced seismicity events. Employing coarse models of DFHM for
inverting the observed wellhead pressure is not advised. Also, forecasts with coarse DFHM
are expected to be loosely correlated when the same problem is simulated with a fine model.
Especially because of the well model, coarse models would initialise their branching process
differently.

Mechanical modelling has not been employed anywhere in DFHM. Given that pore-
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pressure diffusion is the main mechanism for induced seismicity in EGS, other mechanisms
have not been considered. Neither induced seismicity due to stress transfer nor induced seis-
micity due to thermal contraction have been considered, although these two mechanisms are
also important in EGS stimulations. Without loss of generality, these mechanisms could be
introduced into future versions, either with a dynamically changing transitional PDF or with
deterministic modelling of the elastic effects (Deb & Jenny, 2017a,c), where the latter makes
it possible to consider ruptures with overlapping surfaces. This would require a better charac-
terisation of fractures and more complex shapes both for the seeds and for the initial fracture
network, since fractures are found in nature in many shapes (Peacock et al., 2016).

Finally, the presented DFHM cannot provide answers to important seismological questions
such as what the maximum possible Mw is in a reservoir and whether an event is triggered
or induced. The answers in both of these cases need to be assumed by the transitional PDF.
Here, a common Guttenberg-Richter law was considered for triggered and induced events.
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Table A1. Materials’ hydraulic and geological properties

Property Value

Working fluid (water)

Density ρ 1000 kg/m3

Viscosity µ 0.001 s · Pa

Specific heat capacity ch 4183 J/(kg ·K)

Hot solids (granite)

Density ρr 2700 kg/m3

Heat conductivity Λ̂ 2.5 W/(m ·K)

Specific heat capacity crh 2600 J/(kg ·K)

Effective fractured reservoir (t ≤ 0)

Porosity of the damaged matrix ϕd
0 0.01

Permeability of the damaged matrix kd 2. · 10−17 m2

Fracture density ρ̈f 0.4 m−1

Fracture compressibility α 1.8 · 10−10 mPa−1

Principal stresses (Häring et al., 2008)
⟨|σ1|⟩ 144. MPa

⟨|σ2|⟩ 117. MPa

⟨|σ3|⟩ 69. MPa

Formation’s pressure p(t < 0),∀x ∈ Ω 45 MPa

Open cased well segment

Well compressibility [m2/Pa] 9 · 10−11

Well radius (constant) [m] 0.12

Bottom of the 1st well (0, 0,−5000) m

Important pre-stimulated discrete fracture Ωf
1

(section 5)

Mechanical aperture b1m,1 [µm] 500.µm

Hydraulic aperture b1h [µm] 100.µm

Disc centred at (39,−17,−46755) m

with strike 200°,
dip 26°, and

radius 22. m
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Table A2. Common modelling DFHM parameters

Property Value

Stochastic modelling

b-value of Gutenberg-Richter law 1.3

Range [Mmin, Mmax) [0.6 , 7.5)

Stress drop ∆τ 2.32 MPa

Cohesion C0 2 MPa

Friction coefficient µ 0.6

Standard deviation of |σi|, i = {1, 2, 3} 0.2 · ⟨σi⟩

Deterministic modelling

Damaged matrix discretisation length ∆xd 40 m

Fractures’ discretisation length ∆xf ≈ 20 m

Time step power law coefficient ∆t 100 s

Time step power law exponent 0.25

Depth of casing shoe 4.632 km

Well model as in Peaceman (1978)

AIM stencil 27−points stencil

Updating deterministic flow model

Minimum discrete fracture radius Rmin 25 m

Initial mechanical aperture bim,0 0.125 mm

Post-rupture mechanical aperture bf 1 mm

Post-rupture permeability kf 3.3̄ · 10−9 m2

(for 0.2 mm hydraulic aperture)
(
= 0.00022/12

)
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Table A3. Variable DFHM parameters

Modelling parameter 40 years doublet abandoned well Monte Carlo DHFM simulation
(section 4.1) (section 4.2) (section 5)

Sets of seeds 2 1 1

Total density of seeds ρ̇s ≈ 106[seeds/km3] ≈ 106[seeds/km3] ≈ 5 · 105[seeds/km3]

Orientation of 1st set uniform in [0, 4π] uniform in [0, 4π] uniform in [0, 4π]

Orientation of 2nd set uniform, but at most _ _
35o from direction (σ1 + σ3)

Critical friction δµ 0.05 0.001 0.05

1st principal stress direction (1, 0, 0) (1, 0, 0) (0.5878,−0.80902, 0)

2nd principal stress direction vertical vertical vertical

For the 3rd stress direction, orthogonality is assumed: σ3 = σ2 × σ1

Orientation of well segment vertical vertical as in BS1 (Häring et al., 2008)


