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Abstract

In situ gauge networks are often used in hydrological model calibration, but these networks are limited or nonexistent in

many regions. The upcoming Surface Water Ocean Topography (SWOT) mission promises to fill this observation gap by

providing discharge estimates for rivers with widths greater than 100 meters. Proxy SWOT discharge estimates derived from

an observing system simulation experiment and Monte Carlo methods are used to assess SWOT observation utility for model

parameter selection in regions devoid of in situ gauges. The sensitivity of the parameter selection to measurement error and

observation temporal frequency is also evaluated. Single-point and multi-point parameter selection is performed for ten sub-

basins within the Susitna River and upper Tanana River basins in Alaska. SWOT is expected to observe Alaskan river points

4-7 times per 21-day repeat cycle with 120 km swath coverage. For an expected SWOT discharge error of 35%, parameter

estimation is successful for 60% and 90% of sub-basins using single-point and multi-point selection, respectively. Decreasing

observation frequency to simulate lower latitudes resulted in success for only 20% of midlatitude and 10% of tropical sub-basins

for single-point selection, whereas multi-point selection was successful in 80% of midlatitudes and 70% of tropical sub-basins.

Single-point parameter selection was much more sensitive to SWOT discharge error than multi-point parameter selection. The

results strongly support the use of multi-point parameter selection over single-point parameter selection, yielding robust results

nearly independent of observation error with approximately half the sensitivity to observation frequency.
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Abstract 23 

In situ gauge networks are often used in hydrologic model calibration, but these networks are 24 

limited or nonexistent in many regions. The upcoming Surface Water Ocean Topography (SWOT) 25 

mission promises to fill this observation gap by providing discharge estimates for rivers wider than 26 

100 meters. SWOT observation utility for model parameter selection in regions devoid of in situ 27 

gauges is assessed using proxy SWOT discharge estimates derived from an observing system 28 

simulation experiment and Monte Carlo methods. The sensitivity of the parameter selection to 29 

measurement error and observation frequency is also evaluated. Single- and multi-point parameter 30 

selection are performed for ten sub-basins within the Susitna and upper Tanana river basins in 31 

Alaska. SWOT is expected to observe Alaskan river points 4-7 times per 21-day repeat cycle with 32 

120-km swath coverage. For an expected SWOT measurement error of 35%, parameter estimation 33 

is successful for 50% (90%) of sub-basins using single- (multi-) point parameter selection. 34 

Decreasing observation frequency to simulate lower latitudes resulted in success for only 10% of 35 

midlatitude and tropical sub-basins for single-point selection, whereas multi-point selection was 36 

successful in 80% (60%) of midlatitude (tropical) sub-basins. Single-point parameter selection is 37 

more sensitive to measurement error than multi-point parameter selection. The results strongly 38 

support the use of multi-point over single-point parameter selection, yielding robust results nearly 39 

independent of observation frequency. Most importantly, this study suggests SWOT can be used 40 

to successfully select hydrologic model parameters in basins without an in situ gauge network.  41 
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1. Introduction 42 

 For decades, in situ gauge networks have been monitoring stream hydrology and are 43 

considered a robust observation with well-understood errors (Hirsch and Costa 2004, Boning 44 

1992), measurements of floods and droughts notwithstanding. Stream gauges aid in the modeling 45 

and forecasting of major hydrologic events by enabling model calibration and validation. 46 

Unfortunately, in situ stream gauge networks are concentrated to only a few regions globally, and 47 

these networks are on the decline (Pavelsky et al. 2014), limiting the availability of observations 48 

of streamflow. Furthermore, very few observations are available from satellite platforms since all 49 

current satellite missions, including Jason-3 and the second Ice, Cloud and land Elevation Satellite 50 

(IceSAT-2), theoretically capable of measuring river stage using radar and laser nadir altimetry 51 

(Kouraev et al. 2004, Papa et al. 2010, O’Loughlin et al. 2016, Biancamaria et al. 2017) have 52 

insufficient spatial and temporal resolutions for adequate sampling (Alsdorf et al. 2007, 53 

Biancamaria et al. 2016).  54 

 To fill this observation gap, the Surface Water Ocean Topography (SWOT) mission 55 

(Biancamaria et al. 2016) was designed and is expected to be launched in early 2022 to provide 56 

the first global inventory of Earth’s surface water, including rivers, lakes, and wetlands. A joint 57 

venture between the National Aeronautics and Space Administration (NASA), Centre National 58 

d’Etudes Spatiales (CNES), Canadian Space Agency, and the United Kingdom Space, SWOT 59 

supports a nadir altimeter and a bistatic Ka-band (35.75 GHz) Radar Interferometer (KaRIn) 60 

(Fjortoft et al. 2014). The nadir altimeter allows intercomparison with Jason measurements, will 61 

help to continue the data record of nadir altimeters, and fills the gap between the two 60 km KaRIn 62 

swaths, one on each side of nadir. KaRIn provides high-resolution water surface elevation (WSE, 63 

the height of the river surface above a reference geoid), width, and slope measurements across a 64 
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combined 120 km swath for rivers wider than 100 m (Biancamaria et al. 2016, Pavelsky et al. 65 

2014, Rodriguez 2016). Since KaRIn uses Ka-band, instead of C- and Ku-band used by Jason and 66 

IceSAT, there is less signal penetration into soil, snow, and vegetation (Fjortoft et al. 2014, 67 

Biancamaria et al. 2016) enabling SWOT to collect measurements at finer spatial resolutions. 68 

Therefore, KaRIn will be the first satellite instrument that can fully resolve terrestrial surface water 69 

bodies with high altimetric accuracy. 70 

In the United States (U. S.), U. S. Geological Survey (USGS) stream gauges measure river 71 

stage at 3 mm accuracy, which translates to discharge accuracy of 5-10% (Hirsch and Costa 2004) 72 

under normal flow conditions. Generally, a 1% error in the effective stage input is equivalent to a 73 

3% error in the computed discharge (Boning 1992). In comparison, SWOT WSE is expected to 74 

have a minimum error of 10 cm for most rivers (Biancamaria et al. 2016) with estimated discharge 75 

errors around 35% (Durand et al. 2016). However, even though expected SWOT errors are much 76 

larger than the error of in situ gauges, in the absence of in situ gauges SWOT measurements will 77 

provide the best estimates of stage and discharge available. This work also highlights that SWOT 78 

observations along many points in the stream network have better error characteristics than a single 79 

observation, as errors between sites are not assumed to be correlated. 80 

Hydrologic models, including the National Oceanic and Atmospheric Administration 81 

(NOAA) National Water Model (NWM; OWP 2020) which is an instantiation of the Weather 82 

Research and Forecasting Hydrological extension package (WRF-Hydro; Gochis et al. 2018), are 83 

typically calibrated using in situ gauges. WRF-Hydro is a modeling framework that couples 84 

column land surface, overland and subsurface terrain routing, and channel routing models in a 85 

multiscale hydrologic process representation. WRF-Hydro is fully-distributed with multi-physics 86 

options and multi-scale capabilities, enabling it to represent processes on a wide range of spatial 87 
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scales (Yucel et al. 2015, Senatore et al. 2015, Arnault et al., 2018, Gochis et al. 2018). Since many 88 

parameterizations are used to characterize sub-scale processes in numerical models, parameter 89 

values are often hard-coded or contained in parameter tables. For example, 139 hard-coded 90 

parameters and 71 standard parameters were identified within Noah-MP by Cuntz et al. (2016). 91 

Running Noah-MP coupled with WRF-Hydro, Cuntz et al. (2016) found that hydrologic output 92 

fluxes are sensitive to two-thirds of the standard parameters and surface runoff is sensitive to many 93 

parameters of snow processes, soil, and vegetation. Even after calibration, many parameter values 94 

can vary widely from basin to basin, even between neighboring watersheds. Calibration seeks to 95 

minimize an objective function as a measure of physical realism by optimizing the parameter 96 

values of the most sensitive model parameters.  97 

Few, if any, alternatives are available if in situ observations are lacking. Following launch, 98 

SWOT will provide an additional source of discharge observations from a satellite platform, 99 

potentially providing more observations per basin than even some of the most robust in situ 100 

networks. This paper assesses the ability of SWOT discharge estimates to enable hydrological 101 

model parameter selection in regions devoid of in situ gauges. This paper also compares multi-102 

point parameter selection (e.g., Cao et al. 2006, Niraula et al. 2012), which will be made possible 103 

with SWOT observations, to the traditional single-point calibration approach. Previous multi-point 104 

calibration studies use robust gauge networks for their analysis, but in situ gauges have 105 

substantially lower observation error and higher temporal sampling than is expected of SWOT. 106 

Thus, this study is essential in understanding whether single- and multi-point parameter selection 107 

can be performed solely using SWOT observations. A related study, Nickles et al. (2020), 108 

compared hydrologic model multi-site calibration results using daily stream gauge observations, 109 

SWOT temporally-sampled discharge (no uncertainty), and SWOT temporally-sampled discharge 110 
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with uncertainty (systematic and random error), finding that SWOT achieves similar calibration 111 

results to in situ daily observations. However, this study differs from Nickles et al. (2020) by 112 

expanding results beyond the mid-latitudes and investigating the sensitivity of parameter selection 113 

to a potential range of SWOT measurement error. 114 

 115 

2. Methodology      116 

2.1 Experimental Design 117 

The design of our fraternal twin parameter selection experiment is shown in Figure 1. This 118 

Observing System Simulation Experiment (OSSE) is based on Elmer et al. (2020a,b). The fraternal 119 

twins, the “truth run” and “calibration run”, simulate model error by employing different 120 

hydrologic model representations in the model chain that generates streamflow. The experiment 121 

addresses whether the unknown, best parameters for the calibration run can be reliably selected 122 

(purple box in Figure 1) from observations of the truth run streamflow imparted with the expected 123 

observation error characteristics of the SWOT sensor. Successfully identifying the best parameters 124 

from observations is the core of model calibration. In this experiment, because we know the true 125 

streamflow values, we can evaluate under what conditions parameter selection is successful.  126 

Parameter, model, and observation errors are all ingredients of the experimental design. 127 

The parameter error is the quantity we seek to minimize in parameter selection and calibration via 128 

the objective function. The truth run was pre-calibrated to a single subdomain of the study and has 129 

a single realization (yellow box, Figure 1). In contrast, the calibration runs span the space of 130 

thirteen model parameters plus Manning’s roughness coefficient using 80 parameter sets. This is 131 

represented by the stack of calibration runs (red boxes) in Figure 1. Model error of the calibration 132 

runs relative to the truth run is generated by differences summarized by text in the respective boxes 133 
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in Figure 1. These differences produce errors between the runs in terms of 1) the fixed boundary 134 

conditions or geometry for different land surface model (LSM) resolutions and channel routing 135 

networks, 2) the LSM and channel parameters, particularly infiltration parameters, which depend 136 

on spatial and temporal model resolutions, and 3) streamflow physics. We note that both the 137 

atmospheric forcing variables and LSM models are identical between the runs but that errors or 138 

differences in the model runs start with and accumulate over time within the soil moisture 139 

representation and its two-way coupling to the overland and subsurface runoff models (Gochis and 140 

Chen 2003), which feeds back to LSM behavior and parameter differences. The differences 141 

between the fraternal twins are described in further detail below. 142 

The SWOT observation (discharge) errors are considered both systematic (biased) and 143 

random. 10,000 realizations of observation errors are applied to the true states before use in 144 

parameter selection to avoid drawing conclusions from a particular set of random errors. This set 145 

of 10,000 possible observation realizations is represented by the stack of observations (blue ovals) 146 

in Figure 1. Although results using as few as 1000 realizations would have led to similar 147 

conclusions, 10,000 realizations are used for this study to ensure robust results. The use of 10,000 148 

realizations is also consistent with other studies (e.g., Nickles et al. 2020). Over the 10,000 149 

observation sets, the probability of selection (identification as the best parameter set via a version 150 

of Nash-Sutcliffe Efficiency (NSE; McCuen et al. 2006) based on the observations) is computed 151 

for each of the 80 parameter sets (purple diamond, Figure 1). Finally, in the evaluation step (green 152 

diamond, Figure 1), NSE is computed from the true model states and the true rank of each 153 

parameter set is assigned, from best (low) to worst (high). The cumulative probability of parameter 154 

selection (under observation error) is plotted against rank. Do the true best parameter sets have a 155 
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reasonably high likelihood of selection in the presence of SWOT observation characteristics (and 156 

model error)?  157 

This paper focuses on sub-basins within the upper Tanana River and Susitna River basins 158 

in Alaska, which will be regularly observed by SWOT (Biancamaria et al. 2016) but have few in 159 

situ observations. These watersheds are delineated in Figure 2. The following subsections provide 160 

additional details for each step of the experimental design shown in Figure 1. 161 

 162 

2.2 Model configurations and parameters 163 

For both truth and calibration model runs in Figure 1, this study uses WRF-Hydro version 164 

5.0 (Gochis et al. 2018) configured to mimic the NWM v2.0 configuration (OWP 2020). The Noah 165 

land surface model with Multi-Parameterization options (Noah-MP; Niu et al. 2011) with a 1 km 166 

spatial resolution is used as the WRF-Hydro land surface model in both models, as well as Global 167 

Land Data Assimilation System (GLDAS) Version 2 (Rodell et al. 2004) meteorological forcing. 168 

Further details of the model configuration and physics parameterizations used are listed in Table 169 

1, which also lists the differences between the truth run and the calibration runs. 170 

The truth (calibration) run configuration has a model timestep of 1 (3) hours, performing 171 

overland and subsurface routing on a 100m (250m) grid, and uses the Muskingum-Cunge 172 

(diffusive wave) routing scheme for simulating streamflow within a channel model. GLDAS 173 

forcing data is available at three-hour increments and ingested into both configurations equally. 174 

The WRF-Hydro terrain routing grids (100m and 250m) and channel networks were derived from 175 

the WRF-Hydro GIS Pre-processing Toolkit v5.1 (Sampson and Gochis 2015) using the Weather 176 

Research and Forecasting (WRF; Skamarock et al. 2008) Preprocessing System geogrid file and 177 

the National Elevation Dataset (NED; U. S. Geological Survey 2017) Digital Elevation Model 178 



9 
 

(DEM) as inputs. Both the Muskingum-Cunge and diffusive wave schemes represent channels 179 

with an infinite depth, preventing overbank flow. However, the diffusive wave scheme allows 180 

backwater effects, whereas the Muskingum-Cunge scheme does not. Importantly, the channel 181 

networks are derived using different DEM spatial resolutions, leading to different spatial 182 

representations of the channel routing. 183 

Whereas we calibrate the truth run to in situ streamflow observations (described below), 184 

the calibration run configuration is uncalibrated: the point of our experiment being selection of 185 

parameters for the calibration run that most accurately simulate the truth run.  Eighty calibration 186 

parameter sets were created by perturbing Manning’s roughness coefficient (as a function of 187 

stream order) along with the thirteen most sensitive WRF-Hydro parameters (Cuntz et al. 2016; 188 

Elmer 2019). As shown in Table 2, these parameters span the LSM, overland/subsurface routing, 189 

groundwater bucket, and channel routing components of the model (model variable names shown 190 

in parentheses): the Clapp-Hornberger B exponent (bexp), soil moisture maximum (smcmax), 191 

saturated soil conductivity (dksat), soil infiltration parameter (refkdt), soil drainage parameter 192 

(slope), retention depth (RETDEPRTFAC), saturated soil lateral conductivity (LKSATFAC), 193 

groundwater bucket model max depth (Zmax), groundwater bucket model exponent (Expon), 194 

canopy wind parameter (CWPVT), maximum carboxylation at 25°C (VCMX25) which is related 195 

to the vegetation height (HVT), the Ball-Berry conductance relationship slope (MP), and the 196 

snowmelt parameter (MFSNO). The ranges assigned to these parameters make up the calibration 197 

parameter space. From this parameter space, a sample of parameter sets were obtained by randomly 198 

assigning values within the valid parameter ranges listed in Table 2 using a uniform distribution. 199 

The result is a good representation of parameter space, as shown by depiction of the distribution 200 

of the sampled parameter sets using a multidimensional scaling (MDS) transform (Pedregosa et 201 



10 
 

al. 2011) in Figure 3. MDS is a method by which distances in multi-dimensional space (in this 202 

case, a thirteen-dimensional parameter space) are transformed to two-dimensional distances while 203 

maintaining the true distance in the original multi-dimensional space as closely as possible. 204 

The truth model is calibrated using in situ USGS stream gauge observations at the basin 205 

outlet using the parameter space described above (Table 2). The mean of the linear NSE and the 206 

logarithmic NSE (NSEln) was used as the calibration metric, denoted as the mean NSE (NSEmean). 207 

NSEmean is akin to the metric used in the calibration of the NWM and is given by: 208 

𝑁𝑆𝐸𝑚𝑒𝑎𝑛  = (𝑤)𝑁𝑆𝐸 + (1 − 𝑤)𝑁𝑆𝐸𝑙𝑛          (1) 209 

where w is the weight of 0.5. NSEmean ranges from negative infinity to unity, where a value greater 210 

than zero indicates that the model provides a better estimate than the observation mean. Thus, the 211 

maximum NSEmean is sought. For single point parameter selection, NSEmean is the metric for 212 

evaluation. For multipoint parameter selection, a basin average NSEmean is calculated for 213 

evaluation, given by: 214 

𝑁𝑆𝐸𝑚𝑒𝑎𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑁𝑆𝐸𝑚𝑒𝑎𝑛𝑖
𝑃
𝑖=1

𝑃
          (2) 215 

where P is the number of observed points in the sub-basin or watershed. 216 

As the calibration process is computationally expensive, calibration of the truth simulation 217 

was only performed for the Chena River watershed (within the upper Tanana River basin; 218 

watershed outlet denoted by point I in Figure 2) and halted after 75 model iterations. The 219 

parameters identified using the Chena River calibration were transferred to the full domain. 220 

Although the Chena River calibration may not transfer well to the entire upper Tanana River and 221 

Susitna River basins, the resulting model output is treated as truth for this experiment and therefore 222 

a perfect calibration is not necessary. Certain parameters (e.g., infiltration parameters) are strongly 223 

scale dependent, so the calibration of the truth model, in which the model resolution and 224 
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streamflow physics differ from the 250-m model, is not directly transferrable to the 250-m model. 225 

The truth run provides the “true” geolocation and discharge time series (q) for the purposes of this 226 

experiment.  227 

A spin-up period of eight years (March 2009 - March 2017) using default parameter values 228 

(Table 2) was performed, designed to allow for adequate accumulation of groundwater and 229 

snowpack and permitting each 250-m simulation to reach equilibrium. The March 2017 restart 230 

files from the spin-up were used to restart the 250-m simulations at March 2011 using their 231 

respective parameter set and integrated forward in time in an open loop configuration. The periods 232 

of March – September 2012 for the Susitna River basin and March – September 2014 for the upper 233 

Tanana River basin were used during analysis to determine the utility of SWOT observations in 234 

model parameter selection. 235 

 236 

2.3. Generating Proxy SWOT Discharge 237 

Since real SWOT data are not yet available, proxy SWOT observations were generated for 238 

this analysis. Proxy SWOT data have been used by multiple studies to quantify assimilation 239 

impacts on river modeling and reservoir management (Andreadis et al. 2007; Biancamaria et al. 240 

2011, Munier et al. 2015; Emery et al. 2020; Revel et al. 2021; Yang et al. 2019; Wongchuig-241 

Correa et al. 2020) and develop procedures for estimating river bathymetry (Durand et al. 2008, 242 

2010, 2014; Yoon et al. 2012). Furthermore, Pedinotti et al. (2014) used synthetic SWOT data to 243 

optimize Manning roughness coefficients in the Interactions between Soil, Biosphere, and 244 

Atmosphere-Total Runoff Integrating Pathways System (ISBA-TRIP) continental hydrologic 245 

system using data assimilation, demonstrating that SWOT data can be used for calibration. 246 
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The truth model q is corrupted with random and systematic error following a Gaussian 247 

distribution (N) with mean β and standard deviation 𝜖: 248 

𝑞′ = 𝑞(1 + 𝑁(𝛽, 𝜖)), (3) 249 

where 𝑞 = (𝑞𝑖,𝑡0
, 𝑞𝑖,𝑡1

, … , 𝑞𝑖,𝑡𝑛
) is a discharge time series for the i-th channel reach, 𝑞′ is the 250 

corrupted discharge (i.e., the proxy SWOT discharge estimate), β is the relative bias, and 𝜖 is the 251 

relative discharge error. For the analysis in Section 3.1, 𝜖 = 0.35 is used, which is roughly 252 

equivalent to the relative root mean squared error (RMSE) of instantaneous discharge estimated 253 

by Durand et al. (2016). β is constant with time for each q, but varies in space (across channel 254 

reaches). Since an equivalent increase in water surface height will yield a larger increase in 255 

discharge for a river with a larger cross-section, uncertainty in q’ naturally increases as q increases. 256 

However, a single series of q’ does not provide an adequate sampling of random error and 257 

bias by which to assess calibration potential. Rather, it gives a snapshot of only one possible 258 

scenario. Figure 4 illustrates this point. The blue dots indicate a single time series of q’, containing 259 

some points in which the discharge random errors are small and depart very little from the truth 260 

value but also points that extend into the 2-σ error range. A single scenario may be skewed if only 261 

small random errors are present (𝑞′ ≈ 𝑞), especially at key points along the time series, which 262 

would enable superior parameter selection and suggest better results than could actually be 263 

expected. Conversely, a scenario containing frequent large errors, parameter selection would 264 

underperform. To sample a broad spectrum of the possible outcomes stemming from a SWOT 265 

observation set laden with error, Monte Carlo methods were employed to create 10,000 randomly-266 

perturbed sets of q’ per sub-basin. Thus, each of the 10,000 error realizations of q’ is characterized 267 

by random white noise (𝜖) and time-constant systematic bias (𝛽), where the value of β is randomly 268 

drawn from N(0.00, 0.20) based on Hagemann et al. (2017) to account for relative bias prior to 269 
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applying Eq. (3). Following the creation of the 10,000 sets, the probability of successful sub-basin 270 

parameter selection was calculated. 271 

To obtain q’ with appropriate orbit characteristics, it was spatially sampled based on the 272 

CNES proxy SWOT orbit (Aviso+ 2015) with a simulated start date of 1 March 2012. First, the 273 

cross-track distance of each WRF-Hydro reach from the proxy SWOT orbit at each overpass was 274 

calculated. For each pass, only reaches with cross-track distances of 10-60 km (i.e., within the 275 

SWOT measurement range) and with a Strahler streamorder greater than or equal to five (used to 276 

approximate rivers with widths greater than 50 m) were extracted, following the methodology of 277 

Elmer et al. (2020a), which showed that Alaskan rivers with a streamorder greater than or equal to 278 

five will generally be observable by SWOT. Figure 3 compares the truth q and q’ for sub-basin E, 279 

where q’ is used to calibrate the 250-m model following the method described in Section 2.3.  280 

 281 

2.3. Parameter selection from proxy SWOT discharge observations 282 

We purposely use the term "parameter selection" to differentiate our overall approach from 283 

calibration for the following reasons. The parameter sets run through the model and ultimately 284 

judged by the objective function are generated a priori through combinations of uniformly sampled 285 

distributions on each parameter. As such, the parameters sets being discriminated via the objective 286 

function are generally not "close" in parameter space (Figure 3). A true calibration approach would 287 

consider points with a similar spacing in parameter space, but would also include parameter sets 288 

much closer together in the quest to find minima of the objective function. This paper does not 289 

study the ability to accurately find local minima of the objective function using SWOT 290 

observations. Doing so would require understanding the relative sensitivities of the objective 291 

function to observation error and to distance in parameter space. Rather, we examine the potential 292 
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for SWOT observations to give a more regional, less detailed picture of the objective function. 293 

Given the observation and error characteristics of SWOT, including its spatially distributed nature, 294 

and a finite collection of parameter sets, can we accurately select the best parameter set in this 295 

collection? Our results provide an encouraging basis for pursuing model calibration using SWOT 296 

observations. 297 

To review and summarize the experiment design (Figure 1), the 250-m model described in 298 

Section 2.1 represents an uncalibrated hydrologic model of an ungauged basin (a single red box, 299 

Figure 1). For this basin, an infinite number of parameter sets can be selected from the parameter 300 

space for calibration and the correct solution (parameter set) is unknown. The goal is to find the 301 

best simulation of streamflow over a finite sample of parameter space. A sample size of 80 302 

parameter sets (red stack of boxes, Figure 1) was chosen for this study to minimize computational 303 

requirements. While the parameter set can certainly be expanded to more fully represent the whole 304 

parameter space, the increased computational requirements may reduce the feasibility of this 305 

method for users without access to large computing systems. 306 

This study ensures the 250-m model is blind to the calibration of the truth model so that 307 

the calibrated parameter set used by the truth model does not inform the selection of the parameter 308 

set sampling for the 250-m model. In the absence of in situ gauges, the only source of regular 309 

discharge observations for ungauged basins will be from the SWOT mission. The q’ values derived 310 

in Section 2.3 are representative of the SWOT discharge observations that will be available post-311 

launch, and are used to calibrate the model by finding the best parameter set from the 80 sample 312 

parameter sets. A comparison between the 100-m truth model, the 250-m simulations, and the 313 

proxy SWOT discharge estimates is provided in Table 3, with example data shown in Figure 4. 314 
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For this particular point, there are 38 SWOT overpasses from March 1 – September 15, yielding 315 

an observation approximately every 5 days, or 4 observations per repeat cycle. 316 

Channel reaches were spatially matched between the truth and calibration model channel 317 

networks for evaluation, eliminating any matches separated by a 1 km or greater which are 318 

considered unrelated. Thus, a total of 10 basins and 991 channel reaches were evaluated. All basins 319 

were modeled simultaneously, but evaluated separately. Single-point parameter selection for the 320 

uncalibrated 250-m model is performed using NSESWOT, given as the NSEmean between the 321 

discharge for each simulation and q’ at each sub-basin outlet in Figure 2. Multi-point parameter 322 

selection is evaluated with 𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the basin average NSESWOT for all observed points P 323 

(Equation 2). The 250-m simulation with the maximum NSESWOT or 𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (the best match 324 

parameter set) is chosen, and the parameter set used by that simulation for the thirteen most 325 

sensitive WRF-Hydro parameters is selected as the “correct” parameter set. 326 

 327 

2.4. Evaluation of parameter selection 328 

The NSEmean was also calculated between each 250-m simulation and the truth model q 329 

(NSETRUTH) at each basin outlet for comparison with NSESWOT for single point parameter selection 330 

evaluation. Multi-point parameter selection is similar to single-point selection except that 331 

𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (the basin-average values for all observable channel reaches within each 332 

sub-basin) is used. The 250-m simulations are separately ranked according to their NSESWOT 333 

(𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) and NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) values for single point (multi-point) parameter selection 334 

with the member with the best (maximum) value being assigned a ranking of one, and the member 335 

with the worst (minimum) value assigned a ranking of 80. Expressing the cumulative rank of 336 

NSESWOT (𝑁𝑆𝐸𝑆𝑊𝑂𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) as a function of NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) reveals whether single (multi) point 337 
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parameter selection using SWOT observations is effective. For the purpose of drawing conclusions 338 

in this paper, a successful parameter selection is achieved for a watershed if the selected parameter 339 

set is contained within the best ten sets according to the NSETRUTH (𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) rank with a >80% 340 

probability. This criteria is subjective, thus plots showing the full range of probabilities are 341 

included. For example, in Figure 5a the y-axis shows the cumulative probability whereas the x-342 

axis shows the parameter set rank. The cumulative probability is essentially the fraction of 343 

observation sets (10,000 sets in total). Thus, we see that for sub-basin G (pink line), approximately 344 

0.90 (90%) of the 10,000 observation sets rank the true best parameter set in the top ten (indicated 345 

by vertical black dashed line). Since this value is above the 0.8 (80%) threshold, the parameter 346 

selection is successful. 347 

 348 

2.5 Sensitivity to measurement error and temporal frequency 349 

Additional analysis examines the sensitivity of the parameter selection results to 350 

measurement error (Section 3.2) and the temporal frequency of SWOT observations (Section 3.3). 351 

Although the measurement error of SWOT instantaneous discharge is estimated to have a relative 352 

RMSE of 35%, this error may be higher (Hagemann et al. 2017; Durand et al. 2016). Conversely, 353 

the incorporation of ancillary data in the discharge algorithms or using a multialgorithm approach 354 

may reduce error further (Durand et al. 2016). Thus, determining the sensitivity of these results to 355 

measurement error is useful in evaluating the range of possible impacts for SWOT, in particular 356 

with respect to model calibration. Thus, q’ is calculated with 𝜖 values of 0.0, 0.2, 0.35, 0.5, 0.75, 357 

and 1.0. The temporal frequency of SWOT observations is inherently tied to latitude due to SWOT 358 

orbit characteristics (relatively narrow swath compared to satellite imagers and high inclination 359 

angle). Thus, polar regions are observed more frequently than the midlatitudes, and the 360 
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midlatitudes are observed more frequently than the tropics. Biancamaria et al. (2016) show that 361 

SWOT will observe the tropics (0-30°) 1-2 times per repeat cycle, the midlatitudes (30-60°) 2-4 362 

times per repeat cycle, and polar regions (60-90°) 3-7 times per repeat cycle. 363 

To assess the sensitivity of parameter selection results to temporal frequency and determine 364 

whether this process is viable at lower latitudes, the same Alaskan sub-basins are considered but 365 

the observation frequency of q’ is reduced to mimic SWOT observation of mid- and low-latitudes 366 

basins. For the midlatitudes, the observation frequency of q’ was halved with respect to that of 367 

Alaska. For the tropics, the observation frequency was reduced by a factor of four. The sensitivity 368 

of model parameter selection to measurement error and the temporal frequency of observations is 369 

calculated by: 370 

𝑆 =
𝜕𝑌

𝜕𝑋
,          (4) 371 

where Y is the probability of selection and X is the measurement error ε or number of observations 372 

per repeat cycle. 373 

 374 

3. Results and discussion 375 

3.1. Parameter selection 376 

Figure 5a presents the cumulative probability that the true best parameter set is selected via 377 

NSESWOT at or above (equal or higher ranking) each rank position for a random error ϵ=0.35 using 378 

single-point parameter selection. For example, if the rank 10 likelihood for a given basin is 80%, 379 

then the parameter set selected by NSESWOT is one of the ten highest-ranked sets with respect to 380 

the truth for 8,000 of the 10,000 Monte Carlo simulations. For five of the ten sub-basins, the 381 

selected parameter set is ranked in the top ten with a >80% probability, meeting our criteria for 382 

success. These five sub-basins plus sub-basin I also rank in the top five with a >60% probability. 383 
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Notably, two sub-basins (B and D) display much poorer results than the other sub-basins. Sub-384 

basin B selects a parameter set in the top 50 with less than a 30% probability, indicating that the 385 

best parameter set as determined by NSETRUTH is poorly ranked by this parameter selection 386 

approach. Sub-basins B and D experience substantial diurnal oscillations in streamflow 387 

presumably due to snowmelt during the warm season resulting in a flashy hydrograph. Table 4 388 

provides the Richards-Baker Flashiness Index (R-B Index; Baker et al. 2004) for each sub-basin 389 

as a quantitative measure of basin flashiness. Although daily discharge is typically used in the 390 

calculation, Baker et al. (2004) suggests the use of hourly discharge when diurnal oscillations are 391 

significant, thus hourly discharge is used in the calculation in Table 4. These results suggest that 392 

SWOT is not well-suited for parameter selection or calibration in basins with rapidly changing 393 

discharge, as the sporadic nature of the SWOT temporal sampling along with measurement 394 

uncertainty does not allow a good sampling of the truth hydrograph. Consequently, even the best 395 

parameter set has a poor NSESWOT, making it difficult to extract the correct parameter set using 396 

this methodology. 397 

Figure 6 compares the NSETRUTH for each sub-basin shown in Figure 2. The NSETRUTH 398 

curves for both B and D are flatter than for the other sub-basins, indicating that the sample 399 

parameter set spread is narrower. Thus, there is less variation among the simulations, resulting in 400 

lower ranked parameter sets based on NSETRUTH to be more frequently ranked highly based on 401 

NSESWOT. Additionally sub-basin B has the lowest NSETRUTH of any sub-basin for its highest 402 

ranked set with a value less than 0.75. Figure 7 maps the true rank of each parameter set selected 403 

by NSESWOT and displays a histogram of these ranks for all SWOT observable channel reaches in 404 

the domain. Results are generally very good for the entire upper Tanana basin and most of the 405 

Susitna basin, with the selection of a highly-ranked (top 10) parameter set for most of the channel 406 
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reaches. However, the worst performance occurs in the same outlying sub-basins B and D from 407 

Figure 6, with sub-basin B clearly demonstrating the poorest results. Thus, in addition to poor 408 

SWOT sampling, it is also apparent that the simulation does not capture the physical processes of 409 

these flashy sub-basins as well as for the other sub-basins, indicating that the sample parameter set 410 

does not contain the true parameter set and resulting in the inability to achieve a good parameter 411 

selection using the approach in this paper. However, this shortcoming highlights several potential 412 

issues with parameter selection. Adequate model spin-up and configuration are necessary to ensure 413 

significant physical processes are being adequately captured by the model and that physical realism 414 

is adequate. Second, parameter sets which appropriately cover the parameter space may also be 415 

key to differentiating model simulations (Sharma et al. 2019, Hagedorn et al. 2012, Weigel et al. 416 

2008, 2009). A larger parameter set or a parameter sampling strategy that undertakes large searches 417 

across parameter space may benefit the parameter selection at several sites in this study. 418 

 Figure 8a, interpreted in the same manner as Figure 5a, presents the cumulative probability 419 

of successful parameter selection for a random error 𝜖 = 0.35 using multi-point parameter 420 

selection. Results improve compared to single-point parameter selection. For nine out of ten (90%) 421 

of the sub-basins, the selected parameter set has a true rank in the top ten with a >80% probability, 422 

meeting our criteria for successful parameter selection. The only sub-basin that again does not 423 

achieve successful calibration is sub-basin B for the same reasons as discussed above. Six basins 424 

also identify parameter sets in the top five true parameter sets with >60% probability.  425 

 426 

3.2. Sensitivity to measurement error 427 

 Reducing the discharge random error ε from 0.35 to 0.20 results in the success probabilities 428 

shown in Figures 5b and 8b for single-point and multi-point parameter selection, respectively. As 429 
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expected, the probability that the selected parameter set is highly ranked increases as random error 430 

decreases, with the exception of sub-basin B for reasons discussed in Section 3.1. For single-point 431 

parameter selection (Fig. 5b), 50% of sub-basins are assigned a top-ten ranked parameter set with 432 

a >95% cumulative probability, while 70% of sub-basins meet the definition of successful 433 

parameter selection. 60% of sub-basins also display a >80% probability of selecting a parameter 434 

set ranked in the top five. These statistics are improved further using multi-point parameter 435 

selection (Fig. 8b) with 90% of sub-basins achieving successful parameter selection and 70% of 436 

sub-basins with a >95% cumulative probability.  Figure 9 summarizes the effect of decreasing 𝜖, 437 

showing that as random error decreases the likelihood of successful parameter selection generally 438 

increases, regardless of observation frequency. However, decreasing 𝜖 below 0.35 does not yield 439 

improved results for multi-point parameter selection except for the tropics, suggesting that 440 

systematic bias is the predominant factor in preventing successful parameter selection when 𝜖 is 441 

less than 0.35. Conversely, as 𝜖 increases above 0.35 the likelihood of successful parameter 442 

selection quickly drops regardless of observation frequency with single (multi-) point parameter 443 

selection being successful for 0% (40%) of sub-basins for 𝜖 = 0.50. 444 

 The sensitivity of the probability of successful parameter selection is evaluated by 445 

considering a 0.10 decrease in observation random error ε within the 0.20 – 0.50 range.  The mean 446 

sensitivity is calculated over all channel reaches. The mean sensitivity for each rank position is 447 

shown in Figure 10 with single-point and multi-point selection sensitivity as blue dashed and solid 448 

lines, respectively. For single-point parameter selection, the probability is most sensitive at ranks 449 

9-13, with a maximum sensitivity over 6% per 0.10 decrease in 𝜖. Sensitivity gradually declines 450 

for ranks beyond 13, which is to be expected since the cumulative probability, as shown in Figure 451 

5, begins to level off for lower rank positions for most sub-basins. For multi-point parameter 452 
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selection, random error sensitivity peaks at rank 7 with a maximum sensitivity over 7% per 0.10 453 

decrease in 𝜖, and rapidly decreasing beyond rank 7. The use of multi-point parameter selection 454 

yields a slightly more robust result parameter selection, as the sensitivity is lower than single-point 455 

parameter selection at the rank 10 threshold. This is further supported by Figure 9, in which an 456 

increase in 𝜖 from 0.20 – 0.50 results in a smaller reduction in success for multi-point compared 457 

to single point parameter selection. For both single- and multi-point parameter selection, a sizeable 458 

improvement in success can be expected if the SWOT observation error can be reduced through 459 

the use of ancillary datasets. 460 

 461 

3.3 Sensitivity to temporal frequency of SWOT observations 462 

Single-point parameter selection is very sensitive to the temporal frequency of SWOT 463 

observations. As shown in Figure 9, for 𝜖 = 0.35 successful parameter selection is reduced from 464 

60% (polar) to 10% (tropics) of sub-basins, whereas for 𝜖 = 0.20 it is reduced from 70% of polar to 465 

30% of tropical sub-basins. For multi-point parameter selection, probability of success is reduced 466 

from 90% to 50% of sub-basins for 𝜖 = 0.35 and from 90% to 70% of sub-basins for 𝜖 = 0.20 for the 467 

same reduction in observation frequency. Figure 11 compares the cumulative probability curves for 468 

the midlatitudes and the tropics using multi-point parameter selection, which alongside Figure 8a, 469 

shows that 60% of sub-basins were largely unaffected by the four-fold decrease in observation 470 

frequency. 471 

The sensitivity due to a single additional SWOT observation per repeat cycle for each rank 472 

position is shown in Figure 10 with single-point and multi-point parameter selection identified by 473 

the orange dashed and solid lines, respectively. In calculating sensitivity to observation frequency, 474 

five observations per repeat cycle (21 days) is assigned to the polar region, three observations per 475 
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repeat cycle is given to the midlatitudes, and 1.5 observations per repeat cycle  is used for the 476 

tropics. For example, in calculating sensitivity between the polar region and tropics, 𝜕𝑋 = 5 −477 

1.5 = 3.5. The magnitudes and patterns are similar to that of observation error sensitivity. For 478 

single-point parameter selection, maximum sensitivity is observed between ranks 7-10, peaking 479 

near 5% per additional observation. For multi-point parameter selection, sensitivity peaks at 2% 480 

but drops to approximately 1% beyond rank 10. Clearly, while the number of SWOT observations 481 

per repeat cycle noticeably affects the likelihood of successful parameter selection using single-482 

point parameter selection, multi-point selection is much more robust. Similar success using multi-483 

point parameter selection is achieved for polar regions, midlatitudes, and tropics for the full range 484 

of evaluated 𝜖. Further, a large majority of sub-basins achieved successful parameter selection 485 

regardless of observation frequency for 𝜖 ≤ 0.35, demonstrating that reduced observation error 486 

can compensate for lower observation frequency. 487 

 488 

4. Conclusions 489 

Using Monte Carlo methods, we evaluate parameter selection for an uncalibrated 250-m 490 

WRF-Hydro model. We examine single- and multi-point objective function parameter selection 491 

using simulated SWOT observations in regions unserved or underserved by in situ gauges. The 492 

model parameter space is sampled to create an assortment of parameter sets for which the 250-m 493 

model is run. Proxy SWOT discharge estimates were derived from an OSSE following the 494 

methodology of Elmer et al. (2020a, b). As the true values of streamflow are known, we can 495 

evaluate the selection of model parameters based on the comparison of model discharge 496 

simulations with proxy SWOT streamflow observations.  497 
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The results indicate that the use of multi-point parameter selection is advantageous over 498 

single-point parameter selection. In effect, the spatially distributed nature of the SWOT 499 

observations compensates for systematic and random nature of observation error. In fact, 500 

successful parameter selection is largely independent of random error for 𝜖 ≤ 0.35. The high spatial 501 

coverage of observations from SWOT also compensates for the lack of their temporal frequency 502 

in mid-latitude and tropical basins, perhaps due to spatiotemporal correlations in streamflow (Paiva 503 

et al. 2015, Yang et al. 2019, Fisher et al. 2020). Further, this study finds that SWOT can 504 

successfully be used for hydrologic model parameter selection despite the non-uniform space-time 505 

sampling, agreeing with Nickles et al. (2020). However, whereas Nickles et al. (2020) results are 506 

constrained to mid-latitude river basins, this study finds that this conclusion applies to nearly the 507 

full range of SWOT temporal sampling. Even with larger errors than in situ gauges, this study 508 

shows that SWOT discharge estimates can provide adequate accuracy and temporal sampling to 509 

enable parameter selection for SWOT observable river basins globally with the exception of basins 510 

experiencing significant variability (flashy basins). In regions devoid of in situ observations or 511 

with relatively scarce stream gage networks, this study demonstrates that SWOT will provide 512 

valuable observations for calibrating hydrologic models.  513 

This study does not account for reprocessing of discharge estimates occasionally 514 

throughout the SWOT mission, which is a planned activity to improve accuracy. Actual SWOT 515 

observations are expected by mid-2022, so these results are timely in preparing to apply SWOT 516 

data immediately following launch. While SWOT has many societal and research applications that 517 

rely on near-real-time SWOT measurements (e.g., data assimilation, inundation mapping), the use 518 

of SWOT observations for model parameter selection or calibration is not constrained by product 519 

latency or mission lifetime, but extend beyond the mission end.  520 
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Figure 1. Design of “fraternal twin” experiment for evaluating the utility of (simulated) SWOT 721 

for hydrologic parameter selection with the WRF-Hydro model: Do the space-time sampling 722 

and observation error characteristics of SWOT permit accurate calibration? 723 

Figure 2. Study area within the Susitna River and upper Tanana River basins. The letters indicate 724 

sub-basins A-J with colors corresponding with Figure 5. Streams of order five and greater are 725 

designated in blue. 726 

Figure 3. Distribution of the sampled parameter sets (green) used in this study visualized using 727 

multidimensional scaling. These dimensions are generically labeled as they do not readily 728 

correspond to the original parameter space. For reference, the calibrated parameter set for the 729 

truth model is shown in black. 730 

Figure 4. 250-m simulations, truth simulation, 1-σ and 2-σ discharge error ranges, and a sample 731 

proxy SWOT discharge observation set (i.e., hydrograph) for a single point corresponding to 732 

the sub-basin E outlet. 733 

Figure 5. Percent of sub-basins with successful single-point parameter selection for a given 734 

cumulative probability and parameter set rank for a discharge error ε of a) 0.35 and b) 0.20. 735 

Rank is determined by NSETRUTH. The vertical dashed line marks the 10th-ranked member. 736 

Figure 6. NSETRUTH for each point A-J in Figure 2. Parameter set rank is determined by 737 

NSETRUTH at the basin outlet (single-point). 738 

Figure 7. a) Map and b) histogram depicting the true rank of selected parameter set for 𝜖 = 0.35 739 

in Alaska. All SWOT observable channel reaches are shown. Basin borders match those in 740 

Figure 2. Zero indicates the best true rank. 741 
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Figure 8. Same as Figure 5, but for multi-point parameter selection showing results for a) ε=0.35 742 

and b) ε=0.20. 743 

Figure 9. Probability of successful single and multi-point parameter selection (%) for each 744 

latitude zone as a function of relative measurement error (ε). 745 

Figure 10. Mean sensitivity (% change per unit) of the probability that the selected parameter set 746 

is ranked at or above each rank position with respect to changes in proxy SWOT discharge 747 

error ε (blue) and SWOT observation frequency (orange) for single-point (dashed) and multi-748 

point (solid) parameter selection. Since error sensitivity is likely non-linear, note that this 749 

evaluation should not be extrapolated beyond 0.20 – 0.50. Units are shown in the legend in 750 

parentheses, and rank is determined by NSETRUTH and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The vertical dashed line 751 

marks the 10th-ranked member. 752 

Figure 11. As in Figure 8a, but for proxy SWOT mimicking observation frequency for a) 753 

midlatitudes and b) tropics as opposed to Alaska. Results are for multipoint parameter 754 

selection. 755 
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Tables 757 

Table 1. Noah-MP and WRF-Hydro parameterization options used. More information about these 758 

options is available in Niu et al. (2011) and Gochis et al. (2018). 759 

Noah-MP Namelist Option Namelist Value 

Dynamic Vegetation Option 4 (table leaf area index, maximum GVF) 

Canopy Stomatal Resistance Option 1 (Ball-Berry) 

BTR Option 1 (Noah) 

Runoff Option 3 (free drainage) 

Surface Drag Option 1 (M-O) 

Frozen Soil Option 1 (linear effects) 

Supercooled Water Option 1 (no iteration) 

Radiative Transfer Option 3 (two-stream applied to vegetated fraction) 

Snow Albedo Option 2 (CLASS) 

PCP Partition Option 1 (Jordan 1991) 

TBOT Option 2 (original Noah) 

Temp Time Scheme Option 3 (semi-implicit) 

Glacier Option 2 (original Noah) 

Surface Resistance Option 4 (Sakaguchi and Zeng for non-snow, snow surface resistance for snow) 

WRF-Hydro  

Channel Routing Option Truth run: 2=Muskingum-Cunge,  

Calibration runs: 3=Diffusive Wave (gridded) 

Overland Flow Routing Option 1 (D8) 

Groundwater/Baseflow Routing Option 1 (Exponential Bucket) 

Resolutions  

LSM Timestep Truth run: 1 hr 

Calibration runs:3 hr 

LSM Spatial 1 km 

Overland/Suburface Spatial Truth: 100 m 

Calibration runs: 250 m 

 760 
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Table 2. Parameter table listing the model parameters comprising parameter space. The listed value 762 

was applied either as a multiplicative factor (Mult) or as an absolute (substituted) value (Abs). 763 

Component 
Parameter (Variable 

name) 
Variable name Scaling 

Minimum 

Value 

Maximum 

Value 

Default 

value 

LSM 

Clapp-Hornberger B 

exponent 

bexp Mult 0.4 1.9 1.0 

Soil moisture maximum smcmax Mult 0.8 1.2 1.0 

Saturated soil conductivity dksat Mult 0.2 10.0 1.0 

Soil infiltration parameter refkdt Abs 0.1 4.0 0.6 

Soil drainage parameter slope Abs 0.0 1.0 0.1 

Canopy wind parameter CWPVT Mult 0.5 2.0 1.0 

Maximum carboxylation at 

25°C 

VCMX25 Mult 0.6 1.4 1.0 

Ball-Berry conductance 

relationship slope 

MP Mult 0.6 1.4 1.0 

Snowmelt parameter MFSNO Abs 0.5 3.5 2.0 

Overland/ 

subsurface 

Retention depth RETDEPRTFAC Abs 0.1 10.0 1.0 

Saturated soil lateral 

conductivity 

LKSATFAC Abs 10 10 000 1000 

Bucket 

Groundwater bucket 

maximum depth 

Zmax Abs 10 250 25 

Groundwater bucket 

exponent 

Expon Abs 1.0 8.0 1.75 

Channel 
Manning’s roughness 

coefficient 
MannN 

Abs Minimum 

Value 

Maximum 

Value 

Default 

value Order 

1 0.45 0.65 0.55 

2 0.25 0.45 0.35 

3 0.125 0.25 0.15 

4 0.085 0.125 0.10 

5 0.060 0.085 0.07 

6 0.045 0.060 0.05 

7 0.035 0.045 0.04 

8 0.025 0.035 0.03 

9 0.015 0.025 0.02 

10 0.005 0.015 0.01 

  764 



38 
 

Table 3. Comparison between truth model, 250-m model, and proxy SWOT time series. 765 

 Truth (100-m) model 250-m model Proxy SWOT 

Overland Routing 

Spatial Resolution 
100 m 250 m Not Applicable 

Channel Routing 

Scheme 

Muskingum-Cunge 

(vector) 

Diffusive Wave 

(gridded) 
Not Applicable 

Temporal 

Resolution 
1-hour 3-hour Irregular 

Calibration 

Based on Chena River 

watershed calibration 

using USGS gauges 

Uncalibrated Not Applicable 

Sets 1 80 10,000 

 766 

Table 4. Richards-Baker Flashiness Index (R-B Index) for each sub-basin calculated using 767 

hourly discharge from the analysis period. 768 

Sub-basin R-B Index 

A 0.66 

B 2.02 

C 0.76 

D 1.30 

E 0.66 

F 0.26 

G 1.06 

H 0.90 

I 0.54 

J 0.20 

  769 
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Figures770 

 771 

Figure 1. Design of “fraternal twin” experiment for evaluating the utility of (simulated) SWOT 772 

for hydrologic parameter selection with the WRF-Hydro model: Do the space-time sampling and 773 

observation error characteristics of SWOT permit accurate calibration?  774 
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 775 

 776 

Figure 2. Study area within the Susitna River and upper Tanana River basins. The letters indicate 777 

sub-basins A-J with colors corresponding with Figure 5. Streams of order five and greater are 778 

designated in blue. 779 
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 781 

Figure 3. Distribution of the sampled parameter sets (green) used in this study visualized using 782 

two-dimensional multidimensional scaling. These dimensions are generically labeled as they do 783 

not readily correspond to the original parameter space. For reference, the calibrated parameter set 784 

for the truth model is shown in black. 785 
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 787 

Figure 4. 250-m simulations, truth simulation, 1-σ and 2-σ discharge error ranges, and a sample 788 

proxy SWOT discharge observation set (i.e., hydrograph) for a single point corresponding to the 789 

sub-basin E outlet. 790 
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 792 

(a)      (b) 793 

Figure 5. Percent of sub-basins with successful single-point parameter selection for a given 794 

cumulative probability and parameter set rank for a discharge error ε of a) 0.35 and b) 0.20. Rank 795 

is determined by NSETRUTH. The vertical dashed line marks the 10th-ranked member. 796 
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 798 

Figure 6. NSETRUTH for each point A-J in Figure 2. Parameter set rank is determined by 799 

NSETRUTH at the basin outlet (single-point). 800 

  801 



45 
 

 802 

(a)      (b) 803 

Figure 7. a) Map and b) histogram depicting the true rank of selected parameter set for 𝜖 = 0.35 804 

in Alaska. All SWOT observable channel reaches are shown. Basin borders match those in 805 

Figure 2. Zero indicates the best true rank. 806 
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 808 

(a)      (b) 809 

Figure 8. Same as Figure 5, but for multi-point parameter selection showing results for a) ε=0.35 810 

and b) ε=0.20. 811 

 812 

Figure 9. Probability of successful single and multi-point parameter selection (%) for each 813 

latitude zone as a function of relative measurement random error (ε). 814 
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 816 

Figure 10. Mean sensitivity (% change per unit) of the probability that the selected parameter set 817 

is ranked at or above each rank position with respect to changes in proxy SWOT discharge error 818 

ε (blue) and SWOT observation frequency (orange) for single-point (dashed) and multi-point 819 

(solid) parameter selection. Since error sensitivity is likely non-linear, note that this evaluation 820 

should not be extrapolated beyond 0.20 – 0.50. Units are shown in the legend in parentheses, and 821 

rank is determined by NSETRUTH and 𝑁𝑆𝐸𝑇𝑅𝑈𝑇𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The vertical dashed line marks the 10th-ranked 822 

member.  823 
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 825 

(a)      (b) 826 

Figure 11. As in Figure 8a, but for proxy SWOT mimicking observation frequency for a) 827 

midlatitudes and b) tropics as opposed to Alaska. Results are for multipoint parameter selection. 828 


