
P
os
te
d
on

21
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
59
93
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Significance and Application of Velocity Derivative Gradient in

Petroleum Exploration

Xiao Wang1, Lin Pan1, Sheng He1, Shuyang Chen2, Honggang Liang2, and Lixia Liang2

1China University of Geosciences
2Sinopec Northwest Oilfield Company

November 21, 2022

Abstract

Velocity is one of the fundamental data obtained from seismic and it is the direct behavior of the solids and fluids in lithosphere.

Here we present an analysis of the derivative gradient of seismic velocity which can help identify the featured boundary of

favorable petroleum accmulations such as sedimentary facies boundary, faults, and flow unit edges. The derivative gradient can

be calculated both horizontally and vertically, thus it can help discriminate favorable targets in three-dimensional. We find the

application of derivative gradient to detect or enhance edge is relatively mature in gravity and geomagnetic analysis but rarely

mentioned in seismic nor in petroleum exploration. We believe we can make better use of the seismic velocity data by this

means as it is quite efficient in pinpointing the favorable petroleum targets in subsurface with precisions of tens-of-meter scale,

depending on the horizontal resolution of seismic survey.
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Abstract 17 

Velocity is one of the fundamental data obtained from seismic and it is the direct behavior of the 18 

solids and fluids in lithosphere. Here we present an analysis of the derivative gradient of seismic 19 

velocity which can help identify the featured boundary of favorable petroleum accmulations such 20 

as sedimentary facies boundary, faults, and flow unit edges. The derivative gradient can be 21 

calculated both horizontally and vertically, thus it can help discriminate favorable targets in 22 

three-dimensional. We find the application of derivative gradient to detect or enhance edge is 23 

relatively mature in gravity and geomagnetic analysis but rarely mentioned in seismic nor in 24 

petroleum exploration. We believe we can make better use of the seismic velocity data by this 25 

means as it is quite efficient in pinpointing the favorable petroleum targets in subsurface with 26 

precisions of tens-of-meter scale, depending on the horizontal resolution of seismic survey. 27 

Plain Language Summary 28 

Different rocks have different velocity when wave go through them. If there is water inside the 29 

rock, the velocity will be lower than in dense rock; if there is gas within, the velocity will be 30 

even lower. Based on this principle, it seems easy to differiate water, oil, and gas in rocks. We do 31 

have artificial seismic technic to measure some parameters of subsurface, in which velocity is 32 

one of the most basic and objective parameter. However, in subsurface the rocks and the fluid 33 

inside vary constantly, we can’t conclude the low velocity area just as probable oil and gas 34 

targets.  35 

In our research, we try to calculate the derivative gradients of the velocity, aiming to find where 36 

the velocity changes suddenly. The sudden change indicates the boundary or barrier between 37 

different rock, and/or the fluid. Within the same boundary it is homogenous in rock and fluid 38 

compositions, and the fluid flow is steady and continuous. We put these boundaries to the map of 39 

the production wells, then we can tell which wells are connected (within the same boundary), 40 

and if there are oil/gas areas not drilled yet. Finally we can pinpoint oil/gas targets for future 41 

production. 42 

1 Introduction 43 

Velocity is one of the most direct parameters we can obtain from seismic surveying. The vertical 44 

change of velocity is widely applied in time-depth conversion, significant surface (such as Moho 45 

surface) recognition, crustal structure inversion, and energy resource reservoir interpretation (eg. 46 

Domenico, 1977; Singh et al., 1993; Benites and Aki, 1994; Kern et al., 1996; Neves et al., 1996; 47 

Fruehn et al., 2008; Hustoft et al., 2009; Nishizawa et al., 2011; Simão et al., 2016). Velocity is 48 

determined by the media which the wave get through, in subsurface they are varieties of rocks 49 

and fluids within (Domenico, 1976; Wang, 1998; Hoversten et al., 2003; Sayers, 2005). Since the 50 

value of velocity is the reflection of lithology, fluid, and fluid saturation, it can always give a 51 

rough image of those features. However, we need more precision in practice of energy resource 52 

exploration, better pinpointing a small oil/gas play or even a flow unit in a reservoir especially at 53 

the late stage of exploration and production.  54 

Driven by this urgent demand, we took a deeper look at the seismic velocity data and adopted the 55 

derivative gradient to illustrate the change of velocity horizontally. We mapped the velocity 56 

gradients for different formation surfaces and found they perfectly highlighted the boundary 57 

between different lithology and well production behaviors. We suggest the derivate gradient can 58 

be a handy and reliable tool for featured boundary identification in subsurface exploration. 59 
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2 Geological background of study area 60 

Our research is initiated in Yakela condensate gas field in Tarim Basin, China, with an area of 61 

~53 km
2
. This gas field has been producing for more than 30 years and is pursuing another 5-10 62 

year’s steady production; thus, our aim is to locate the potential reservoirs and recoverable 63 

remaining oil. Targeted layers in this area are Lower Cretaceous Yageliemu Formation (K1y) and 64 

Lower Jurassic (J) within the depth interval of 5300-5600 m, average thickened 47 m and 39 m, 65 

respectively. Lithology of K1y and J include conglomerate, sandstone, siltstone, and mudstone. 66 

At the initial formation pressure of ~56 MPa and temperature of ~136 °C, the fluid in K1y and J 67 

include brine, condensate oil, and gas.  68 

3 Calculation results of velocity gradient 69 

Generally, less density of rock (greater porosity) and greater gas saturation result in smaller 70 

velocity and vice versa (Domenico, 1976). We can roughly conclude this from the interval 71 

velocity distribution maps of K1y and J (Fig. 1a, b, c): all 43 wells are drilled in the areas of low 72 

velocities indicating favorable porosity and gas saturation. We can also see from the maps that 73 

though velocity increases along depth, the distribution of velocity looks alike in the layers, 74 

making it difficult to achieve fine description of favorable reservoir and remaining oil using 75 

velocity alone. 76 

Since the velocity represents lithology, fluid and saturation, the sudden change of velocity must 77 

reflect a big difference in those properties. We have a velocity data with the resolution of 15×15 78 

m in horizontal which is much smaller than the averaged well spacing of ~1200 m, so we tried to 79 

calculate the velocity derivative gradient to get better estimation of inter-well areas. Derivative 80 

gradient is the function showing both the direction and extent of the changes of an irregular 81 

distributed matter or field, it has long been used for detecting or enhancing edge and evolved 82 

many advanced algorithms (Zuniga and Haralick, 1987; Tarasov, 2005). In this study we used 83 

the imbedded gradient function in Matlab. In this calculation, gradient is calculated grid by grid. 84 

A negative gradient means the velocity of calculated grid is smaller than surrounding and vice 85 

versa. By this definition, we can see that high gradient value delineates the “barriers” between 86 

wells (Fig. 1d, e, f). These barriers showing sharp increase of velocity, probably occur at the 87 

contact between porous sandstone and tight siltstone/mudstone, or between the gas and brine if 88 

lithology does not vary significantly.  89 

The velocity gradient in the top layer of K1y is primarily smaller than 0.5 in the gas field, 90 

indicating a relatively homogenous distribution of lithology and gas saturation, hence the lateral 91 

connectivity is good (Fig. 1d). This is consistent with the production performance that K1y top is 92 

the most productive layer in the field with high gas saturation and few water flooding or coning.  93 

The velocity gradient in the bottom layer of K1y mostly ranges greater than 1.5 (Fig. 1e), 94 

indicating strong heterogeneity of lithology and gas saturation, hence the lateral connectivity is 95 

poor. Core observation and well log analysis support this conclusion as they show the K1y 96 

bottom is coarser in grain size than K1y top, which means the difference between the porosity of 97 

sandstone and mudstone is greater in K1y bottom than in K1y top. Furthermore, most areas of the 98 

K1y bottom are below the gas-water contact, making the velocity gradient more distinct from gas 99 

to brine.  100 

The velocity gradient in the bottom layer of J mostly ranges below 1.5 in the well regions (Fig. 101 

1f), indicating mild-middle heterogeneity of lithology and gas saturation. Core observation and 102 
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well log analysis show the lithology of this layer consists of fine grained reservoir rocks similar 103 

to K1y top, while this layer is water flooded on the north and south sides, which may account for 104 

the high gradients at the field edge.105 
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 106 

 107 

Figure 1. Maps of velocity and velocity gradient in each surface. White lines are the faults. 108 

 109 
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The derivate gradient is always subject to horizontal calculation, but we also tried it from section 110 

view. We treat a section as a map then gridded it and calculated the derivate gradient (Fig. 2). In 111 

sectional view, the high gradient barriers are obvious in each formation. They divide the 112 

formations into a series of compartments, within which the lithology and fluid saturation does 113 

not vary significantly. We suggest the sectional calculation of velocity derivative gradient can 114 

help identify in three dimensional the sweet spots with favorable lithology and fluid saturations 115 

in combination with horizontal gradient maps.  116 

 117 

Figure 2. Velocity and velocity gradient of a section across the field. 118 

4 Discussion on the application of velocity gradient 119 

Regarding to the application of velocity gradient, the immediate use we propose is microfacies 120 

boundary pinpointing. Microfacies analysis is one essential work for locating favorable reservoir 121 

and remaining oil in clastic reservoir exploration and production. The averaged well spacing in 122 

the study area is ~1200 m, which is too large for conventional reservoir architecture analysis 123 

(Miall, 2006). Thus, stochastic modeling was adopted to estimate the microfacies in this area, but 124 

the model did not fit well with the well production behaviors. We have extended our work on 125 

velocity gradient by using the high gradient barrier as facies boundary to categorize the 126 

microfacies owing to its 15×15 m resolution (Fig. 3).  127 
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 128 

Figure 3. Microfacies mapped according to well data and seismic velocity gradient distribution.  129 

Though the velocity gradient based microfacies estimation is more reasonable and accurate, we 130 

still note the velocity is the reflection of lithology, fluid, and fluid saturation.  We suggest more 131 

works can be done on velocity derivative gradient, such as differentiating the contributions of 132 

lithology and fluid saturation, pinpointing the flow unit, calculating higher degree derivatives to 133 

see what happens, applying to geothermal exploration as temperature is also one parameter affect 134 

velocity, and experimental validations, etc.  135 

5 Conclusions 136 

We did find strong support to our work after we had preliminary results, but most of them 137 

are in the field of gravity or magnetic surveying (Fedi and Florio, 2001; Cooper and Cowan, 138 

2008; Wang et al., 2008; Panet et al., 2014; Ellis et al., 2017). In one way, the literatures 139 

consolidate our confidence in the significance and application of derivative gradient in 140 

identifying featured boundaries; in another, we would like to share this work sooner with the 141 

researchers as seismic velocity is one of the fundamental data in energy resource industry and its 142 

resolution gets higher and higher. We believe we can make better use of seismic velocity data by 143 

carrying out derivative gradient analysis.  144 
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