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Abstract

Earthquakes have been observed to rupture in segments. A good understanding of rupture segmentation is important to char-

acterize fault geometries at depth for follow-up tectonic, stress-field or other analyses. Earthquakes with magnitudes Mw<7 are

however often modeled with simple source models. We propose a data-driven strategy and develop pre-optimization methods

for a segmentation-sensitive source modeling analysis.

The first method we develop is a time-domain, multi-array backprojection of teleseismic data to infer the spatio-temporal evolu-

tion of the rupture, including a potential occurrence of rupture segmentation. We calibrate the backprojection using empirical

traveltime corrections and we provide robust precision estimates based on bootstrapping of the travel-time models and array

weights. Secondly we apply image analysis methods on InSAR surface displacement maps to infer modeling constraints on

rupture characteristics (e.g. strike and length) and the number of potential segments.

Both methods can provide model-independent constraints on fault location, dimension, orientation and rupture timing, appli-

cable to form prior probabilities of model parameters before modeling.

We use the model-independent constrains delivered by these two newly developed methods to inform a kinematic earthquake

source optimization about parameter prior probability estimates.

We demonstrate and test our methods based on synthetic tests and an application to the 25.11.2016 Muji Mw 6.6 earthquake.

Our results indicate segmentation and bilateral rupturing for the 2016 Muji earthquake. The results of the backprojection

using high-frequency filtered teleseismic wavforms in particular shows the capability to illuminate the rupture history with the

potential to resolve the start and stop phases of individual fault segments.
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Abstract15

Earthquakes have been observed to rupture in segments. A good understanding of rup-16

ture segmentation is important to characterize fault geometries at depth for follow-up tectonic,17

stress-field or other analyses. Earthquakes with magnitudes Mw<7 are however often mod-18

eled with simple source models. We propose a data-driven strategy and develop pre-optimization19

methods for a segmentation-sensitive source modeling analysis. The first method we develop20

is a time-domain, multi-array backprojection of teleseismic data to infer the spatio-temporal21

evolution of the rupture, including a potential occurrence of rupture segmentation. We cali-22

brate the backprojection using empirical traveltime corrections and we provide robust preci-23

sion estimates based on bootstrapping of the travel-time models and array weights. Secondly24

we apply image analysis methods on InSAR surface displacement maps to infer modeling con-25

straints on rupture characteristics (e.g. strike and length) and the number of potential segments.26

Both methods can provide model-independent constraints on fault location, dimension, orien-27

tation and rupture timing, applicable to form prior pseudo-probabilities of model parameters28

before modeling. We use the model-independent constrains delivered by these two newly de-29

veloped methods to inform a kinematic earthquake source optimization about parameter prior30

pseudo-probability estimates. We demonstrate and test our methods based on synthetic tests31

and an application to the 25.11.2016 Muji Mw 6.6 earthquake. Our results indicate segmen-32

tation and bilateral rupturing for the 2016 Muji earthquake. The results of the backprojection33

using high-frequency filtered teleseismic wavforms in particular shows the capability to illu-34

minate the rupture history with the potential to resolve the start and stop phases of individ-35

ual fault segments.36

1 Introduction37

The accuracy in estimating earthquake source characteristics is limited by many factors.38

Among them are a limited data resolution, non-linear dependencies between observations and39

some of the sought source parameters as well as simplifications applied to a model represen-40

tation compared to the real rupture process (Steinberg et al., 2020). Also, based on surface ob-41

servations alone, uncertainties in the earth structure influence the accuracy of earthquakes source42

estimation strongly (Weston et al., 2012) and some earthquake properties can not be resolved43

independently from others. Continuous progress is made regarding the data resolution, because44

the density of global sensors is increasing steadily. This enables more detailed studies of shal-45

low crustal earthquakes of moderate magnitude and allows applying more realistic earthquake46
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models that represent better potentially common source complexities such as segmentation into47

sub-sources and slip heterogeneities. The challenges of solving the non-linear problem and deal-48

ing with parameter dependencies remain, in particular for source analyses with complex seg-49

mented models that involve the estimation of a large number of model parameters (Weston et50

al., 2012; Ragon et al., 2018; Lohman & Simons, 2005; Razafindrakoto et al., 2015).51

Most current operational earthquake analysis frameworks (Dziewonski et al., 1981; Hanka52

& Kind, 1994) providing earthquake catalogues, only consider point-source models to repre-53

sent any given earthquake (e.g. a single Double-Couple or moment tensor). It has been shown54

that in presence of significant source complexity also the apparent earthquake characteristics55

based on point-source or single-source kinematic models can be significantly biased (Steinberg56

et al., 2020). As these earthquake catalogues form the basis for many statistical studies on earth-57

quake characteristics (i.e. (Heidbach et al., 2018; Woessner et al., 2015) and inferred depen-58

dent properties like spatio-temporal aftershock patterns (McCloskey & Nalbant, 2009), the ob-59

servational bias from single earthquakes could introduce a bias in the currently possibly in-60

complete earthquake statistics. Inferred source behaviour used in dynamic modeling and em-61

pirical analysis is often based on statistics derived from kinematic modeling. As mentioned62

above, these statistics however might be influenced by observational bias. Rupture segmen-63

tation is an important source characteristic which is often based on expert judgement in case64

studies of larger earthquakes.65

An objective and data-driven study of the segmentation of shallow crustal moderate mag-66

nitude earthquakes is difficult but necessary to increase these statistics on source complexity.67

Such a study approach should be data driven and minimize expert bias (e. g. the choice of the68

model and complexity). This undertaking is challenged by a strongly enlarged model space69

to be sampled and by increased parameter trade-offs compared to point-source or single-source70

kinematic inversion. Very slow converging or even non-convergent optimizations can be the71

consequence.72

In this study we demonstrate how model-independent and data-based methods can be73

employed to inform kinematic modeling of earthquake sources objectively. We put a special74

focus on the minimum modelled segmentation required to meaningfully represent earthquake75

ruptures. Our here presented methods are designed to enable the investigation of rupture seg-76

mentation with globally available datasets, e. g. space-borne InSAR data of co-seismic static77

near-field displacements and broadband recordings at distant seismological stations. The sug-78
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gested methods extract information on the earthquake source in a pseudo-probabilistic way.79

This information can be used to judge on the occurrence of fault segmentation independent80

from inverse modeling and to enable enriched statistical analyses of medium-sized earthquakes81

in an effort to reduce potential observational bias. We use this source information further on82

to set up the model parametrization of earthquake source optimizations, which includes the83

number of relevant model parameters and their prior pseudo-probabilities.84

We present a multi-array backprojection (BP) approach based on teleseismic waveform85

data to image the location and dynamics of a rupture. From the evolution of the rupture dy-86

namics we aim to detect the number of significant sub-sources. Seismological backprojection87

takes advantage of source-receiver reciprocity and has proven to be a reliable tool to image88

the dynamic rupture process by mapping coherent seismic radiators in space and time (Kiser89

& Ishii, 2017). The principal idea of the seismic backprojection method here used is the align-90

ment and then stacking of the seismic waveforms to the predicted P-wave and SH-wave on-91

sets of potential point sources located on a 2D or 3D grid in sliding time windows. If energy92

is coherently emitted in a certain time window from a certain grid point, the time-shifted wave-93

forms should stack constructively. The grid point is therefore a potential source of the signal94

at that time. The waveforms should stack destructively if the grid point is not a source of seis-95

mic energy during the given time window. Backprojection of teleseismic data has first been96

used to investigate the 26.12.2004 Mw 9.1 Sumatra earthquake (Krüger & Ohrnberger, 2005;97

Ishii et al., 2005) and is usually carried out for larger earthquakes (Mw >7) (Bao et al., 2019;98

Meng et al., 2016; Kiser & Ishii, 2017; Hicks et al., 2020).99

Seismological backprojection is applied in different frequency bands of the seismic waves.100

From frequencies below the corner frequency we gain prior information on the fault location101

and potentially also the number of sub-sources. High-frequency energy radiation is concen-102

trated near the hypocenter and the asperities rupture initiation points, representing start/stop103

phases (Ide, 2002; Madariaga, 1977; Okuwaki & Yagi, 2017). The mapping of higher frequency104

coherent energy release can therefore potentially be used as prior information on the ruptures105

nucleation position, rupture velocity and the number of sub-sources for a kinematic fault model106

optimization. Seismological backprojection is an ideal tool to inform our modeling about rup-107

ture segmentation and validate that modelled rupture segmentation is not only a requirement108

to fit our models better but really representative of an actual physical process. Because tra-109

ditional seismological backprojection uses a single array and is known to produce "swimming"110
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artifacts, we implemented a new multi-array backprojection method resistant to this effect (Kiser111

& Ishii, 2017) based on an earlier approach (Rössler et al., 2010).112

Static surface displacement as measured through the InSAR technique can reveal an earth-113

quake source location by apparent significant displacement. To the eye of an expert the pat-114

tern of the displacement potentially reveals more characteristics directly, such as the approx-115

imate rupture dimension, the fault orientation and the mechanism. We mimic, formalize and116

automate a similar extraction of information prior to modeling by employing image analysis117

methods like edge detection on the gradient of the displacement. Using the presented method118

we estimate the source location, size and the number of sources from the gradient of displace-119

ment maps among other source features.120

We first present the two data-driven analysis methods developed for far-field and near-121

field data. The methods are implemented in python-based open-source software codes. We test122

the methods with synthetic data first. We then present a framework with a focus on moder-123

ate and larger sized shallow crustal earthquakes in mind in which we use the extracted infor-124

mation for estimating model parameter prior pseudo-probabilities to guide a finite fault op-125

timization and constrain the modeling of segmented ruptures. We finally apply the presented126

methods in an investigation of the 25.11.2016 Muji Mw 6.6 earthquake to better inform a joint127

optimization of teleseismic and static near-field data.128
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2 Methods129

2.1 Time-domain backprojection using multiple virtual arrays130

The reported applications of teleseismic backprojection (BP) enclose only a few stud-131

ies dealing with shallow crustal intermediate-sized earthquakes of magnitudes between MW 6132

and MW 7 (Kiser & Ishii, 2013; Fan & Shearer, 2017; Yin & Denolle, 2019). A likely reason133

is that the spatial precision of traditional time-domain teleseismic BP by using large arrays are134

similar to the size of the rupture area of Mw <7 earthquakes (Fan & Shearer, 2017).135

2.1.1 Introduction to the backprojection method136

Traditional time-domain BP involves an alignment of seismic recordings within an ar-137

ray and a subsequent stacking (Krüger & Ohrnberger, 2005; Ishii et al., 2005). Phase arrivals138

of earthquakes stack constructively to high amplitudes if the trace alignments correspond well139

to the actual source-receiver configuration. Different phase arrivals are separated by moving140

time windows along the waveform on which the BP is applied. Then, mapping the source lo-141

cations that lead to high-amplitude stacks for the corresponding time window provides images142

of the seismic energy release of a rupture. This energy originates from abrupt relative and spa-143

tially variable changes in the fault slip or abrupt changes in rupture velocity (Okuwaki et al.,144

2018; Yin & Denolle, 2019; Madariaga, 1977).145

The main assumption of time-domain BP is that wave traveltimes from the source to global146

receivers correspond well to those of commonly used 1-D velocity Earth models. Unwanted147

effects of this strong assumption for real data applications can be weakened by applying em-148

pirical traveltime corrections (Section 2.1.4). Other common assumptions are that the wave-149

forms of phases are coherent within an array, e. g. no occurrences of polarity changes as across150

a nodal plane of the focal mechanism, and furthermore that noise is uncorrelated. Construc-151

tive stacking of coherent coda waves can create secondary sources and introduce a bias in the152

time-domain BP imaging.153

We implemented the time-domain BP in the following way. We stack P- and SH-phases154

separately, using their respective slowness values. Other phases with different slowness val-155

ues inherently stack destructively. The depth phases of P and SH-phases, pP, pPP and sS, how-156

ever, have similar slowness values as the corresponding direct phase for shallow events and157

will therefore also stack constructively. Depth phases can have relatively large amplitudes com-158
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pared to the direct phase and, for shallow earthquakes, follow them very close in time. There-159

fore they generally significantly influence the stack of the direct phase. With higher frequen-160

cies the importance of depth phases decreases, because these are more strongly influenced by161

topography and shallow structure at the surface reflection point, which results in less coher-162

ent high-frequency waveforms with reduced constructive stacking.163

We use the phase-weighted stacking method (Schimmel & Paulssen, 1997) to increase164

the signal-to-noise ratio of the stacks, which basically realizes a trace weighting based on the165

phase coherence within the array. Specifically, the phase-weighted stacking is a non-linear stack-166

ing method, where each sample in a linear stack is weighted by an amplitude-unbiased coher-167

ence measure. In this way, phase-weighted stacking sharpens up signals, reduces signal arti-168

facts and suppresses noise. Phase-weighted stacking comes at the cost of loss of absolute am-169

plitude information (Fan & Shearer, 2017; Schimmel & Gallart, 2007) and of a strong rela-170

tive enhancement of the dominant period. However, the advantages outweigh the disadvan-171

tages of the method.172

We first calculate the coherence based on complex traces in a phase stack and then mul-

tiply this coherence with the linear stack, sample by sample. Therefore we first calculate the

phase stack c(t) for all N waveforms:

c(t) = ‖ 1

N

N∑
j=1

eiΦj(t)‖. (1)

c(t) is based on the similarity of the phases Φj(t) of the complex signals of the N traces uj(t)173

at time t (Bracewell & Bracewell, 1986). The amplitudes of the phase stack are coherence mea-174

sures and range between 0 for non-coherent and 1 for coherent signals.175

We carry out the BP for point locations that form a horizontal grid of source points. We

stack the waveforms for each of these grid points according to Eq. 2, with the specific expected

arrival time from a grid point source to each station. Each waveform u(tr) of the linear stack

is multiplied with the phase coherence (Schimmel & Paulssen, 1997) to calculate for each grid

point the phase-weighted stack Ŝk(tr) of an array:

Ŝk(tr) =
1

N

N∑
j=1

uj(tr + tkj)‖
1

N

N∑
j=1

eiΦj(tr+tkj)‖ν, (2)

with tr being the rupture onset time and tkj the source-receiver traveltime. The coherence weight-176

ing here is tuned with the parameter ν for an adaptable transition between coherent and less177

coherent signal summation. ν=0 realizes a linear stack, while we use ν=2 to increase the signal-178

to-noise ratio. tkj is the traveltime for the respective grid point k of the waveform record j.179
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Waveforms that get stacked in this way form the semblance Sk of the array for the re-180

spective source grid point k by normalization:181

Sk(tr) =
Ŝk(tr)∑K
k=1 Ŝk(tr)

. (3)

The semblance Sk(tr) can be seen as in terms of a (pseudo-)probability of coherent ra-182

diation of seismic energy from a given source point k at a time tr (Rössler et al., 2010; Douze183

& Laster, 1979). We can form maps of spatial semblance for single time steps or of the cu-184

mulative semblance, to which we refer to as incremental or cumulative semblance maps. The185

semblance spatial resolution is described by the frequency- and azimuth-dependent beam pat-186

tern and is an analogue to the array response or array transfer function (Rost & Thomas, 2002),187

defined by stacking with respect to slowness (Johnson & Dudgeon, 1993). The spatial reso-188

lution of a seismic array increases with array aperture as well as with frequency and aliasing189

is decreased with increasing station coverage (Rost & Thomas, 2009). Therefore, large and190

dense arrays are desirable to image rupture evolution, but there are limits. The use of very large191

arrays has been found to result in relatively low resolution of the semblance (Xu et al., 2009).192

The reason is that the waveform recordings from a very large range of source distances and193

source azimuths resemble each other less and less and loose their coherence. This coherence194

loss is stronger for high frequencies and leads to a decrease of the upper frequency that re-195

mains coherent (Rost & Thomas, 2009). Less high frequency content in the semblance decreases196

the spatio-temporal resolution as mentioned above.197

Additionally, we calculate the beampower E(tr), which is an absolute measure of the198

amplitudes at the ith array and a time window centered around t for waveforms u recorded199

at N stations of an array. Beampower is the sum of the energy at all arrays:200

E(tr) =

K∑
k=1

1

L+ 1

L∑
l

∣∣∣∣∣∣ 1

N

N∑
j=1

uj(tr + l + tkj)

∣∣∣∣∣∣
2

, (4)

where l is the sample index of the waveform in the time window with total number of sam-201

ples L, ∆t is the duration of the time window. The beampower time trace in our case is closely202

related to the source-time-function (STF) as it is a stack of body waves. This should be sim-203

ilar to a STF but scaled by a factor depending on the radiation pattern, the source-receiver dis-204

tance and the elastic medium properties (Vallée & Douet, 2016).205
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2.1.2 Multi-array BP method206

The combination of several arrays subdues side lobes of the array response compared207

to a single-array BP. It also minimizes the effect of azimuth-dependent "smear" or “swimming”208

artifacts, which are systematic apparent drifts of the energy towards the array (Meng et al., 2016).209

The reasons are that the sidelobes of the single-array response functions are at different po-210

sitions for each array, while the central lobe is always at the same position in the slowness plane.211

Migration artifacts "swim" in different directions with different apparent velocities. Addition-212

ally the combination of P- and SH-phases BPs suppresses sidelobes and migration artifacts,213

because of the different delays between the P-phase depth phases (pP, sP) and the SH-phase214

depth phases (sS) (Hong & Fujita, 1981). Multi-array BP results in more certain and better215

resolved spatio-temporal imaging.216

In our multi-array BP we cluster all globally available stations at reasonable teleseismic217

distances to form a multitude of small virtual arrays using the k-means algorithm (Steinhaus,218

1956). The combination of many small virtual arrays has the advantage of minimizing the ef-219

fect of velocity differences between stations in the array as well as the effect of radiation pat-220

terns and source directivity across arrays (Rössler et al., 2010). Virtual arrays are formed as-221

suming a lower limit for the number of array stations, distance between stations and a max-222

imum aperture. Included stations are part of one array only. We multiply the single-array sem-223

blance maps instead of adding them which further suppresses sidelobes in the multi-array re-224

sponse function and is related to the interpretation of semblances as relative, non-normalized225

pseudo-probability (Rössler et al., 2010). The multiplication of the array responses also cor-226

responds to a multiplication of the transfer functions of the arrays (Rössler et al., 2010).227

We calculate the multi-array semblance from the product of the semblances from M ar-228

rays:229

Sk(tr) =

M∏
m=1

Skm(tr). (5)

The global distribution of virtual arrays may have gaps. To avoid an azimuthal bias in230

the multi-array response function we subdivide the azimuth into 12 sectors and, based on the231

azimuth of the earthquake epicenter to the array center, each array is assigned to a correspond-232

ing azimuth sector. The semblance from all virtual arrays in each azimuth sector is normal-233
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ized to 1 for each time window, so that each azimuth sector has the same influence on the com-234

bined semblance. The azimuth weight wazi,m for the mth virtual array is then:235

wazi,m =
Smk(tr)∑M

m=1 max
k..K,t..T

(Sm(t, k))
. (6)

The weighted semblance becomes:

Sk(tr) =

M∏
m=1

wazi,m · Skm(tr). (7)

Multi-array BP is associated with uncertainties, particularly for locating the source of236

energy, that we want to account for. Several studies have investigated these limitations. Yin237

and Denolle (2019) found from theoretical considerations that the minimum resolvable fea-238

ture in a semblance map should have a dimension of at least twice the P-wave wavelength.239

The resolution length of beamforming, which is the minimum distance between sources that240

can be distinguished, is estimated as the width at half-peak amplitude of the main lobe of the241

array response function (Meng, Ampuero, Sladen, & Rendon, 2012). The array’s spatial ac-242

curacy is the error in the estimation of the true source location (Meng, Ampuero, Sladen, &243

Rendon, 2012). (Fan & Shearer, 2017) found a median location error of around 25 km for tra-244

ditional time-domain BP using large arrays. They also found, from the methods they consid-245

ered, that the best sub-event resolution is achieved if a global phase-weighted stack is used246

(Fan & Shearer, 2017). To estimate the spatial precision and accuracy of a BP for individual247

cases, bootstrapping methods have been used (Yao et al., 2012; Shearer, 1997; D. Wang et al.,248

2016; Meng, Ampuero, Stock, et al., 2012).249

We use Bayesian bootstrapping (Rubin, 1981) to quantify the spatial and temporal pre-250

cision of the multi-array BP results. The bootstrapping is applied to the weights of the com-251

bined virtual arrays in the multi-array semblance at each timestep. For each timestep we cre-252

ate a set of 100 differently weighted BP stack. This bootstrapping of the weights is then fur-253

ther combined with traveltime perturbations to asses the impact of the velocity model choice.254

The array weight controls how strongly each virtual array contributes to the multi-array sem-255

blance (see Eq. 10). We draw nclusters random real numbers r ∈ [0, nclusters] from a uniform256

distribution. We then sort the obtained random values in an ascending order and ensure r1 =257

0. The ith bootstrap weight wboot,iboot
for a virtual array is then defined as:258

wboot,iboot
= riboot+1 − riboot

. (8)
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The traveltime perturbation simulates the effect of model errors in the semblance that are in-259

troduced by assuming a 1-D velocity model in the phase alignment before stacking. We as-260

sume these traveltime errors to be random and normally distributed, with a standard-deviation261

of 2 s for the P-phase arrivals and with 4 s twice as large for SH-phase arrivals. So in each boot-262

strap set, we apply these traveltime shifts to the waveforms before stacking. The semblance263

of each array is therefore affected by the bootstrapping of the traveltimes and we arrive at 100264

sets of semblances for each virtual array. From the chosen 100 bootstrapping realizations we265

get from each bootstrap the weight wboot,m and also take into account the azimuthal balance266

weights wazi,m to calculate the combined weighted semblance:267

S(tr) =

M∏
m=1

1

100

100∑
i=1

wboot,mi · wazi,mi · Smi(tr). (9)

We combine the results for each timestep from the individual P- and SH-phase BP to268

phase-combined BP. The phase-combined multi-array semblance Scomb(tr) from P- and SH-269

phases BP is derived by the multiplication of the semblances at each timestep tr (after Eq. 9):270

Scomb(tr) = SP(tr) · SS(tr). (10)

The final result of the multi-array BP obtained is a phase-combined multi-array semblance map271

for each timestep of the BP, which we call time-incremental semblance maps. The earliest mapped272

occurrence of coherent energy release is likely located close to the nucleation point, indicat-273

ing the start phase. The latest semblance peak is likely to represent the stop phase. We also274

combine the semblance from all timesteps in a single cumulative semblance map.275

2.1.3 Backprojection settings276

We consider waveforms from broadband stations between 28 degree and 93 degree dis-277

tance from the source, to avoid phase triplications and having P- and SH-wave arrivals clearly278

separated from later arriving bodywaves with significant amplitudes. After removing the in-279

strument response from velocity seismograms through restitution, the waveforms are rotated280

from an ENZ (east, north, vertical) into the RTZ (radial, transversal, vertical) coordinate sys-281

tem, and they get downsampled to 10 Hz. We select the Z-component of the records for the282

P-wave BP and the T-component for the SH-wave BP. The virtual arrays have a maximum aper-283

ture of 5◦ and a minimum number of 5 stations. If in any of the 12 azimuth sectors no vir-284
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tual array can be formed, to increase the azimuthal coverage, we allow for successively larger285

array apertures up to 10◦ and a smaller number of stations down to 3. Generally, we perform286

separate low-frequency BPs (LF BP) and high-frequency BPs (HF BP), within a total frequency287

range of 0.003 Hz up to about 1.5 Hz. The LF BP and HF BP frequency bands are separated288

by the expected corner frequency fc of the earthquake studied. We estimate the corner fre-289

quency fc of the seismic radiation based on the rupture duration Tr, which we take from the290

GCMT catalog, with fc = 2/Tr (Aki & Richards, 2002). In other words, fc is the upper fre-291

quency limit of the LF BP records and the lower frequency limit of the HF BP records. We292

filter with a butterworth bandpass filter of fourth order.293

The BP is carried out with fixed-length time windows over the recorded waveforms, which294

are moved with small timesteps of a few seconds. The window length depends on the longest295

period at which the data is filtered. This results in longer time windows for the LF BP of 20 s296

to 30 s and shorter time windows for the HF BP of around 10 s. At this stage we discard seem-297

ingly poor quality records. As a measure we calculate the cross-correlation between the P- and298

SH-wave records of an array station with the corresponding records of the center-most station299

within the array. We only include waveforms with a cross-correlation coefficient of at least300

0.6. By chance, this center-most station can have serious quality problems itself, which would301

lead to low cross-correlations for all stations and in effect to an exclusion of all waveforms302

of the array. In such a case the center-most station is excluded and the cross-correlation co-303

efficients are recalculated for a randomly chosen new reference station. Before the stacking304

of the time windows (Eq. 2), the waveforms in each array are aligned based on pre-calculated305

traveltime tables using the AK-135 1-D velocity model.306

We multiply the responses of all virtual arrays at each timestep, which gives the response307

of the global array (Eq. 10). We account for the effect of unmodelled site effects close to the308

stations by including traveltime perturbations per station (traveltime shift bootstrapping). The309

effect of systematic traveltime shifts due to unmodelled large-scale 3-D path effects can be re-310

duced with empirical traveltime corrections.311

2.1.4 Empirical traveltime corrections312

Large-scale 3-D velocity structures affect the waveform paths and the traveltimes in sys-313

tematic ways for stations within an array and across neighboring arrays. By using traveltime314

predictions based on 1-D velocity models only, residual systematic traveltime shifts persist.315
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If these time shifts remain unaccounted for, they may produce spatially and temporally, sig-316

nificantly shifted and defocused BP results. We can reduce this bias by automatically calibrat-317

ing the traveltimes for each station based on empirical traveltime shifts (Palo et al., 2014; Ishii318

et al., 2007; Meng et al., 2016; Fan & Shearer, 2017).319

We estimate arrival time shifts empirically by selecting a cataloged reference event from320

single fore- or aftershocks, which occurred close to the investigated earthquake. For this ref-321

erence event we assume that catalog location and time are accurate and fix them to a single322

grid point and a single time window. Unknown is a set of traveltime shifts, maximizing the323

semblance for this setup. Per array and for each station individually we vary the traveltime324

shifts of P- and SH-waves such that the single-array semblance at the reference location is max-325

imized. For this optimization problem we use the differential evolution algorithm (Storn & Price,326

1997). We allow the traveltime to vary by +/- 2 s for the P-wave and +/- 4 s for the SH-wave,327

with respect to the theoretical onset, assuming the same 1-D velocity model as for the main328

event BP.329

For a successful traveltime correction, the reference event has to be near the studied earth-330

quake, small enough such that the point-source approximation holds well, but also large enough331

that its phase arrivals have a high signal-to-noise ratio globally. Preferably, the location of the332

reference event is very well known from local or regional station data analysis. Ideally, the333

reference event has a similar focal mechanism compared to the main event. An error in the334

location of the reference event will cause a wrongly estimated global time shift for the phases335

of the main studied earthquake. Typical mislocation errors that have to be expected for smaller336

earthquakes in remote areas are of the order of tens of kilometers (Fan & Shearer, 2017; Palo337

et al., 2014). An important gain of the empirical traveltime correction is an increased phase338

coherence, because unmodelled path effects are generally well compensated (Palo et al., 2014).339

The rupture dimensions of intermediate-sized earthquakes, which we primarily want to340

investigate, are of the order of several tens of kilometers. When applying timing corrections341

for larger earthquakes however the validity of the timing corrections is spatially limited to a342

spatial extent of several tens of kilometers (Fan & Shearer, 2017). For earthquakes that rup-343

ture larger areas therefore traveltime corrections from multiple fore- or aftershocks along the344

potential rupture area should be considered (Palo et al., 2014).345
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2.1.5 Defining the model space based on backprojection results346

We propagate the information on the source obtained using multi-array BP to define the347

model space for a direct search optimization. These BP results are the low-frequency (LF) and348

high-frequency (HF) time-incremental semblance maps, which include 100 bootstrap realisa-349

tions of the semblance for each time step. From these semblance maps we extract informa-350

tion on the location of the rupture, rupture size and orientation as well as the rupture evolu-351

tion in time.352

The centroid location and dimension of the rupture are outlined by significant cumula-353

tive LF semblance, which maps the area of significant seismic energy release. The semblance354

values can be related to relative pseudo-probability (Rössler et al., 2010). So based on the LF355

semblance grid, we construct discrete pseudo-probability functions for the longitude and lat-356

itude parameters of the source centroid location.357

For the strike and length source parameters we estimate the prior distributions using dif-358

ferent approaches on LF and HF semblances, and finally combine their results afterwards. Based359

on the LF cumulative semblance map, we fit arbitrarily one or more oriented minimum bound-360

ing boxes and minimum bounding ellipses to neighboring grid point values with semblance361

values that exceed 1% of the maximum semblance. The bounding box orientations and lengths362

of the major axis enter as single values in the estimation of the strike and length prior distri-363

butions, respectively. We calculate azimuth and distance from consecutive HF increments be-364

tween their semblance maxima, for all bootstrap realisations. This produces an ensemble of365

azimuth and distance values, which translate directly into probable strike and length values.366

We simply merge the single estimates for strike and length from the cumulative LF semblance367

and the ensemble of estimates from the incremental HF semblances to construct Gaussian prior368

distributions for these values.369

Rupture velocity can be inferred from the calculated distance and time separation of sub-370

sequent time-incremental maxima in the HF semblance maps (Ishii et al., 2005; Meng, Am-371

puero, Sladen, & Rendon, 2012). We assume here that between semblance maxima the rup-372

ture velocity does not change. We estimate the rupture velocity by dividing the collected ap-373

parent distances through the difference of the occurring times. Similar to (Rössler et al., 2010)374

we select the start, stop and duration of the rupture using a STA/LTA trigger algorithm on the375

obtained combined HF semblance map but also on the individual bootstrap semblance maps376

before combining as in Eq. 9. We divide the largest distance between two semblance maxima377
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by their time separation and obtain another set of average rupture velocity estimates. From this378

procedure one could pick up the ensemble of apparent source durations as well.379

The location of the earthquake hypocenter, or nucleation point, and the relative onset time380

of the rupture are also parameters we want to estimate in an optimization. To retrieve prior381

pseudo-probability distributions of the horizontal nucleus position we use incremental HF sem-382

blance maps normalized to a two-dimensional, discrete pseudo-probability function. We ex-383

tract the horizontal location of the first excitation of coherent energy. With there being only384

horizontal information in the HF semblance maps, we can not retrieve information on the depth385

of the nucleation point. To infer the source parameter of time we assign for each grid point386

the first time when significant semblance is mapped in this grid point. This time is given in387

relative seconds after the first semblance peak. Potentially, the time of the first semblance map-388

ping onto a grid point is different in each bootstrap realisation of the multi-array BP. The re-389

sult is an ensemble of potentially different semblance values for potentially different time steps390

for each grid point from each bootstrap. We choose one of the times associated to the drawn391

nucleation point at random as the source parameter time.392

Potentially also the number of significant sub-sources, or segments, involved in the rup-393

ture can be estimated from the BP results, e.g. to define the initial number of segments in mod-394

eling or the range of possible significant segments in an multi-dimensional modeling frame-395

work. In LF semblance maps individual regions of high semblance can mark segments and396

these regions could be analysed individually. In HF semblance maps we can estimate the num-397

ber of segments based on the number of significant high-frequency semblance peaks. For the398

simplest case, assuming smooth unilateral rupture along a single segment, two high-frequency399

energy emissions, one from a start phase and one from a stopping phase, should occur for each400

segment. In case of significant segmentation, HF semblance can be used to also estimate sub-401

source nucleation point positions and sub-source onset times. In our current application we402

do that, only at a later stage of the analysis. We make these sub-source nucleation point es-403

timations dependent on other geometrical source parameters that defined the source’s outline404

based on position, length, width and strike. These parameters are estimated not only from the405

BP results as outlined, but also from results of the surface displacement map segmentation in-406

troduced below (Section 2.2).407
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2.1.6 Synthetic tests with multi-array backprojection408

We evaluate the introduced multi-array BP method carrying out several synthetic tests.409

With these tests we assess the spatial and temporal resolution of the method and the capabil-410

ities to recover input models of earthquake sources. The station distribution that we use in these411

synthetic tests is identical to the one that was available for an investigation of the intermediate-412

sized Mw 6.6 Muji earthquake on 25 November of 2016, 14:24:30 (USGS) in the Pamir re-413

gion (Fig. 1).414

For the synthetic tests we use kinematic model parameters for a moment tensor point415

source or a finite rectangular source (see also section 2.3 and Fig. S1), equivalent to a Mw 6.6416

earthquake. To model a segmented source with two sub-sources, we divide this seismic mo-417

ment equally between the two sources. The medium model is based on the AK-135 global ve-418

locity model and we use 4 Hz Green’s functions based on the QSSP code by (R. Wang et al.,419

2017) to calculate synthetic waveforms. The Green’s functions have been pre-calculated and420

stored (Heimann et al., 2019a). We carry out LF BP and HF BP with the frequency bands from421

0.003 Hz to the corner frequency fc of 0.25 Hz and from fc =0.25 Hz to 1.5 Hz, respectively.422

The array weights have been bootstrapped 100 times and azimuthal array weights have been423

applied. To each synthetic waveform real pre-event noise from the corresponding real wave-424

form record before the 2016 Muji earthquake is added.425

In a first test Test 1 we estimate the ability of the multi-array BP method to recover the426

position of a single point source. The source is pure a double-couple with a triangular source-427

time function that has a duration of 3 s. The source is located at 8.7 km depth and the BP is428

calculated for a source point grid at that same depth.429

The LF BP and HF BP results of Test 1 (Fig. 2) show that the source position can be430

well recovered within 2 km using LF BP and within 0.2 km using HF BP. Test 1 results with431

separate P- and SH-wave BPs can be found in the Supplement (Fig. S2). They give similar432

results as the combined P- and SH semblance results, but show systematically lower spatial433

precision compared to the phase-combined semblance results.434

In a second test Test 2 we keep all parameters as they are in Test 1, apart from the size435

of the virtual arrays, which may increase from an average aperture of 3.5 degrees in Test 1 to436

much larger apertures of up to 30 degrees in Test 2 (Fig. S3). The results of Test 2 (Fig. S4)437
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Figure 1: The stations used for the BP with the virtual clusters of the 2016 Muji earthquake plot-

ted on a world map. The stations of the same virtual array have the same color.

show larger uncertainties in the precision for the position of the mapped semblance of about438

50-60% in comparison to the smaller virtual arrays used in Test 1.439

In Test 3 we further test the recovery of signals from a line source of 80 km length that440

ruptures unilaterally from the eastern edge with a rupture velocity of 4000 m/s. LF semblance441

shows a broader distribution (Fig. 2c) that well matches with the extent of the source. In HF442

semblance maps (Fig. 2d) two regions of high-energy release are recovered, which show well443

localized start and stop phases. The corresponding rupture velocity is derived from the dis-444

tance between the first and last semblance maxima, which is here approximately 78 km and445

their time difference of 20 s. The resulting rupture velocity estimate is 3900 m/s (Fig. S6). The446

small difference of 100 m/s between input rupture velocity and recovered rupture velocity can447

be attributed to discretizations in the semblance calculation, both in space by the choice of the448

semblance calculation grid, and in time by the choice of time window sizes and time steps.449

In a Test 4 we use two point sources with the same moment, duration and timing that450

are spatially separated by 50 km (Fig. S5). The individual locations of both sources are suc-451

cessfully recovered. The spatial precision for each source is about 20-30 km, estimated through452

bootstrapping and velocity model pertubations.453

We also carry out all synthetic tests based on a different and more sparse station distri-454

bution that resembles the station situation at the time of the Mw 6.3 Ahar earthquake doublet455
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Figure 2: Cumulative LF and HF semblance for Test 1 (a,b) and Test 2 (c,d) as color-coded con-

tours. a) LF and b) HF semblance of a double-couple source (Test 1). The black dot shows the

model input position. c) LF and d) HF cumulative semblance of a line-source source (Test 3).

Model outline and input nucleation point are indicated by a grey line and a red circle, respectively.

In all subplots, the black outlines around high semblance values represent the 98 %spatial precision

of the semblance maxima estimated from bootstrapping. Top-right insets in each subplot show the

extent of the whole search grid. Gray background dots mask the BP source point grid. Coordinates

are given in Latitude/Longitude (black labels) and UTM (blue labels).
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on August 8, 2012. We use the real noise from before the Mw 6.3 Ahar earthquake to per-456

turb the corresponding synthetic waveforms. The semblance resolutions in the results of these457

additional tests (see figures in Supplement 2.1), compared to the tests based on the Muji 2016458

earthquake setup, suffer from the combined effect of mainly two factors. First, the Ahar earth-459

quake has a smaller signal-to-noise ratio because of the smaller earthquake magnitude of Mw460

6.3 compared to Mw 6.6 in the earlier tests. Secondly, the sparser station coverage at that time461

leads to a lower number of virtual arrays and therefore creates azimuth and distance gaps.462
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2.2 Pseudo-probability of source location from image segmentation on InSAR dis-463

placement maps464

The spatial pattern of coseismic surface displacement is to some extent characteristic for465

the properties of the source. It can therefore provide valuable source information before any466

inverse modeling. These apparent characteristics of the surface displacement pattern are that467

1) the highest displacement gradients usually occur very close to the rupture, 2) loss of inter-468

ferometric coherence, producing InSAR data gaps, can be caused by very high displacement469

gradients, surface rupture or near-fault landslides, 3) elongation of significant displacement is470

parallel to the strike direction of the causative fault and 4) sign changes of the displacement471

separate footwall and hanging wall of the faulting. Furthermore, complexity in these displace-472

ment characteristics hint at the occurrence of significant changes in source properties, e.g. dis-473

tinctly separated regions of relatively high displacement gradients point to rupture segmenta-474

tion. We formalize the extraction of displacement pattern characteristics by using image seg-475

mentation methods on the surface displacement maps. Based on the results we form a pseudo-476

probability map of the rupture location from which we then derive other first-order rupture prop-477

erties in an automated framework as described in Section 2.2.1 below.478

The here proposed image segmentation of InSAR surface displacement maps includes479

phase coherence evaluation, displacement gradient calculation, sign change tracing in the dis-480

placement amplitudes and combination of the resulting gradient maps. We describe and illus-481

trate the steps in detail in the following and test them, based on synthetic displacement maps482

and a real-data example. The tests include the analysis of synthetic data of two vertical, two-483

segments strike-slip faults, one 6 km deep (top edge) EW-striking and one 1 km deep NS-striking484

faults, and real data of the 2009 L’Aquila earthquake in Italy, a shallow unsegmented normal-485

faulting earthquake. The first example resembles our application to the 2016 Muji earthquake486

(Pamir) presented below, and the second and third tests are set up to show a variety of mech-487

anisms with different imprints on InSAR displacement maps. Only the third, real-data exam-488

ple contains data gaps due to interferometric phase incoherence.489

InSAR displacement maps show the three-dimensional surface displacement projected490

into the line-of-sight of the satellite. Different satellite look directions lead to different dis-491

placement projections, which cause apparent shifts of the surface displacement signals up to492

several kilometres between. We mitigate the projection effects by combining at least two dif-493

ferent look directions, one from ascending and one from descending satellite tracks. For the494
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synthetic tests the forward modeling was done using a layered 1-D velocity model (Xu et al.,495

2006; W. Li et al., 2018) and the PSGRN/PSCMP code (R. Wang et al., 2006) to produce a496

Green’s functions database (Heimann et al., 2019a). We add synthetic correlated noise gen-497

erated from real-data noise power spectra (Sudhaus & Jónsson, 2009).498

The first step in our displacement gradient segmentation is treating incoherent areas that499

are either marked by no-data values or get marked, e.g. based on a coherence map and using500

a coherence threshold. Pre-processing of the displacement data should include deramping to501

minimise potential bias on results.502

We assign a zero displacement value to incoherent pixels to enable numeric calculations503

and to contrast incoherent areas to areas showing large displacements. We then calculate the504

absolute displacement gradients for each pixel pair. For the displacement gradient map we ap-505

ply a moving average across the pixels with Gaussian weighting using a window that spans506

about 500 m by 500 m in the examples (Fig. 3b and e). Next we trace sign changes of the dis-507

placement amplitudes. This is done based on a binary image that distinguishes positive and508

negative displacements, on which we apply the same gradient calculation with the same set-509

tings as described above. Non-zero gradients are normalized to 1 and effectively provide the510

sign change traces (Fig. 3c and f).511

We determine the area of interest (AOI) as a minimum bounding box which comprises512

the 95% highest displacement values. For a pseudo-probability map of rupture location, we513

first combine the displacement gradient maps and the sign change traces for each data set in-514

dividually by multiplying the two maps pixel-wise, with a relative weight in place based on515

the data set signal-to-noise ratios. Signal-to-noise ratio is evaluated between the signal in the516

area of interest and the noise from surrounding areas. The following processing steps include517

summing up the combined gradient maps of all available data sets, masking values of less than518

1% of the maximum combined gradient, and applying a normalization (Fig. 3g). In other words,519

we keep the non-negligible gradient information only in places where there is displacement520

sign change in one of the data sets. In these remaining areas, the pseudo-probability of rup-521

ture location scales with sum of the displacement gradients from all data sets.522

As a final processing step we aim to clean the simple pseudo-probability map of spu-523

rious pixels with non-zeros probabilities. A simple threshold for distinguishing signal and noise524

in the pseudo-probabilities seems inappropriate given the variety of displacement patterns. To525

best outline areas with significant pseudo-probability, we therefore apply the Otsu’s method526
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(Otsu, 1979) thresholding to classify pixel-wise the pseudo-probabilities into signal and noise.527

The Otsu’s method is an iterative and exhaustive approach that seeks to minimize the differ-528

ences of the pixel values in two distinct classes (Otsu, 1979; Shaus & Turkel, 2016).529

In our first two tests with shallow and deep (top edge depth 0.5 km and 6 km, respec-530

tively), EW and NS striking strike-slip faults, the area of significant surface displacement and531

near-field of the rupture are highlighted well with relatively high gradients (Figs. 3 and S15,532

b and e). Together with sign change traces, the location of the causative fault is marked in the533

pseudo-probability map of rupture location. In the first test with a deeper source and a con-534

sequently lower signal-to-noise ratio the pseudo-probability is more scattered than in the sec-535

ond test. Still, the highest pseudo-probabilities occur very close to the input fault in both cases536

(Figs. 3g and S15g).537

For vertically dipping strike-slip faults, the displacement exactly above the fault is zero538

and coincides with high displacement gradients. For inclined and blind faults the so-called hinge539

line of largest displacement gradients will be offset in the direction of a projected surfacing540

of the fault, as is the displacement sign change.541

A small signal-to-noise ratio of around 1 or less is in our experience challenging for the542

described simple gradient based sign-change tracing. In such cases, sign changes are abun-543

dant which results in very wiggly sign-change traces. Therefore, in these cases we substitute544

the gradient-based sign change tracing with less scattered contours of Chan-Vese image classes.545

The well established iterative Chan-Vese segmentation method (Chan & Vese, 2001; Getreuer,546

2012) divides an image into two classes of minimum intra-class variance. These classes rep-547

resent the topological changes of an image (Chan & Vese, 2001). The Chan-Vese image seg-548

mentation was applied in the real-data test to the 2009 L’Aquila earthquake displacements (Fig. S18).549

In the displacement gradient maps the large window size used for averaging the gradi-550

ents across pixels (500 m by 500 m) has the desired effect of a smeared-out gradient estima-551

tion. This estimation may therefore bridge over high gradient values surrounding incoherent552

areas. It also somewhat reflects the slightly ambiguous relationship between fault location and553

high displacement gradient location.554
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Figure 3: Image segmentation applied to synthetic displacement maps two-segments strike-slip

source at 6 km depth (top edge). a) and d) show ascending and descending displacements, b) and

e) the corresponding displacement gradients, c) and f) the corresponding sign-change trace (black)

over the displacement. g) Pseudo-probability map of fault location. h)

Bounding boxes and ellipses applied on g). The green box surrounds the area of interest, also

enlarged in i). The red dashed lines indicate the major axes of the ellipses containing the highest

pseudo-probability values in each region found as described above. The outline of the synthetic

source(s) is indicated in the figures with black lines. The ellipse (purple outline) is centered at the

centroid of each region.
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2.2.1 Defining the model space based on displacement map segmentation results555

The displacement pattern analysis using image segmentation methods (Section 2.2) pro-556

vides a pseudo-probability map of rupture locations. Similarly to the methods we apply to the557

semblance maps, we use this pseudo-probability map to derive arbitrarily-oriented minimum558

bounding boxes and ellipses that enclose highly probable rupture locations, provide informa-559

tion on the probable number of rupture segments, and based on the ellipses individual segment560

dimensions and orientations.561

On the pseudo-probability map of the rupture location we mark regions using the python562

scikit-image pack (Van der Walt et al., 2014) by evaluating the neighbourhood of each pixel563

to find connected pixels of any value, i.e. pixels share an edge or a corner. Connected pixels564

form regions, which potentially correspond to individual fault segments. A minimum size for565

a region can be given. A single connected region at this stage points to an unsegmented rup-566

ture. If, however, two or more of separated regions with extents larger than about 300 m in567

any direction occur, we apply minimum arbitrarily-oriented bounding boxes and ellipses to these568

regions to define the properties of those for potential sub-sources used in multi-segment or multi-569

dimensional fault modeling. We also apply a minimum arbitrarily-oriented bounding box and570

ellipse encompassing all regions.571

Based on a single region or several, an arbitrarily-oriented minimum bounding box and572

an ellipse are defined each using the image processing algorithms provided by the scikit-image573

project (Van der Walt et al., 2014). The minimum bounding box length and width provide es-574

timates of the fault length or segment length. The center of the best-fitting ellipse is defined575

by the focal point of the pixels within a region, with pixels of high pseudo-probability value576

having a large weight in this calculation. The major axis of the ellipse is likely a good indi-577

cator for the strike direction and is used as a prior. By slightly changing the threshold settings578

and minimum separation distance between patches to connect them to regions we retrieve a579

set of length and strike values for each region.580

We can now construct Gaussian distributed continuous functions for the source param-581

eters strike and length for each source from these estimates. The prior pseudo-probability func-582

tions are guiding the first stage of sampling the model space during the actual optimizations583

as described below.584
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2.3 Earthquake source optimization implementing data-driven model parameter prior585

distributions.586

To characterize earthquakes we carry out a joint kinematic source modeling applying a587

non-linear, randomized direct-search optimization. We represent the co-seismic faulting with588

rectangular dislocations (see model sketch in Fig. S1b) embedded in a horizontally layered elas-589

tic medium. We optimize for each such dislocation the following model parameters: the fault590

location (north, east, depth), the fault dimension (length, width), the fault orientation (strike,591

dip), the slip, the rupture velocity, the relative position of rupture nucleation on the fault plane592

and rupture onset time. We define the fault location at the center of the top edge of the rect-593

angular plane. An earthquake can be represented by more than one of these dislocations, e.g.594

if segmentation plays a significant role. For such segmented sources, the optimization setup595

enforces non-overlapping and non-intersecting dislocations.596

The boundaries of the model parameter space in which the direct search optimization597

is applied and the model parameter prior distributions, commonly called priors, have to be pre-598

defined. Here we set these based on the pseudo-probabilities of fault locations and the time599

evolution of the rupture estimated in displacement map segmentation and multi-array back-600

projection (Sections 2.2.1 & 2.1.5). We point out that the choice of the specific optimization601

method, with its objective function and model space sampling strategy, is independent from602

the presented approach. We use and extend the open-source optimization code Grond (Heimann603

et al., 2018), which has the capabilities to estimate model uncertainties through the use of Bayesian604

bootstrapping.605

Our optimization procedure works in adaptable sampling phases. The first sampling phase606

usually involves uniformly random sampling. It is followed by "directed" sampling phases that607

become more and more directed to good-fit models in the course of sampling. Each drawn model608

is evaluated against a set of different data weights, based on Bayesian random station weight-609

ing for the seismological data, and different noise perturbations for the static InSAR data. Source610

models are collected in a fixed-size highscore list for each of these sets of weights, forming611

a so called bootstrap chain. A detailed description of the method can be found in Section 1612

and the online documentation (Heimann et al., 2018). In the optimization we are seeking the613

minimum of the L2-norm between observed data dobs and predicted data dpred. The general614

form of this objective or misfit function is:615
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||e|| =
√∑

(dobs − dpred)
2
. (11)

The prior information of source characteristics is taken into account from the start of the616

optimization by setting corresponding model parameter bounds and for some model param-617

eters non-uniform non-normalized prior pseudo-probabilities. In this way we replace in our618

optimization a usually much more exploratory first phase of model space sampling, i.e. within619

wide bounds for the model parameters and with uniform random sampling therein, with a more620

focused and guided sampling. After a defined amount of sampling and based on a selection621

of low misfit models, the model space is reshaped and defined by the multi-dimensional dis-622

tribution of low-misfit model parameters, the highscore list, which is constantly updated. In623

this way the start set of parameter bounds and prior distributions is dropped such that the op-624

timization is entirely driven by the objective function. Wide fall-back parameter bounds can625

be used to facilitate exploration.626

2.3.1 Guided optimization627

We call our first optimization phase that uses source parameter priors guided optimiza-628

tion phase to reflect the narrowed model space settings. We describe how we form model pa-629

rameter prior distributions from either method, the multi-array BP (2.1.5) and the displacement630

map segmentation (2.2.1), individually. If both methods are used complementary, we first com-631

bine their pseudo-probability maps of rupture locations. We re-sample the grid of the BP lo-632

cation pseudo-probabilities to the grid spacing of the fault pseudo-probability map using a nearest-633

neighbor interpolation. We then combine these two prior distributions by multiplication. This634

procedure inherently gives weight to the better resolved prior parameter distribution of each635

method. From the defined joint discrete pseudo-probability functions the source models lo-636

cations are sampled for a given number of models.637

The horizontal location parameters in the optimization are relative east and north shifts638

in a metric coordinate system with the chosen reference location at the origin. If more than639

one source segment is considered, parameters of a single source segment are drawn first, which640

define the first segment’s outline. A second source is then drawn from the prior distributions641

and accepted if its outline is not intersecting the outline of the first source. A redrawing of mod-642

els is necessary until this condition is fulfilled. This sampling scheme can be extended to an643

arbitrary number of sources.644
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For strike and length we also combine the Gaussian-distributed continuous pseudo-probabilities645

obtained from the multi-array BP and the displacement map segmentation methods by mul-646

tiplication. In most cases this gives more weight to the displacement map segmentation meth-647

ods result. The source parameters time and velocity are only drawn from prior distributions648

inferred from the multi-array BP.649

2.3.2 Settings for the modeling of the far-field waveform data650

For the forward modeling of seismic waveforms we make use of pre-calculated Green’s651

function stores (Heimann et al., 2019b) to speed up calculation. The Green’s functions stores652

(Heimann et al., 2017) are calculated for up to 0.5 Hz using the QSSP code by (R. Wang, 1999)653

and are based on the AK-135 1-D velocity model (Kennett & Engdahl, 1991). The Green’s654

functions are calculated with spatial sampling of 4 by 4 km and we enable continuous source-655

receiver distances by multilinear interpolation in space between the grid points.656

Before the optimization we determine waveform balancing weights after Heimann (2011)657

in an empirical way from 1.000 (k, ...,K) uniformly random models. This balancing corrects658

amplitude differences due to geometrical spreading, amplitude differences between P and S659

phases and different length of the cut-out windows. At each station (i, ..., N) and for each com-660

ponent (phase) (j, ...,M) we determine the balancing weights rbalance,ij as:661

rbalance,ij =
1

1
K

∑K
k |dpredijk|

. (12)

The objective function for waveforms that needs to be minimized is defined with Eq. 11662

and Eq. 12 as:663

||e|| =
√

(
∑
|rbalance · (dobs − dpred|))2√∑

|rbalance · dobs|2
. (13)

We calculate the misfit according to Eq. 11 for each waveform individually and thereby664

allow for an individual, fit-maximizing time shift from -4 s to +4 s. With those time shifts we665

account for traveltime deviations due to 3D velocity variation not represented in the AK-135666

1-D velocity model.667
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2.3.3 Settings for the modeling of static near-field data668

We use PSGRN/PSCMP (R. Wang et al., 2006) to calculate static Green’s function stores669

for the forward modeling (Heimann et al., 2019b).670

We combine ascending and descending scenes into one data vector dobs. The data er-671

ror is considered in Eq. 11 by a weighting matrix R that derives from the data error variance-672

covariance matrix Σ:673

||e|| =
√

[R(dobs − dpred)]TR(dobs − dpred), (14)

with R =
√

Σ−1.674

Following the "Randomize-then-Optimize" (Bardsley et al., 2014) procedure we add syn-

thetic noise, which modifies the objective function to:

||e|| =
{

[R(dobs + εsyn,i − dpred)]T

R(dobs + εsyn,i − dpred)
}1/2

,

(15)

with R =
√

Σ−1.675

The seismic moment is calculated using M0 = µAD, with shear modulus µ, fault area676

A and the fault slip D. We use µ based on the layered 1-d velocity for the region based on Xu677

et al. (2006) and W. Li et al. (2018). Additionally to earthquake source model parameters, three678

data ambiguity model parameters are used for each InSAR data set to remove any residual av-679

erage data offset and a linear phase ramp in east and north direction.680
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3 Application to the 2016 Muji earthquake681

3.1 The 2016 Muji earthquake682

The Muji earthquake struck in north-eastern Pamir in the Chinese county Aketao on the683

25 November of 2016 at 14:24:30 (UTC) and is sometimes also called Aketao earthquake in684

the literature after the region. It had a moment magnitude of Mw 6.6. The rupture occurred685

along the Kongur Extensional System (Chevalier et al., 2011; T. Li et al., 2019; Chevalier et686

al., 2015), located between the Tarim basin and the Muji–Tashkorgan basin. The 2016 Muji687

earthquake is the first instrumentally recorded earthquake of Mw > 6 to have ruptured the trans-688

pressional Muji fault (Fig. 4). This fault bounds the south side of the Muji range and the north-689

ern margin of the Muji graben. In the east the Muji fault starts at the eastern side of the im-690

pact crater lake Karakul (Gurov & Yamnichenko, 1995) and extends south-eastwards until con-691

necting with the perpendicularly running Kongur Shan fault (Chevalier et al., 2011). Farther692

south the Kongur Shan fault ultimately connects with the major Karakoram fault.693

The Muji fault accommodates EW extension due to the northward indentation of the Pamir694

salient (Chevalier et al., 2011). Fluvial terraces cover parts of the surface expression of the695

fault (Chevalier et al., 2011). Geological markers in the western part of Muji fault indicate right-696

lateral fault movement, while the eastern part of the fault displays mostly evidence of normal697

faulting that is associated with a small component of right-lateral movement (Chevalier et al.,698

2016, 2011). In field investigations Chen et al. (2016) found some surface breaks that appear699

to have formed co-seismically during the 2016 Muji earthquake.700

The 2016 Muji earthquake has been studied by several authors who used InSAR, GNSS701

and/or seismic waveform data in earthquake source inversions (J. Li et al., 2019; Feng et al.,702

2017; Bie et al., 2018; He et al., 2018; Ma et al., 2018), compiled in Table S2. They unan-703

imously suggest a complex faulting mechanism that involves more than one fault segment. Feng704

et al. (2017) found the coseismic displacement signal to be consistent with two spatially sep-705

arated segments.706

He et al. (2018) first assumed for the 2016 Muji earthquake a listric geometry based on707

the aftershock distribution, but using geodetic data found a better fit to the data using a pla-708

nar fault geometry. Bie et al. (2018) modelled the rupture using regional waveform data and709

estimated a sub-shear rupture velocity of 3.7 km/s as the most plausible scenario. Bie et al.710

(2018) also found a significant overlap of the modelled source-time functions (STFs) from the711
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two sub-events, indicating a near simultaneous rupture of the two segments. In their study, the712

eastern sub-event displays a temporally more compact STF. However, they relate that the mod-713

eling of the STFs of the two sub-events proved difficult. Furthermore, Bie et al. (2018) state714

that they could not distinguish the rise and fall times for each sub-event. Bie et al. (2018) con-715

cluded that the 2016 Muji earthquake, being an intermediate-sized earthquake, has the small-716

est reported temporal gap between two sub-events upon publication date.717

3.2 Waveform data processing and multiarray BP setup718

In our analyses of the 2016 Muji earthquake we use seismic waveforms from broadband719

stations with sampling rates of at least 10 Hz and with locations at teleseismic epicentral dis-720

tances between 23◦ and 93◦. The data are accessed via the FDSN services IRIS and Geofon,721

and additionally RESIF and ORFEUS for the multi-array BP. For the seismological waveform722

processing we use the Pyrocko software (Heimann et al., 2017; Heimann, 2011; Cesca et al.,723

2010). We use a layered 1-d regional velocity model (Fig. S19) based on Xu et al. (2006) and724

W. Li et al. (2018).725

For the teleseismic BP we can use the downloaded data without further manual data checks726

and/or selection. Through the stacking process for the BP noisy data and faulty response func-727

tions of singular stations have a comparatively small impact. The method strongly benefits from728

more stations and hence more virtual arrays. We resample the waveforms to a common 10 Hz,729

rotate the seismogram components into the source-centred RTZ coordinate system, and resti-730

tute the data to ground velocity by removing the instrument answer. While we use the frequency731

range from 0.003 Hz up to 1.5 Hz for the BP, we separate within that band a low-frequency732

and a high-frequency band at the estimated corner frequency, here 0.16 Hz, through bandpass-733

filtering as described in Section 2.1.3. We obtain two LF and HF waveform sets using the Z-734

components for P-wave BP and the T-components for the SH-wave BP. We show exemplary735

normalised waveform data and spectra of P-waves and SH-waves from an array with stations736

located between epicentral distances of 5633 km and 6243 km in Figures S21 and S22.737

In our multi-array BP of the 2016 Muji earthquake we form 34 virtual arrays from 563738

stations in total (Fig. 1). The virtual arrays have a maximum aperture of 5◦ and at least 5 sta-739

tions. To form an array in the Pacific we allowed for larger array apertures of up to 10◦ and740

decrease the number of required stations to 4, to increase coverage. The resulting average num-741

ber of stations per array is 9. Most stations are located in North America and Europe. Only742
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Pamir

Lake Karakul

Muji fault

Kongur Shan
fault

Tarim Basin

Tian Shan

Muji graben

Figure 4: Setting of the Muji 2016 earthquake. Map of the region around the area of the 2016

Muji earthquake. Black lines indicate regional faults as mapped in the GEM fault database (Styron,

2019). Red lines are reported co-seismic surface ruptures (T. Li et al., 2019; Chen et al., 2016).

The red beachball indicates the USGS hypocenter and body-phase determined focal mechanism.

Other beachballs are representing the potential focal mechanisms from the World Strain Map

(Kreemer et al., 2014). Inset shows the location of the area on the world map.
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waveforms with a cross-correlation coefficient above 0.6 to the center-most station of each ar-743

ray are taken into account for further processing. The cross-correlation coefficient is calcu-744

lated after shifting the waveforms with regard to the theoretical onset time given by the USGS745

hypocenter location and the velocity model. The horizontal grid of locations for which the BP746

is performed is at 9 km depth and extends 1.5 degrees around the USGS hypocenter. The grid747

spacing is about 0.018 degree or 2 km.748

We apply phase-weighted stacking of the waveform sets in virtual arrays to calculate the749

multi-array semblance, as described in Section 2.1.1. For comparison, we show an example750

of single-array semblance formed with phase-weighted stacking together with the semblance751

formed with linear stacking in Fig. S20. To investigate the time evolution of the rupture we752

carry out BPs with moving times windows. In LF BP these time windows have a duration of753

24 s and are moved by 8 s in each step. In the HF BP the time windows and step sizes are shorter754

with only 10 s and 2 s, respectively.755

For the finite-rupture optimization we resample the waveforms to 0.5 Hz, apply a bandpass-756

filter from 0.01 Hz to 0.13 Hz and restitute the waveforms to ground displacement. For the P-757

wave we only use the Z-component of the waveforms and evaluate the full-waveform misfit758

in a time window from 15 s before to 25 s after the theoretical onset of the P-wave. For the759

SH-wave we use the T-component of the waveforms and evaluate the misfit in a time window760

from 25 s before to 35 s after the theoretical onset.761

3.2.1 Empirical traveltime correction on the Muji earthquake waveform data762

We apply empirical traveltime corrections (see also Section 2.1.4) to the processed wave-763

forms of the Muji earthquake. For the estimation of the corresponding traveltime shifts we use764

as the reference event the Mw 5.2 November 25 earthquake in 2016, which occurred at 14:18:59,765

so 5:30 minutes before, and about 10 km south-east of the main shock. Its mechanism is sim-766

ilar to the main earthquake (USGS catalogue) but the source is about 10 km deeper. To esti-767

mate traveltime shifts we use the exact same set up of stations, filters and array forming as768

for the main earthquake and maximise the semblance of the reference event for each wave-769

form set independently (Fig. S23). For this operation we use a single time window of 32 s for770

the LF BP and 24 s for the HF BP, which begins 4 s and 6 s before the theoretical onset of the771

P- and SH-phases, respectively.772
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We find strong azimuthal correlations of traveltime shifts between the stations (Fig. S23).773

In general, stations north of the event display negative time shifts and stations south of it pos-774

itive shifts, for both P- and SH-waves. Also the differences between the empirically estimated775

time shifts found for the LF and HF BPs are generally small and in good agreement for P-776

and SH-phases. Only a few individual stations display significantly different time shifts to other777

stations of the same array and/or show a sign change in the time shifts between LF and HF778

BPs. For the P-waves time shifts are in the range of +/- 1.5 s and increase for SH-waves to +/-779

3.5 s.780

3.3 Near-field data781

For the estimation of the Muji fault location based on the gradient of the surface dis-782

placement data we employ an ascending and a descending SAR interferogram, based on Sentinel-783

1 interferometric wide-swath satellite data in VV polarization. The SAR data were downloaded784

from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). Primary and785

secondary image dates are 2016/10/20 and 2016/12/07 for the ascending data, and 2016/11/25786

and 2016/12/19 for the descending data. The differential interferograms are processed using787

the ESA SNAP Sentinel-1 toolbox (s1tbx) and the SRTM elevation model (Farr & Kobrick,788

2000). The interferograms have been filtered using an adaptive Goldstein filter with a window789

size of 16 and a filter factor of 0.8. Unwrapping was conducted using the tree-branch-cut al-790

gorithm (Goldstein et al., 1988), with a coherence threshold of 0.1. We account for the pres-791

ence of correlated data errors in the displacement maps in the optimization. We empirically792

estimate the variance-covariance functions of the data error, assuming that they resemble Gaus-793

sian random field and stationarity (Hanssen, 2001). This estimation takes place in areas of the794

displacement map that show no apparent surface movement. Before the kinematic source mod-795

eling using these data, their number is reduced through irregular data subsampling with the796

quadtree algorithm (Jónsson et al., 2002). Data error estimation, data subsampling and the im-797

plementation of the variance-covariance functions to build variance-covariance matrices for the798

subsampled data (Sudhaus & Jónsson, 2009) are done using the Kite software package (Isken799

et al., 2017). For forward modeling the near-field displacement, we calculate Green’s func-800

tion based on the layered 1-d regional velocity model Xu et al. (2006) and W. Li et al. (2018).801
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3.4 Results802

3.4.1 Spatio-temporal evolution of the 2016 Muji earthquake803

The LF (0.003-0.16 Hz) BP results of the 2016 Muji earthquake display two, in east-west804

direction spatially separated, high semblance regions (Fig. 5a). This pattern also appears in805

the individual BP results of P- and SH-phases (Figs. S27 and S28), with the P-phase BP pro-806

viding somewhat better resolution. This semblance pattern points to a segmented rupture. The807

temporal evolution retrieved from LF BP in moving time windows suggests that the earliest808

coherent energy release took place in the western region before seismic energy excitation oc-809

curred in the eastern region (Fig. S24). The western region seems to remain activated through-810

out the duration of the rupture (Fig. S24). The LF BP results are used quantitatively to inform811

about the model space for the parameters onset time and rupture velocity (Fig. 8)in the op-812

timization, and will be used as well to set model parameter priors for strike, length and po-813

sition in combination with the results from the surface displacement image segmentation method814

results.815

The HF BP results show spatially more localized areas of high semblance (Fig. 5b) com-816

pared to the LF BP results, while the location and orientation of LF and HF semblances agree817

very well. Also the time evolution revealed in HF BP is similar to the LF BP results, with some818

more detail (Fig. 6 and 1 s steps in Fig. S26). The first HF semblance peak occurs in the west-819

ern corner of the Muji basin, close but slightly west of the Muji fault centre (Fig. 6b). All BP-820

derived semblance times are relative to this first occurrence of coherent energy mapping. This821

first semblance peak is associated with the strongest beampower of the sequence. The rupture822

then propagates simultaneously west- and eastward along the Muji fault (Fig. 6b-f). In the time823

from 6 s to 10 s seismic energy is continuously radiated in the onset area, in the area within824

15 km east of it and also slightly west of it. At the latest stage of the rupture, between 12-14 s,825

the second strongest semblance peak within a somewhat widespread semblance high is found,826

located almost 30 km west of the onset peak. The location precision estimates based on boot-827

strapping (Section 2.1.1) range from 5 km to 15 km (Fig. 6). From the HF BP spatio-temporal828

semblance results of the 2016 Muji earthquake we estimate a rupture velocity, considering fault829

segmentation, and the length of segments. For each segment we take the distance and time be-830

tween the first and last occurrence of HF semblance in the time-incremental semblance maps831

as nucleation and stop phase, respectively. For the western segment these estimates deliver rup-832

ture velocities between 1.8 km/s and 2.1 km/s (Fig. S25) and for the eastern segment between833
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2.1 km/s and 2.6 km/s. Using straight-line distances between the semblance peaks and ignor-834

ing the first peak as potential nucleation point, because of the indications that the rupture is835

likely bilateral our method estimates for the western segment a length of 25 km to 30 km and836

for the eastern segment a length of 10 km to 15 km. The source parameter estimates for length,837

rupture velocity and the locations of the nucleation points for each fault are used as described838

as prior information (Fig. 8) for the guided optimization.839

Based on InSAR data of the 2016 Muji earthquake we create a pseudo-probability fault840

location map applying image segmentation methods (Section 2.2). As detailed in the given sec-841

tion, we use the interferometric phase coherence, the displacement gradients and sign changes842

of the displacement to get information on the deformation source (Fig. 7). Based on the pseudo-843

probability fault location map (Fig. 7,g), we surround all areas that mark a high pseudo-probability844

of fault activation with a single minimum bounding box (Fig. 7,h) to estimate the dimension845

of the entire fault. Furthermore, we identify two distinct areas with of high pseudo-probability846

of fault activation and enclose these with bounding boxes and ellipses, respectively (Fig. 7,h).847

We interpret these separated areas as markers for two distinguishable fault segments, which848

we represent with two kinematic sources in the optimization. For each segment we estimate849

independent parameter priors. The source parameter priors for length, strike and position ob-850

tained agree well with literature values (Fig. 8, Tab. S2).851

3.5 2016 Muji earthquake two-segment rupture optimization results852

3.5.1 Exploratory and guided optimizations of the 2016 Muji rupture using the same data853

We carry out two independent non-linear kinematic source optimizations for a two-segment854

fault model, without and with including prior information from data analyses as described in855

the method section (2.3). From the Bayesian bootstrapping of the data we realize 100 sets of856

different combinations of objective functions and realize 100 bootstrap chains, each based on857

a different combination of target weights and different realizations of noise-perturbed data. We858

use the same random seeds in both optimization to create the same random weights and noise-859

perturbations. The highscore list of models, on which the statistics for new model samples are860

generated during the direct search, keeps a fixed number of 4 · npar + 1 low-misfit models.861

For the exploratory optimization we choose parameter bounds as could be chosen by an862

informed and cautious, conservative investigator, who has had access to the BP results and the863

displacement maps. For the source locations this results in 20 km wide ranges for north and864

–34–



manuscript submitted to JGR: Solid Earth

74
.2
5°
E

74
.7
5°
E

73
.2
5°
E

74
.2
5°
E

74
.7
5°
E

73
.2
5°
E

39.55°N

39.3°N

39.05°N

38.8°N

73
.7
5°
E

73
.5
°E

74
°E

75
°E

39.55°N

39.3°N

39.05°N

38.8°N

73
.7
5°
E

73
.5
°E

74
°E

75
°E

74
.5
°E

1

0.8

0.6

0.4

0.20

a)

b)

c)

1

0.8

0.6

0.4

0.2

0

Time (s)

Average Source Time Function

"Optimal" Source Time Function

0 5 10 15 20
0.00e+0

1.00e+18

2.00e+18

3.00e+18

B
eam

pow
er

0

1

M
om

e
nt

 r
at

e 
(N

.m
/s

)

S
em

b
lance

S
em

b
lance

74
.5
°E

Figure 5: Cumulative spatial semblance map for the (a) low- and (b) high-frequency BPs. Con-

tour lines are colored after the cumulative semblance. The figures are a zoom in upon the area

of interest from the main grid. The inset window in the top right shows the extent of the grid.

C) Beampower of the high-frequency BP as a function over time as a red and filled function of

time together with the optimal (black line) and average (blue line) source time functions from the

SCARDEC catalog (Vallée & Douet, 2016).
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Figure 7: Displacement map segmentation results for the 2016 Muji earthquake. a) shows the

ascending line-of-sight displacement data, (b) the corresponding gradient map and c) the gradient

of the sign change mask, superimposed on the displacement data. d) shows the descending line-

of-sight displacement data, e) the corresponding gradient and f) the gradient of the sign change,

superimposed on the displacement data. g) Combined pseudo-probability map of fault location

adding ascending and descending pseudo-probabilities. h) Minimum bounding boxes and ellipses

on the pseudo-probability maps in i), enclosing the automatically determined area of interest (black

box), enclosing all high pseudo-probability values (green boxes, long purple ellipse), and the sepa-

rated areas of high pseudo-probability (red boxes, small purple ellipses). Major axis of the ellipses

and centroids are shown as dashed lines and dots the corresponding colors for single and two seg-

ments estimations. The background shows the ascending displacement map for visual reference. i)

Zoom in on the area of interest (black box in h).
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Figure 8: Model parameter space for the guided optimization of the Muji 2016 earthquake as

specified through BP and displacement map segmentation or otherwise assumed. Black box out-

lines mark assumed uniform prior probabilities without any data analyses, while colored boxes

and histograms show uniform or non-uniform inferred prior pseudo-probability functions for the

parameters. Colored pseudo-probability functions mark priors for the two distinguished source

segments in the western (light blue) and eastern (light red) part of the fault.
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east source locations around the approximate center of the signals. For the onset time of each865

source the parameter range is set from 0 s to 20 s for both sources, with 20 s roughly being866

the rupture duration as given by the SCARDEC catalog (Vallée & Douet, 2016) for the 2016867

Muji earthquake. To pre-constrain the source mechanism parameters (strike, dip, rake), we set868

80 degrees wide parameter bounds, centered around the expected focal mechanisms from the869

World Strain Map (Kreemer et al., 2014). For each source the model parameter slip can range870

from 0 m to 4.5 m, the parameter width from 0 m to 15000 m and the depth (top edge) from871

0 m to 7500 m. The prior probability is uniform for all these parameters.872

For the optimization starting with the guided phase we base the model parameter prior873

distributions on the available estimates of the BP results and/or the displacement map segmen-874

tation, or the same priors as in the exploratory optimization. The aim is to well constrain the875

2016 Muji faulting and to compare the results of the two different optimization runs in terms876

of source results and performance.877

In general, both optimizations converge to very close locations within the high-dimensional878

model space such that parameter marginals mostly cover the same parameter ranges (Fig. 9).879

The spatio-temporal evolution of the best model of the guided optimization more closely re-880

sembles the inferred spatio-temporal evolution of the BP result, in contrast to the best model881

of the exploratory optimization (Fig. 10). The inferred result from the guided optimization and882

the inferred BP result is however part of the ensemble of the exploratory optimization. The883

exploratory optimization needs more sampling to converge compared to the optimization that884

starts with the guided sampling (Fig. S35). The corresponding posterior probabilities have not885

always the same shape and also, the best-performing source models from both these optimiza-886

tions are not very similar (Fig. 9 and Figs. S36 and S37). The best model of the guided op-887

timization is a subset of the exploratory optimization source parameter estimates, but is not888

the best performing model in that ensemble. The misfit of the best fitting model from the ex-889

ploratory optimization is lower than from the best fit model of the guided optimization (Fig. S35).890

We note that for the guided optimization several source parameters estimates converge, e.g.891

nucleation x and time, which do not converge in the exploratory optimization. The source pa-892

rameter estimates and especially the best model of the guided optimization also represent the893

results of the backprojection much better (Fig. 10). Fits for the static displacement data can894

be found in Figure S31 and for the waveforms in Figure S32 with trace weights at stations shown895

in the Figures S34 and S33. The best fit model of the exploratory optimization produces bet-896
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ter fits for some waveforms but performs worse for the static displacement fits in comparison897

to the best fit model of the guided optimization.898

–40–



manuscript submitted to JGR: Solid Earth

1
8

.5
1

9
.0

1
9

.5
E

a
st

 s
h

if
t 

0
 [

k
m

]

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Norm. PDF
b

e
st

:1
9

.0
b

e
st

:1
9

.1

8
.0

7
.5

7
.0

N
o
rt

h
 s

h
if
t 

0
 [

k
m

]

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Norm. PDF

b
e
st

:-
7

.5
b

e
st

:-
7

.5

3
4

D
e
p

th
 0

 [
k
m

]

0
.0

0
.5

1
.0

1
.5

2
.0

Norm. PDF

b
e
st

:3
.2

b
e
st

:3
.3

1
1

1
2

1
3

Le
n

g
th

 0
 [

k
m

]

0
.0

0
.5

1
.0

1
.5

2
.0

Norm. PDF

b
e
st

:1
1

.7
b

e
st

:1
2

.0

1
2

3
W

id
th

 0
 [

k
m

]

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Norm. PDF

b
e
st

:1
.3

b
e
st

:0
.9

2
4

6
S

lip
 0

 [
m

]

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0
1

.2
5

1
.5

0

Norm. PDF

b
e
st

:3
.8

b
e
st

:5
.2

1
1

0
1

1
5

S
tr

ik
e
 0

 [
°]

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Norm. PDF

b
e
st

:1
1

1
.3

b
e
st

:1
0

9
.7

6
0

8
0

D
ip

 0
 [

°]

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

Norm. PDF

b
e
st

:6
9

.8
b

e
st

:7
5

.2

1
8

0
1

7
5

1
7

0
R

a
ke

 0
 [

°]

0
.0

0
.1

0
.2

0
.3

Norm. PDF

b
e
st

:-
1

7
4

.6
b

e
st

:-
1

7
3

.3

1
0

1
N

u
cl

e
a
ti

o
n

 0
 X

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Norm. PDF

b
e
st

:-
0

.9
b

e
st

:-
0

.5

1
0

1
N

u
cl

e
a
ti

o
n

 0
 Y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Norm. PDF

b
e
st

:-
0

.3
b

e
st

:-
0

.8

0
1

0
T
im

e
 0

 [
s]

0
.0

0
.1

0
.2

0
.3

Norm. PDF

b
e
st

:7
.1

b
e
st

:-
3

.8

2
4

V
e
lo

ci
ty

 0
 [

k
m

/s
]

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

Norm. PDF

b
e
st

:2
.6

b
e
st

:1
.2

6
4

2
0

E
a
st

 s
h

if
t 

1
 [

k
m

]

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Norm. PDF

b
e
st

:-
3

.4
b

e
st

:-
3

.4

4
2

0
N

o
rt

h
 s

h
if
t 

1
 [

k
m

]

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Norm. PDF

b
e
st

:-
1

.2

b
e
st

:-
1

.3

2
.5

5
.0

7
.5

D
e
p

th
 1

 [
k
m

]

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Norm. PDF

b
e
st

:6
.1

b
e
st

:5
.0

1
0

1
5

2
0

Le
n

g
th

 1
 [

k
m

]

0
.0

0
0

.0
5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Norm. PDF
b

e
st

:1
8

.9
b

e
st

:1
6

.9

0
1

0
W

id
th

 1
 [

k
m

]

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Norm. PDF

b
e
st

:1
.1

b
e
st

:4
.0

0
.0

2
.5

5
.0

7
.5

S
lip

 1
 [

m
]

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Norm. PDF

b
e
st

:5
.8

b
e
st

:1
.7

1
1

0
1

2
0

S
tr

ik
e
 0

 [
°]

0
.0

0

0
.0

5

0
.1

0

0
.1

5

Norm. PDF

b
e
st

:1
1

0
.0

b
e
st

:1
1

2
.4

5
0

7
5

1
0

0
1

2
5

D
ip

 1
 [

°]

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Norm. PDF

b
e
st

:8
7

.9

b
e
st

:7
4

.4

1
8

0
1

7
0

1
6

0
1

5
0

R
a
ke

 1
 [

°]

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.1

5
0

Norm. PDF

b
e
st

:-
1

7
0

.4
b

e
st

:-
1

7
5

.3

1
0

1
N

u
cl

e
a
ti

o
n

 1
 X

012345 Norm. PDF

b
e
st

:0
.8

b
e
st

:-
0

.8

1
0

1
N

u
cl

e
a
ti

o
n

 1
 Y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Norm. PDF

b
e
st

:0
.6

b
e
st

:-
0

.5

0
1

0
T
im

e
 1

[s
]

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0
Norm. PDF

b
e
st

:-
1

.3
b

e
st

:7
.3

2
4

V
e
lo

ci
ty

 1
 [

k
m

/s
]

0
.0

0
.5

1
.0

1
.5

Norm. PDF

b
e
st

:1
.2

b
e
st

:2
.7

Fi
gu

re
9:

H
is

to
gr

am
s

of
th

e
so

ur
ce

pa
ra

m
et

er
es

tim
at

es
fo

rt
he

ex
pl

or
at

or
y

(b
lu

e)
an

d
gu

id
ed

(r
ed

)o
pt

im
iz

at
io

ns
.T

he
be

st
m

od
el

s
ar

e
in

di
ca

te
d

by
a

da
sh

ed
lin

e.

So
ur

ce
pa

ra
m

et
er

na
m

es
ar

e
in

de
xe

d
w

ith
0

fo
rt

he
ea

st
er

n
se

gm
en

t(
e.

g.
"D

ep
th

0"
)a

nd
w

ith
1

ar
e

fo
rt

he
w

es
te

rn
se

gm
en

t.

–41–



manuscript submitted to JGR: Solid Earth

3.5.2 Backprojection of synthetic waveforms from the 2016 Muji minimum-misfit kine-899

matic source model900

We test if the waveforms of our best-fit two-segment source model of the 2016 Muji earth-901

quake lead to similar spatio-temporal semblance results in a multi-array BP as the observed902

waveforms. To synthesize waveforms we use the same assumptions for the medium model as903

in all other analyses and calculate synthetic waveforms up to frequencies of 8 Hz for the same904

stations that we used in the real-data BP and we apply the same BP settings (Section 5). We905

add no noise to the synthetic waveforms.906

We obtain LF and HF BP results for synthetic P- and SH-phases shown as cumulative907

semblance maps in Figure 11 and as time-incremental semblance maps in Figure S30). The908

semblance maps strongly resemble the real-data semblance maps (Fig. S24 and Fig. 6). They909

show very similar locations and numbers of high-semblance peaks. The synthetic semblance910

is spatially somewhat more focused, particularly for the LF BP. We also carry out a synthetic911

BP for a best-fit single-segment source model of the Muji 2016 earthquake (Fig. S29). Over-912

all the synthetic BP results of the two-segment source model match the real-data semblance913

pattern more closely than the BP results of the single-segment source model. The synthetic914

LF semblance map for the single-segment source model shows a single high-semblance peak915

only, which is further east compared to the real-data LF semblance map. The HF synthetic sem-916

blance is missing the particularly strong central semblance peak apparent in the real-data HF917

semblance map. Both these features and the timing of semblance peaks are well reproduced918

using the two-segment source model.919
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Figure 10: Rupture nucleation and termination times plotted as a function of distance along strike

for each source segment for both exploratory (a) and guided (b) optimization ensembles (b). Single

models are colored by misfit with the best model drawn in black. The corresponding unweighted

HF BP result is shown with a red line.
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Figure 11: Contour plots of the LF (a) and HF (b) cumulative semblance from BP of synthetic

waveforms of the minimum-misfit, two-segments kinematic source model. The source segment

outlines are shown as gray-shaded rectangles, with the thick lines indicating the upper edges. Blue

circles give the positions of the rupture nucleation points on each segment.
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4 Discussion920

4.1 Discussion of multi-array backprojection921

The presented multi-array BP shows in synthetics tests a pleasingly high performance922

in recovering the horizontal location, the time, and rupture history with high accuracy. In com-923

parison to BP using data from a large array, our multi-array BP with many small-aperture ar-924

rays clearly achieves stronger spatial focusing of seismic energy (Fig. 2b and Fig. S4). The925

presented multi-array BP has been applied successfully to other earthquakes already, e.g. the926

2016 Mw 7.1 Romanche transform-fault earthquake (Hicks et al., 2020) and the 2008-2009 Qaidam927

earthquake sequence (Daout et al., 2020).928

The focusing ability of our multi-array BP in depth direction is less precise compared929

to the horizontal resolution. The reason is that the depth direction is subparallel to the dom-930

inant path of wave propagation from shallow earthquake sources to far-field stations of a global931

network. Therefore, multi-array BP shares the generally relatively poor depth resolution for932

Mw 6-7 earthquake studies based on the global network of seismic station (Engdahl et al., 1998;933

Maggi et al., 2002), which may only be improved using more sophisticated methods (Craig,934

2019). To account for poor depth resolution, our multi-array BP uses a purely horizontal grid935

of source points at a fixed depth. Seismic energy that is emitted at depths below or above to936

the chosen grid depth may appear horizontally shifted to the real horizontal location in the cor-937

responding semblance maps. The accuracy of the location of the semblance therefore depends938

on an appropriate grid depth compared to the seismic source and may generally vary across939

the semblance maps for ruptures with a large depth extent.940

Potentially an inclined source grid representing a known fault could be implemented in941

our multi-array BP to circumvent such a bias. However, the fault geometry should be well known,942

since wrong assumptions on the plane location and orientation will again lead to shifts in the943

backprojected seismic energy. For many applications, in particular those similar to the here944

presented earthquake case studies, fault location and fault geometry are unknowns to be con-945

strained in the problem. Using a volume of grid points for the BP is possible as well and could946

be implemented in the presented framework. However, this requires a source-station config-947

uration with many near-enough stations providing sufficient resolution in depth to enable fo-948

cusing in this direction. In the general case, using a horizontal grid is in our eyes the least strict949

assumption.950
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From the LF and HF BP results of the 2016 Muji earthquake (Figs. 5, S24 and 6) we951

infer the spatio-temporal evolution of the rupture. The 2016 Muji rupture starts at the east-952

ern end of the western segment and from there propagates simultaneously eastwards and west-953

wards. The time-incremental high-frequency semblance maps show five peaks within the du-954

ration of 15 s. We interpret the first semblance peak as a representation of the rupture nucle-955

ation or start phase. We then observe slow rupture propagation from the nucleation point to956

both the east and west from that potential nucleation point. A second mapped semblance peak957

occurs east of that location, which we interpret as a rupture stop phase at the eastern end of958

the western segment. A third semblance peak occurs seconds later some five kilometers to the959

east, which likely represents the start phase on the eastern segment. No coherent seismic en-960

ergy emission is mapped between the locality of these two mapped semblance peaks in either961

the low-frequency or the high-frequency semblance maps. Another high-frequency semblance962

peak occurs several seconds later to the east of the third peak, possibly representing the stop963

phase on the eastern segment. The last high-frequency semblance peaks is mapped 30 km west964

of the first semblance occurrence and potentially indicates the western-end stop phase of the965

western segment. We observe two distinct and separated patches of significant semblance in966

the low-frequency semblance map, which indicate a rupture segmentation. We interpret the967

time-incremental LF and HF semblance map as a bilateral rupture and the rupture jumping from968

the western segment to the eastern segment without emitting coherent seismic energy in be-969

tween. This agrees with a previously postulated slip gap between the two segments (Feng et970

al., 2017). The area where the rupture segmentation and slip gap occurs coincides with mapped971

fluvial terraces that show a right-lateral offset across the Muji fault (Chevalier et al., 2011) and972

lies at the outlet of the longest glacial valley in the Muji range. The termination of the rup-973

ture on the western segment is located at a previously mapped discontinuity in the surface fault974

traces (Chevalier et al., 2011). We find a co-location of significant static surface displacement975

and the cumulative LF semblance map in the near field of the 2016 Muji earthquake. Such976

an agreement is to be expected and it has been observed before (Okuwaki et al., 2018; Yin977

& Denolle, 2019). Since static surface displacement correlates strongly with moment and there-978

fore with fault slip, it is in close neighborhood to the excitation of seismic waves. A similarly979

good agreement between static InSAR surface displacements and the semblance from multi-980

array LF BP has been found for the 2008 and 2009 Qaidam earthquakes (Daout et al., 2020).981

We estimate the rupture velocity of the 2016 Muji earthquake based on the HF spatio-982

temporal semblance to be within the range from 1.8 km/s to 2.1 km/s for the larger western983
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segment and from 2.1 km/s to 2.6 km/s for the eastern segment (Fig. S25). These velocities984

are much slower than the rupture velocity of 3.7 km/s found in the Muji source analysis by985

Bie et al. (2018) for their most plausible scenario, based on the inferred source time functions986

and the rupture geometry. Bie et al. (2018) see a significant overlap of the two modelled subevent987

source-time functions that seems to indicate a near simultaneous rupture of both rupture seg-988

ments. HF semblance peaks in the BP results appear co-located with boundaries of high gra-989

dients in static InSAR surface displacements. This is similar to results found for the 2008 and990

2009 Qaidam earthquakes (Daout et al., 2020). Furthermore, no HF semblance is mapped in991

the area of an apparent slip gap between two regions of high static surface displacement. The992

first HF high-semblance peak that is close to the eastern edge of the western segment and the993

rupture seems to propagate through or jump the area which has been identified in previous stud-994

ies as a slip gap (Bie et al., 2018; Feng et al., 2017), without emitting significant coherent seis-995

mic energy within the frequency bands considered in this study. The rupture on the western996

segment appears to start slow (Fig. 6b). The estimate of the rupture velocity on the western997

segment is likely representing an average between the initial and late stage rupture velocities998

(Fig S25). The total duration of the rupture as inferred from the beampower of our multi-array999

BP agrees well with the duration of the optimal SCARDEC source-time functions (Vallée and1000

Douet (2016), Fig. 5), but is shorter by 1 s or 2 s in comparison to the average SCARDEC STF.1001

Further comparisons between STFs and beampower, e.g. in shape, are not meaningful, since1002

they represent different measures of the rupture process.1003

Intriguing is the strong resemblance of the real-data multi-array BP semblance with the1004

semblance based on synthetic waveforms of the best-fit two-segment source model (Fig. 11),1005

despite the fact that the kinematic source model is rather simple. It consists of only two rect-1006

angular source models with uniform slip and constant rupture velocity. Already such first-order1007

source characteristics appear to describe the source well enough to well predict the waveforms1008

up to a frequency of at least 1.5 Hz. It proves that our multi-array BP can reveal source ge-1009

ometry properties as well as other first-order rupture parameters for M<7 earthquakes. Multi-1010

array BP shows a high potential to add value in future inverse source modeling problems.1011

4.2 Surface displacement map segmentation method1012

The image segmentation methods that we apply on surface displacement maps to extract1013

probable fault traces prove to work well in synthetic tests (Figs. 3, S15 and S18). They en-1014

able recovering of the true source position with an accuracy of 100 m and the true length with1015
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an accuracy of 500 m. The inferred fault traces are closely located to the well studied fault traces1016

for the 2016 Muji and the 2009 L’Aquila earthquakes. However, we caution against the di-1017

rect use of the inferred fault trace location in fault mapping or as a fixed position in source1018

optimizations, for a number of reasons. First, it is debated how well observed surface ruptures1019

and surface deformation represent the slip and fault geometry at depth (Dolan & Haravitch,1020

2014; Soliva et al., 2008). Second, we observe biases in the fault trace location estimates for1021

deeper earthquake sources and due to the line-of-sight projection of the three-dimensional sur-1022

face displacement in InSAR data. Using more than one dataset that have different line-of-sight1023

vectors will reduce this bias to some degree. We also note that the method might be suscep-1024

tible to a very heterogeneous slip distribution. We underline again that the aim of the method1025

is not to find the true fault line but rather derive pseudo-probabilities of the fault location for1026

prior model parameter distributions. The assumption of the here used very simple source ge-1027

ometries, e.g. a planar fault, is suitable for low-parametric source modeling.1028

Our application of surface displacement map segmentation was very successful in syn-1029

thetic tests (Figs. 2,S29,S5,S2 and Figures in Supplement 2.1) and on the InSAR data of the1030

2016 Muji earthquake. The co-seismic fault trace identified in previous studies (J. Li et al.,1031

2019) agrees well with the result of our obtained fault pseudo-probability map (Fig. 7) and1032

we note an agreement of the inferred fault traces (Fig. 7) with the field mapping of the Muji1033

fault trace (Chevalier et al., 2016, 2011) and the reported co-seismic surface ruptures (T. Li1034

et al., 2019; Chen et al., 2016).1035

The presented set of methods is straightforward. We believe that with few modifications1036

only they can be applied to pixel-offset maps from optical images and to wrapped-phase in-1037

terferograms. The image segmentation can be profitable also as a stand-alone signal detection1038

method that in an automated way is used to detect significant deformation signals at specific1039

sites and in big-data catalogues. As we show, the method is suited to produce fast estimates1040

of source parameters. The method can be applied to big-data catalogues of InSAR surface dis-1041

placements to automatically identify and characterize first-order source parameters.1042

4.3 Guided optimization1043

In our guided optimization we use the source parameter pseudo-probabilities which we1044

estimated beforehand based on the multi-array backprojection and the image segmentation of1045

surface displacement maps. With these source parameter prior distributions we succeed in au-1046
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tomatically tailoring the model space for an efficient start of the direct parameter search. The1047

guided optimization, in comparison with a more exploratory optimization, needs significantly1048

less sampling to converge. It is not possible to give a simple indicator on performance gain1049

here, because the gain strongly depends on the model parameter space that is chosen for the1050

exploratory optimization, which in itself strongly depends on the problem. Usually, the model1051

space of exploratory optimizations is either based on parameter bounds chosen by the researcher1052

based on earthquake information, data visuals, experience and else, or on very wide param-1053

eter ranges that allow for almost all possible solutions. In the first case the benefit of the here1054

proposed methods stems less from the potentially reduced optimization cost, but rather from1055

the reduced need of supervision by a human researcher. In the latter case the gain will def-1056

initely be largely reduced computational cost, while the implementation of multi-array back-1057

projection and image segmentation comes at its own cost. From our point of view, the main1058

advantage of including prior information from multi-array backprojection method into kine-1059

matic modeling is that it gives physics-based evidence to model rupture segmentation with dis-1060

tinct sources.1061

Tailoring of the model space potentially excludes the global minimum model, which is1062

a serious risk. While the chosen priors include extra margins from bootstrapping, we further1063

reduce this risk by enlarging the model space after the initial tailored phase in the optimiza-1064

tion. From this point of only the parameter distributions of low-misfit models drive the selec-1065

tion of new models in the widened model space.1066

We used some soft model space tailoring in the exploratory optimization as well, which1067

also form the enlarged model space of the guided optimization after its initial phase. For the1068

source parameters strike, dip and rake we based this soft tailoring on the expected focal mech-1069

anisms from the World Strain Map (Kreemer et al., 2014). Similarly we employed informa-1070

tion from source time functions in the SCARDEC catalog (Vallée & Douet, 2016) for the on-1071

set time of 2016 Muji earthquake in the exploratory optimization. Both these data sources could1072

also inform future operational source parameter optimizations in an automated fashion.1073

We demonstrate the practicality of the guided optimization in its application to the 20161074

Muji earthquake. Here, it decreased the parameter ranges of the model space to be searched1075

significantly. As a consequence, the guided optimization arrived comparatively early at low-1076

misfit models (Fig. S36). The final source parameters for length, strike and position are close1077

to the prior distributions (Fig. 8) determined by the surface displacement map segmentation1078
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method. The estimated prior distributions of source parameters compare well to the kinematic1079

source model parameter estimates. This is also true for the source parameters nucleation po-1080

sition and time as inferred from the multi-array backprojection. Including prior parameter dis-1081

tributions in this way not only speeds up the convergence, it also helps resolving common pa-1082

rameter trade-offs in kinematic source modeling, e.g. between the onset times and positions1083

of the nucleation points in case of two sub-sources. We note that the best-performing mod-1084

els of the guided and exploratory optimizations differ for the onset time, nucleation position1085

and rupture velocity. Here, the source model ensembles of the guided optimization form a sub-1086

set of the ensembles of the exploratory optimization.1087
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5 Conclusions1088

We present a multi-array backprojection (BP) method and image segmentation applied1089

to InSAR surface displacement measurements to improve the imaging of the spatio-temporal1090

evolution of the rupture process of an earthquake. The information that we assemble based1091

on these methods not only boosts follow-up non-linear kinematic source optimizations. They1092

also enable an beforehand objectively informed setting of the number of source segments for1093

a rupture. The multi-array BP method uses many small virtual arrays instead of a single large1094

array to form a combined semblance maps from many single-array responses. We realize a1095

large number of arrays with good coverage across azimuth and distance by clustering the glob-1096

ally available broadband stations into virtual arrays. In the combined semblance unwanted side1097

lobes are suppressed that may result from e.g. depth phases. Additionally, we combine P- and1098

SH-wave semblances to further increase the resolution of the semblance. Furthermore, our multi-1099

array BP allows for an estimation of the semblance precision by using Bayesian bootstrapping1100

of the single array contribution. In this bootstrapping we account for modeling errors due to1101

uncertainties in the earth velocity structure by randomly perturbing traveltimes. Our synthetic1102

tests with realistic station distributions and real noise proved the method to be robust. We show1103

that it is capable of resolving the location of synthetic sources with a location error of less than1104

5 km in low-frequency semblance maps and with less than 2 km in high-frequency semblance1105

maps. Included in our presentation of the multi-array BP is a novel approach for obtaining em-1106

pirical travel time corrections. It is based on a semi-automatic search of a set of traveltime cor-1107

rections maximizing the semblance of an fore- or aftershock.1108

We apply the multi-array BP method successfully to the real data of the 2016 Mw 6.61109

Muji earthquake. For the semblance maps from the 2016 Mw 6.6 Muji earthquake we find a1110

spatial precision of maximum 30 km and 7 km for the low-frequency and high-frequency sem-1111

blance maps, respectively. We note that significant cumulative semblance, especially in the low-1112

frequency results, corresponds well with significant surface displacement measured with In-1113

SAR. This in turn strongly supports the high accuracy that we estimated in the synthetic tests.1114

From the BP results we infer a bilateral and segmented rupture starting close to the eastern1115

end of the western segment, jumping a seismic gap to the eastern segment and propagating1116

on both segments simultaneously. The rupture terminates first on the smaller eastern segment.1117

We find a higher average rupture velocity of 2.1 km/s to 2.6 km/s for the eastern segment in1118

comparison to the average 1.8 km/s to 2.1 km/s for the larger western segment.1119
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The second presented method, an image segmentation approach applied to surface dis-1120

placement maps as measured with InSAR that, performs well in estimating the location, ori-1121

entation and the number of segments of a rupture. We show how this information can be cast1122

into prior model parameter distributions for a multi-segment finite kinematic source model.1123

In synthetic tests we demonstrate that with image segmentation we successfully recover fault1124

strike, length, horizontal position and number of input sources. In the application of this method1125

to the InSAR data of the 2016 Muji earthquake we find very good agreements of the results1126

with the results of the multi-array BP, field mappings of the fault trace and also estimated fault1127

characteristics in other source studies of this earthquake.1128

Both developed methods can be used separately and as stand-alone methods, to provide1129

useful information about the rupture process. They could become regular parts in future op-1130

erative frameworks. All developed algorithms are available as open-source software. In our1131

work here we implemented them to ultimately infer prior model parameter distributions to be1132

used in a guided joint-data two-sources non-linear optimization of the 2016 Muji earthquake.1133

The resulting two-segment kinematic rupture model is not only consistent with the seismic wave-1134

forms and surface displacement data used in the inverse modeling, but also with the rupture1135

evolution as inferred through the multi-array backprojection. Additionally the this guided op-1136

timization converged faster compared to the exploratory optimization without such prior source1137

information.1138

Our results supports previous reports that 2016 Muji earthquake has been a bilateral rup-1139

ture, with the rupture starting on the western segment to propagate eastward and westward on1140

this segment. After an initiation phase the rupture appears to jump to the eastern segment.1141

The presented methods ease the detection of significant rupture segmentation, in partic-1142

ular for shallow crustal earthquakes with Mw<7, and are suitable to be applied in an auto-1143

mated fashion. A better and more frequent imaging of rupture complexity can be crucial for1144

a better mapping of crustal faults and understanding of crustal faulting.1145
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1. Exploratory Optimization with Bayesian
Bootstrapping

We estimate model parameter uncertainties alongside an opti-
mization by Bayesian bootstrapping. Here bootstrapping is re-
alized through Bayesian random weighting (Rubin, 1981) of the
seismic waveforms and through residual bootstrapping with syn-
thetic correlated noise on the InSAR data to form multiple objec-
tive functions for a single forward-model realization. The misfit
weighting of the waveforms respects the uncorrelated data error
between stations caused by e. g. site effects. The synthetic noise
εsyn,i used in the residual bootstrapping is generated based on the
estimated variance-covariance functions of the data error (Sudhaus
& Jónsson, 2009) and reflects the apparent data error. We use a
large number of different sets with random weights and synthetic
noise for these multiple misfit calculations, usually above 100, and
achieve as many different bootstrap optimization chains. Once the
optimizations converge, the best-fit models of each bootstrap chain
may start to diverge, when the data error becomes significant with
respect to the difference in model fit, and form model ensembles.
In this way, which is very similar to the so called "Randomize-then-
Optimize" procedure (Bardsley et al., 2014), we retrieve source pa-
rameter distributions similar to a Markov Chain Monte Carlo sam-
pling of the model space (Jonsson et al., 2014).

The optimization that involves a large number of bootstrap
chains works in the following way. Each bootstrap chain shares
the same sampled models, but because of the different weighting,
the misfit of a model is different in each bootstrap chain. A source
model may perform well in one bootstrap chain, but poorly in an-
other. Throughout the optimization we monitor a given number of
best-fit models of each chain, to which we refer to as the highscore
list of the chain. The number of models in the highscore lists is
defined dependent on the number of model parameters Npar. The
highscore list acts as a memory of past visited models, which al-
lows the sampler to retain several good models and explore mul-
tiple minima, which is especially important for optimizing models
with several earthquake sources. The highscore list of each boot-
strap chain will therefore differ and converge differently. The dif-
ferences between the performance of the models in each bootstrap
chain represent the uncertainty of the models with respect to the
data error.

The optimization is a direct-search optimization and has two dis-
tinct phases. The first phase is a random sampling (uniform distri-
bution) of the model parameter space, constrained by given upper
and lower parameter bounds. Here this first phase samples 20.000
models. The uniform distribution as prior probability of the earth-
quake source parameters for the initial sampling is well justified if
the parameter space is large and the solution unknown. This creates
a unbiased set of sampled initial starting solutions. At the end of
the first phase, the best-performing models are determined for each
bootstrap chain with its specific objective function and collected in
the corresponding highscore lists for each bootstrap chain.

Copyright 2021 by the American Geophysical Union.
0148-0227/21/$9.00

The bootstrap chain highscore lists are playing a vital role in
the second optimization phase, the "directed sampling". The boot-
strap chain that shares the least number of models in its highscore
list with other highscore lists determines the sampling of the next
model. This ensures that also the directed phase is still exploring
the model space. The new model is drawn from a multivariate nor-
mal distribution based on the variance-covariance matrix R of the
source model parameters from all models currently in the respec-
tive highscore list. We use the excentricity compensated method to
give models with less neighbors a higher probability to be drawn
and considered as the center of the search space. The search space
is scaled by a factor a. This scale factor is logarithmically de-
creasing from the first sampling astart = 2 to the last sampling
aend = 1 of this second optimization phase. In other words, the
search space is an ellipsis in the model space, around a highscore
list model, which is shrinking with increasing number of mod-
els sampled. Each newly drawn model is ranked in all bootstrap
chains. They enter a highscore list if they outperform any of the
current highscore list models. The formerly largest-misfit model in
the highscore list is removed from it. With each new model in the
highscore lists their statistics change and with it a search radius for
a new model. At the start of the optimization the different high-
score lists likely contain the same models. Only when the misfit
starts to differ subtly between models, the data errors reflected in
the different objtective functions start to play a role in the ranking
of the well-performing models.

1
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Figure S1: a) Scheme of how the proposed methods, the multi-array backprojection and the displacement map seg-
mentation feed prior information into a non-linear optimization. b) Sketch of finite source model used as for forward
model and its source parameters. modeling.
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2. Additional synthetic tests of the multi
array backprojection
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Figure S2: Cumulative semblance from the backprojection of a synthetic DC source backprojection (Test 1) using
the Muji 2016 earthquake array setup for a) LF and P-wave only, b) LF and S-wave only, c) HF and P-wave only and
d) HF and S-wave only. Semblance is plotted as contour color plot. The black outlines represent the 68% precision
estimate from bootstrapping on the semblance maxima location. They are drawn as a minimum bounding outlines for
the locations of the maxima from 100 bootstraps. The image is a zoom in and the extent of the whole search grid is
given in the top right. The travel-time grid points are indicated as gray dots in the background. The black dot indicates
the true position of the synthetic source. Coordinates are given in Latitude/Longitude (black) and UTM (blue).
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Figure S3: Stations combined to large arrays used for the synthetic backprojection Test 2 , (Sec. 2.1.6) for the 2016
Muji earthquake plotted on a world map. The stations belonging to the same array share the same color.
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Figure S4: Cumulative semblance from the backprojection of a synthetic DC source (Test 2, Sec. 2.1.6) for P- and
SH-waves using the large array setup for the 2016 Muji earthquake (Fig. S3) for a) LF and b) HF. Shown is the cumu-
lative semblance from all timesteps from the non-bootstrapped LF synthetic single DC source backprojection using
large arrays. The outlines in black for the LF and in red for the HF indicates the uncertainty from the bootstrapped
semblance. Other details as in Fig. S2.
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Figure S5: Cumulative semblance from the backprojection of two synthetic DC sources (Test 4, Sec. 2.1.6) from P-
and SH-waves using the Muji 2016 earthquake array setup for a) LF and b) HF. The blue and orange dots indicate the
true position of the two input sources used for forward calculation. The outlines in black for the LF and in red for the
HF indicates the uncertainty from the bootstrapped semblance. Other details as in Fig. S2.

2.1. Additional backprojection synthetic tests based
on Ahar

We carry out additional synthetic backprojection tests based on
a another set of stations, mimicking the situation for the Mw 6.3
2012 Ahar earthquake, resulting in a different azimuthal coverage
and distance distribution. Again, we backproject two differently fil-
tered datasets, one at high frequencies, 0.25-1.5 Hz and one at low
frequencies, 0.01-0.24 Hz. In all cases the source is set to be equiv-
alent of a Mw 6.3 earthquake. The waveforms have been randomly
shifted by up to +/- 2 s to simulate model errors. The array weights
have been bootstrapped 100 times and the semblance is weighted
by azimuth. For each synthetic waveform real pre-event noise from
the corresponding waveform real record from before the 2012 Ahar
earthquakes is added. We use a 4 Hz Green’s function store to cal-
culate the synthetics based on the QSSP code by (Wang, 1999) and
use the AK-135 traveltime model.

We test for the recovery of the position of a single point-source
using the clustering of stations into small virtual arrays. The station
and array map can be found in Fig. S7. The source is defined with
a triangular source-time function of 3 s duration. Backprojection
results are shown for low frequencies in Fig. S8a and for high fre-
quencies, 0.25-1.5 Hz, in Fig. S8b. At both frequencies the source
position can be recovered. The source is set at 8.7 km depth and the
traveltime grid is calculated the same depth.
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Figure S6: Time-Distance plot for the line source. Time is relative to the first window with semblance. Blue dots
indicate the first and last maxima of the high-frequency BP, the orange line the estimated velocity ( 4000 m/s) and the
red line the true velocity.
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Figure S7: The stations used for the synthetic backprojections based on the 2012 Ahar earthquake with multi-array
clusters. The stations belonging to the same array share the same color.
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Similar to the synthetic test of the Muji 2016 earthquake we re-
peat the same synthetic test (we keep all parameters the same as
before) but use large arrays S9 instead of the smaller virtual ar-
rays used before. The results (Lf and HF, Figs. S10a and S10b)
shows broader distributed semblance mappings in comparison to
the smaller virtual arrays.
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Figure S8: Cumulative semblance from the backprojection of a synthetic DC source (comparable to Test 1, Sec. 2.1.6)
for P- and SH-waves using the more sparse array setup of the 2012 Ahar earthquake (Fig. S7) of a) LF and b) HF.
The source is located approximately at the location of the 2012 Ahar earthquake. Shown is the cumulative semblance
from all timesteps from the non-bootstrapped LF synthetic single DC source backprojection using large arrays. Other
details as in Fig. S2. The outlines in black indicate the uncertainty from the bootstrapped semblance.

Figure S9: The stations used for the synthetic backprojections based on the 2012 Ahar earthquake with large arrays.
The stations belonging to the same array share the same color.
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Figure S10: Cumulative semblance from the backprojection of a synthetic DC source (comparable to Test 2,
Sec. 2.1.6) for P- and SH-waves using the large-array setup of the 2012 Ahar earthquake (Fig. S9) and for a) LF
and b) HF. The source is located approximately at the location of the 2012 Ahar earthquake. Other details as in
Fig. S2.

We also tested the recovery of signals from a backprojection
of a synthetic forward modelled line source of 80 km length (a fi-
nite rectangular source with very small width of 0.1 m and a dip of
90◦) with nucleation at the eastern edge. The low-frequency back-
projection shows a broader distribution of significant semblance
(Fig. S11a). For the high-frequency backprojection (Fig. S11b) the
start and stop phases can be recovered. The rupture speed on the
fault was set to 4000 m/s and approximately recovered by taking
the distance and time between the first and last semblance maxima
(Fig. S12).
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Figure S11: Cumulative semblance from the backprojection of a synthetic horizontal line source (comparable to
Test 3, Sec. 2.1.6) for P- and SH-waves using the array setup of the 2012 Ahar earthquake (Fig. S7) for a) LF and
b) HF. The source is located approximately at the location of the 2012 Ahar earthquake. Shown is the cumulative
semblance from all timesteps from the non-bootstrapped LF synthetic backprojection. Other details as in Fig. S2.
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Figure S12: Time-Distance plot for the synthetic line source HF backprojection of the 2012 Ahar earthquake as seen
in Fig. Time is relative to the first window with semblance. S11b. Blue dots indicate the first and last maxima of
the high-frequency backprojection, the orange line the estimated velocity ( 4000 m/s). The red line indicates the true
velocity.

Another synthetic test is conducted for a vertical line source with
top depth 1 km and bottom depth 21 km (20 km length), dip 90◦

and very small width of 0.1 m. The nucleation starts at the bottom.
Again we carry out the tests for low-frequency backprojections
(Fig. S13a) and for high-frequency backprojection (Fig. S13b). The
rupture speed on the fault was set to 4000 m/s. The start and stop
phase spatially overlay each other.
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Figure S13: Cumulative semblance from the backprojection of a synthetic vertical line source for P- and SH-waves
using the array setup of the 2012 Ahar earthquake (Fig. S7) of a) LF and b) HF. The source is located approxi-
mately at the location of the 2012 Ahar earthquake. Shown is the cumulative semblance from all timesteps from the
non-bootstrapped LF synthetic backprojection. The gray dot indicates the true position of the synthetic line source
(vertical). Other details as in Fig. S2.
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We also carry out a synthetic test for two point-sources of same
moment, duration and timing, but which are spatially separated by
50 km (Fig. S14a, Fig. S14b).
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Figure S14: Synthetic backprojection of P- and SH-waves for two DC sources (comparable to Test 4, Sec. 2.1.6),
using the array setup of the 2012 Ahar earthquake (Fig. S7) for a) LF and b) HF. The source is located approximately
at the location of the 2012 Ahar earthquake. Shown is the cumulative semblance from all timesteps from the non-
bootstrapped LF synthetic of the two DC sources backprojection. The blue circles indicate the true position of the
synthetic sources. Other details as in Fig. S2.
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3. Additional synthetic tests of displacement
map segmentation
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Figure S15: Synthetic test of the displacement map segmentation method for two strike-slip sources trending north-
south at 0.5 km top edge depth. a), b) and c) contain the displacement data, the gradient and the gradient of the
sign change mask (superimposed on the displacement data), respectively, for the ascending dataset and d), e) and f)
accordingly for the descending data. g) shows the normalized combined product of the gradient sign change mask
with the gradient from ascending and descending InSAR data. Values below 1% of the maximum value are masked
out. This map is used as a pseudo-probability estimate for the position of the fault(s) location centroid. h) shows the
bounding boxes and ellipses applied on the product shown in g). The green box is the area of interest, zoomed into in
i). The red dashed line indicates the major axis of the ellipses containing the highest values for each region found as
described above. The outline of the synthetic source(s) is indicated in the figures with black lines that are thicker for
the top edge. The ellipses (indicated by the purple outline) is centered at the centroid of each region.
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Figure S16: Synthetic test of the displacement map segmentation method for a two normal dip-slip earthquakes at a
depth of 0.5 km. a), b) and c) contain the displacement data, the gradient and the gradient of the sign change mask
(superimposed on the displacement data), respectively, for the ascending dataset and d), e) and f) accordingly for the
descending data. g) shows the normalized combined product of the gradient sign change mask with the gradient from
ascending and descending InSAR data. Values below 1% of the maximum value are masked out. This map is used
as a pseudo-probability estimate for the position of the fault(s) location centroid. h) shows the bounding boxes and
ellipses applied on the product shown in g). The green box is the area of interest, zoomed into in i). The red dashed
line indicates the major axis of the ellipses containing the highest values for each region found as described above.
The outline of the synthetic source(s) is indicated in the figures with black lines that are thicker for the top edge. The
ellipses (indicated by the purple outline) is centered at the centroid of each region.
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Figure S17: Synthetic test of the displacement map segmentation method for a single normal fault at a depth of 6 km.
a), b) and c) contain the displacement data, the gradient and the gradient of the sign change mask (superimposed on
the displacement data), respectively, for the ascending dataset and d), e) and f) accordingly for the descending data.
g) shows the normalized combined product of the gradient sign change mask with the gradient from ascending and
descending InSAR data. Values below 1% of the maximum value are masked out. This map is used as a pseudo-
probability estimate for the position of the fault(s) location centroid. h) shows the bounding boxes and ellipses applied
on the product shown in g). The green box is the area of interest, zoomed into in i). The red dashed line indicates the
major axis of the ellipses containing the highest values for each region found as described above. The outline of the
synthetic source(s) is indicated in the figures with black lines that are thicker for the top edge. The ellipses (indicated
by the purple outline) is centered at the centroid of each region.
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Figure S18: Source characteristics estimation from segmentation of InSAR displacement maps applied to the real
InSAR Enivsat data of the 2009 L’Aquila earthquake (Steinberg et al., 2020). a), b) and c) contain the displacement
data, the gradient and the gradient of the sign change mask (superimposed on the displacement data), respectively,
for the ascending dataset and d), e) and f) accordingly for the descending data. g) shows the normalized combined
product of the gradient sign change mask with the gradient from ascending and descending InSAR data. Values below
1% of the maximum value are masked out. This map is used as a pseudo-probability estimate for the position of the
fault(s) location centroid. h) shows the bounding boxes and ellipses applied on the product shown in g). The green
box is the area of interest, zoomed into in i). The red dashed line indicates the major axis of the ellipses containing
the highest values for each region found as described above. The outline of the synthetic source(s) is indicated in the
figures with black lines that are thicker for the top edge. The ellipses (indicated by the purple outline) is centered at
the centroid of each region.

3.1. Additional information for the 2016 Muji
earthquake



X - 22 :

Figure S19: The layered 1-d velocity model for the static displacement modeling, based on (Xu et al., 2006) and (Li
et al., 2018).

Table S1: Details of the Sentinel-1 SAR Data used in the study.
Data are acquired in interferometric wide swath mode by Terrain
Observation with Progressive Scans (TOPS) in VV polarization.
The single look complex SAR images were downloaded from the
Copernicus Open Access Hub.

rel. orbit (track) primary date secondary date ⊥ baseline [m]
107 (dsc) 2016/11/25 2016/12/19 78.2
27 (asc) 2016/10/20 2016/12/07 98.6

Table S2: Earthquake source model parameters for the 2016 Muji
earthquake from published point and finite source models. Models
from (Bie et al., 2018) for InSAR and seismology, and for seismol-
ogy only from USGS and GCMT (Dziewonski et al., 1981) cata-
logs.

Time Lat Lon Depth Strike Dip Rake Mo Length Width Slip
◦ ◦ km ◦ ◦ ◦ 1018 N ·m km km m

Bie 1. source seis. +7.88s 39.2313 74.1428 14 108/198 78/88 178/12 5.07
Bie 2. source seis. +10.52s 39.1681 74.4208 10.1 108/198 78/88 178/12 1.905

Bie 1. source InSAR 39.2261 74.11165 8.5 106.4 70 -176 5.420 0.9
Bie 2. source InSAR 39.1754 74.3869 4.7 106.4 70 -176 2.847 1.31
USGS (body-wave) 39.273 73.978 17 19/288 86/86 4/176 7.5
USGS (W-phase) 39.273 73.978 11.5 107/199 76/84 174/14 8.746
USGS (Centroid) 39.273 73.978 16.7 113/18 63/81 -170/-28 10.5

GCMT 39.27 74.14 19.1 110/19 78/87 -177/-12 11.3
Feng InSAR 39.226 74.219 <15 105.5 80 (+/-4) -161 (+/-12) 9.87 55 20

He InSAR/GNSS 39.21 74.254 - 110.7± 0.5 83.7± 1.0 167± 1.0 12.03 38.4 18.3 0.56± 0.3
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3.2. Additional Muji 2016 earthquake backprojection
results
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Figure S20: Linear stacking for both P- and SH-phases for the grid point closest to the hypocenter, compared to
phase-weighted stacked waveforms. P-wave phases stacks for A) linear and B) phase-weighted methods. SH-wave
phase stack for C) linear and D) phase-weighted methods. Note the difference in the scaling of the amplitude between
diagrams.
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Figure S21: Example waveform data from an exemplary array used in the backprojection of the Muji 2016 earthquake
(array number 16, located in central Europe). A) shows the array’s waveform spectra of the z-component, color-coded
for each station. The gray shaded spectrum shows the average noise spectrum from all stations immediately before
the event. Inset B) shows the array location and stations. C) and D) show normalised waveforms with the P-wave
onset for C) the low-frequency filtered data (0.003-0.16 Hz) and D) the high-frequency filtered data (0.16-1.5 Hz).
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Figure S22: SH-wave onset waveforms from the exemplary array in central Europe (see also Fig. S21). A) the
low-frequency filtered data (0.003-0.16 Hz) and B) the high-frequency filtered data (0.16-1.5 Hz).
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Figure S23: Empirical time shifts for different phases at the stations used in the backprojection that maximize the
semblance of the reference event and are used for the BP of the 2016 Muji earthquake. Shown timeshifts for the
low-frequency backprojection are in a) of the P-phase and in b) for the SH-phase, while the high-frequency backpro-
jections are shown in c) for the P-phase and in d) for the SH-phase. Timeshifts are given relative to the gCMT onset
time.
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Figure S24: Time-incremental low-frequency semblance maps from the backprojection of the 2016 Muji earthquake
for every timestep of 8 s individually in a) to d). The time given is relative to the onset of the first occurrence of
significant semblance.
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Figure S25: Rupture velocity estimate for the 2016 Muji earthquake from the high-frequency BP at the western seg-
ment (red line) and at the eastern segment (black line), measured from the nucleation point to the last respective
semblance mapping. Time is relative to the first window with semblance. The blue line shows the rupture velocity
estimate for the eastern segment, from its rupture start of the eastern segment only to the respective end of rupture on
each segment, indicated by the two blue dots at the beginning.
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Figure S26: Time-incremental high-frequency semblance maps for the backprojection of the 2016 Muji earthquake
for every timestep of 1 s from 0 s in a) to 15 s in o). The time given is relative to the onset of the first occurrence of
significant semblance.
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Figure S27: Cumulative low-frequency P-phase semblance map, from all timesteps of the backprojection of the 2016
Muji earthquake.
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Figure S28: Cumulative low-frequency SH-phase semblance map, from all timesteps of the backprojection of 2016
Muji earthquake.
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Figure S29: Cumulative semblance maps from a synthetic backprojection of a single-segment kinematic source model
representing the 2016 Muji earthquake for a) high-frequency and b) low-frequency waveforms. The thick black line
indicates the upper edge of the fault and the gray-shaded area the fault projection to the surface. The blue dot indicates
the rupture nucleation point.
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e) 8-10 s

f) 10-12 s

g) 12-14 s

a) 0-2 s

b) 2-4 s

c) 4-6 s

d) 6-8 s h)

Figure S30: Time-incremental high-frequency semblance mappings for all timesteps in a) to d) from a synthetic
backprojection of a single-segment kinematic source model representing the 2016 Muji earthquake. The thick black
line indicates the upper edge of the fault and the gray-shaded area the fault projection to the surface. The blue dot
indicates the nucleation point. h) Beampower of the high-frequency BP as a function over time as a red and filled
function of time together with the optimal (black line) source time functions from the SCARDEC catalog (Vallée &
Douet, 2016). Additionally shown is the beampower from using the single large array aperture backprojection as a
red line.

3.3. Additional optimization results for the 2016
Muji
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Figure S31: Data, model and residual for the InSAR line-of-sight displacements for the best-performing model from
the exploratory optimization for a) ascending data and b) descending data as well as from the guided optimization for
c) ascending data and d) descending data.
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Figure S32: Waveform fits for the ensemble of the exploratory and guided optimizations side-by-side for selected
stations. Left rows show the exploratory and right rows the guided optimization fits. Z-components and for some
stations also the T-components are shown. In each subplot the black lines show the original waveforms data, and
colored waveforms show the modelled synthetic waveforms with blue to red showing decreasing misfits (with blue
poor and red good misfit. The light yellow shading shows the applied waveform taper. At the bottom of each panel
the absolute waveform misfit with time is plotted in red.
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Figure S33: Station map indicating trace weights in the non-linear optimization for the Z-component (P-phase).

0°

45°

90°

135°

180°

225°

270°

315°

0 km

3000 km

6000 km

9000 km

Contribution
0.01
0.01
0.00
0.00
Excluded

Figure S34: Station map indicating trace weights in the non-linear optimization for the T-component (SH-phase).
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Figure S35: Bootstrap chain misfits (ensemble) as a function of the sample number for the guided optimization (red)
compared to the exploratory optimization (blue).
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Figure S36: Sampled parameter values for the eastern source segment as a function of sample number, color-coded
according to misfit, with warmer colors showing lower misfits. Shown are the source parameters sampled for the
eastern source segment from the guided (right column) and exploratory optimizations (left column) in comparison.
Shown are only source parameters with different priors in the two optimizations.
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Figure S37: Sampled parameter values for the western source segment as a function of sample number, color-coded
according to misfit, with warmer colors showing lower misfits. Shown are the source parameters sampled for the
western source segment from the guided (right column) and exploratory optimizations (left column) in comparison.
Shown are only source parameters with different priors in the two optimizations.
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