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Abstract

Due to limited resolution and inaccurate physical parameterizations, weather and climate models consistently develop biases

compared to the observed atmosphere. These biases are problematic for forecasting on timescales from medium-range weather

to centennial-scale climate. Using the FV3GFS model at coarse resolution, we propose a method of machine learning corrective

tendencies from a hindcast simulation nudged towards an observational analysis. We show that a random forest can predict the

nudging tendencies from this hindcast simulation using only the model state as input. This random forest is then coupled to

FV3GFS, adding corrective tendencies of temperature, specific humidity and horizontal winds at each timestep. The coupled

model shows no signs of instability in year-long simulations and has significant reductions in short-term forecast error for

500hPa height, surface pressure and near-surface temperature. Furthermore, the root mean square error of the annual-mean

precipitation is reduced by about 20%.
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Abstract15

Due to limited resolution and inaccurate physical parameterizations, weather and cli-16

mate models consistently develop biases compared to the observed atmosphere. These17

biases are problematic for forecasting on timescales from medium-range weather to centennial-18

scale climate. Using the FV3GFS model at coarse resolution, we propose a method of19

machine learning corrective tendencies from a hindcast simulation nudged towards an20

observational analysis. We show that a random forest can predict the nudging tenden-21

cies from this hindcast simulation using only the model state as input. This random for-22

est is then coupled to FV3GFS, adding corrective tendencies of temperature, specific hu-23

midity and horizontal winds at each timestep. The coupled model shows no signs of in-24

stability in year-long simulations and has significant reductions in short-term forecast25

error for 500hPa height, surface pressure and near-surface temperature. Furthermore,26

the root mean square error of the annual-mean precipitation is reduced by about 20%.27

Plain Language Summary28

After initialization from a realistic snapshot of the atmosphere, weather and cli-29

mate models inevitably develop predictable errors compared to the real world. This de-30

creases the usefulness of forecasts. These errors arise from the coarse resolution of the31

numerical models and from the uncertain treatment of small-scale processes. We pro-32

pose a method to reduce these errors by training a machine learning model to correct33

for them as the atmospheric model proceeds. We show that a random forest can make34

reasonably skillful predictions of the required correction using a snapshot of the model35

state as input. When we make a forecast with the machine-learning corrected model, the36

lead-time for the prediction of important mid-tropospheric and surface variables is in-37

creased by half a day to a day. The pattern of precipitation predicted by the machine38

learning corrected model is also more realistic, with a decrease in excessive rainfall over39

high mountains. On the other hand, the corrected model develops larger errors in tem-40

perature in the high latitudes, particularly in the lower stratosphere.41

1 Introduction42

Despite steady improvements in the skill of numerical weather and climate mod-43

els over the last decades, a longstanding issue is the development of biases after initial-44

ization. These biases (systematic forecast errors) cause degradation of performance for45

both medium range weather forecasting and subseasonal to decadal climate predictions.46

They arise from limited resolution and inaccurate physical parameterizations. Typically,47

post-processing steps are developed to handle these biases such as model output statis-48

tics for weather forecasting (Glahn & Lowry, 1972) or ensemble bias correction for sea-49

sonal prediction (Stockdale et al., 1988; Arribas et al., 2011). In this study, we propose50

an online bias correction method using machine learning (ML). We apply a corrective51

tendency to the prognostic state of the atmospheric model at each time step in order to52

reduce model error growth. The necessary corrective tendencies are estimated from a hind-53

cast simulation which is linearly nudged towards an observational analysis. An ML model54

is trained to predict the nudging tendencies using only the state of the model as inputs.55

This ML model can then be used in a forecast to keep the model evolution on a more56

realistic manifold.57

Online bias correction has been previously proposed (Leith, 1978; Saha, 1992; Del-58

Sole & Hou, 1999) and implemented in a prototype manner (Danforth et al., 2007; Del-59

Sole et al., 2008; Yang et al., 2008). In these studies, a corrective tendency is typically60

estimated from the error growth within the first day of a forecast and the applied ten-61

dencies are time-mean or seasonal-mean values. It was found that applying such a cor-62

rection can lead to the reduction of error growth of corrected variables. State-dependent63

corrections, typically linearly dependent on the atmospheric state (e.g. DelSole et al.,64
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2008), have been attempted but with little benefit over time-mean tendencies. The dis-65

tinguishing features of this work are the use of a non-linear function estimator (specif-66

ically a random forest) to estimate the corrective tendencies, and the consideration of67

the effects of correcting specific humidity onto the surface precipitation.68

The use of ML for atmospheric model parameterization has seen significant recent69

effort (Krasnopolsky et al., 2013; Rasp et al., 2018; Brenowitz & Bretherton, 2018). The70

typical goal has been whole-scale replacement of physical parameterizations either by em-71

ulating the behavior of an existing scheme (Krasnopolsky et al., 2005; O’Gorman & Dwyer,72

2018) or by learning from high-resolution simulations (Brenowitz & Bretherton, 2018,73

2019; Yuval & O’Gorman, 2020) or reanalysis (McGibbon & Bretherton, 2019). In this74

work, we leverage the significant effort that has already been put into developing skill-75

ful physics routines and use ML to provide a correction on top of a full suite of param-76

eterizations. This empirical strategy also reveals physical processes in the target model77

which are behaving unrealistically (Rodwell & Palmer, 2007). Thus, it provides infor-78

mation that can be used to tune existing physical parameterizations and an automated79

way to correct for remaining biases after tuning. The proposed method uses existing ob-80

servational analysis data and does not require costly high-resolution simulations to gen-81

erate training data. This makes it amenable for groups who wish to explore improving82

their GCMs with ML but do not have capability for global storm-resolving simulations83

(Stevens et al., 2019; Harris et al., 2020).84

2 Methods85

2.1 Atmospheric model86

To test our proposed method we use NOAA’s global weather forecast system FV3GFS87

(Zhou et al., 2019). FV3GFS is based on the FV3 non-hydrostatic dynamical core on88

a cubed-sphere grid (Putman & Lin, 2007) coupled to physics parameterizations imple-89

mented by NOAA’s Environmental Modeling Center. Briefly, we use the hybrid eddy-90

diffusivity mass flux turbulence scheme (Han et al., 2016), GFDL microphysics (Zhou91

et al., 2019), scale-aware mass flux convection scheme (Han & Pan, 2011), RRTMG ra-92

diation (Iacono et al., 2008), and the mountain blocking and orographic gravity wave drag93

parameterization. The operational version uses C768 (13 km) grid resolution and 64 ver-94

tical levels (NOAA, 2018). We use a coarse C48 (approximately 200km) horizontal res-95

olution with 79 vertical levels and a physics timestep of 15 minutes.96

2.2 Nudging approach97

In order to estimate the atmospheric model biases across seasons and the diurnal98

cycle, we perform a two-year hindcast simulation in which the prognostic state is con-99

tinuously nudged towards an observational analysis (Fig. 1). Specifically, a linear relax-100

ation term is added to the prognostic equations of certain variables:101

∂a

∂t
= −v · ∇a+Qp

a−
a− aobs

τ︸ ︷︷ ︸
∆Qa

, (1)

where a is a prognostic variable, −v·∇a is advection by the dynamical core, Qp
a is the102

tendency of a due to all physical parameterizations (e.g. Yanai et al., 1973), aobs is an103

estimate of the observed value of a at the given time and position, and τ is a nudging104

timescale. The nudging tendencies ∆Qa are saved as a diagnostic and are the target for105

the ML described in Section 2.3. The nudging keeps the model simulation tracking close106

to the observed evolution of the atmosphere and the nudging tendencies are an estimate107

of the (negative) model error throughout the simulation.108
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Figure 1. Schematic of procedure to generate the nudging tendencies which serve as a target

for the ML model.

The nudging is active for temperature (nudging tendency labeled ∆Q1), specific109

humidity (∆Q2), horizontal winds (∆Qu and ∆Qv) and surface pressure.1 A 6-hour timescale110

τ is used for all variables. The reference dataset is the GFS analysis (NCEI, 2020) on111

a 1.4◦ latitude-longitude grid. The analysis is available every 6 hours, and is linearly in-112

terpolated to obtain a state in between these times. At each timestep during the sim-113

ulation, the analysis is interpolated vertically to the model’s pressure surfaces as well as114

horizontally to FV3GFS’s cubed-sphere grid. No nudging is applied to any variable in115

the top-most model level to avoid the sponge layer, and no nudging is applied for spe-116

cific humidity above 100hPa due to low confidence in the analysis dataset at these lev-117

els.118

Nudging specific humidity impacts the hydrological cycle. For example, if the column-119

integrated humidity nudging is non-zero, then the nudging is a source or sink of mois-120

ture for the atmospheric column. As will be shown in Section 3.1, the humidity nudg-121

ing dries the vast majority of columns so can typically be interpreted as additional pre-122

cipitation. Therefore, we subtract the column-integrated moistening due to nudging from123

the surface precipitation rate generated by the physics parameterizations. For the cases124

when the moistening due to nudging is larger than the physics precipitation we set the125

total precipitation rate to zero:126

P = max (0, Pphysics − 〈∆Q2〉) , (2)

where Pphysics is the surface precipitation rate produced by the physics parameteriza-127

tions (the shallow convection, deep convection and microphysics schemes) and128

〈∆Q2〉 =
1

g

∫ ps

0

∆Q2 dp. (3)

The clipping at zero in Eq. 2 effectively acts a moisture source for the coupled land-atmosphere129

system with consequences described in the discussion section.130

The FV3 dynamical core uses D-grid staggering (Arakawa & Lamb, 1977) and the131

horizontal winds point in grid-relative directions instead of east and north. To nudge the132

winds, they are interpolated to the grid center and rotated to latitude-longitude coor-133

dinates before the nudging tendencies are computed and then transformed back to the134

D-grid. This is analogous to how the GFS physical parameterizations interact with the135

dynamical core winds.136

1 Surface pressure is not a prognostic variable in the non-hydrostatic FV3GFS model. The nudging

tendency is computed using the diagnosed surface pressure, and then applied to the pressure thickness of

each atmospheric layer proportionally to the coefficient of relation between the layer pressure and surface

pressure specified by the vertical hybrid-sigma coordinate.
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Over the ocean, the surface boundary condition is a prescribed sea-surface temper-137

ature from the same GFS analysis dataset used for the nudging. The monthly 1982-2012138

climatology of sea ice extent from the NCEP Climate Forecast System Reanalysis (Saha139

et al., 2010) is used to determine the ice-ocean boundary.140

2.3 Machine learning architecture141

A random forest is trained using the scikit-learn Python package (Pedregosa et al.,142

2011) to predict the nudging tendencies for a particular GCM column given the atmo-143

spheric profile at this column. The inputs and outputs are taken from the nudged hind-144

cast simulation described above. The random forest predicts the nudging tendencies of145

temperature, specific humidity, eastward wind and northward wind. Its inputs are tem-146

perature, specific humidity, eastward wind, northward wind, the land/sea/sea-ice mask,147

surface geopotential and the cosine of the solar zenith angle. The first four inputs, which148

depend on the vertical level, describe the state of the atmosphere. The mask and sur-149

face geopotential distinguish between land and ocean and indicate surface topography.150

The cosine of zenith angle is a proxy for insolation.151

The random forest is trained by minimizing a mean squared error loss function in152

which each scalar output is normalized by its standard deviation. Sixteen individual de-153

cision trees form the random forest; each tree has a maximum depth of thirteen. Sec-154

tion 2.5 will describe the sampling of the training and test data in more detail.155

2.4 Coupling of machine learning to GCM156

We use a Python wrapper of the FV3GFS Fortran model (McGibbon et al., 2021)157

in order to execute Python code during the model simulation. Briefly, the wrapper al-158

lows viewing and modifying the model state from a Python script at certain checkpoints159

in the main Fortran time loop. We obtain the input variables at the end of each timestep,160

evaluate the random forest to compute tendencies of temperature, humidity and winds,161

multiply these by the physics timestep and then apply these increments to the model state.162

The tendency of specific humidity predicted by the random forest is limited so that the163

resulting specific humidity is not negative. Without this adjustment, regions of negative164

humidity arise near the poles and typically lead to model crashes after about two months.165

The effects of the column moisture tendency from the ML on surface precipitation is han-166

dled in the same way as the nudging case (Eq. 2).167

The random forest prediction at each timestep takes about one quarter the time168

as the full suite of physics parameterizations. This is about 10% of the total wall clock169

time for the simulation, only a slight increase in computational cost. On the other hand,170

the random forest trained for this study requires about 360 MB of memory, which is a171

substantial addition to the approximately 600 MB required on each processor to run a172

baseline version of FV3GFS at C48 resolution, assuming one rank per cubed-sphere tile.173

2.5 Experiment configuration and validation174

A procedure is designed to 1) generate training data from across the seasonal cy-175

cle and 2) test the online and offline model skill on a time period independent from the176

training data. We first perform a two-year long simulation that is initialized from GFS177

analysis on 1 January 2015 and continuously nudged towards the GFS analysis as de-178

scribed in Section 2.2. The nudging tendencies and prognostic state are saved every five179

hours to ensure sampling around the diurnal cycle.180

The random forest is trained on output from the first year of the two-year simu-181

lation. Columns from 160 time steps which uniformly span 2015 are used for training,182

resulting in about 2.2M samples (all 6·48·48 = 13824 columns are used for each time).183
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To evaluate the offline skill of the random forest, a test dataset of 90 evenly spaced times184

is chosen from the second year (2016) of the two-year nudged run. The performance of185

FV3GFS coupled to the random forest, which we call online skill, is tested in two ways.186

First, we initialize twelve 10-day forecasts each starting from the first of the month for187

every month of 2016. These will be used to evaluate the error growth on short- to medium-188

range weather forecasting timescales. Second, we initialize a single year-long run on 1189

January 2016 in order to evaluate longer timescale statistics. Time-mean biases in pre-190

cipitation and other fields will be diagnosed from this simulation. All forecasts are ini-191

tialized from GFS analysis. We compare the ML-corrected simulations against identically-192

configured baseline runs without ML.193

To compute errors in the online simulations, we use the second half of the two-year194

nudged simulation as truth. For variables which are directly nudged (temperature, hu-195

midity, surface pressure and horizontal winds) this is a reasonable representation of the196

true state of the atmosphere for our purposes, assuming that model errors are substan-197

tially larger than the errors of the GFS analysis. However, precipitation or other diag-198

nostic quantities in that simulation may differ strongly from observational estimates. Thus,199

we compare the simulated precipitation patterns against daily data from the Global Pre-200

cipitation Climatology Project v1.3 (GPCPv1.3; Huffman et al., 2001). The observed201

product is on a 1◦ by 1◦ latitude-longitude grid and the model output is interpolated from202

the cubed-sphere to this grid for comparison.203

3 Results204

3.1 Nudging tendencies and offline performance205

Before evaluating the performance of the random forest, it is useful to examine the206

structure of the nudging tendencies. By definition, the time-mean model bias relative207

to the reference analysis dataset is equal to the negative of the time-mean nudging ten-208

dency multiplied by the nudging timescale (Eq. 1). Therefore, Figs. 2a and 2c show that209

our baseline configuration of the FV3GFS model drifts moister and cooler than the GFS210

analysis in the column integral since the nudging tends to dry and heat in most regions.211

The spatial pattern of the nudging indicates that it especially strengthens the drying and212

heating in convective regions—Indo-Pacific warm pool and inter-tropical convergence zone—213

and in midlatitude fronts (see also Supplemental Movie). The imprinting of the cubed-214

sphere grid in Fig. 2a is due to the nudging tendency correcting artifacts introduced by215

the dynamical core at the coarse C48 resolution, and we expect this signal would be di-216

minished at higher resolutions (Zhao et al., 2018). The pattern of the tendencies sug-217

gest that the nudging of temperature and humidity amplifies precipitation and latent heat-218

ing, likely correcting a bias of the convective parameterization to generate insufficient219

rainfall in realistic conditions for this grid resolution.220

When evaluated offline on samples from the test data, the random forest success-221

fully predicts the time-mean pattern of heating and moistening (Figs. 2b and 2d). The222

random forest also has only small global-mean column-integrated biases: about 1.3% too223

much heating and 2.5% too much drying. On the other hand, the ML does not repro-224

duce some finer-scale features of the test data such as the heating/cooling dipole near225

the tip of South America, regional patterns of heating/cooling over land and the cubed-226

sphere grid artifacts.227

It is important to also evaluate the skill of the random forest in making instanta-228

neous predictions of the nudging tendency. Figure S2a-b shows the zonal mean R2 skill229

for the heating and moistening as a function of latitude and pressure. The heating (∆Q1)230

predictions are substantially more skillful than the moistening (∆Q2) predictions. In the231

tropical lower troposphere, the random forest predictions explain 30-50% of the variance232

of temperature nudging tendencies. There is also notable skill around the tropical tropopause,233
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Figure 2. Column integrated heating (top) and moistening (bottom) from nudging, time-

averaged across offline test data. Actual tendencies from nudged simulation shown on left and

offline random forest predictions on right. Values in titles are the global mean of each panel.

the Northern Hemisphere mid-latitudes and the polar regions. The humidity nudging234

predictions are less skillful, with a maximimum of 20% of variance explained in the up-235

per troposphere near the equator. Despite the apparent low skill, recall that the random236

forest accurately predicts the time-mean humidity nudging tendency. Part of the rea-237

son for poor R2 performance is that the nudging tendency of ∆Q2 is particularly noisy238

due to fast variability of the model state. For example, note the local speckling in Fig. 2c,239

which is already an average over 90 timesteps. We do not expect this noisiness to be learn-240

able and indeed it is smoothed by the random forest (Fig. 2d).241

3.2 Online performance: weather skill242

How does the ML-corrected FV3GFS performs when evaluated with metrics for weather243

forecast skill and climate drift? A key measure for the skill of a weather model is the speed244

at which the global root mean squared error (RMSE) of particular variables grows. This245

indicates how well the model simulates the evolution of the circulation of the atmosphere.246

Figure 3 shows global RMSE of 500-hPa geopotential height, surface pressure and247

lowest model layer temperature (see Section 2.5 for details of the forecast experiments).248

The ML-corrected FV3GFS has significantly lower error than the baseline model for all249

three of these variables at lead times ranging from 1-day to 10-days. Depending on the250

variable and time elapsed, the ML-corrected FV3GFS model is able to make equally skill-251

ful forecasts from half to a full day further into the future. This is a substantial improve-252

ment given the marginal increase in computational cost associated with evaluating the253

random forest once per timestep. Furthermore, no variable we have examined has sig-254

nificantly worse skill on the 10-day timescale in the ML-corrected model compared to255

the baseline.256

What drives the improvements in Fig. 3? We trained an random forest to only pre-257

dict ∆Q1 and ∆Q2 and not predict the momentum tendencies (blue lines in Fig. S3).258

Clearly, the increase in forecast skill for surface pressure arises from predicting the wind259

tendencies. The baseline model has a biased zonal mean surface pressure pattern, with260
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Figure 3. Global root mean squared error for (left) 500hPa geopotential height, (middle) sur-

face pressure and (right) lowest model layer temperature. Averaged across 12 forecasts initialized

on the first of every month of 2016. Shading shows one standard deviation. Baseline (black) is

standard FV3GFS model and ML-corrected (red) is the FV3GFS coupled to the ML model.

overly high pressure in the polar regions and low pressure in the tropics. The ML cor-261

rection of winds strongly decreases this bias. On the other hand, the increase in skill for262

near-surface temperature is similar for the two ML models, indicating that the correc-263

tive tendencies of temperature and/or specific humidity are responsible for this improve-264

ment.265

3.3 Online performance: climate skill266

For multi-year climate simulations there are additional requirements for any machine-267

learning corrected GCM. The model must be able to run indefinitely without numeri-268

cal instabilities arising. Some previous works using ML for parameterization replacement269

have struggled with this issue, especially when using neural networks (e.g. Brenowitz &270

Bretherton, 2019; Brenowitz, Beucler, et al., 2020; Rasp, 2020). Furthermore, the cli-271

mate of the model must not drift far from a realistic state over the course of a months-272

to years-long run. Ideally, the machine-learning corrected model will have a climate state273

that is less biased than the baseline model.274

We perform a year-long simulation initialized on 1 January 2016. Since the train-275

ing data for the random forest is drawn from 2015 only, this is an independent verifica-276

tion time period. The ML-corrected model runs for the full year without any crashes or277

any special effort to tune its architecture or hyperparameters. It was necessary to add278

a limiter to the online predictions of the specific humidity tendencies by the random for-279

est to ensure that the specific humidity did not become negative. Without this limiter,280

which is active in the upper troposphere in about 15% of grid columns on average, re-281

gions of negative specific humidity develop and lead to very cold temperatures near the282

surface that eventually cause model crashes.283

The climatological spatial pattern of precipitation in the ML-corrected simulation284

is notably improved compared to the baseline run (Fig. 4). Using the GPCPv1.3 dataset285

(Huffman et al., 2001) as a reference, the spatial RMSE of the 2016-mean precipitation286

substantially decreases by about 24%, from 2.14 mm/day to 1.62 mm/day. While there287

is a slight increase in the global mean bias of precipitation, this quantity is not well-constrained288

by the observations (Sun et al., 2018). For comparison, the RMSE of 2016-mean precip-289

itation in the run that is directly nudged towards the GFS analysis is 1.39 mm/day (Fig.290

S4). This is a lower bound on the precipitation RMSE we might expect from the ML-291

corrected run, suggesting it has realized over two-thirds of the greatest possible precip-292

itation bias improvement we might hope to achieve. The reduction of precipitation er-293
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Figure 4. Bias of precipitation, Pphysics − 〈∆Q2〉, averaged over 2016. Bias is computed rel-

ative to GPCPv1.3 observational product. Global root mean square error and global mean bias

are shown in titles for each run in units of mm/day.

rors mostly arises from the corrective tendencies of temperature and moisture (compare294

bottom panels of Fig. S4).295

The baseline model strongly overpredicts precipitation over the Himalaya, South-296

east Asia, and the Andes (Fig. 4). In the ML-corrected FV3GFS, the biases of precip-297

itation over these regions are much smaller in magnitude and cover a smaller area. Over298

the ocean, the largest biases are mostly decreased in the ML-corrected run (e.g. see West-299

ern Pacific). However, the corrected run also has slightly too much precipitation in sub-300

tropical regions where there is typically descent. This artifact arises from the nudging301

method rather than the ML, as the nudged run has a similar bias (Fig. S4).302

In the global mean, the year-long ML-corrected runs remain fairly close to the ver-303

ification data for total water path and lower tropospheric temperature (Fig. S5). How-304

ever, over the first few weeks of the simulation, prognostic variables such as tempera-305

ture and zonal wind develop substantial regional biases in the ML-corrected runs. There306

is a strong annual-mean bias (up to 30K) of temperature in the polar regions at around307

100hPa - 250hPa (Fig. S6) and related biases in zonal mean zonal wind (not shown).308

4 Discussion309

The nudging tendencies can be interpreted as biases of the physical parameteriza-310

tions of the FV3GFS model at our chosen resolution. For example, the additional heat-311

ing and moistening done by the nudging in regions of convection (Fig. 2 and Supplemen-312

tal Movie) indicate that the convective parameterization is generating too little precip-313

itation. Similarly, the nudging tendency of winds show an acceleration over topography314

in the time-mean (Fig. S1) suggesting that the gravity wave drag parameterization may315

be overly active in the column mean. It is likely that tuning of the parameterizations316

could reduce the size of these biases and decrease the corrective nudging tendencies that317

must be machine-learned.318

The nudging timescale τ (Eq. 1) is a free parameter for this method. In principle,319

a shorter nudging timescale will allow the ML correction to represent faster timescale320

processes and better represent the diurnal cycle. On the other hand, for physical pro-321

cesses such as boundary layer turbulence which happen on the timescale of hours, there322

can be a constant tug-of-war between the nudging tendencies and boundary layer ten-323

dencies if the nudging timescale is too short. The 6-hour nudging timescale we used pro-324

vided a balance between these competing issues and was also a natural choice given the325

6-hourly availability of the GFS analysis. Using a 6-hour nudging timescale for the tem-326
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perature and humidity nudging while using a 24-hour timescale for the wind and sur-327

face pressure nudging lead to worse offline and online performance of the random for-328

est (not shown).329

Although the offline skill of the trained random forest is somewhat modest (Sec-330

tion 3.1), our strategy is to use ML to apply a correction to a complete set of param-331

eterizations. Thus, we neither expect nor require that the ML model we train have ex-332

ceptional offline skill. Even a time-mean tendency prediction would provide some ben-333

efit (DelSole et al., 2008) and any additional ML-derived skill has potential to gain fur-334

ther improvements once coupled back to the atmospheric model.335

Ideally, one would apply the ML corrections to the the same model that is used to336

generate the nudging target (i.e. the analysis). This would ensure that the nudging ten-337

dencies represent actual corrections towards the observed state of the atmosphere instead338

of, for example, the difference between the boundary layer parameterizations of the two339

models. In an operational weather forecasting context, it would be possible to adapt this340

method to learn analysis increments from a fully-fledged data assimilation system and341

this would ensure consistency between the models.342

The coupling between the ML tendencies of the atmosphere and the land surface343

is a key aspect of this method, in particular because the nudging of specific humidity ac-344

counts for about a third of the global mean drying of the atmosphere. Without adding345

the column integrated nudging or ML tendency of humidity to the surface precipitation346

(Eq. 2) there is a strong drying of the land surface globally. However, due to the require-347

ment of maintaining positive precipitation and not having a simple way to modify the348

evaporation predicted by the land-surface model, we have introduced a small but sig-349

nificant moisture source to the coupled land-atmosphere. The nudging in turn has to coun-350

teract this moisture source with further drying, and this may lead to a biased estimate351

of the proper nudging tendency of moisture. Ongoing work is exploring whether nudg-352

ing soil moisture and learning these tendencies (e.g. DelSole et al., 2008) could help ad-353

dress this issue.354

5 Conclusions355

We propose a method to perform online bias correction of a general circulation model356

using machine learning of nudging tendencies from a hindcast simulation. A random for-357

est is able to make reasonably skillful predictions of the nudging tendencies using only358

the model state as input. When coupled back to the atmospheric model, the ML-corrected359

GCM increases its lead-time forecasts for 500hPa geopotential height and surface pres-360

sure by about a day, and for near-surface temperature by about half a day. Furthermore,361

the RMSE of the time-mean pattern of precipitation is reduced by about 20%. These362

improvements come with only slight increase in computational cost. However, significant363

temperature biases develop in the polar lower stratosphere after a number of weeks in364

the ML-corrected simulations.365

One area for future work is investigating how much this method improves higher-366

resolution (e.g. operational weather forecast) simulations. Second, being able to predict367

the ML correction with a neural network architecture would also be useful for highly par-368

allel simulations where memory use is a limitation. Neural networks also show better skill369

than random forests in offline tests, although this is not necessarily a key factor for on-370

line skill (Brenowitz, Henn, et al., 2020; Yuval et al., 2020). Generating a less noisy train-371

ing dataset, for example by smoothing the nudging tendencies in time, could also lead372

to better offline skill.373

Due to the use of historical analysis data, the training dataset is restricted to the374

climate of the last few decades and the proposed method may have limitations for use375

in climate-change scenarios due to out-of-sample inputs (e.g. O’Gorman & Dwyer, 2018).376
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To handle this limitation, one can use a high-resolution model as a target dataset for nudg-377

ing and run the high-resolution simulations for current and future warmed simulations.378

We will report on this approach in a forthcoming paper.379
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1. Movie S1

2. Figures S1 to S6

Movie S1. Animation of column-integrated heating and moistening tendencies in a

10-day forecast with the ML-assisted FV3GFS. Left: tendencies due to physics parame-

terizations, middle: tendencies due to random forest predictions, right: sum of left and

middle panels. Top row is heating, bottom row is moistening. The middle column has

different limits for the colorbar than the other two columns.
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Figure S1. Column integrated eastward (top) and northward (bottom) wind tendency due to

nudging averaged across test data. Actual tendencies from nudged simulation shown on left and

random forest predictions on right. Values in titles are the global mean of each panel.
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Figure S2. Zonal mean R2 skill for random forest predictions of nudging tendencies of a)

temperature, b) specific humidity, c) eastward wind and d) northward wind. Evaluated from 90

timesteps spanning 2016.
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Figure S3. Global root mean squared error for (left) 500hPa geopotential height, (middle)

surface pressure and (right) lowest model layer temperature. Averaged across 12 forecasts ini-

tialized on the first of every month of 2016. Shading shows one standard deviation. Baseline

(black) is standard FV3GFS model and ML-corrected (red) is the FV3GFS model coupled to the

random forest described in the main text and ML-corrected (∆Q1, ∆Q2 only) (blue) is FV3GFS

coupled to a random forest that only predicts tendencies of temperature and specific humidity.

The black and red lines are as in Fig. 3 of the main text.
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Figure S4. Bias of precipitation (Pphysics − 〈∆Q2〉) averaged over 2016. Bias is computed

relative to GPCPv1.3 observational product. Global root mean square error and global mean

bias are shown in titles for each run (units of mm/day). Top-left is for the simulation that is

nudged towards GFS analysis. Other panels show the same runs as in Fig. S3.
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Figure S5. Evolution of global mean (a) total water path, (b) 850-hPa temperature and (c)

200-hPa temperature for year-long simulations. Yellow dashed line is the run nudged towards

GFS analysis and other runs are as in Fig. S3.

Figure S6. Bias of zonal mean temperature averaged over 2016. Bias is computed relative to

the run nudged towards GFS analysis. Panels show the same runs as in Fig. S3.
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