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Abstract

Improvements in remote sensing capability and improvements in artificial intelligence have created significant opportunities

to advance understanding of precipitation processes. While highly advanced Machine Learning (ML) techniques improve the

accuracy of precipitation retrievals, how these observations contribute to our understanding of precipitation processes remains

an underexplored research question. In a companion manuscript, a precipitation type prognostic ML model is developed

by deriving predictors from the Advanced Baseline Imager (ABI) sensor onboard Geostationary Observing Environmental

Satellite (GOES)-16. In this study, these predictors are linked to different precipitation processes. It is observed that satellite

observations are important in separating Rain and No-Rain areas. For stratiform precipitation types, predictors related to

atmospheric moisture content, such as relative humidity and precipitable water, are the most important predictors, while

for convective types, predictors such as 850-500hPa lapse-rate and Convective Available Potential Energy (CAPE) are more

important. The diagnostic analysis confirms the benefit of spatial textures derived from ABI observations to improve the

classification accuracy. It is recommended to combine the heritage water vapor channel T6.2 with the IR T11.2 channel for

improved precipitation classification. There is more than 10% improvement in detection of stratiform and tropical precipitation

types compared to using T11.2 alone.
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Key Points: 

● A diagnostic analysis on a machine learning precipitation classification model is 

performed  

● Model uses a comprehensive set of predictors derived from GOES-16 satellite 

observations and numerical weather predictions (NWP). 

● Brightness temperature textures and inter-band differences are efficient predictors. 

● Environmental predictors such as CAPE, lapse rate, relative humidity, and 

precipitable water, bring complementary information  
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Abstract:  

Improvements in remote sensing capability and improvements in artificial intelligence have 

created significant opportunities to advance understanding of precipitation processes. While 

highly advanced Machine Learning (ML) techniques improve the accuracy of precipitation 

retrievals, how these observations contribute to our understanding of precipitation processes 

remains an underexplored research question. In a companion manuscript, a precipitation type 

prognostic ML model is developed by deriving  predictors from the Advanced Baseline Imager 

(ABI) sensor onboard Geostationary Observing Environmental Satellite (GOES)-16. In this 

study, these predictors are linked to different precipitation processes. It is observed that satellite 

observations are important in separating Rain and No-Rain areas. For stratiform precipitation 

types, predictors related to atmospheric moisture content, such as relative humidity and 

precipitable water, are the most important predictors, while for convective types, predictors 

such as 850-500hPa lapse-rate and Convective Available Potential Energy (CAPE) are more 

important. The diagnostic analysis confirms the benefit of  spatial textures derived from ABI 

observations to improve the classification accuracy. It is recommended to combine  the heritage 

water vapor channel T6.2 with the IR T11.2 channel for improved precipitation classification. 

There is more than 10% improvement in detection of stratiform and tropical precipitation types 

compared to using T11.2 alone. 

 

Keywords: GOES-16, Numerical Weather Prediction, Precipitation, Machine Learning, 

Classification, Geostationary Satellites 
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1. Introduction 

Mapping precipitation from space has been well recognized for over five decades. The high 

spatial and temporal resolutions and the improved spectral information from the new 

generation of Geostationary Earth Orbit (GEO) satellites provide opportunities to improve our 

understanding of clouds and precipitation processes, particularly the characterization of 

convective processes that are at the core of severe and extreme weather (National Academies 

of Sciences, Engineering, and Medicine 2018). This follows  priorities identified in the 2017-

2027 decadal survey for Earth Sciences and Applications from Space (ESAS 2017) by the 

Earth science community. Identifying these processes also helps improve precipitation retrieval 

accuracy from GEO sensors (Grams et al., 2016; Thies et al., 2008).  

Several studies attempted to identify precipitation processes from space with previous GEO 

sensors. Yet, significant challenges exist due to the indirectness in the information related to 

cloud top heights obtained from the Visible (VIS)/Infrared (IR) regions of the electromagnetic 

spectrum (Kidder and Vonder Haar; 1995). Some of the early studies used a single VIS channel 

with the hypothesis that clouds producing rain have higher optical thickness and appear 

brighter than non-raining clouds in VIS images (Follansbee, 1973; Kilonsky and Ramage, 

1976). More studies focused on using IR channels since they are available during both day and 

night. Rain-producing clouds are often associated with cold cloud tops in IR brightness 

temperature images (BT; Arkin, 1979). However some clouds do not substantiate this 

hypothesis, e.g. stratus clouds appear bright in VIS images but do not produce as much rain as 

convective systems, and high-level cirrus clouds appear cold in IR image but do not produce 

rain (Kidder and Vonder Haar, 1995). Bi-spectral techniques involving both VIS and IR 

channels were designed to identify different precipitation systems (Lovejoy and Austin, 1979; 

Tsonis and Isaac, 1985). To adapt bi-spectral techniques to day and night retrievals, the water 

vapor (WV) absorption channel is used in current algorithms (Upadhyaya et al., 2014; Tao et 

al., 2018). For a summary of early techniques of satellite precipitation detection and 

quantification, readers are referred to Barret and Martin (1981). Over the last three decades, 

the quality, resolution, and information captured by GEO sensors have significantly improved; 

e.g. from two  channels with the VISSR (Visible-Infrared Spin Scan Radiometer) sensor 

onboard GOES-1 to sixteen channels with the ABI (Advanced Baseline Images) onboard the 

latest-generation GOES-16 satellite. Satellite precipitation algorithms (SPA) have evolved 

accordingly, with improved ability to identify precipitation processes through the use of 
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multiple spectral channels. Yet, current SPA falls short of using the full set of available GEO 

IR observations.    

A popular use of multiple spectral channels involves deriving spectral and textural from 

one or a combination of channels. The most common approach for combining channels is to 

take the difference between brightness temperatures (further referred to as BTD). For example, 

Tjemkes et al. (1997) showed that the difference between the IR window channel (11.2 μm in 

ABI) and the water vapor (WV) absorption channel (6.2 μm in ABI) can be used to separate 

overshooting cloud tops and cirrus clouds. Radiative transfer simulations  revealed that the 

difference between two infrared channels (e.g., 11.2 μm and 8.4 μm) provides information 

about cloud phase (Baum and Platnick, 2006; Giannakos and Feidas, 2013). This cloud phase 

detection can be further improved by comparing two difference indices (i.e., difference of 

BTDs: D-BTD). The most commonly used D-BTD index involves the difference between the 

8.5 μm-11.2μm and 11.2μm-12.3μm BTD values (So and Shin, 2018). Single channel indices 

include textures as the representations of the visual characteristics of a surface (Mohanaiah et 

al., 2013). Texture indices derived from several individual channels are found to be useful at 

all stages of the precipitation retrieval (Ba and Gruber, 2001; Kuligowski, 2016; Hong et al., 

2004; Giannakos and Feidas, 2013; Tian et al., 1999). To complement the cloud top 

information coming from GEO sensors, alternate sources of information can come from 

Numerical Weather Prediction (NWP) model data and topographic information (Grams et al., 

2014; Min et al., 2018; Upadhyaya et al., 2016). More indices can be derived and analysed, 

such as combinations of BTDs and D-BTDs and textures from BTDs and D-BTDs.  

In a companion manuscript (Upadhyaya et al., 2021; hereafter referred to as Part I) of this 

study, a comprehensive set of indices from GOES-16 ABI observations were derived and 

matched with surface precipitation types from the Ground Validation Multi-Radar/Multi-

Sensor (GV-MRMS) system (Zhang et al., 2016; Kirstetter et al., 2018) across the 

conterminous United States (CONUS). A machine learning (ML) based Random Forest (RF) 

model is built to explore various new indices and prognose the identification of precipitation 

types. In this study (hereafter referred to as Part II), the focus is on peering into the developed 

ML model and its interpretation. Major identified research gaps and  motivating research 

questions are discussed as follows.   

1. While several categories of indices are already proposed in the literature, many more 

that can be derived have not been examined. The operational products, such as the Self-

Calibrating Multivariate Precipitation Retrieval (SCaMPR; Kuligowski et al. 2016), 
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and Precipitation Information from Remotely Sensed Information using Artificial 

Neural Networks - Cloud Classification System (PERSIANN-CCS; Hong et al., 2004), 

do not make exhaustive use of these indices. For the first time to our knowledge, a 

framework is proposed to perform consistent and systematic analyses on satellite-based 

indices for precipitation detection and classification of types. In order to make 

recommendations for science and operational use, the first research question under 

investigation is: what is the impact of the different categories of satellite predictors 

on classification accuracy?   

2. It has been long recognized that the  indirectness in the information from IR sensors in 

detecting and retrieving precipitation can be complemented by environmental 

predictors from NWP models. For example, operational products, such as SCaMPR, 

use environmental predictors such as Relative Humidity (RH) to mitigate the 

overestimation (underestimation) of GEO retrieved rainfall in dry (wet) environments. 

In part I, additional environmental predictors, such as Convective Available Potential 

Energy (CAPE), vertical lapse rate of temperature, and wind shear are utilized. This 

study investigates the significance of environmental predictors with motivation to 

address the research question: What is the relative impact of satellite-based 

predictors compared to environmental predictors? 

3. The global operational satellite precipitation products, such as PERSIANN-CCS, and 

Integrated Multi-satellitE Retrievals for the Global Precipitation Mission (IMERG; 

Huffman et al., 2015), utilize only one channel  from GEO sensors. As GEO satellites 

uniquely provide the longest period of global precipitation observations (over more  

than four decades), there is a need to assess the accuracy they allow for reanalyses, 

along with highlighting the progress made possible with recent sensors. This motivates 

to investigate the research question: How does the new generation of GEO sensors 

compare to historical benchmarks that use only legacy channels? 

4.  With improvement in computational power and growth in artificial intelligence, big 

data from GEO sensor observations can feed the latest generation ML methods (Tao et 

al., 2018; Min et al., 2018; Meyer et al., 2016) to model their complex interactions. 

While highly advanced ML techniques improve the overall accuracy of precipitation 

retrievals, these data-driven models do not connect predictors with processes. How 

much each predictor contributes to our understanding of precipitation processes 

remains an underexplored research question. The complex nature of ML algorithms, 
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however,  makes it challenging to physically interpret these models and indices. 

Recently, several tools have been developed to peer into these models, thus making it 

possible  to address this major gap in understanding: Which predictors are 

contributing to different precipitation types?  

Section 2 of this paper describes the data sets used and how they were pre-processed prior 

to use by the RF model.  Section 3 outlines the RF model and the experiments that were 

conducted, and Section 4 describes the results of these experiments, followed by concluding 

remarks in Section 5. 

 

2. Data and Pre-processing  

2.1. GV-MRMS  

Data for the Global Precipitation Measurement (GPM) Ground Validation (GV-MRMS; 

Kirstetter et al., 2012, 2014, 2018) based on MRMS (Zhang et al., 2016) is used as a reference. 

The study period is over summer 2018 (June, July, August, and September) and the study area 

is the conterminous United States (CONUS) with latitude bounds [25°N 50°N] and longitude 

bounds [125°E 67°E]. The spatial and temporal resolutions of GV-MRMS are 0.01°× 0.01° and 

30 min, respectively. The reference product is the surface precipitation type derived from 

MRMS. Precipitation types relate to different precipitation processes and drive the MRMS 

precipitation quantification. Identifying precipitation types is also key for quantification from 

the GOES ABI sensor. 

 The precipitation types as classified in GV-MRMS are 1) Warm Stratiform rain, 2) Cool 

Stratiform rain, 3) Convective rain, 4) Tropical Stratiform/Mix, 5) Tropical Convective/Mix, 

6) Hail, 7) Snow, and 8) No-Precipitation. This empirical classification is based on several 

radar and NWP based environmental variables with adaptable thresholding parameters (Zhang 

et al., 2016). Part I of the study discussed the potential and limitations in re-creating the same 

classification from ABI observations, and the advantages of a probabilistic classification 

(provided by a Random Forest machine learning approach) over a deterministic classification.   

Note that radar estimates have their own uncertainties, such as beam blockage, non-

precipitation echoes, and bright bands (Zhang et al., 2016), which impacts precipitation 

classification. In order to use only reliable observations as reference, a Radar Quality Index 

(RQI) is used for quality control (QC) purposes, with a threshold of 98% for most precipitation 

types and a lower threshold of 90% for Hail due to lower sample sizes. Due to very limited 
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sample size in summer, the Snow type is not considered in this analysis. For further details on 

RQI, the readers are referred to Zhang et al. (2011, 2016). 

 

2.2. ABI observations and derived predictors 

This study uses the five parallax adjusted GOES-16, ABI channels (Channel 8: 6.2μm, 10: 

7.3μm, 11: 8.5μm, 14: 11.2 μm, and 15: 12.3 μm) used by SCaMPR (Kuligowski et al., 2016). 

Six categories of predictors are derived from these observations and are listed in Table 1. 

Category 1, BT, is brightness temperatures from the individual ABI channels. Category 2 

includes the differences between two channel BTs, called  BTDs. Category 3 corresponds to 

the difference between BTDs, represented as D-BTDs. Category 4 consists of five types of 

Textures (Te), namely "mean", "variance", "homogeneity", "contrast", and "entropy", that are 

derived from the Grey Level Co-occurrence Matrix (GLCM; Haralick et al., 1973) for all 

predictors from Categories 1 - 3. Category 5 is the Satellite Zenith Angle (Ze). In total, 249 

predictors are derived from satellite observations. These categories are discussed in Section 1. 

More details are provided in Section 4, and interested readers are also referred to Part I.  

Table 1: Categories and example of predictors used in study  

 Category Predictor Type Example 
 1 BT (Brightness Temperature) T7.3 
 2 BTD (Brightness Temperature Difference) T8.5 – T11.2 
 3 D-BTD (Difference of BTDs) (T6.2 – T7.3) –  (T8.5 – T11.2) 
 4 Te (GLCM Textures) T11.2 mean 
 5 Ze (Zenith Angle) Ze 
 6 Environmental Predictors (NWP) Details in Table 3 

*T6.2 is read as brightness temperature of ABI channel 6.2μm 

The spatial and temporal resolutions of ABI are, respectively, 2 km at nadir and 15 min for 

the full disk (reduced to 10 min after the study period). To match the datasets, GV-MRMS is 

aggregated to the ABI spatial resolution. Two additional QCs are applied to the data. First, a 

minimum percent coverage of precipitating pixels from GV-MRMS within one coarser ABI 

grid cell (Prain) is applied to mitigate the influence of partially precipitating grids on accuracy 

(following Upadhyaya et al., 2020). Only grids with Prain greater than 95% or less than 5% 

are used for analysis. Secondly, only grids with homogeneous precipitation types are targeted; 

i.e. grids with at least 98% of the same precipitation type are used for analysis for most types, 

except 90% for convective and Tropical Convective/Mix precipitation types, and 80% for Hail. 

The sample size of the data set after all the QC is given for each month in Table 2. Each monthly 

dataset is broken down into training (70%) and testing (30%). It is ensured that events in the 
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training and testing datasets are independent and have good spatial and temporal 

representations. Since the training data is highly unbalanced across precipitation types, under 

sampling is applied on the most populated types (e.g. Warm Stratiform) to create a balanced 

dataset and optimize the RF model training. For evaluation, the testing dataset is used.  

 

Table 2. Quality controlled sample size across MRMS-GV different precipitation types  

 Convec Cool_Strat  Hail NoPrecip Trp_ConvMix  Trp_StratMix  WarmStart 
JJAS (Total) 114,749 131,539 40,774 4,118,832 67,866 883,276 14,723,928 
Train (70%) 87,919 98,677 31,612 2,966,493 51,842 651,764 10,694,772 
Test (30%) 26,830 32,862 9,162 1,152,339 16,024 231,512 4,029,156 

Balanced training Sample sized 
Balanced Train 31,612 31,612 31,612 31,612 31,612 31,612 31,612 

 

2.3. Numerical Weather Prediction (NWP) model based environmental predictors 

To complement the cloud top information from ABI observations and provide information 

about mid- and low-level environmental conditions, NWP-based predictors are used.  The next-

generation hourly updated assimilation and model forecast cycle Rapid Refresh (RAP), part of 

the NOAA/National Centers for Environmental Prediction (NCEP) operational suite since May 

2012, is used (Benjamin et al., 2016). In total 19 predictors adopted from Grams et al. (2014) 

are used (Table 3) along with the previously-described satellite-based predictors.  

 

Table 3: Environmental predictors  

Sl No Environmental Variable 
1 Vertically integrated precipitable water (kg/m2) 
2 1000-700-hPa mean relative humidity (%) 
3–6 Relative humidity (%) at 900-hPa, 850-hPa, 700-hPa and 500-hPa 
7 Surface equivalent potential temperature (K) 
8 Surface-based convective available potential energy (CAPE) (J/kg) 
9 Surface temperature (C) 
10–12 Temperature (K) at 850-hPa, 700-hPa and 500-hPa 
13 Height of 0C isotherm (km) 
14 – 16 Wind shear (m/s) from surface to 850 hPa,  700 hPa and 500 hPa  
17– 18 Lapse rate (K/km) at 850-500-hPa and 850-700-hPa 
19 Wet Bulb Temperature 
* Note: The bold rows are predictors derived from other RAP output fields and other predictors are directly 
available from RAP output. 
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3. Summary of Prognostic Modelling and Proposed Experiments for Diagnostic 

Analysis 

3.1. Summary Part I: Prognostic Model  

As mentioned in previous sections,  Part I of this article focuses on prognostic modelling; 

i.e., the design, training, and assessment  of a machine learning based model. Comprehensive 

sets of predictors are derived and tested, many of which are derived for this particular 

application for the first time in the literature. The main objective is to evaluate the potential for  

the new generation of GEO ABI satellite observations to discriminate precipitation processes 

or types,  and to quantify the accuracy that can be achieved for each precipitation type. The 

important question  is addressed: Can the model be applied to real case events? The overall 

results in the form of a normalized contingency matrix is shown in Table 4. The analysis 

showed that the ML model has an overall classification accuracy greater than 75%,  with 

particularly good ability at delineating Precipitation from No-Precipitation. It also displays  

good accuracy in terms of  detecting precipitation types, such as Cool Stratiform, Warm 

Stratiform, and Hail. Tropical types, Tropical Stratiform/Mix and Tropical Convective/Mix, 

and Convective type are more challenging.   

RF is by design a probabilistic classifier. RF computes the probability of a sample 

belonging to each precipitation type before the dominant probability class is assigned in a 

deterministic way. Part I highlights the need to use probabilities to objectively handle 

precipitation types identified with various levels of certainty from a user perspective. In 

particular, an “uncertain” type can be defined using the predicted probabilities. RF models also 

compute feature/predictors importance. Overall, it is shown  that environmental predictors have 

higher importance than satellite predictors. Feature importance can be used to design more 

parsimonious models. The analysis indicates how the number of  predictors can be reduced 

from 260 to 68 without significantly compromising accuracy. The present study focuses on 

understanding the significance of different predictors for each precipitation type by analyzing 

the structure of the RF model. 
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Table 4. Normalized Contingency Matrix (in %), overall classification accuracy and Kappa 

coefficient. Blue highlighted cells are class accuracy statistics (Probability of Detection). 
    RF: Predicted classes   Overall 

Accuracy     Convec Cool_Strat Hail NoPrecip Trp_ConvMix Trp_StratMix WarmStart Total 

MRMS: 
Precip 
Types 

Convec 47 0 14 1 11 9 19 100 

75.90 

Cool_Strat 0 97 0 0 0 0 3 100 
Hail 26 0 70 0 2 0 1 100 

NoPrecip 0 0 1 93 0 0 5 100 
Trp_ConvMix 10 0 6 0 55 26 3 100 
Trp_StratMix 4 0 0 0 12 64 20 100 

WarmStart 10 1 2 2 2 11 72 100 
 

3.2. Experimental set-ups for diagnostic modelling  

An RF model was built and evaluated by using the scikit-learn framework (https://scikit-

learn.org/). The list of experiments carried out to diagnose the RF model and understand the 

impact of different predictors  is given in Table 5. The need for and background of these 

analyses is discussed in their respective results sections. Note that all these experiments are 

trained with 70% balanced data as given in Table 2 and statistics are computed using the 

remaining 30% of validation data. 

 

Table 5. List of experiments/analysis and their objectives	

Analysis Objective 
1 Understand the significance of different categories of satellite predictors 
2 Accuracy assessment of classifier with satellite only, environmental predictors only and overall 

predictors  
3 Benchmarking accuracy that can be achieved with historical GEO sensors operating with one or 

two channels compared to the new generation of satellite sensors 
4 Feature/Predictor importance for each precipitation type individually 
5 Why incorrect estimates?  

 

Analyses 1-3 are designed similarly to Part I but each with different sets of predictors. The 

first analysis runs experiments using various satellite predictors as listed in Table 1 to get a 

deeper understanding on the significance of BT, BTD, D-BTD, Te, and Ze. For the second 

analysis, three experiments involve satellite predictors only, environmental predictors only, 

and satellite and environmental predictors altogether. For the third analysis, RF experiments 

with predictors based on only one IR channel (T11.2) and two channels (T11.2, T6.2) that 

simulate historical sensors are compared with estimation using three channels (T11.2, T6.2, 

T12.3) and all five channels.  

Analysis 4 focuses on estimating important predictors for each precipitation type by 

extracting the contribution of all predictors and by ranking them according to their contribution 
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to estimated probability. The Treeinterpreter python library (Andosa, 2015) is used to interpret 

the RF models. For a given sample and precipitation type, it extracts the estimation path of the 

forest from root to the leaf and the contribution of each predictor.  

 
Figure 1. Treeinterpreter output for a hypothetical sample with Threshold (Th), Brightness 

Temperature (BT), Wet Bulb Temperature (WBT), and Relative Humidity (RH). Red lines 

indicate the decision path taken by the algorithm for the sample under consideration. Each 

grey box indicates the decision function at each node and “Th” represents the decision 

threshold determined during the training phase. The boxes with numbers located at the 

bottom of each grey box represent the contribution from each node to the final estimated 

probability. 

 

As an example, a hypothetical sample output with few predictors and decisions is shown 

in Fig. 1. Assuming that the hypothetical sample follows the red line path, then the predicted 

probability for the sample to belong to the tree class is shown in the equation in Fig. 1, where 

Mean is the value at each root node and other variables are contributions from subsequent tree 

nodes. The predicted probability of a sample belonging to the tree class is 0.83, with the highest 

contribution coming from predictor “BT1 – BT2”. Similar estimates and contributions can be 

retrieved for each estimated class (precipitation types), which adds up the probability of a 

sample to belong to each type to a total of 1. Inherently, RF models build these probability 

estimation forests for each precipitation type, and the sample is assigned deterministically to 

the dominant class. In the present study, Treeinterpreter is run separately for each precipitation 

type with randomly selected sub-samples from the validation dataset that are correctly 

classified. Since it is impractical to show the contribution from each of the 260 predictors, the 

highest contributing predictors in a particular precipitation type are identified by ranking their 
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average contributions  to the tested sample. Then, the distribution of contribution of these high 

contributing predictors from all samples is analysed.  

Quantifying and analysing the significant predictors for each precipitation type (Analysis 

4 in Table 5) allows an in-depth assessment of falsely classified precipitation types.  

 

4. Results and Discussions  

4.1. Significance of different categories of satellite predictors 

RF models are developed with individual categories of satellite predictors (Table 1) to 

understand which categories of predictors are significant and for what precipitation types. 

Figure 2 shows accuracy for each precipitation type and for each of the categories of satellite 

predictors.  

Figure 2. Classification accuracy for each precipitation type obtained with RF models 

developed with separate categories of satellite predictors: Brightness Temperatures (BT), 

Brightness Temperature Difference (BTD), Difference of BTD (D-BTD), Texture (Te), and 

Zenith Angle (Ze).  

 

It can be observed that all categories of satellite predictors are valuable for the identification 

of different precipitation types. Overall, models built on texture based predictors (Te) show 

higher accuracy than other models built on other individual categories, especially for the Warm 

Stratiform type. For the Hail and No-Precipitation types, all models show similar 

performances, except for the model built with the Zenith Angle predictor. The accuracy of the 

Zenith Angle model ranges from 20-25%, which is generally lower than for the other 

precipitation type models. Yet, for the Tropical-Convective Mix and the Cool Stratiform types, 
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the Zenith Angle only model shows similar skill to the models that use the satellite and / or 

environmental predictors.  This should not be entirely surprising given that the climatology of 

occurrence of some of these precipitation types has a strong spatial dependence; for instance, 

the Cool Stratiform type is generally observed in the northern and western portions of the ABI 

viewing area whereas Tropical-Convective Mix is much more prevalent closer to the GOES-

16 subpoint. However, it should also be noted that spatial climatology of precipitation classes 

are a part of the MRMS classification system and thus may also be contributing to the strength 

of the relationship between GOES-16 zenith angle and precipitation class. BTD and D-BTD 

based models generally show very similar accuracy with marginally higher scores for D-BTD. 

Since the best results are consistently achieved using models combining all satellite predictors, 

it appears that the precipitation type classification benefits somewhat from their inclusion. 

Except for No-Precipitation, the improvement is in the range of 5-10% for all other 

precipitating types.  

 

4.2. Comparative performance analysis of satellite based predictors and environmental 

predictors 

 
Figure 3. Classification accuracy for each precipitation type from satellite predictors, 

environmental  predictors, and both. 

 

In Part I of the manuscript, it is observed that environmental predictors display an 

overall higher feature importance than satellite predictors. This section aims at comparing the 

significance of satellite based predictors to environmental predictors for each precipitation 

type. It can be observed from Fig. 3 that models based on satellite predictors show higher 

accuracy for convective types (Hail, Convective and Tropical Convective/Mix) and No-
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Precipitation, while  classification based on environmental predictors display higher 

performances for stratiform types (Cool Stratiform, Warm Stratiform, and Tropical 

Stratiform/Mix). It confirms results from previous studies that convective precipitation can be 

detected well by GEO sensors, whereas the identification of shallow clouds can be improved 

with numerical model fields (e.g. Ebert et al., 2007). As in the previous section, models 

combining satellite and environmental predictors improve the accuracy, especially for 

convective types. It can possibly be inferred from Fig. 3 that for the stratiform classes, the 

satellite data are not contributing any significant useful information beyond that contained in 

the environmental variables from the numerical weather model.  However, it must also be kept 

in mind that the additional information content in the satellite data that improves the skill for 

the convective classes can indirectly improve the skill for the stratiform classes by e.g., 

preventing a convective pixel from being incorrectly classified as stratiform. 

 

4.3. Benchmarking the precipitation typology from historical GEO sensors to new 

generation GEO sensors  

Since the launch of geostationary satellites in the early 1970s until now, the IR channel 

at ~11 μm has been the legacy channel with almost five decades of routine global data. These 

channel observations are still used in almost all operational GEO precipitation retrieval 

algorithms and other merged satellite precipitation products (e.g., IMERG: Huffman et al., 

2015;  Tropical Amount of Precipitation with an Estimate of ERrors / TAPEER: Roca et al., 

2010; PERSIANN: Sorooshian et al., 2000). During the late 1970s, the WV absorption channel 

at 6.2 μm from geostationary orbit was introduced in the Meteosat-1 Meteosat Visible and 

Infrared Imager, making it also a legacy channel with 3-4 decades of observations. Although 

its importance has been established in many precipitation retrieval studies (Ba and Gruber, 

2001; Upadhyaya and Ramsankaran, 2014, 2016; Kuligowski et al., 2016), this channel is still 

not very commonly used in operational merged products. A third channel which showed 

significance in precipitation retrievals, in particular to separate water and ice phase clouds, is 

the channel at 12.3 μm (So and Shin, 2018; Kuligowski et al., 2016; Kühnlein et al., 2014;  

Thies et al., 2008; Behrangi et al., 2009). Due to its sensitivity to water vapor content in the 

atmosphere, this channel is considered  a “dirty” IR channel. In this section, a benchmark is set 

up on the accuracy that can be achieved with the historical legacy channels and with the 

additional new-generation channels. It sets the stage to revisit climate data records for 

improved precipitation products using observations from more than one channel. Figure 4 
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shows  the classification accuracy obtained with each precipitation type by using only the 11.2 

μm channel derived predictors, the two legacy channels 11.2 μm and 6.2 μm, the three channels 

11.2 μm, 6.2 μm and 12.3 μm, and all five channels. Each of these models include  all possible 

BTDs, D-BTDs, and textures from the channels they contain.  

 
Figure 4. Classification accuracy for each precipitation type obtained with RF models 

developed with one channel (11.2 μm), two (11.2 and 6.2 μm), three (11.2, 6.2, 12.3 μm), and 

all five channel satellite predictors. 

 

 A consistent improvement is observed in the classification performance by introducing 

additional channels. Specifically, a significant jump in accuracy is observed in most classes by 

adding the WV channel T6.2 to the  IR T11.2, with about a 5% gain for the No-Precipitation 

and Convective types, and more than 10% with all other precipitation types. The addition of 

the  IR T12.3 observations results in more modest  improvements in the range of 2-4% for most 

types. The highest accuracy is obtained with five channels, indicating the need to test additional 

channels from the ABI (work in progress). Finally, environmental predictors are also 

significantly important, with around 10% improvement in stratiform precipitation types (Warm 

Stratiform, Tropical Stratiform/Mix, and Cool Stratiform). It suggests that current operational 

products could incorporate more environmental predictors in addition to the mean-layer 

Relative Humidity used currently in SCaMPR (the operational NOAA algorithm for ABI: 

Kuligowski et al., 2016 ).  

 

4.4. Important predictors for each precipitation type 

 This section identifies the most important predictors contributing to each precipitation 

type. This question addresses a significant gap of knowledge in the use of GEO sensors for 

precipitation characterization. The Treeinterpreter is implemented as explained in Section 3.2.  
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Figure 5. Examples of most important predictors identification: (a) Box plots of 

contributions to the identification of the No-Precipitation type for the first fifteen predictors, 

along with cumulative mean contribution (dashed line); (b) Distributions of predictor values 

(D-BTD=(T7.3-T11.2) - (T8.5-T12.3) ) and mean (red dots) to the identification of different 

precipitation types.  

 

 Figure 5a shows the box-plot distributions of contributions to the identification of the 

No-Precipitation type, computed with Treeinterpreter from the validation samples. The   fifteen 

highest contributing predictors are displayed on the horizontal axis, with their contributions 

normalized to ease the inter-comparison between different predictors. For example, the highest 

contributing predictor to the identification of the No-Precipitation type is the D-BTD satellite 

predictor (T7.3 – T11.2) - (T8.5 – T12.3), with a contribution of 5-6% to the overall predicted 

probability of correctly classified No-Precipitation samples. This cumulative contribution line 

shows that the fifteen predictors together are responsible for more than 50% of the total 

contribution. Figure 5b shows an example of contribution distributions from  the  same D-BTD 

predictor across the precipitation types, which illustrates how the random forest model weights 

the predictor  to identify precipitation types. The distributions of predictors values from the D-

BTD predictor are significantly different across types, with large negative values for the No-

Precipitation type,  higher values for stratiform types (Cool Stratiform, Warm Stratiform, and 

Tropical/Stratiform Mix), and contributions close to zero for convective types (Tropical 

Convective/Mix, Convective, and Hail). 
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Figure 6. Same as Figure 5a but for all other precipitation types. 
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Figure 7. Distributions of contributions from the most significant  environmental predictors 

across different precipitation types 

 
Figure 8. Distribution of contributions from the most significant satellite predictors across 

different precipitation types 
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 Figure 6 shows the contribution distributions of the highest contributing predictors for 

all other precipitation types. As noted in Part 1, environmental predictors provide the highest 

contributions for most precipitation types. The  highest contributing satellite  predictors are 

identified in Figure S1. Figures 7 and 8 display the distributions of contributions to different 

precipitation types from the most important environmental and satellite predictors, 

respectively.  

 

No-Precipitation Type: 

 From Fig. 5a, it can be observed that the first fifteen highest contributing predictors are 

all satellite-based, with accumulated contribution of more than 50% of the total contribution. 

It indicates the importance of satellite observations in separating Rain and No-Rain areas. The 

most important predictor is the D-BTD (T7.3 – T11.2) - (T8.5 – T12.3), which displays 

significantly different values  with No-Precipitation than with precipitating types  (Fig. 5b). 

Among other predictors, D-BTDs and textures of D-BTDs show higher contributions (Fig. 5a). 

Within D-BTDs predictors, one can notice the frequent combination of WV – IR and IR – IR 

channels. From Fig. 8k, D-BTDs involving WV – IR and WV – IR combinations display lesser 

separation of No-Precipitation from other types.  

 

Hail Type: 

Figure 6a indicates that  the highest contributing predictors for the identification of Hail 

include both environmental and satellite predictors, and that their combined contributions add 

up to  more than 60% of the total. Hail is generally associated with a high lapse rate (Fig. 7l), 

relatively warmer temperature near the surface (Fig. 7c), lower relative humidity at 500 hPa 

(Fig. 7f), and higher surface CAPE compared to other precipitation types (Fig. 7k).  In earlier 

studies, RH and / or PW are used as predictors to provide information about low-level 

environmental conditions (Ba and Gruber, 2001; Vicente et al., 1998; Kuligowski et al., 2016),  

but the present analysis  highlights the significance of other environmental parameters. 

However, it should be noted that there is a significant overlap in the values of the environmental 

predictors with the No-Precipitation type, which explains why that type has much greater 

reliance on satellite data than do the others. 

 Regarding satellite based-predictors, again D-BTDs generally make the greatest 

contributions. There is a noticeable structure  in these D-BTDs; i.e., they largely consist of 
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differences between two WV channels and/or the difference between one WV channel and the 

“dirty” IR channel T8.5, which is also sensitive to WV content. D-BTDs generally show 

smaller departures from 0 with Hail compared to other precipitation types (Fig.8i, j, k). In terms 

of textures, Contrast and Entropy tend to display higher values compared to other types (Fig.8b, 

c), and, regarding  BTs, the Hail type is consistently associated with the coldest cloud-top 

temperatures (Fig. 8a, d, e).  

 From the distribution analysis (Fig. 7, 8), it can be observed that Hail characteristics 

have significant overlap with those associated with Convective precipitation types, which 

explains why Hail is often incorrectly classified as one of the Convective types (Table 4).  

 

Convective Type: 

From Figure 6b, Zenith Angle is the only satellite predictor in the fifteen highest 

contributing predictors, which cumulatively contributes to slightly more than 50% of the 

overall estimated probability. The remaining contribution is mainly from satellite predictors. 

As it is observed, Hail, Lapse Rate, surface-based CAPE, Relative Humidity, and surface 

potential temperature show higher importance (Fig. 6b). Boxplots of both environmental and 

satellite predictors (Fig. 7 and 8, respectively) display significant overlap with other 

precipitation types except Cool Stratiform and No-Precipitation. It explains the lower accuracy 

obtained with the Convective precipitation type and the misclassification with Hail, Tropical 

Convective/Mix and Warm Stratiform (Table 4).   

 In terms of satellite predictors, D-BTDs display higher differences (Figs. 8i, j, k) 

between Convective types and  Stratiform types . Similarly, different signatures are observed 

for the T6.2 Textures predictors (Figs. 8b, c); e.g. higher entropy and contrast with convective 

than with stratiform types. Overall, separating Convective types from other precipitation types 

is challenging.  

 

Tropical Convective/Mix (TCM): 

 Like the Convective type, TCM displays most contributions (~80% total) from 

environmental predictors (Fig. 6c). The only  satellite contributor is Zenith angle with the third 

highest contribution (>5%). It is also interesting to observe that the 850-500 hPa lapse rate 

contributes more than 10% in all three convective types, and it is one of the top contributing 

predictors in separating convective types from stratiform types. TCM is associated with higher 

precipitable water (Fig.7i) and Wet Bulb Temperature (WBT; Fig.7g). Both TCM and Tropical 
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Stratiform/Mix have similar model predictors taking higher values; e.g., the 500hPa 

temperature (Fig.7a) and Relative Humidity profiles (Fig.7e, f). This explains the 

misclassification between both tropical classes (Table 4).  

 Regarding satellite predictors (Fig. 8), Zenith angle may indirectly capture the preferred 

location of occurring tropical precipitation types in the southeastern CONUS. From Fig. 8, 

there is overlap between TCM and Tropical Stratiform/Mix (TSM), while TCM has similar 

characteristics to the Convective type. These similarities in their respective predictor values 

make it challenging to separate these two types (Table 4).  

 

Tropical Stratiform/Mix (TSM): 

 From Figure 6f and  similar to TCM (Fig.6c),  environmental predictors and Zenith 

Angle contribute around 60% of the total information content for identifying TSM.  Notably, 

in stratiform types, predictors related to atmospheric moisture content such as relative humidity 

and precipitable water have higher contributions, while for convective types, the 850-500 hPa 

lapse-rate and CAPE consistently show higher contributions. Stratiform types show lower 

lapse rates than convective types in general (Fig. 7l). As reported in the TCM discussion, RH 

and PW are both high for the tropical classes (Fig. 7i, e, f).  

 In terms of  satellite predictors (Fig. 8), BTs  are generally highest for No-Precipitation, 

lower for Stratiform types (with Tropical Stratiform/Mix being colder than Warm Stratiform), 

and lower yet with Convective types where the coldest cloud tops are found with Hail (Fig 

8a,d), which is perfectly consistent with their acting as a rough proxy for cloud-top 

temperature. The distribution of the values of BTs and other indices indicate that TSM 

characteristics range between TCM and Warm Stratiform, which in turn explains why TSM is 

often misclassified as one of these other two classes.  

 

Warm Stratiform: 

 For Warm Stratiform (Fig. 6e), the highest contributing predictors are PW, humidity 

and other temperature-based environmental predictors, along with satellite zenith angle. The 

height of the 0°C isotherm is lower than for the other precipitation types. The distribution of 

values of RH, PW, and WBT are slightly lower than for the Convective types and TSM (Fig 

7i, g), but with a large degree of overlap. This explains the mis-classification of Warm 

Stratiform as Convective types or TSM.  
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  The satellite predictors exhibit a shift in BT signatures and other predictors (Fig. 8), 

from No-Precipitation to Stratiform to Convective types, but with considerable overlap. This 

again highlights the need to identify precipitation types probabilistically rather than 

deterministically. 

Cool Stratiform: 

  For the Cool Stratiform type, almost 90% of the information content comes from the 

first fifteen predictors (Fig. 6d). Most of these predictors are temperature-based as expected, 

with the highest contribution coming from WBT which is also used in MRMS to separate Cool 

Stratiform from other precipitation types. The environmental temperature values are generally 

lower for Cool Stratiform than any other precipitation types (Fig. 7). Consistently, the same 

trend is observed for the height of the 0°C isotherm (Fig. 7j) and the 850-500hPa lapse rate. 

Other environmental predictors, such as RH, do not separate Cool Stratiform well from other 

precipitation types.  

 While the low-level environment is colder with Cool Stratiform than other precipitation 

types, Fig. 8 shows that ABI cloud top temperatures are warmer than Warm Stratiform (Fig. 

8a, d, e) with some overlap.  

 

4.5. Why incorrect estimates? 

 The causes of misclassification can be explained well for most precipitation types by 

the overlap of  predictor distributions across different precipitation types (section 4.4; Figs. 7 

and 8). However, the reason for overestimating the rain area (5% of No-Precipitation is 

misclassified as Warm Stratiform, as shown in Table 4), is explained by the analysis thus far 

since it is observed that No-Precipitation is well separated from other classes for several 

predictors.  The overestimation of rain area is further analyzed by plotting the distributions of 

the important predictors for the No-Precipitation type for both training and testing dataset 

separately, and by highlighting in which class they are (mis)classified. Figure 9 shows a 

representative example with the D-BTD predictor (T7.3 – T11.2) - (T8.5 – T12.3) which is the 

highest contributing predictor for No-Precipitation (see Fig. 5b). 
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Figure 9. Same as Figure 5b, and for No-Precipitation type distributions separated for both 

training (rightmost box) and testing data across RF predicted precipitation types. The smaller 

boxes on the left are testing data separated according to RF estimated precipitation types. The 

distributions associated with other precipitation types are given for comparison purposes.   

 

As expected, the misclassified No-Precipitation samples are associated with different 

distributions of the predictor than the training No-Precipitation samples, in particular Warm 

Stratiform, which explains the large misclassification of No-Precipitation in this type. In Part 

I, the misclassified No-Precipitation samples are observed to generally occur along the edges 

of rainy areas with low RF estimated probabilities. From Figure 9, the characteristics of such 

misclassified samples are closer to the distributions of other precipitation types, which  explains 

why the RF models tend to misclassify such samples. This is attributed to the sub-pixel rainfall 

variability and possible surface contribution along the edges of rainy areas associated with the 

satellite sampling resolution (i.e. non uniform beam filling (NUBF) as reported in Kirstetter et 

al., 2012, 2013 and Upadhyaya et al., 2020). Other sources of uncertainty can arise from the 

spatio-temporal matching between ABI and GV-MRMS, and possibly from internal MRMS 

procedures to avoid virga (Zhang et al., 2016). We also observe a similar behaviour with other 

precipitation type misclassifications (Figure S2).  
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5. Conclusions 

The specific objective of this study is to understand the relationship between satellite and NWP 

environmental predictors and MRMS-classified precipitation types and processes through 

interpreting the developed ML based classification model. For the first time to our knowledge, 

a consistent and systematic analysis is performed on GEO satellite-based indices for 

precipitation detection and classification of types. The motivating research questions and major 

conclusions are indicated below:  

Analysis 1: What is the impact of different categories of satellite predictors on classification 

accuracy?   

● An improvement in the range of 5-20% is observed, with highest accuracy 

improvement for Warm Stratiform when compared to models developed with only 

Brightness Temperatures of 5 channels. Specifically, texture-based predictors 

significantly improve the classification accuracy.  

Analysis 2: What is the relative impact of satellite-based predictors and environmental 

predictors? 

● Except for Hail and No-Precipitation, the detection scores improve in the range of 10-

20% by adding environmental predictors along with satellite predictors.  Hail and No-

Precipitation types achieve maximum accuracy with satellite predictors. 

Analysis 3: How does  the new generation of GEO sensors compare to historical benchmarks 

with legacy channels? 

● Classification accuracy improves for all precipitation types by adding the WV channel 

T6.2 to the IR T11.2 channel, with a gain of around 5% for No-Precipitation and 

Convective types, and more than 10% with all other precipitation types. 

Work in progress: To test additional channels from ABI.  

● The highest accuracy with satellite predictors is obtained with all five channels used 

in this study, suggesting the need to test additional channels.  

Analysis 4: Which predictors are contributing to different precipitation types?  

● In terms of  satellite predictors, BTs  display the warmest values for No-Precipitation, 

lower values for Stratiform types (with Tropical Stratiform/Mix being colder than 

Warm Stratiform), and a further drop with Convective types, where the coldest cloud 

tops are found with Hail, which is consistent with the physical understanding of BTs 

as a proxy for cloud-top temperatures 
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● Satellite observations are important in separating Rain and No-Rain areas. Of 

particular importance are the D-BTDs predictors containing combinations of WV – IR 

and IR – IR channels. 

● In stratiform types, predictors related to atmospheric moisture content such as relative 

humidity and precipitable water have the highest contribution, while for convective 

types, predictors 850-500 hPa lapse-rate and CAPE consistently showed the highest 

contribution.  

Recommendations from the study are:  

1. It is advantageous to derive predictors from the satellite brightness temperatures (e.g., 

texture, inter-band differences)  instead of only using single-pixel, single-channel 

values. 

2. Environmental predictors from NWP, such as CAPE, lapse rate, relative humidity, 

and precipitable water, bring complementary information and are therefore 

recommended to be included in retrieval algorithms  

3. When possible, it is recommended to include the heritage channel T6.2 in operational 

precipitation retrieval algorithms and for precipitation reanalyses. 

The conclusions and recommendations from this study will ultimately aid towards improved 

precipitation characterization and retrievals from space. In future work, more channels will be 

considered, as well as similar satellite platforms such as Himawari, Geostationary - Korea 

Multi-Purpose Satellite (GEO-KOMPSAT), Indian National Satellite (INSAT), Meteosat and 

FengYun (FY) series.   

 

Acknowledgements 

We are very much indebted to the teams responsible for the GOES-R, MRMS and SCaMPR 

products. Datasets for this research are available in these in-text data citation references: 

Kuligowski et al. (2016), Kirstetter et al. (2012; 2014), Benjamin et al. (2016). Authors 

acknowledge Y. Derin for helping with downloading and extracting environmental predictors. 

Funding for this research was provided by the GOES-R Series Risk Reduction program, which 

provided support to the Cooperative Institute for Mesoscale Meteorological Studies at the 

University of Oklahoma under Grant NA16OAR4320115. P. Kirstetter acknowledges support 

from NASA Global Precipitation Measurement Ground Validation program under Grant 

NNX16AL23G and Precipitation Measurement Missions program under Grant 

80NSSC19K0681. The contents of this paper are solely the opinions of the authors and do not 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

27 

constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. 

Government. 

Reference 

Andosa, Saabas. “Andosa/Treeinterpreter.” GitHub, 2015, github.com/andosa/treeinterpreter. 

Arkin, P. A. (1979). The relationship between fractional coverage of high cloud and rainfall 

accumulations during GATE over the B-scale array. Monthly Weather Review, 107(10), 

1382-1387. 

Ba, M. B., & Gruber, A. (2001). GOES multispectral rainfall algorithm (GMSRA). Journal of 

Applied Meteorology, 40(8), 1500-1514. 

Barret, E. C., and D. W. Martin (1981),  The Use of Satellite Data in Rainfall Monitoring, 340 

pp., Academic,  London, U. K. 

Baum, B. A., & Platnick, S. (2006). Introduction to MODIS cloud products. In Earth science 

satellite remote sensing (pp. 74-91). Springer, Berlin, Heidelberg. 

Behrangi, A., Hsu, K. L., Imam, B., Sorooshian, S., Huffman, G. J., & Kuligowski, R. J. (2009). 

PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral 

analysis. Journal of Hydrometeorology, 10(6), 1414-1429. 

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., 

... & Lin, H. (2016). A North American hourly assimilation and model forecast cycle: 

The Rapid Refresh. Monthly Weather Review, 144(4), 1669-1694. 

Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of near-real-time precipitation 

estimates from satellite observations and numerical models. Bulletin of the American 

Meteorological Society, 88(1), 47-64. 

Follansbee, W. A. (1973). Estimation of average daily rainfall from satellite cloud photographs. 

Giannakos, A., & Feidas, H. (2013). Classification of convective and stratiform rain based on 

the spectral and textural features of Meteosat Second Generation infrared data. 

Theoretical and applied climatology, 113(3-4), 495-510. 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

28 

Grams, H. M., Kirstetter, P. E., & Gourley, J. J. (2016). Naïve Bayesian precipitation type 

retrieval from satellite using a cloud-top and ground-radar matched climatology. Journal 

of Hydrometeorology, 17(10), 2649-2665. 

Grams, H. M., Zhang, J., & Elmore, K. L. (2014). Automated identification of enhanced 

rainfall rates using the near-storm environment for radar precipitation estimates. Journal 

of Hydrometeorology, 15(3), 1238-1254. 

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image 

classification. IEEE Transactions on systems, man, and cybernetics, (6), 610-621. 

Hong, Y., Hsu, K. L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely 

sensed imagery using an artificial neural network cloud classification system. Journal of 

Applied Meteorology, 43(12), 1834-1853. 

Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic 

Press.  

Kidder, S. Q., KIDDER, R. M., & Haar, T. H. V. (1995). Satellite meteorology: an 

introduction. Gulf Professional Publishing. 

Kilonsky, B. J., & Ramage, C. S. (1976). A technique for estimating tropical open-ocean 

rainfall from satellite observations. Journal of Applied Meteorology, 15(9), 972-975. 

Kirstetter, P. E., Hong, Y., Gourley, J. J., Cao, Q., Schwaller, M., & Petersen, W. (2014). 

Research framework to bridge from the Global Precipitation Measurement Mission core 

satellite to the constellation sensors using ground-radar-based national mosaic QPE. 

Remote sensing of the terrestrial water cycle, 61-79. 

Kirstetter, P. E., Hong, Y., Gourley, J. J., Chen, S., Flamig, Z., Zhang, J., ... & Amitai, E. 

(2012). Toward a framework for systematic error modeling of spaceborne precipitation 

radar with NOAA/NSSL ground radar–based National Mosaic QPE. Journal of 

Hydrometeorology, 13(4), 1285-1300. 

Kirstetter, P. E., Karbalaee, N., Hsu, K., & Hong, Y. (2018). Probabilistic precipitation rate 

estimates with space‐based infrared sensors. Quarterly Journal of the Royal 

Meteorological Society, 144, 191-205. 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

29 

Kühnlein, M., Appelhans, T., Thies, B., & Nauß, T. (2014). Precipitation estimates from MSG 

SEVIRI daytime, nighttime, and twilight data with random forests. Journal of Applied 

Meteorology and Climatology, 53(11), 2457-2480. 

Kuligowski, R. J., Li, Y., Hao, Y., & Zhang, Y. (2016). Improvements to the GOES-R rainfall 

rate algorithm. Journal of Hydrometeorology, 17(6), 1693-1704. 

Lovejoy, S., & Austin, G. L. (1979). The delineation of rain areas from visible and IR satellite 

data for GATE and mid‐latitudes. Atmosphere-ocean, 17(1), 77-92. 

Meyer, H., Kühnlein, M., Appelhans, T., & Nauss, T. (2016). Comparison of four machine 

learning algorithms for their applicability in satellite-based optical rainfall retrievals. 

Atmospheric research, 169, 424-433. 

Min, M., Bai, C., Guo, J., Sun, F., Liu, C., Wang, F., ... & Dong, L. (2018). Estimating 

summertime precipitation from Himawari-8 and global forecast system based on 

machine learning. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2557-

2570. 

Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction 

using GLCM approach. International journal of scientific and research publications, 

3(5), 1. 

National Academies of Sciences, Engineering, and Medicine (2018).  Thriving on our changing 

planet: A decadal strategy for Earth observation from space.  Washington, DC: The 

National Academies Press. https://doi.org/10.17226/24938 

So, D., & Shin, D. B. (2018). Classification of precipitating clouds using satellite infrared 

observations and its implications for rainfall estimation. Quarterly Journal of the Royal 

Meteorological Society, 144, 133-144. 

Tao, Y., Hsu, K., Ihler, A., Gao, X., & Sorooshian, S. (2018). A two-stage deep neural network 

framework for precipitation estimation from bispectral satellite information. Journal of 

Hydrometeorology, 19(2), 393-408. 

Thies, B., Nauß, T., & Bendix, J. (2008). Precipitation process and rainfall intensity 

differentiation using Meteosat second generation spinning enhanced visible and infrared 

imager data. Journal of Geophysical Research: Atmospheres, 113(D23). 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

30 

Tian, B., Shaikh, M. A., Azimi-Sadjadi, M. R., Haar, T. H. V., & Reinke, D. L. (1999). A study 

of cloud classification with neural networks using spectral and textural features. IEEE 

transactions on neural networks, 10(1), 138-151. 

Tjemkes, S. A., Van de Berg, L., & Schmetz, J. (1997). Warm water vapour pixels over high 

clouds as observed by Meteosat. Beitrage zur Physik der Atmosphare-Contributions to 

Atmospheric Physics, 70(1), 15-22. 

Tsonis, A. A., & Isaac, G. A. (1985). On a new approach for instantaneous rain area delineation 

in the midlatitudes using GOES data. Journal of climate and applied meteorology, 

24(11), 1208-1218. 

Upadhyaya, S. A., Kirstetter, P. E., Gourley, J. J., & Kuligowski, R. J. (2020). On the 

propagation of satellite precipitation estimation errors: from passive microwave to 

infrared estimates. Journal of Hydrometeorology, 21(6), 1367-1381. 

Upadhyaya, S. A., Kirstetter, P. E., Kuligowski, R. J., & M. Searls (2021). Classifying 

precipitation from GEO Satellite Observations: Prognostic Model. Journal of 

Geophysical Research: Atmosphere (Submitted). 

Upadhyaya, S., & Ramsankaran, RAAJ. (2016). Modified-INSAT Multi-Spectral Rainfall 

Algorithm (M-IMSRA) at climate region scale: Development and validation. Remote 

Sensing of Environment, 187, 186-201. 

Upadhyaya, S., & Ramsankaran, RAAJ. (2014). Multi-index rain detection: a new approach 

for regional rain area detection from remotely sensed data. Journal of Hydrometeorology, 

15(6), 2314-2330. 

Vicente, G. A., Scofield, R. A., & Menzel, W. P. (1998). The operational GOES infrared 

rainfall estimation technique. Bulletin of the American Meteorological Society, 79(9), 

1883-1898. 

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., ... & Arthur, A. (2016). 

Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial 

operating capabilities. Bulletin of the American Meteorological Society, 97(4), 621-638. 

Zhang, J., Qi Y. ,Howard K. ,Langston C. ,and Kaney B. (2011). Radar Quality Index (RQI)—

A combined measure of beam blockage and VPR effects in a national network. Proc. 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

31 

Eighth Int. Symp. on Weather Radar and Hydrology, Exeter, United Kingdom, Royal 

Meteorological Society. 



Supplementary Materials 
 

Classifying precipitation from GEO Satellite Observations: Diagnostic 
Model 

 

Shruti A. Upadhyaya1, Pierre-Emmanuel Kirstetter2,3,4,5, Robert J. Kuligowski6, Maresa 

Searls2 

1 Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma 

2School of Meteorology, University of Oklahoma, Norman, Oklahoma 

3School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, 

Oklahoma 

4Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma 

5NOAA/National Severe Storms Laboratory, Norman, Oklahoma 

6NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland 

Corresponding authors: Pierre-Emmanuel Kirstetter (pierre.kirstetter@noaa.gov);  

    Shruti A. Upadhyaya (shruti.a.upadhyaya-1@ou.edu)  

  



 
Figure S1. Same as Figure 6 but for the RF model with satellite only predictors 

 

 
Figure S2. Same as Figure 9, but for other precipitation types. 

 

 


