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vegetation covers, geographic and climatic conditions at sub-daily scale demonstrate the model’s ability to simulate diurnal
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Abstract 

A novel non-gradient model is formulated for estimating gas fluxes using single-level time-series 

data of near-surface gas concentration over land surfaces. When the vertical turbulent transport 

process in the atmospheric surface layer is described by a one-dimensional diffusion equation, a 

gas flux is expressed as a weighted integral of the time-history of single-level gas concentration. 

The eddy-diffusivity may be parameterized as a function of sensible heat flux based on the Monin-

Obukhov similarity theory without explicit dependence on wind speed and surface roughness. 

Sensible heat flux may be estimated from net radiation and surface temperature using the 

maximum entropy production model. Case studies at six sites with diverse vegetation covers, 

geographic and climatic conditions at sub-daily scale demonstrate the model’s ability to simulate 

diurnal variations of water vapor and CO2 fluxes using fewer inputs than other models. Good 

performance of the model at seasonal scale suggests that the proposed model is a promising tool 

for the assessment of annual water and carbon budgets over vegetated land surfaces.  

 

Keywords: Surface gas fluxes; single-level gas concentration; non-gradient model.   
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1. Introduction 

Fluxes of greenhouse gases such as water vapor and CO2 over land surfaces are commonly 

estimated using the bulk transfer models (BTM) [Collatz et al., 1991; Lee and Pielke, 1992; Philip, 

1957; Sellers et al., 1997; Sellers et al., 1996; Wang and Dickinson, 2012]. In the BTMs, the bulk 

gas flux is expressed as the bulk gradient of gas concentration at two levels separated by a short 

distance multiplied by a transfer coefficient often parameterized in terms of wind speed and surface 

roughness [Arya, 2001]. The BTM is applicable only when multiple-level gas concentration and 

wind speed data are available. Multiple-level observations of water vapor concentration (air 

humidity) are abundant while multiple-level measurements of other greenhouse gases such as CO2 

are less common from regional and global ground observation networks including AmeriFlux 

(http://ameriflux.lbl.gov/) and FLUXNET (http://fluxnet.fluxdata.org/).  

  The BTM is the only method for estimating gas fluxes in the Earth system models at 

regional and global scales. With the fast development of remote sensing technology, it is desirable 

if the gas fluxes at regional and global scales can be estimated using remote sensing observations. 

Yet, remote sensing observations of bulk gradient of gas concentration, wind speed and surface 

roughness as the inputs of a BTM are rarely available over the land surfaces. For example, bulk 

gradient data of gas concentration such as CO2 are not available from the latest satellite Orbiting 

Carbon Observatory -3 (OCO-3) [Basilio et al., 2019]. Remotely sensed surface wind over land 

does not exist [Stoffelen et al., 2020]. Large scale remotely sensed land surface roughness is still 

to be validated [Ullmann and Stauch, 2020]. Therefore, an alternative method is needed for 

modeling gas fluxes over the land surfaces. 

Non-gradient models (NGMs) of fluxes have been developed in the past two decades 

motivated by remote sensing applications. The first NGM is for ground heat flux using surface soil 

http://fluxnet.fluxdata.org/
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temperature [Wang and Bras, 1999]. When heat conduction in soil layers follows a diffusive 

process, ground heat flux can be expressed as a functional of the time-history of surface soil 

temperature. The key idea behind the NGM of ground heat flux is that the spatial change of soil  

temperature (or temperature gradient) at a certain depth is linked to its temporal change at the same 

depth, through mathematical equations known as the half-order derivative/integral [Hilfer, 2000; 

Miller and Ross, 1993; Nishimoto, 1991; Oldham and Spanier, 2006; Samko et al., 1993], when 

the soil temperature dynamics is described by a diffusion equation. The NGM of ground heat flux 

has been generalized to deriving soil heat flux (soil temperature) at any depth from surface 

temperature (ground heat flux) [Wang, 2012; Yang and Wang, 2014a; Yang et al., 2017]. It is worth 

pointing out that the reverse problem, i.e. soil heat flux (soil temperature) at a deeper depth derived 

from surface soil temperature (ground  heat flux), is ill-posed [Beck et al., 1985]. Nonetheless, the 

concept of NGM provides new opportunities of remote sensing of hydrological fluxes. The NGM 

of ground heat flux has a unique advantageous feature of capturing phase shift between heat flux 

and temperature process. A comparison study[Purdy et al., 2016] suggests that the NGM 

outperforms six commonly used models for simulating global ground heat flux due to its 

theoretical and technical strength. A recent study [Gao et al., 2017] on comparison of nine models 

of soil heat flux has shown that the NGM is the only one with no modeling error of phase.   The 

NGMs of heat fluxes have been applied to a variety of topics in geosciences including hydrology, 

meteorology, climatology, geophysics, glaciology, etc. [Beltrami et al., 2000; Bennett et al., 2008; 

Hsieh et al., 2009; Yang et al., 2020; Zhu et al., 2014]. 

 The NGMs of mass fluxes have also been proposed and tested. When the transport of salt 

in the top ocean layer is dominated by a one-dimensional (vertical) diffusion process with a time-

variable diffusivity, the salt flux at the sea surface can be expressed as integrated time function of 
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sea surface salinity similar to the formula of the NGM of soil heat flux [Nieves et al., 2014]. This 

NGM of salinity leads to the first salinity-based model of ocean surface fresh water flux (e.g. 

evaporation) taking advantage of the recently available more abundant satellite observations of sea 

surface salinity. These previous theoretical and modeling studies have laid foundation for more 

applications of the non-gradient method to modeling mass and energy fluxes of the Earth system. 

The goal of this study is to formulate and test new NGMs of gas fluxes over the land 

surfaces. A major challenge is to parameterize the variable eddy-diffusivity characterizing 

boundary layer turbulence in the governing equation of gas transfer. Thanks to a new 

parameterization of eddy-diffusivity of the boundary-layer turbulence [Wang and Bras, 2010], an 

analytical solution has been derived to express a gas flux as an integrated time function of single-

level gas concentration record analogous to the soil heat flux – soil temperature relationship.  

2. Model Formulation 

The dynamics of a non-reactive gas concentration within the atmospheric surface layer is 

often described by a one-dimensional diffusion equation when turbulent mass transport is 

predominantly vertical [Nieuwstadt, 1980], 
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where C (kg m-3) is the (temporal) mean gas concentration, Dc(z, t) (m2 s-1) the turbulent eddy-

diffusivity, z (m) the distance above the ground or canopy, and t (s) the time. Dc is usually 

parameterized based on the Monin-Obukhov similarity theory (MOST) of the boundary layer 

turbulence (e.g. [Arya, 2001]) assuming that the turbulent flow responsible for heat transfer is also 

responsible for the transport of passive tracers such as water vapor and CO2 [Monteith and 
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Unsworth, 2013]. In this study, a new parameterization of cD  is used based on the extreme solution 

(ES) of the equations of MOST (Appendix A) [Wang and Bras, 2010],  

                                3

1

3

4

0 )(, tHzDtzDc  ,                                                           (2) 

where H (W m-2) is sensible heat flux (defined as positive when heat is transferred from the land 

surface into the atmosphere) and D0 an empirical constant depending on the atmospheric stability 

given in Eq. (A4). The ES covers all regimes of forced convection, free convection, and anything 

in-between. It allows cD  to be formulated as functions of friction velocity *u , sensible heat flux H, 

(mean) wind shear or (mean) temperature gradient (see Table 1 of [Wang and Bras, 2010]). 

Therefore, cD  expressed in terms of *u  does not necessarily imply that the stratification is neutral. 

The ES-based cD  has different values for day and night times corresponding to unstable and stable 

condition (Eqs. (A1) – (A4)), respectively. 

It can be shown (Appendix A) that gas flux F, defined as positive into the atmosphere, is 

expressed as, 
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where ,  are the integration (dummy) variables. Eq. (3) holds for the specific parameterization 

of cD as in Eq. (2). For the case of constant Dc, Eq. (3) reduces to  
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which is recognized as the half-order (time) derivative of  ,C z t , identical to the NGM of soil 

heat flux [Wang and Bras, 1999]. Eq. (3) involves a singular integrand with a removable 

singularity at τ = t. A numerical integration algorithm for computing F is given in Appendix B. 

Eq. (3) shows that F at a given time t can be derived from the time-history of  ,C z t  from 

an initial time (=0) to the current time (=t). Theoretically, 0F  at the initial time of the integral 

corresponding to uniform profile of C. A sensitivity test (Figure A2 in Appendix A) indicates that 

F is not sensitive to the initial condition of C as long as the integration period is ~ 24 hours for 

simulating diurnal variations of F since the weighting function in the integrand decays rapidly with 

time (Figure B2 in Appendix B). Note that Eq. (3) predicts F over the entire period (0 to t) given 

the data of C and H (for parameterizing Dc) over the same period.  

 Eqs. (1) - (3) hold for a certain range of z within the surface layer. Since F and H are nearly 

uniform in the surface layer [Stull, 1988], F as in Eq. (3) represents the “surface” flux. z in Eq. (3) 

for the case of forest is approximately the distance between the canopy top and the eddy-covariance 

(EC) fluxes measurement height. For the case of shorter vegetation such as grasslands and 

croplands, z is chosen  as ~ 5 m instead of the measurement height [Cellier, 1986] since the MOST 

is valid above a height ~ 2-5 times of the height of the roughness elements [Basu and Lacser, 

2017]. Note that the effect of the uncertainty of z on the NGM gas flux is relatively weak due to 

its 
2

3z -dependence according to Eq. (3). Therefore, the NGM of gas fluxes is not sensitive to this 

parameterization of eddy-diffusivity. 

Figure 1 compares the NGM fluxes of water vapor (Fv) and CO2 (Fc) according to Eqs. (3) 

and (4) using hourly data during a ten-day period at the BR-Sa1 site (site description in Table 1). 

 ,cD z t ) changes from 2 (nighttime) to 16 m2 s-1 (daytime) with an average value of 6.18 m2 s-1 
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(Figure A1 in Appendix A). It is evident that both NGMs are capable of capturing the magnitude 

and diurnal variations of the observed fluxes, and the NGM with the time-variable  ,cD z t  

performs better than the NGM with a constant diffusivity parameter. The diurnal cycles of the 

NGM fluxes are dominated by those of gas concentrations. 

 

Figure 1. The NGM F using variable  ,cD z t  vs. constant Dc compared with observed F (OBS) 

(a) water vapor flux (Fv) and (b) CO2 flux (Fc) at the BR-Sa1 site, Jul. 29- Aug. 8, 2003 

 

 The proposed NGM of gas fluxes has several advantageous properties resulting, in part, 

from the new parameterization of eddy-diffusivity. Obviously, modeling gas fluxes without using 

gas concentration gradient data is the most attractive feature of the NGM. Reduced sensitivity of 
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the NGM to the parameterization of eddy-diffusivity leads to more robust estimates of gas fluxes 

since the parameterization of eddy-diffusivity is subject to substantial uncertainty 

[Gopalakrishnan et al., 2013]. Compared to the eddy-diffusivity formula based on the classical 

formulation of the equations of MOST, the extremum solution provides a parameter parsimonious 

formula of eddy-diffusivity mathematically independent of surface wind speed (or friction velocity) 

and surface roughness. Not using canopy and aerodynamic conductance (or resistance) parameter 

in the NGM formulation leads to reduced modeling errors compared to the bulk flux models. The 

above advantages of the NGM facilitate modeling regional and global analysis as remote sensing 

observations and reanalysis products of the model inputs (i.e. CO2 concentration for carbon flux, 

relative humidity for evapotranspiration, and net radiation for sensible heat flux) are becoming 

more abundant with improved quality[Basilio et al., 2019; Ramírez- Beltrán et al., 2019; Verma 

et al., 2016].    

Dc in Eq. (2) based on the extremum solution can be formulated in terms of one of the four 

variables, i.e. sensible heat flux, friction velocity, temperature gradient, and wind shear [Wang and 

Bras, 2010]. For the purpose of developing a NGM of gas fluxes, sensible heat flux and friction 

velocity are two viable options. Since friction velocity is difficult to measure or model using 

remote sensing observations, H is the obvious choice in the parameterization of Dc. Although H 

cannot be directly measured remotely and in-situ measurement of H using EC method is costly, 

the maximum entropy production (MEP) model [Wang and Bras, 2011] is an attractive approach 

for modeling H (and latent heat/water vapor flux E) using field and remote sensing meteorological 

data. The MEP model itself is a non-gradient model of surface heat fluxes, a feature consistent 

with the proposed NGMs of gas fluxes. The theoretical basis and mathematical formulation of the 
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MEP model have been published previously [Wang and Bras, 2009; 2011; Wang et al., 2014].  A 

brief overview of the MEP model is given in Appendix C.  

For the case of dense canopy related to this study, the MEP model of H (and E) is 

formulated as,      

 
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2
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,   
1 ( ) 1 ( )

11
6 1 1 ,      ,

36
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
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 

                                              (5) 

where Rn (W m-2) is net radiation, Ts (K) canopy surface temperature, and qs (kg kg-1) canopy 

surface (specific) humidity. Other physical parameters include latent heat of vaporization of liquid 

water λ (2.5×106 J kg-1), gas constant of water vapor Rv (461 J kg-1 K-1), and specific heat of air at 

constant pressure cp (103 J kg-1 K-1). B(σ) is the reciprocal Bowen ratio expressed as an analytical 

function of a dimensionless parameter σ representing the relative role of surface water and thermal 

condition on the partition of Rn into E and H. Note that B(σ) is calculated from the MEP formulation 

and not a predefined Bowen ratio. Extensive tests of the MEP model from local to global scales 

have been reported previously [Wang and Bras, 2009; 2011; Nearing et al., 2012; Wang et al., 

2014; Yang and Wang, 2014b; Shanafield et al., 2015; Huang et al., 2016; Wang et al., 2017; Hajji 

et al., 2018; El Sharif et al., 2019; Li et al., 2019; Xu et al., 2019]. Since the MEP modeled H is 

constrained by surface energy balance, the NGM of gas fluxes is implicitly energy balance 

constrained, another advantageous feature of the NGMs. 

3. Data 

 The NGMs as in Eqs. (2) – (3) are tested using field observations of water vapor and CO2 

concentration and the corresponding EC fluxes. H in Eq. (2) is estimated using the MEP model 
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with field observations of net radiation, surface temperature and humidity. The MEP modeled H 

is validated against the EC flux measurements (Figure S1 in the Supporting Information (SI)).  

3.1 Test Sites 

 Six test sites, mostly from the AmeriFlux network, with diverse climates, geography, and 

vegetation types (Table 1) are selected to evaluate the performance of the proposed NGM. The 

sites include rainforest, mid-latitude forest, cropland, grassland, and wetland from 3 °S to 45 °N 

with high water vapor and CO2 fluxes. Growing season data with minimum data gaps are selected 

for testing the NGM at diurnal scale at all sites. Tests of the NGM at seasonal scale use data at 

BR-Sa1 and US-MRf with high data availability percentage, the ratio of available data points to 

the total data points. The available percentages of CO2 concentration, CO2 fluxes, and water vapor 

(latent heat) fluxes at BR-Sa1 in 2003 are 93 %, 88 %, and 88 %, respectively; and those at US-

MRf in 2007 are 94 %, 77 %, and 84 %, respectively. 

3.2 Quality of EC fluxes data 

EC fluxes are subject to measurement uncertainty caused by sampling frequency, 

uncertainty of the mean variables, and instrument calibration errors among others [Aubinet et al., 

2012]. The EC measurement errors vary with land covers and increase with the magnitude of fluxes. 

The measurement errors over forest are generally larger than over grassland or cropland 

[Richardson et al., 2006]. Daytime relative flux uncertainty, the ratio of standard deviation of 

random errors to hourly mean, is ~20% at maize site and ~40% at forest site [Vickers et al., 2010]. 

Nighttime EC fluxes are more uncertain than daytime fluxes due to intermittency of turbulence, 

low wind speed, and temperature inversion [Aubinet, 2008; Baldocchi, 2003]. At forest sites, the 

relative uncertainty of EC water vapor fluxes could reach 80% during nighttime compared to 40% 

during daytime [Vickers et al., 2010]. Hence, nighttime fluxes are often rejected for the analysis 
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of model simulations [Barr et al., 2006]. The EC fluxes during winters are more uncertain than 

during summers due to weak turbulence, strong stability, and liquid water in gas analyzer path 

[Post et al., 2015]. EC fluxes during rainy periods are especially problematic caused by instrument 

malfunction. Raindrops and ice may block the transducer path and attenuate the ultrasonic signals  

of sonic anemometer, leading to degraded three-dimensional wind speed measurements [Aubinet 

et al., 2012]. Water drops on the sapphire windows of infrared gas analyzer head can weaken 

sensor signals, leading to unrealistic gas concentration readings. In this study, growing season data 

excluding rainy periods are used for the model tests at diurnal scale as suggested [Hollinger and 

Richardson, 2005; Wilson et al., 2001] (Precipitation data in Figure S3 of SI). 

Table 1. Site Information  

Site id 
Lat, 

Lon 
IGBP Climate 

Ta  

(°C) 

P  

(mm) 

zc  

(m) 

zm  

(m) 

TR 

(min) 
DOI Reference 

BR-

Sa1 

2.9 °S,  

55.0 °W 
EBF Am 26 2,075 45 58 60 

10.17190/ 

AMF/1245994 

[Saleska et al., 

2003] 

US-

MRf 

44.6 °N,  

123.6 °W 
ENF Csb 10.2 1,819 30 38.3 30 

10.17190/ 

AMF/1246049 

[Thomas et 

al., 2013] 

CCZO 
34.6 °N,  

81.7 °W 
ENF Cfa 16 1,300 6 9 30   

US-

Br3 

42.0 °N,  

93.7 °W 
CRO Dfa 8.9 847 - 2.4 30 

10.17190/ 

AMF/1246039 

[Dold et al., 

2017] 

US-

IB2 

41.8 °N,  

88.2 °W 
GRA Dfa 9 930 - 3.8 30 

10.17190/ 

AMF/1246066 

[Miller et al., 

2002] 

US-

ORv 

40.0 °N,  

83.0 °W 
WET Cfa 11.6 1,499 - 9.6 30 

10.17190/ 

AMF/1246135 

[Morin et al., 

2017] 

Note. IGBP: EBF (evergreen broadleaf rainforest), ENF (evergreen needleleaf forest), CRO 

(cropland), GRA (grassland), WET (permanent wetland). Climate: Am (tropical monsoon), Csb 

(Mediterranean), Cfa (humid subtropical), Dfa (humid continental). Ta: annual mean 

temperature. P: annual mean precipitation. zc: canopy height. zm: EC measurement height. TR: 

time resolution. 

4. Test Results 

4.1 Water vapor fluxes 

4.1.1 Diurnal scale analysis 
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The canopy (leaf) surface water vapor concentration (Cv) (absolute humidity) is 

approximated as the water vapor concentration in the air since Cv is rarely measured in field 

experiments. Water vapor concentration can be calculated from air temperature aT and relative 

humidity RH using the Clausius-Clapeyron equation. Such calculated Cv leads to the close 

agreement of the modeled (NGM) and observed (OBS) water vapor fluxes (Fv) at all test sites. H 

in Dc (Eq. (2)) is calculated from net radiation Rn, Ta, and/or RH using the MEP model. Note that 

the NGM fluxes are not sensitive to Dc and constant Dc is able to capture the magnitude and phase 

of the fluxes as demonstrated in Figure 1. Nonetheless, Dc calculated using the MEP and OBS H 

agree closely (Figure S2 in SI). The test statistics including rooted-mean-square-errors (RMSE), 

normalized RMSEs or NRMSE (RMSE divided by the range of the OBS fluxes), and correlation 

coefficients (r) of the NGM vs. OBS Fv are summarized in Table 2. The NGM accurately captures 

the magnitude, phase, and diurnal variation of Fv at all sites (Figure 2) given  ~ 20% uncertainty 

of the EC measurements for cropland and forest [Vickers et al., 2010]. The NGM and OBS Fv 

agree more closely during daytime than nighttime. The NGM Fv is unrealistic (e.g. DOY 184 in 

Figure 5(d) and DOY 165 in Figure 5(e)) when Cv has spurious fluctuations due to precipitation 

or sudden changes of RH or Ta (Figures S3 to S5 in the SI). The NGM well captures the diurnal 

cycles of Fv at all test sites. rs of the NGM vs. OBS Fv are high (≥0.82).  

Table 2. Statistics of NGM vs. OBS Fv and Fc in diurnal scale analysis: RMSE, NRMSE, r 

 Fv (mmol m-2 s-1) Fc (μmol m-2 s-1) 

Site ID RMSE NRMSE  r RMSE NRMSE  r 

BR-Sa1 1.35 12% 0.9 6.02 12% 0.66 

US-MRf 0.83 13% 0.87 7.49 18% 0.80 

CCZO 1.00 7% 0.88 7.98 17% 0.89 

US-Br3 0.80 10% 0.94 6.18 19% 0.64 

US-IB2 2.05 16% 0.86 17.77 25% 0.58 

US-ORv 2.22 11% 0.82 7.36 10% 0.47 
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Figure 2. NGM and OBS Fv (mmol m-2 s-1) at (a) BR-Sa1, Jul. 29- Aug. 8, 2003, (b) US-MRf, 

Aug. 2- Aug. 12, 2007, (c) CCZO, Sep. 24- Oct. 4, 2017, (d) US-Br3, Jun. 27- Jul. 7, 2007, (e) 

US-IB2, Jun. 9 - Jun. 19, 2006, and (f) US-ORv, Jun. 29 - Jul. 9, 2011 

 

4.1.2 Seasonal scale analysis 

The NGM is tested at seasonal scale using data at BR-Sa1 in 2003 and US-MRf in 2007 

when the available percentages of hourly CO2 concentration, CO2 fluxes, and water vapor (latent 

heat) fluxes at BR-Sa1 in 2003 are 93 %, 88 %, and 88 %, respectively; and those at US-MRf in 

2007 are 94 %, 77 %, and 84 %, respectively. Hourly/half-hourly inputs are used to calculate 

hourly/half-hourly Fv and thereafter monthly accumulations and diurnal means at both sites. Panels 

(a) in Figures 3 and 4 show the monthly accumulative daytime (DT, 6 AM to 6 PM), nighttime (NT, 

6 PM to 6 AM), and all-day NGM and OBS Fv. Panels (b) and (c) compare the monthly diurnal 

mean of NGM and OBS Fv. Panels (d) and (e) compare the annual diurnal mean of NGM and OBS 

Fv. The statistics of the diurnal means are summarized in Table 3. The annual fluxes and relative 

errors σ (the ratio of absolute error to the magnitude of the OBS flux) of annual Fv are given in 

Table 4. 
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Table 3. Statistics of NGM vs. OBS Fv and Fc in seasonal scale analysis: RMSE, NRMSE, r 

Fv (mmol m-2 s-1) 

Site ID RMSEa NRMSEa  ra RMSEb NRMSEb rb 

BR-Sa1 0.63 7% 0.97 0.34 5% 0.99 

US-MRf 0.43 10% 0.95 0.32 12% 0.97 

Fc (μmol m-2 s-1) 

BR-Sa1 3.9 14% 0.89 2.33 10% 0.96 

US-MRf 4.34 19% 0.9 3.1 18% 0.99 
a monthly diurnal mean, b annual diurnal mean. 

 

Table 4. Statistics of annual Fv and Fc 

Fv (mm year-1) 

 Daytime Nighttime All-Day 

Site ID NGM OBS σ NGM OBS σ NGM  OBS σ 

BR-Sa1 1129 1067 6% 16 28 42% 1145 1095 5% 

US-MRf 418 481 13% -15 38 138% 404 519 22% 

Fc (gC m-2 year-1) 

 Daytime Nighttime All-Day 

Site ID NGM OBS σ NGM OBS σ NGM OBS σ 

BR-Sa1 -1199 -1280 6% 922 920 0.28% -277 -361 23% 

US-MRf -1681 -1898 11% 912 229 297% -769 -1669 54% 

 

The NGM accurately simulates the monthly Fv at BR-Sa1 (Figure 3 (a)). Both the 

magnitudes and variations of the monthly daytime NGM and OBS Fv are in good agreement. The 

monthly nighttime NGM and OBS Fv almost overlap throughout the year. The annual daytime 

NGM and OBS Fv are 1129 and 1067 mm, respectively, with σ 6%. Both the OBS and NGM 

annual nighttime Fv are close to zero. The NGM annual Fv is accurate with σ only 5%. The annual 

NGM flux (evapotranspiration ET, 1145 mm with annual precipitation 1920 mm) at BR-Sa1 for 

2003 is also consistent with the reported ET (1281 mm with precipitation 2200 mm for 2001) at a 

site 23 km from BR-Sa1 [da Rocha et al., 2004]. The monthly and annual diurnal mean of the 

NGM and OBS Fv are in close agreement (Figures 3 (b) to (e)) with NRMSEs below 7% and rs > 

0.97. The statistics at BR-Sa1 suggest that the NGM performs well at seasonal scale.  
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Figure 3. (a) Monthly accumulations, (b) and (c) monthly diurnal mean, and (d) and (e) annual 

diurnal mean of NGM and OBS Fv at BR-Sa1, 2003 

 

The NGM captures the seasonal magnitudes and phases of the monthly daytime and all-

day Fv (Figure 4(a)) at US-MRf, an evergreen needleleaf forest in the mid-latitudes. The monthly 

daytime NGM and OBS Fv reach July maxima and December minima. The monthly nighttime 

NGM and OBS Fv are nearly zero throughout the year. The annual daytime NGM and OBS Fv are 

418 and 481 mm, respectively, with σ 13% (Table 4). The annual nighttime NGM and OBS Fv are 

almost zero. The negative Fv estimated using the NGM is more reasonable than the positive OBS 

Fv given condensation and negative net radiation at nighttime. The annual NGM ET is consistent 

with site-published ET (478 mm, http://terraweb.forestry.oregonstate.edu/marys-river-fir-

http://terraweb.forestry.oregonstate.edu/marys-river-fir-ameriflux-site-us-mrf
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ameriflux-site-us-mrf) at US-MRf and the observed ET (415 mm) at a nearby site [Anthoni et al., 

1999]. It is evident that the NGM well captures the monthly and annual diurnal mean of the OBS 

Fv with NRMSEs < 12% and rs > 0.95 (Figures 4(b) to (e)). The seasonal tests demonstrate that 

the NGM is capable of modeling seasonality of ET over mid-latitude forests. 

 

Figure 4. (a) Monthly accumulations, (b) and (c) monthly diurnal mean, and (d) and (e) annual 

diurnal mean of NGM and OBS Fv at US-MRf, 2007 

 

4.2 CO2 fluxes 

4.2.1 Diurnal scale analysis 

The NGM performs equally well for modeling CO2 fluxes. It accurately simulates the 

daytime Fc (Figure 5) measured by the same statistics as those of the NGM Fv (Table 2). The 

http://terraweb.forestry.oregonstate.edu/marys-river-fir-ameriflux-site-us-mrf
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nighttime NGM Fc appears to be more realistic than the observed ones as the EC system tends to 

underestimate the nighttime CO2 fluxes in the stably stratified atmosphere [Aubinet, 2008; 

Baldocchi, 2003; Falge et al., 2001; Goulden et al., 1996; Gu et al., 2005; Hollinger and 

Richardson, 2005]. The NGM captures the large positive Fc in the early mornings over forests 

(Figure 5 (a)), presumably caused by the quick release of night time CO2 storage [Nicolini et al., 

2018]. The discrepancies between the NGM and OBS Fc in the early mornings become larger 

(DOY 215 in (b), DOY 270 in (c), DOY 186 in (d), DOY 164 in (e), and DOY 181 in (f) of Figure 

6) when the measured CO2 concentration has spurious fluctuations  (i.e. > 450 ppm  (Figure S7 in 

SI) since CO2 concentration above active vegetation cannot be higher than 450 ppm [Franks et al., 

2014]. Unrealistically large CO2 concentration during rain events (Figure S3 in the SI) has the 

same effect on the NGM Fc on DOY 164, 168, and 171 (Figure 5(e)). Dew and rain are the leading 

causes of the measurement errors of CO2 concentration by the open-path gas analyzers during the 

test periods [Aubinet et al., 2012]. The unrealistically large time change rates of CO2 concentration 

lead to erroneous nighttime NGM Fc (e.g. > 20 μmol m-2 s-1 hourly change). Yet the measurement 

errors of CO2 concentration have limited influence on the NGM fluxes as a result of the rapid 

decaying of the cD -dependent integration kernel. The NGM performs well in simulating diurnal 

cycle of Fc. 
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Figure 5. NGM and OBS Fc (μmol m-2 s-1) at (a) BR-Sa1, Jul. 29- Aug. 8, 2003, (b) US-MRf, 

Aug. 2- Aug. 12, 2007, (c) CCZO, Sep. 24- Oct. 4, 2017, (d) US-Br3, Jun. 27- Jul. 7, 2007, (e) 

US-IB2, Jun. 9 - Jun. 19, 2006, and (f) US-ORv, Jun. 29 - Jul. 9, 2011 

 

4.2.2 Seasonal scale analysis 

The NGM of Fc is tested at seasonal scale using hourly/half-hourly input data at BR-Sa1 

and US-MRf (Figures 6 and 7) with the corresponding statistics in Table 3. The monthly NGM 

and OBS Fc at BR-Sa1 are in good agreement (r ~ 0.9) (Figure 6 (a)) that is closer for dry months 

(June to September) than wet months (November to January) due to higher measurement errors of 

CO2 concentration in rainy season (page 77 in [Burba, 2013]) as discussed previously. The annual 

mean diurnal cycles of the NGM and OBS Fc (Figure 6(d)) agree more closely (r ~ 0.96).  
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Figure 6. (a) Monthly accumulations, (b) and (c) monthly diurnal mean, and (d) and (e) annual 

diurnal mean of NGM and OBS Fc at BR-Sa1, 2003. 

 

Numerous efforts over the past decades have been made to assess the Amazon carbon 

budgets, seeking answers to the question whether the Amazon rainforest is a carbon source or sink 

[Brienen et al., 2015; Gatti et al., 2014; Phillips et al., 2009; Saleska et al., 2003; Tian et al., 1998]. 

The uncertainties in the current CO2 fluxes data are arguably responsible for the unbalanced carbon 

budget at regional and global scales, causing the missing carbon sink problem [Schimel, 1995]. 

Previous analysis of EC data at BR-Sa1 from 2001 to 2003 [Saleska et al., 2003] suggested that 

the Amazon forest has changed from a carbon sink to a carbon source when more than 50 % of 

nighttime EC flux data are rejected based on a threshold of friction velocity. Short data gaps are 
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filled by linear interpolation and long gaps by the mean (good) nighttime flux (details in the 

Supporting Online Material for [Saleska et al., 2003]). In this study, the NGM uses more than 90 % 

of the CO2 data to simulate Fc with the gaps filled by mean values at the same hour of day. More 

than 88 % of the EC CO2 flux data are used to compute the annual diurnal mean and accumulative 

fluxes for 2003. The annual accumulative daytime NGM and OBS Fc at BR-Sa1 are -1199 and -

1280 gC m-2, respectively, with σ 6 %. The annual accumulative nighttime NGM and OBS Fc are 

922 and 920 gC m-2, respectively, with σ 0.3 %. The NGM estimate of the net ecosystem exchange 

(NEE) (annual accumulative all-day Fc in Table 3) at BR-Sa1 is -277 gC m-2, indicating that the 

rainforest at BR-Sa1 is a carbon sink for 2003. This finding is consistent with a recent study based 

on the field biometric data collected at 321 locations across mature forest from 1983 to 2011 

[Brienen et al., 2015]. The NGM is shown to be a promising new modeling tool for the assessment 

of the Amazon carbon budgets at diurnal and seasonal scales. 

The NGM captures accurately the seasonality of the monthly accumulative daytime Fc at 

US-MRf (Figure 7). The annual accumulative daytime NGM and OBS Fc, -1681 and -1898 gC m-

2,respectively, with σ 11 % are within the range of 45 % uncertainty of daytime Fc measurements 

at the nearby mature pine site [Vickers et al., 2010]. The monthly mean diurnal cycles of the NGM 

and OBS Fc are in good agreement except for rainy periods in June 2007 (Figure S8 in SI) when 

15% of the EC CO2 data are missing. The annual diurnal means of the NGM and OBS Fc agree 

more closely during daytime than nighttime. Underestimation of nighttime Fc by the above-canopy 

EC system at this site was reported [Thomas et al., 2013]. A below-canopy EC system was used 

to obtain more accurate estimates of NEE [Thomas et al., 2008]. The NGM nighttime Fc is almost 

zero μmol m-2 s-1 during the  (low temperature) winter and reaches 10 μmol m-2 s-1 during the (high 

temperature) summer, consistent with the nighttime ecosystem respiration calculated using above- 
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and below-canopy EC systems [Thomas et al., 2013]. The annual NGM NEE (-768 gC m-2 year-1) 

in 2007 is also consistent with the NEE (-563 gC m-2 year-1) calculated from two-level EC fluxes, 

supposedly more accurate than the NEE (-1258 gC m-2 year-1) calculated from above-canopy EC 

fluxes [Thomas et al., 2013]. The NGM provides a new opportunity for improving the assessment 

of carbon budgets over the mid-latitude forest given that only limited field sites provide profile 

data of CO2 concentration and flux.  

 

Figure 7. (a) Monthly accumulations, (b) and (c) monthly mean diurnal cycles, (d) and (e) 

annual mean diurnal cycles of NGM and OBS Fc at US-MRf, 2007 

4.3 Methane fluxes 

 A preliminary test of the NGM of methane flux (FCH4) uses methane concentration (CH4) 

data collected at a peatland pasture site (US-Snd), California, United States (38.04 °N, 121.75 °W) 
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[Hatala et al., 2012] (Figure 8). The canopy height is ~ 0.3 m during summer. The climate is 

Mediterranean with annual mean temperature 16°C and precipitation 358 mm. Half-hourly EC 

fluxes and other meteorological variables were measured at ~ 3 m above the ground. The NGM 

and OBS FCH4 are in reasonable agreement given that the relatively large uncertainty of the EC 

FCH4 flux data (20 - 300 % [Kroon et al., 2010]. The NGM captures an event of large FCH4 flux 

corresponding to a rapid increase of CH4 concentration on DOY 120. The RMSE, NRMSE, and r 

of the NGM vs. OBS FCH4 are 41 nmol m-2 s-1, 14 %, and 0.52, respectively. Considering that 

multi-level methane concentration data are sparse if available at all, the NGM has the potential of 

an effective method for monitoring and modeling methane fluxes.   

 

Figure 8. (a) CH4, (b) and (c) NGM and OBS FCH4 at US-Snd, Apr. 29 - May 1, 2007 

5. Conclusion 
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This proof-of-concept study demonstrates the feasibility of surface gas fluxes derived from 

single-level near-surface gas concentration data using the newly formulated NGM model. One 

major advantage of the NGM is to avoid the use of gas concentration gradient data that are rarely 

available and subject to substantial measurement and/or modeling uncertainty. The parsimonious 

parameterization of eddy-diffusivity without explicit use of wind speed, surface roughness and 

vegetation specific data leads to reduced modeling uncertainty of the NGM gas fluxes. The case 

studies demonstrate the capability of the NGM in simulating diurnal and seasonal cycles of water 

vapor and CO2 fluxes under diverse vegetation cover, geographic and climatic conditions. A 

preliminary test of the NGM for methane flux is encouraging. All validation tests support its 

potential for monitoring and modeling (greenhouse) gas fluxes at regional and global scale. We 

anticipate more independent tests of the NGM will follow to further evaluate its performance.  

Appendix A: The derivation of Eqs. (2)-(4) 

According to the extreme solution of the equations of MOST [Wang and Bras, 2010], Dc 

in Eq. (1) is written formally as 

                                                           *zuCD kc                                                         (A1)  

where u* is friction velocity, z the height above land surface,(≈ 0.4) the von Karman constant, 

Ck a universal empirical constant associated with the atmospheric stability in the equations of 

MOST, 
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where 1  . The extremum solute allows u* to be expressed as a function of H,  
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where ρ (≈ 1.2 kg m-3) is the representative density of air, Tr (≈ 300 K) the representative 

environment temperature, g (9.8 m s-2) the gravitational acceleration, the universal empirical 

coefficients  β ~ 4.7 and γ2 ~ 9 [Businger et al., 1971]. Combining Eqs. (A1) to (A3) leads to 0D

in Eq. (2),   
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Change of rT  from -10 °C to 30 °C only leads to 1% change of 0D . Hence, 0D  may be fixed as a 

constant in applications.  

The derivation of Eq. (3) follows Oldham and Spanier [2006]. Assuming H being invariant 

with z within the surface layer [Stull, 1988], the change of variables  dHt

t


0
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)(' , 3
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An analytical solution of Eq. (A5) in the spherical coordinates with the initial and boundary 

conditions of    0 00, ' 0 ,and , ' 0C t C C t C        is given as (page 204 in [Oldham 

and Spanier [2006]),  
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where R represents the radius of curvature of the surface. The half-order derivative (
𝑑
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For the case of the flat land surface, i.e. ξ = 0 and R → +∞, the last term of Eq. (A6) vanishes 

leading to, 
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Substituting Eq. (A7) into Eq. (A8) and reversing the change of variables leads to Eq. (3) 

   
 

  




 

ddzD
zCtzD

z

C
tzDtzF

t t

c

c

c

2

1

0

,
),(,

,,



  
















 . 
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Figure A1 shows the variable and constant Dc using the hourly H data from the BR-Sa1 site. The 

variable Dc is calculated according to Eq. (2), and the constant  ( 6.2)cD   is the time-averaged 

variable Dc. The variable Dc is physically more realistic for characterizing the diurnal variation of 

turbulent mixing.     

 

Figure A1. Variable and constant Dc at BR-Sa1, Jul. 29- Aug. 8, 2003 

 The sensitivity of F in Eq. (3) to the integration time is shown in Figure A2. The RMSE 

and NRMSE tend to decrease and r to increase quickly with the integration time t. The influence 

of initial value of C on F according to Eq. (3) diminishes after 48-hours, suggesting that it is 

sufficient to use two-day time-series data of C to compute F at a given time using Eq. (3). 
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Figure A2. Sensitivity of F in Eq. (3) to integration time (a) RMSE, (b) NRMSE, and (c) r at 

BR-Sa1, Jul. 29- Aug. 8, 2003 

 

Appendix B: Numerical algorithm for computing F in Eqs. (3) and (4) 

Given the time-series data of C at 0 1 20 Nt t t t t      , ( , )F z t  can be calculated 

using the following numerical algorithm. To remove the singularity of the integrand, the double 

integral in Eq. (3) is re-written as, 
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where the differential is respect to . The integral on the right-hand-side of (B1) is the 

Rienmann-Stieltjes integral  )()(
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The Rienmann-Stieltjes integral may be numerically computed as 
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( , ) ( 1, , )c iD z t i N  according to Eq. (2) is calculated using the MEP modeled ( )iH t . A 

sensitivity test of F to the time resolution of C data (Figure B1) indicates that coarser resolutions 

lead to higher RMSE and NRMSE and lower r as expected. Diurnal cycle of F is better captured 

by six-hourly or finer resolution data. 12-hourly or coarser resolution input data tend to miss the 

diurnal cycle. It is important to emphasize that the numerical algorithm (B4) does not require 

uniform integration time step, making the algorithm more flexible when the input data have 

missing points. Obviously, F will be more accurate with input data of finer time resolutions. 

 

Figure B1. Sensitivity of F as in Eq. (3) to sampling intervals of C (a) RMSE, (b) 

NRMSE, and (c) r at BR-Sa1, Jul. 29- Aug. 8, 2003 
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The integral of Eq. (4) may be computed as 
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where ,  ,  0,1, , -1it N t i t i N     with a uniform interval t . Eq. (B5) is a weighted integral 

of the time change rate of gas concentration and a time-dependent integration kernel  

  1 1 ,  0,1, , 1i it t t N i N i i N             .                                 (B6) 

The kernel in Eq. (B6) for 48, 1 hrN t    (Figure B2) demonstrates the fast-decaying influence 

of C at earlier times on the NGM C at current time. As a result, unrealistic C only has large impacts 

on the NGM flux at the current time step and little impacts on the flux as time proceeds so that the 

NGM flux agrees with the OBS flux again several time steps after the spikes as shown in Figures 

2 and 4.  

 

Figure B2.  Decays from the current integrand to the initial integrand for a 48-step 

integration.  
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Appendix C:  The MEP model of heat fluxes over land surfaces  

The MEP model is built on the contemporary non-equilibrium thermodynamics, the 

Bayesian probability theory, information theory, and well-established atmospheric boundary layer 

turbulence theory [Wang and Bras, 2009; 2011]. The MEP model simulates the partition of 

radiation fluxes into surface turbulent and conductive heat fluxes, automatically balancing the 

surface energy budget using fewer model parameters than existing models such as the bulk transfer 

models. The MEP model does not use temperature/moisture gradient, wind speed, surface 

roughness and stomatal/aerodynamic conductance parameters. The MEP model has been 

extensively tested for modeling land surface heat fluxes [Wang and Bras, 2009; 2011; Nearing et 

al., 2012; Wang et al., 2014; Yang and Wang, 2014b; Shanafield et al., 2015; Huang et al., 2016; 

Wang et al., 2017; Hajji et al., 2018; El Sharif et al., 2019; Li et al., 2019; Xu et al., 2019].  

The MEP fluxes are solved for by minimizing the irreversibility or dissipation function 

defined as 

𝐷(𝐸, 𝐻, 𝐺) =
2𝐺2

𝐼𝑠
+

2𝐻2

𝐼𝑎
+

2𝐸2

𝐼𝑒
                                            (C1) 

under the constraint of surface energy balance nE H G R   , where Is, Ia, and Ie (𝑊 𝑚−2𝐾−1𝑠
1

2) 

are the thermal inertia parameters associated with ground (G), sensible (H) and latent (E) heat flux. 

Ia is parameterized using the extreme solution of the equations of MOST [Wang and Bras, 2011], 
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where C1 and C2 are coefficients related to the universal constants in the MOSE [Businger et al., 

1971], 
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with the empirical constants 2 9, ~ 5  .  

Ie is parameterized as [Wang and Bras, 2011]. 
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where sT  is surface temperature and sq surface specific humidity with the latent heat of 

vaporization 6 1 (2.5 10  J kg )  , gas constant of water vapor 1 1 (461 J kg  K )vR   and specific 

heat of air at constant pressure 
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                                  (C5) 

where  B  is the MEP predicted reciprocal Bowen ratio. Over the land surfaces covered 

with dense canopy 0,  0sI G  ,  Eq. (C5) reduces to Eq. (5).   
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