Effects of Using High Resolution Satellite-based Inundation Time Series to Estimate Methane Fluxes from Forested Wetlands

Kelly Hondula¹, Ben DeVries², C. Nathan Jones³, and Margaret A. Palmer⁴

¹University of Maryland, College Park ²University of Guelph ³University of Alabama ⁴University of Maryland Center For Environmental Sciences

November 22, 2022

Abstract

A major source of uncertainty in the global methane budget arises from quantifying the area of wetlands and other inland waters. This study addresses how the dynamics of surface water extent in forested wetlands affect the calculation of methane emissions. We used fine resolution satellite imagery acquired at sub-weekly intervals together with a semi-empirical methane emissions model to estimate daily surface water extent and diffusive methane fluxes for a low-relief wetland-rich watershed. Comparisons of surface water model predictions to field measurements showed agreement with the magnitude of changes in water extent, including for wetlands with surface area less than $1,000 \text{ m}^2$. Results of methane emission models showed that wetlands smaller than 1 hectare $(10,000 \text{ m}^2)$ were responsible for a majority of emissions, and that considering dynamic inundation of forested wetlands resulted in 49–62% lower emission totals compared to models using a single estimate for each wetland's size.

Hosted file

hondula-grl-resubmission-supplemental.docx available at https://authorea.com/users/541026/ articles/600412-effects-of-using-high-resolution-satellite-based-inundation-time-seriesto-estimate-methane-fluxes-from-forested-wetlands

Effects of Using High Resolution Satellite-based Inundation Time Series to Estimate Methane Fluxes from Forested Wetlands

5 Kelly L. Hondula¹, Ben DeVries², C. Nathan Jones³, and Margaret A. Palmer¹

- ⁶ ¹National Socio-Environmental Synthesis Center, University of Maryland, MD, USA.
- ⁷ ²Department of Geography, Environment and Geomatics, University of Guelph, Ontario,
- 8 Canada. ³Department of Biological Sciences, University of Alabama, AL, USA.
- 9
- 10 Corresponding author: Kelly Hondula (<u>kellyhondula@gmail.com</u>)
- 11 Key Points:
- Variable inundation extent in forested wetlands has large implications for calculating
 methane emissions.
- Surface water maps based on 30m imagery likely exclude wetlands that contribute a majority of methane emissions from forested landscapes.
- High resolution optical imagery underestimates surface water extent in forested wetland landscapes during periods of high canopy cover.

18

19 Abstract

20 A major source of uncertainty in the global methane budget arises from quantifying the area of

21 wetlands and other inland waters. This study addresses how the dynamics of surface water extent

22 in forested wetlands affect the calculation of methane emissions. We used fine resolution satellite

imagery acquired at sub-weekly intervals together with a semi-empirical methane emissions

model to estimate daily surface water extent and diffusive methane fluxes for a low-relief
 wetland-rich watershed. Comparisons of surface water model predictions to field measurements

25 wetland-fich watershed. Comparisons of surface water model predictions to field measurements 26 showed agreement with the magnitude of changes in water extent, including for wetlands with

showed agreement with the magnitude of changes in water extent, including for wetrands with surface area less than 1,000 m². Results of methane emission models showed that wetlands

28 smaller than 1 hectare (10,000 m²) were responsible for a majority of emissions, and that

29 considering dynamic inundation of forested wetlands resulted in 49–62% lower emission totals

30 compared to models using a single estimate for each wetland's size.

31

32 Plain Language Summary

33 Wetlands and small ponds are hotspots for greenhouse gas emissions, especially methane.

34 Quantifying how much, though, depends on accurately mapping each of those water bodies.

35 Whereas most medium and large lakes are visible to satellites, smaller bodies are generally

36 missing from the best maps and flooded areas in forests are overlooked. Additionally, many of

these systems change in size depending on the current season and rainfall patterns. We use

38 several hundred high resolution satellite images collected over the same forested region over the

39 course of one year to estimate how much water bodies changed in size, and the subsequent effect

40 that has on methane emissions from this area. We found that wetlands only visible in high

41 resolution imagery were responsible for most of the total methane emissions, and that accounting 42 for charging wetland size throughout the user belowd the estimated emissions

42 for changing wetland size throughout the year halved the estimated emissions.

43 **1 Introduction**

44 Global change is affecting the quantity, quality, and timing of material fluxes through 45 ecosystems with consequences for the fate and transformation of carbon. Inland waters are now 46 recognized as fundamental to understanding the global carbon (C) cycle (Cole et al., 2007; 47 Raymond et al., 2013; Tranvik et al., 2009) yet our ability to characterize C fluxes and their 48 drivers at landscape and regional scales remains limited by available data on surface water extent 49 (SWE) and dynamics—particularly for forested wetlands, very small water bodies (e.g. ponds), 50 and areas with temporally varying inundation. Collectively, these limitations represent a major 51 shortcoming in our ability to account for methane emission sources, and at least one third of all 52 uncertainty in the global methane budget (Melton et al., 2013; Saunois et al., 2020).

53 Methane emissions for lakes, ponds, reservoirs, streams, and rivers have been calculated 54 by upscaling the best available data on flux rates and the areal extent of those waters by category 55 (Saunois et al., 2020). However, for wetlands, a combination of land cover maps, remote sensing 56 data, and simulated hydrologic fluxes are used to calculate temporally varying methane 57 producing areas as inputs to process-based biogeochemical models (Poulter et al., 2017; Wania 58 et al., 2012). Both approaches suffer from uncertainties associated with spatial and temporal 59 variation in inundation extent which is highly relevant for resolving sources and sinks of 60 methane at global scales. This wetland extent problem contributes substantial uncertainty in

methane budgets and limits our ability to identify drivers of recent increases in atmosphericconcentrations (Thornton et al., 2016).

63 Upscaling empirical data on gas flux rates to quantify freshwater methane emissions is 64 fraught with biases, including inadequate representation of underlying drivers (DelSontro et al., 2018; Seekell et al., 2014) and lack of consideration of seasonal events such as ice-out or non-65 66 growing season emissions (Treat et al., 2018). Despite advances in remote sensing of aquatic 67 systems, identifying small water bodies remains a challenge because they are often optically 68 complex, obscured by vegetation, or below the resolvable size of satellite sensors (Allen & 69 Pavelsky, 2018; Kuhn et al., 2019). The resulting omission of forested wetlands, small water 70 bodies, and inundation dynamics in land cover and surface water data sets is broadly recognized 71 (DeVries et al., 2017; Lang et al., 2020), but its implications for methane emissions accounting is 72 unresolved (Poulter et al., 2017; Thornton et al., 2016). This is despite recognition that 73 headwaters and small water bodies play disproportionate roles in ecosystem processes (Hanson 74 et al., 2007; Holgerson & Raymond, 2016; Lowe & Likens, 2005) and may comprise the largest 75 proportion of freshwater area (Bishop et al., 2008; Downing et al., 2006).

76 The ability to monitor and detect surface water at higher spatial and temporal resolution is advancing through new technologies including sub-pixel methods (DeVries et al., 2017), 77 78 fusion with hydrologic models (Evenson, Golden, et al., 2018), satellite constellations (Claverie 79 et al., 2018; Cooley et al., 2019), and applications of machine learning (Jia et al., 2018; Lang et 80 al., 2020; Lee et al., 2019). However, most remote sensing applications for freshwater bodies 81 remain focused on relatively large or unvegetated systems (Griffin et al., 2018; Kuhn et al., 82 2019; Pekel et al., 2016) by excluding pixels influenced by fractional coverage of soil and 83 vegetation (Ji et al., 2009). Using such methods is warranted to avoid classification errors 84 associated with spectral unmixing (Halabisky et al., 2016), but it can also result in large uncertainties for C fluxes at regional or global scales (Melton et al., 2013; Thornton et al., 2016; 85 86 Treat et al., 2018) due to substantial underrepresentation of SWE (DeVries et al., 2017). Previous 87 studies have explored inter-annual variability in wetland extent (Huang et al., 2014; Lang et al., 88 2020; Yeo et al., 2019) but investigation of intra-annual dynamics has generally been limited by 89 availability of cloud-free leaf-off imagery. Further, most investigations have not characterized 90 inundation patterns for individual wetlands (Vanderhoof et al., 2018) or used sub-pixel 91 estimation techniques (DeVries et al., 2017; Yeo et al., 2019) to account for the preponderance 92 of small water bodies that result in mixed spectral signatures for pixels in 30 m resolution 93 imagery.

94 Discrepancies between top-down and bottom-up emissions tend to be largest from 95 forested areas (Melton et al., 2013). Recent investigations into these discrepencies have 96 uncovered new sources and emission pathways from trees (Pangala et al., 2017). Further, in 97 tropical regions, wetland emission models underestimate emissions compared to observations 98 with the largest discrepancy in years with significant wetland flooding (Parker et al., 2018). 99 Because surface water maps exclude most under-canopy inundation, evasion from these 100 inundated regions may also play an important role in explaining emissions from seasonally 101 dynamic temperate forested areas that are not reproduced in existing wetland models.

This study was designed to fill gaps in our understanding of how forested wetland size
and temporal variation in inundation influence watershed-scale estimates of methane emissions.
We combine elements from both the wetland and inland water calculation approaches described

- above to estimate one year of diffusive methane emissions from forested wetlands across a 347
- 106 km² mid-Atlantic Coastal Plain watershed. We use fine resolution frequent-repeat remote sensing
- imagery to estimate daily SWE at the wetland scale as input to field-validated semi-empirical
- 108 models for calcuating methane emissions. As in other studies, we assume SWE is a proxy for 109 methane producing area. Results demonstrate that i) excluding inundation variability increased
- 110 methane producing area. Results demonstrate that 1) excluding inundation variability increased 110 modeled methane emission totals by 66-105%, but ii) excluding small water bodies (< 1,000 m²)
- reduced inundation estimates and subsequent emissions by 30% and 38–51%.

112 **2 Methodology**

113 2.1 Study area

114 Our study site, the 347 km² Greensboro watershed, is on the Delmarva Peninsula

- 115 (Maryland, USA), a low-gradient coastal plain landscape defined by poorly drained soils and the
- 116 persistence of small depressional forested wetlands surrounded by extensive ditch-drained
- agricultural land (Figure 1; Jones et al., 2018). Known as Delmarva Bays, these wetlands range
- 118 in size from small closed canopy wetlands (<0.5 ha; similar to vernal pools in the northeast) to
- 119 large open canopy wetlands (>5 ha; similar to Carolina Bays) (Phillips & Shedlock, 1993).
- 120 Typically they dry seasonally, having maximum inundation during the winter and decreasing
- 121 water levels through the spring and summer due to evapotranspiration and agricultural
- 122 groundwater withdrawal (Lee et al., 2020).

- 123 124
- **Figure 1**. Study area showing location of the Greensboro watershed and forested wetlands.
- 125 Wetland boundaries, monitoring locations, and surface water classification model predictions for
- 126 2 images are shown over corresponding color-corrected PlanetScope Visual Ortho Scenes
- 127 (Planet, 2018).

128 Draining to the Chesapeake Bay via the Choptank River, this watershed has been the 129 focal point for extensive research (e.g., Ator & Denver, 2012). Land cover is mainly cultivated

- 130 crops (50.5%), woody wetlands (31.5%), and deciduous forest 7.7% (Jin et al., 2019). We define
- 131 wetlands using a previously developed dataset of topographic depressions (Vanderhoof & Lang,

- 132 2017) that were derived using the Stochastic Depression Analysis Tool (Lindsay, 2016; Wu et
- al., 2014) and filtered using a minimum size of 50 m² and SWE classified from April 2015
- 134 Worldview 3 imagery (Vanderhoof et al., 2018). Polygons generally co-occur with features in
- the National Wetlands Inventory (NWI) but they are more numerous, cover less total area, and are more spatially aligned with SWE. We subset this dataset to only those within woody
- 137 wetlands land cover using the 2016 National Land Cover Database (NLCD; Jin et al., 2019).
- This approach resulted in 5,118 forested wetland depressions (46% of those in the watershed),
- 139 which we refer to as focal wetlands.

140 2.2 Remote sensing for surface water classification

141

142 **Figure 2**. Image classification and emissions model workflow. **a**) Image-specific supervised

143 classification models developed using original 4 bands (R, G, B, NIR) and derived indices

144 NDVI, NDWI, saturation, chroma, and luminesce; **b**) Daily surface water time series derived for

each focal wetland from predicted surface water area within each polygon boundary across all

images; c) Methane emissions for each wetland (n) on day (i) derived using semi-empirical

147 models to produce annual estimates of basin-wide emissions.

148 Daily time series of SWE for each focal wetland were calculated using 3 m resolution PlanetScope imagery (Figure 2; Text S1; Planet, 2018). We downloaded 421 PlanetScope 4-band 149 150 images that overlapped the study watershed and had less than 1% cloud cover. These were taken 151 across 98 days in the 2018 water year, during which wetland surface water levels were monitored 152 in the field. All images were Surface Reflectance products, which were atmospherically 153 corrected using the 6SV2.1 radiative transfer model (Planet, 2018; Vermote et al., 1997). Images 154 were masked to exclude low quality pixels indicated by the unusable data mask provided with 155 each image. Then, we calculated a suite of spectral indices from the four bands in each image, including NDWI (McFeeters, 1996), NDVI (Tucker, 1979), saturation, luminescence, and 156 157 chroma (Zeileis et al., 2019), resulting in 9 variables for each pixel.

Training data for surface water and non-water classes were based on the NWI, the 2016
 NLCD, and the wetland depressions dataset developed by (Vanderhoof & Lang, 2017). We

- 160 defined surface water as Freshwater Pond (n = 655) and Lake (n = 1) classes in NWI, which are
- 161 classified in NWI as permanently (99%) or semi-permanently (1%) flooded. We defined non-
- 162 water areas using NLCD forest and forested wetland classes minus pixels falling within 10m of
- 163 any NWI polygons or topographic depressions. For each image, pixel values for the 9 bands in 164 the training regions were extracted and a sample was used to train a random forest model that
- 165 was then applied to the image
- 165 was then applied to the image.

166 For each classified image, we extracted pixel values within a 10m buffer around each 167 focal wetland to calculate the predicted inundation area (Figure 2b). We used the buffer to 168 account for the 10m geolocation uncertainty in the optical data (Planet, 2018), as well as 169 potential expansion of inundation beyond topographic spill points, as is common in this 170 landscape (Jones et al., 2018). Average time between usable images of each focal wetland was 6 days, resulting in a time series with 50-102 predictions across the year for each focal wetland. 171 172 Average maximum time between consecutive usable images was 32 days but ranged up to 74 173 days. We converted the irregularly spaced predictions into a daily time series for each focal 174 wetland using a 50-day rolling median. Time series with gaps longer than 50 days (1%) were

- 175 excluded from total inundated surface area.
- 176 2.3 Field measurements

177 For comparison to areal extent of surface water estimated from remote sensing imagery, 178 SWE was measured in the field at 6 wetlands in the study region (Figure 1). Water level was 179 monitored in surface water wells at each wetland center using pressure transducers (Onset 180 HOBO U20L level loggers) recording every 15 minutes. We calculated a daily time series of 181 inundation extent for each wetland using binary classification of a 1m LiDAR-based digital 182 elevation model (Lang et al., 2012) using mean daily water level with a raster-based approach 183 similar to Jones et al., (2018). Estimates were validated using monthly observations of water 184 extent along a fixed transect at each wetland as well as surveys around the perimeter of 185 maximum observed inundation extent in mid-March 2018.

186 2.4 Methane emissions model

187 Daily diffusive methane emissions were calculated using wetland-specific flux rates and 188 predicted daily SWE time series from the random forest classification models (Figure 2c). We 189 developed three models (hereafter referred to as models A, B and C) using variations of a semi-190 empirical flux rate equation based on the synthesized global dataset of methane concentrations 191 described by Holgerson and Raymond (2016) and validated with field measurements at 6 192 wetlands in the study area (Text S2). Model A predicted daily flux rates by sampling the 193 lognormal distribution of the appropriate logarithmic size class for each wetland. For models B 194 and C, daily flux rates for each wetland [n] were determined using Equation 1 with daily air 195 temperature and atmospheric pressure from a nearby weather station to calculate gas exchange 196 rates and equilibration concentrations of 1.85 ppm atmospheric methane for each day [i] 197 (Winslow et al., 2016). C_{aq[n]} is a time-invariant methane concentration for each wetland [n]

based on its size. Gas exchange rates were calculated using daily temperature values and the size-class specific k_{600} values described in Holgerson and Raymond (2016).

200 Equation 1:
$$Flux_{n,i} = k_{n,i} \times (C_{aq[n]} - C_{eq[i]})$$

201 For model B, C_{aq}[n] was randomly sampled from a lognormal distribution based on the 202 size class of each focal wetland's original area, and for model C, $C_{aq}[n]$ was predicted from the 203 area-concentration regression model. Because forested wetlands are a high outlier for methane 204 on the relationship between water body size and methane concentration reported by Holgerson 205 and Raymond (2016), our calculated emissions are likely a conservative estimate. We estimated 206 flux rate uncertainty using Monte Carlo resampling to generate a distribution of emission 207 estimates for each wetland by running each model 1,000 times. Cumulative annual emissions 208 across all wetlands were calculated using Equation 2, where SWE[n,i] is the SWE of depression 209 [n] on day [i] calculated from the classification model time series.

210 Equation 2: Total Emissions =
$$\sum \sum Flux_{n,i} \times SWE_{n,i}$$

We evaluated the effects of different model assumptions by calculating total annual methane emissions under each model with and without changes in SWE, based on the original area of each focal wetland. Models accounting for changes in SWE we call dynamic area

214 models; models not accounting for these we call static area models.

215 **3 Results**

216 3.1 Magnitude and variability of predicted SWE

Total predicted SWE within focal forested wetlands across the watershed ranged from a low of 1.3 km² in late July to 6.2 km² in early April, with an average of 3.75 km². This area was an order of magnitude higher than maximum extent reported for the watershed in the global surface water area database (0.70 km²; (Pekel et al., 2016)) and represents 2.5-5.7% of the entire watershed area, 50-113% of the area of topographic depressions, and 10-23% of the total area of NWI palustrine wetlands (U. S. Fish and Wildlife Service, 2019).

223 3.2 Classification model performance

224 Classification models were sufficiently able to discriminate between water and non-water 225 areas. Comparisons between field-based and satellite-based inundation time series show that our 226 modeling approach was able to quantify the magnitude of seasonal changes in SWE for 227 individual wetlands, even for those smaller than 1,000 m². For the field-monitored wetlands, the 228 maximum predicted extent and range from classification models were significantly related to 229 observed values ($\rho = 0.91$, $\rho = 0.83$, respectively; $\alpha = 0.05$). However, the models consistently 230 underpredicted May and June 2018 SWEs and overestimated November 2017 SWE (Figure 3). 231 Monthly averaged residuals between field and satellite-based wetland areas were largest during 232 these two periods (Figure 3b), but only in autumn 2017 was model accuracy also low (Figure

3a). The Nash-Sutcliffe (NSC) criteria to evaluate model efficiency indicated poor fit (NSE <0.5)
between the daily simulated and observed water extents.

Figure 3. Comparison between inundation time series developed from field monitoring and
satellite data. a) Inundation time series from two wetlands comparing field data and predictions
from image-based classification models, along with estimates from individual images (points)
shaded by model error rate. b) Average monthly residuals (± sd) between model predictions of
SWE from image classification and field data for all observations across the 6 wetlands with
field water level data.

242 3.3 Methane emission totals under different model assumptions

243 Calculating watershed methane emissions using a time series approach to quantify 244 variation in surface water coverage resulted in total estimated annual emissions 49-62% lower 245 than when static wetland sizes were used (Figure 4a). Using the concentration-area regression 246 flux model (C) resulted in higher emission totals than either the size category flux (A) or size 247 category concentration (B) models, but in all three cases the difference between the dynamic and 248 static models was substantially greater than variability associated with methane flux rate 249 uncertainty. We also observed that small wetlands (< 1 ha) were responsible for a considerable 250 proportion of modeled emissions. Although the static area models overestimated emissions for 251 any given minimum wetland size threshold, they are only overestimates compared to the best estimate of total emissions if wetlands smaller than 1,000 m² are included. Excluding these 252

255

Figure 4. Total annual diffusive methane emissions for focal wetlands calculated using different model assumptions. a) Total emissions for time-varying (blue) vs. static (orange) estimates of SWE using the 3 semi-empirical diffusive flux models described in Section 2.4. Error bars represent 5% and 95% quantiles from 1,000 model iterations. b) Total emissions for time-

260 varying vs. static SWE with different minimum wetland size thresholds.

261 4 Discussion

262 We demonstrate that accounting for inundation and variable SWE in forested wetlands 263 significantly influences calculations of diffusive methane emissions from a low-relief wetland-264 rich watershed. Specifically, we show that: i) previous limitations in quantifying SWE at the 265 global scale will typically result in underestimates of methane emissions from forested wetlands; ii) as spatial resolution of wetland map products improve, accurate estimates of emissions will 266 267 require improved quantification of intra-annual surface water dynamics; and iii) while fine-268 resolution frequent-revisit satellite imagery can help address these gaps, our ability to detect and 269 monitor sub-canopy inundation during the late growing season is still limited. Below we discuss 270 modeling inundation dynamics in forested wetlands and implications for the global methane 271 budget in more detail.

4.1 Modeling inundation dynamics of forested wetlands using high resolution satellitedata

This study shows that it is possible to quantify intra-annual surface water dynamics in small forested wetlands ($< 1,000 \text{ m}^2$) using optical satellite data that has both fine spatial and high temporal resolution. Although classification models were able to produce inundation time series with similar patterns to the field-based time series (Figure 3), they also had consistent inaccuracies, demonstrating that optical imagery alone does not accurately represent the timingof surface water dynamics in forested wetlands, especially after leaf-out.

280 In fall 2017, satellite-derived SWE was overestimated compared to our field 281 measurements. We hypothesize this is attributable to unreliable classification of "permanent" 282 water features in the NWI, i.e. many of these water bodies are actually seasonal. Few alternatives 283 exist for accurate training data at spatial resolutions necessary to identify the smallest water 284 bodies, and quantitative information on hydrologic regimes is even less common. Even though 285 the NWI is very detailed and thematically rich, it has known inaccuracies in the Delmarva region 286 (Fenstermacher et al., 2014). Whereas variability in radiometry between Planet images required 287 using image-specific models in this study, data from a more consistent sensor constellation (e.g., 288 Claverie et al., 2018) could potentially be used with a more universal classification model based 289 only on training data from time points and locations where inundation status is known with more 290 certainty. However, seasonal and event-driven patterns of suspended sediment, chlorophyll a, 291 and dissolved carbon (Hosen et al., 2018) could affect the optical properties of these water 292 bodies in ways that would impact model reliability.

293 In 2018, underestimates of surface water area in May and June coincided with the timing 294 of canopy leaf-out. We hypothesize that underestimates are attributable to the lag between 295 structural change in the forest canopy and the subsequent regional contraction of SWE (Figure 296 3a; Fisher et al., 2010; Lee et al., 2019). Canopy cover developing above areas that remain 297 flooded, such as on the periphery of wetland depressions, obscures surface water in optical 298 imagery. Improved methods for inundation detection under forest canopies may be possible 299 using synthetic aperture radar (SAR; Lang et al., 2008; Lang & Kasischke, 2008), combinations 300 of optical and lidar intensity data (Lang et al 2020), or improved integration with field 301 monitoring and hydrologic models that account for upland topographic depressions (Evenson et al., 2018). While long-wavelength SAR sensors have been shown to be sensitive to under-canopy 302 303 inundation in forested wetlands (Arnesen et al., 2013; Xaypraseuth et al., 2015), these data are 304 not yet publicly available. Future satellite missions like the NASA-ISRO SAR (NISAR) mission, 305 planned for launch in 2022, will provide repeat long-wavelength SAR imagery and thus play an 306 important role in improving estimates of surface water dynamics in forested wetlands.

307 4.2 Implications for upscaling methane emissions

308 As field studies continue to document high concentrations of methane in aquatic 309 ecosystems previously overlooked as sources of emissions (Bastviken et al., 2011; Stanley et al., 310 2015), inventory-based emission estimates of global freshwater methane fluxes have become 311 larger, more uncertain, and more at odds with top-down estimates in the global methane budget 312 (Saunois et al., 2020). Our results show that for a given set of water bodies, inventory-based 313 emission estimates can be too high in areas where inundation extent fluctuates on a seasonal 314 basis. However, non-permanent water bodies are also likely to be underrepresented in surface 315 water products or mis-classified in existing landcover products due to their small size and/or 316 obscuration by forest cover. Because the highest resolution global surface water dataset is based 317 on non-mixed 30 m pixels (Pekel et al., 2016), water bodies $< \sim 1,000$ m² will be absent. At this

318 threshold, the opposing effects of inundation dynamics and missing hidden/cryptic water bodies 319 were of similar magnitude and resulted in a 10% underestimate of annual totals.

320 Understanding the source of methane is important for mitigation strategies and policies 321 aimed at reducing carbon emissions from local to global scales. Traditional upscaling approaches 322 for greenhouse gas emissions from freshwaters can be misleading for determining the dominant 323 factors driving emissions (DelSontro et al., 2018). Our results suggest that for the Greensboro 324 watershed, the water level drawdown in natural forested wetlands considerably reduces methane 325 producing areas. Where forested wetlands are lost and replaced with wetlands without a similar 326 hydroperiod, such as many wetland mitigation projects (e.g., created ponds) that result in a net 327 increase in total surface area (Dahl, 2011), methane emissions are likely to be higher. Farm 328 ponds and other small artificial water bodies have also been shown to have higher methane 329 emissions on a per-area basis (Grinham et al., 2018; Ollivier et al., 2019), and a relatively 330 constant water level only exacerbates this difference because natural wetlands have reduced 331 SWE during the warmest months when methane production rates could be the highest. The 332 ability to detect and monitor under-canopy inundation should improve with new space-borne 333 longer wavelength synthetic aperture radar (Arnesen et al., 2013; Xaypraseuth et al., 2015); as 334 these capabilities improve accurately quantifying ecosystem functions of forested wetlands will 335 also require information at high temporal resolution. Future studies may leverage these improved 336 technologies to better understand the role forested wetlands are playing in regional and global 337 methane cycles by more accurately quantifying the hydrologic processes undervling methane 338 flux to the atmosphere from inland waters.

339

340

341 Acknowledgments, Samples, and Data

- 342 Datasets used in this research are available in cited references: Holgerson and Raymond (2016),
- 343 Vanderhoof and Lang (2017); Pekel et al. (2016); Jin et al (2019); USFWS (2019); and Planet
- 344 (2017). Planet data are available through personal licenses to researchers for non-commercial
- 345 purposes. Processing and analysis code is available online as <u>https://github.com/khondula/ch4est</u>.
- This work was supported by the National Socio-Environmental Synthesis Center under fundingreceived from the National Science Foundation DBI-1639145.
- 348

349 **References**

- Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. *Science*, *361*(6402), 585–588.
- 351 https://doi.org/10.1126/science.aat0636
- 352 Arnesen, A. S., Silva, T. S. F., Hess, L. L., Novo, E. M. L. M., Rudorff, C. M., Chapman, B. D., & McDonald, K. C.
- 353 (2013). Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR
 354 images. *Remote Sensing of Environment*, 130, 51–61. https://doi.org/10.1016/j.rse.2012.10.035
- Ator, S. W., & Denver, J. M. (2012). Estimating Contributions of Nitrate and Herbicides From Groundwater to
- 356 Headwater Streams, Northern Atlantic Coastal Plain, United States ¹: ESTIMATING CONTRIBUTIONS OF
- 357 NITRATE AND HERBICIDES FROM GROUNDWATER TO HEADWATER STREAMS, NORTHERN ATLANTIC
- 358 COASTAL PLAIN, UNITED STATES. JAWRA Journal of the American Water Resources Association, 48(6),
- 359 1075–1090. https://doi.org/10.1111/j.1752-1688.2012.00672.x
- Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater Methane
- 361 Emissions Offset the Continental Carbon Sink. *Science*, *331*(6013), 50–50.
- 362 https://doi.org/10.1126/science.1196808
- Bishop, K., Buffam, I., Erlandsson, M., Fölster, J., Laudon, H., Seibert, J., & Temnerud, J. (2008). Aqua Incognita:
 The unknown headwaters. *Hydrological Processes*, 22(8), 1239–1242. https://doi.org/10.1002/hyp.7049
- Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., & Justice, C. (2018).
- The Harmonized Landsat and Sentinel-2 surface reflectance data set. *Remote Sensing of Environment*, 219,
 145–161. https://doi.org/10.1016/j.rse.2018.09.002
- 368 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen,
- 369 P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the Global Carbon Cycle: Integrating

- 370 Inland Waters into the Terrestrial Carbon Budget. *Ecosystems*, 10(1), 172–185.
- 371 https://doi.org/10.1007/s10021-006-9013-8
- 372 Cooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H., & Pavelsky, T. M. (2019). Arctic-Boreal lake dynamics
- 373 revealed using CubeSat imagery. *Geophysical Research Letters*. https://doi.org/10.1029/2018GL081584
- 374 Dahl, T. E. (2011). Status and trends of wetlands in the conterminous United States 2004 to 2009 (p. 108). U.S.
- 375 Department of the Interior; Fish and Wildlife Service.
- DelSontro, T., Beaulieu, J. J., & Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments:
 Upscaling in the face of global change: GHG emissions from lakes and impoundments. *Limnology and*
- 378 Oceanography Letters. https://doi.org/10.1002/lol2.10073
- 379 DeVries, B., Huang, C., Lang, M., Jones, J., Huang, W., Creed, I., & Carroll, M. (2017). Automated Quantification
- of Surface Water Inundation in Wetlands Using Optical Satellite Imagery. *Remote Sensing*, 9(8), 807.
 https://doi.org/10.3390/rs9080807
- 382 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H.,
- Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size
 distribution of lakes, ponds, and impoundments. *Limnology and Oceanography*, *51*(5), 2388–2397.
- 385 https://doi.org/10.4319/lo.2006.51.5.2388
- 386 Evenson, G. R., Golden, H. E., Lane, C. R., McLaughlin, D. L., & D'Amico, E. (2018). Depressional wetlands
- 387 affect watershed hydrological, biogeochemical, and ecological functions. *Ecological Applications*, 28(4),
 388 953–966. https://doi.org/10.1002/eap.1701
- Evenson, G. R., McLaughlin, D. L., Lane, C. R., DeVries, B., Alexander, L. C., Lang, M. W., McCarty, G. W., &
 Sharifi, A. (2018). A watershed-scale model for depressional wetland-rich landscapes. *Journal of*
- 391 *Hydrology X*, *1*, 100002. https://doi.org/10.1016/j.hydroa.2018.10.002
- Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W., & Needelman, B. A. (2014). Distribution,
 Morphometry, and Land Use of Delmarva Bays. *Wetlands*, *34*(6), 1219–1228.
- 394 https://doi.org/10.1007/s13157-014-0583-5
- Fisher, T., Jordan, T., Staver, K., Gustafson, A., Koskelo, A., Fox, R., Sutton, A., Kana, T., Beckert, K., Stone, J.,
 McCarty, G., & Lang, M. (2010). The Choptank Basin in Transition: Intensifying Agriculture, Slow

manuscript submitted to Geophysical Research Letters

- 397 Urbanization, and Estuarine Eutrophication. In M. Kennish & H. Paerl (Eds.), *Coastal Lagoons* (Vol.
- 398 20103358, pp. 135–165). CRC Press. https://doi.org/10.1201/EBK1420088304-c7
- 399 Griffin, C. G., McClelland, J. W., Frey, K. E., Fiske, G., & Holmes, R. M. (2018). Quantifying CDOM and DOC in
- 400 major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. *Remote Sensing of* 401 *Environment*, 209, 395–409. https://doi.org/10.1016/j.rse.2018.02.060
- 402 Grinham, A., Albert, S., Deering, N., Dunbabin, M., Bastviken, D., Sherman, B., Lovelock, C. E., & Evans, C. D.
- 403 (2018). The importance of small artificial water bodies as sources of methane emissions in Queensland,
- 404
 Australia. Hydrology and Earth System Sciences, 22(10), 5281–5298. https://doi.org/10.5194/hess-22

 405
 5281-2018
- Halabisky, M., Moskal, L. M., Gillespie, A., & Hannam, M. (2016). Reconstructing semi-arid wetland surface water
 dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011).
- 408 *Remote Sensing of Environment*, 177, 171–183. https://doi.org/10.1016/j.rse.2016.02.040
- Hanson, P. C., Carpenter, S. R., Cardille, J. A., Coe, M. T., & Winslow, L. A. (2007). Small lakes dominate a
 random sample of regional lake characteristics. *Freshwater Biology*, 52(5), 814–822.
- 411 https://doi.org/10.1111/j.1365-2427.2007.01730.x
- Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very
 small ponds. *Nature Geoscience*, 9(3), 222–226. https://doi.org/10.1038/ngeo2654
- 414 Hosen, J. D., Armstrong, A. W., & Palmer, M. A. (2018). Dissolved organic matter variations in coastal plain
- 415 wetland watersheds: The integrated role of hydrological connectivity, land use, and seasonality.
- 416 *Hydrological Processes*, 32(11), 1664–1681. https://doi.org/10.1002/hyp.11519
- 417 Huang, C., Peng, Y., Lang, M., Yeo, I.-Y., & McCarty, G. (2014). Wetland inundation mapping and change
- 418 monitoring using Landsat and airborne LiDAR data. *Remote Sensing of Environment*, 141, 231–242.
- 419 https://doi.org/10.1016/j.rse.2013.10.020
- 420 Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of Dynamic Thresholds for the Normalized Difference Water Index.
- 421 *Photogrammetric Engineering & Remote Sensing*, 75(11), 1307–1317.
- 422 https://doi.org/10.14358/PERS.75.11.1307

- Jia, K., Jiang, W., Li, J., & Tang, Z. (2018). Spectral matching based on discrete particle swarm optimization: A new
 method for terrestrial water body extraction using multi-temporal Landsat 8 images. *Remote Sensing of Environment*, 209, 1–18. https://doi.org/10.1016/j.rse.2018.02.012
- _____F_____
- 426 Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., & Howard, D. (2019). Overall
- 427 Methodology Design for the United States National Land Cover Database 2016 Products. *Remote Sensing*,
- 428 *11*(24), 2971. https://doi.org/10.3390/rs11242971
- 429 Jones, C. N., Evenson, G. R., McLaughlin, D. L., Vanderhoof, M. K., Lang, M. W., McCarty, G. W., Golden, H. E.,
- 430 Lane, C. R., & Alexander, L. C. (2018). Estimating restorable wetland water storage at landscape scales.
- 431 *Hydrological Processes*, *32*(2), 305–313. https://doi.org/10.1002/hyp.11405
- 432 Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P.,
- 433 Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., & Butman, D. (2019). Performance of Landsat-8 and
 434 Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity.
- 435 *Remote Sensing of Environment*, 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023
- 436 Lang, M. W., & Kasischke, E. S. (2008). Using C-Band Synthetic Aperture Radar Data to Monitor Forested
- Wetland Hydrology in Maryland's Coastal Plain, USA. *IEEE Transactions on Geoscience and Remote Sensing*, 46(2), 535–546. https://doi.org/10.1109/TGRS.2007.909950
- 439 Lang, M. W., Kasischke, E. S., Prince, S. D., & Pittman, K. W. (2008). Assessment of C-band synthetic aperture
- radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, U.S.A. *Remote Sensing of Environment*, *112*(11), 4120–4130. https://doi.org/10.1016/j.rse.2007.08.026
- Lang, M. W., Kim, V., McCarty, G. W., Li, X., Yeo, I.-Y., Huang, C., & Du, L. (2020). Improved Detection of
- Inundation below the Forest Canopy using Normalized LiDAR Intensity Data. *Remote Sensing*, 12(4), 707.
 https://doi.org/10.3390/rs12040707
- Lang, McDonough, O., McCarty, G., Oesterling, R., & Wilen, B. (2012). Enhanced Detection of Wetland-Stream
 Connectivity Using LiDAR. *Wetlands*, *32*(3), 461–473. https://doi.org/10.1007/s13157-012-0279-7
- 447 Lee, McCarty, G. W., Moglen, G. E., Lang, M. W., Nathan Jones, C., Palmer, M., Yeo, I.-Y., Anderson, M.,
- 448 Sadeghi, A. M., & Rabenhorst, M. C. (2020). Seasonal drivers of geographically isolated wetland
- 449 hydrology in a low-gradient, Coastal Plain landscape. *Journal of Hydrology*, 583, 124608.
- 450 https://doi.org/10.1016/j.jhydrol.2020.124608

- 451 Lee, Yeo, I.-Y., Lang, M. W., McCarty, G. W., Sadeghi, A. M., Sharifi, A., Jin, H., & Liu, Y. (2019). Improving the
- 452 catchment scale wetland modeling using remotely sensed data. *Environmental Modelling & Software*, *122*,
 453 104069. https://doi.org/10.1016/j.envsoft.2017.11.001
- Lindsay, J. B. (2016). Whitebox GAT: A case study in geomorphometric analysis. *Computers & Geosciences*, 95,
 75–84. https://doi.org/10.1016/j.cageo.2016.07.003
- Lowe, W. H., & Likens, G. E. (2005). Moving Headwater Streams to the Head of the Class. *BioScience*, 55(3), 196.

457 https://doi.org/10.1641/0006-3568(2005)055[0196:MHSTTH]2.0.CO;2

- 458 McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open
- 459 water features. *International Journal of Remote Sensing*, 17(7), 1425–1432.
- 460 https://doi.org/10.1080/01431169608948714
- 461 Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J.,
- 462 Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S.,
- 463 Subin, Z. M., Tian, H., Zürcher, S., ... Kaplan, J. O. (2013). Present state of global wetland extent and
- 464 wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP).
- 465 *Biogeosciences*, 10(2), 753–788. https://doi.org/10.5194/bg-10-753-2013
- Ollivier, Q. R., Maher, D. T., Pitfield, C., & Macreadie, P. I. (2019). Punching above their weight: Large release of
 greenhouse gases from small agricultural dams. *Global Change Biology*, 25(2), 721–732.
- 468 https://doi.org/10.1111/gcb.14477
- 469 Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., Gatti, L. V.,
- 470 Ribeiro, H., Calazans, L. S. B., Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., &
- 471 Gauci, V. (2017). Large emissions from floodplain trees close the Amazon methane budget. *Nature*.
- 472 https://doi.org/10.1038/nature24639
- 473 Parker, R. J., Boesch, H., McNorton, J., Comyn-Platt, E., Gloor, M., Wilson, C., Chipperfield, M. P., Hayman, G.
- 474 D., & Bloom, A. A. (2018). Evaluating year-to-year anomalies in tropical wetland methane emissions using
- 475 satellite CH4 observations. *Remote Sensing of Environment*, 211, 261–275.
- 476 https://doi.org/10.1016/j.rse.2018.02.011
- 477 Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water
- 478 and its long-term changes. *Nature*, 540(7633), 418–422. https://doi.org/10.1038/nature20584

479 Phillips, P. J., & Shedlock, R. J. (1993). Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic 480 Coastal Plain in Delaware, USA. Journal of Hydrology, 141(1-4), 157-178. https://doi.org/10.1016/0022-481

1694(93)90048-E

- 482 Planet. (2018). Planet Imagery Product Specification: Planetscope and RapidEye.
- 483 https://www.planet.com/products/satellite-
- 484 imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf
- 485 Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora, V. K., Beerling, D. J., Brovkin,
- 486 V., Jones, C. D., Joos, F., Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R.,
- 487 Peng, C., Peng, S., ... Zhu, Q. (2017). Global wetland contribution to 2000-2012 atmospheric methane
- 488 growth rate dynamics. Environmental Research Letters, 12(9), 094013. https://doi.org/10.1088/1748-
- 489 9326/aa8391
- 490 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R.,
- 491 Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global 492 carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359.
- 493 https://doi.org/10.1038/nature12760
- 494 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A.,
- 495 Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P.,
- 496 Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., ... Zhuang, Q. (2020). The Global
- 497 Methane Budget 2000–2017. Earth System Science Data, 12(3), 1561–1623. https://doi.org/10.5194/essd-498 12-1561-2020
- 499 Seekell, D. A., Carr, J. A., Gudasz, C., & Karlsson, J. (2014). Upscaling carbon dioxide emissions from lakes:
- 500 Upscaling CO2 emissions from lakes. Geophysical Research Letters, 41(21), 7555–7559.
- 501 https://doi.org/10.1002/2014GL061824
- 502 Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L. C., & Oliver, S. K. (2015). The ecology of
- 503 methane in streams and rivers: Patterns, controls, and global significance. Ecological Monographs.
- 504 https://doi.org/10.1890/15-1027.1

505Thornton, B. F., Wik, M., & Crill, P. M. (2016). Double-counting challenges the accuracy of high-latitude methane506inventories: DOUBLE-COUNTING ARCTIC METHANE. Geophysical Research Letters, 43(24), 12,569-

507 12,577. https://doi.org/10.1002/2016GL071772

- 508 Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K.,
- 509 Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, Soren., Laurion, I., Leech, D. M.,
- 510 McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., ... Weyhenmeyer, G. A. (2009). Lakes
- 511 and reservoirs as regulators of carbon cycling and climate. *Limnology and Oceanography*, 54(6part2),
- 512 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
- 513 Treat, C. C., Bloom, A. A., & Marushchak, M. E. (2018). Non-growing season methane emissions are a significant
- 514 component of annual emissions across northern ecosystems. *Global Change Biology*.
- 515 https://doi.org/10.1111/gcb.14137
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. *Remote Sensing of Environment*, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
- 518 U. S. Fish and Wildlife Service. (2019). *National Wetlands Inventory website*. U.S. Department of the Interior, Fish
 519 and Wildlife Service. http://www.fws.gov/wetlands/
- Vanderhoof, M. K., Distler, H. E., Lang, M. W., & Alexander, L. C. (2018). The influence of data characteristics on
 detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware.

522 Wetlands Ecology and Management, 26(1), 63–86. https://doi.org/10.1007/s11273-017-9554-y

- Vanderhoof, M. K., & Lang, M. (2017). Data Release for the influence of data characteristics on detecting
 wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware [Data set].
 U.S. Geological Survey. https://doi.org/10.5066/F70C4T8F
- Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., & Morcette, J.-J. (1997). Second Simulation of the Satellite
 Signal in the Solar Spectrum, 6S: An overview. *IEEE Transactions on Geoscience and Remote Sensing*,
 35(3), 675–686. https://doi.org/10.1109/36.581987
- 529 Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G.,
- 530 Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., Brovkin, V., van Bodegom, P. M.,
- 531 Kleinen, T., Yu, Z. C., Singarayer, J. S., ... Kaplan, J. O. (2012). Present state of global wetland extent and
- 532 wetland methane modelling: Methodology of a model intercomparison project (WETCHIMP).

- 533 *Geoscientific Model Development Discussions*, 5(4), 4071–4136. https://doi.org/10.5194/gmdd-5-4071-
- 534 2012
- Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., Hanson, P. C., & Read, J. S.
 (2016). LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using
- 537 diverse statistical models. *Inland Waters*, 6(4), 622–636. https://doi.org/10.1080/IW-6.4.883
- 538 Wu, Q., Lane, C., & Liu, H. (2014). An Effective Method for Detecting Potential Woodland Vernal Pools Using
- High-Resolution LiDAR Data and Aerial Imagery. *Remote Sensing*, 6(11), 11444–11467.
 https://doi.org/10.3390/rs61111444
- 541 Xaypraseuth, P., Satish, R., & Chatterjee, A. (2015). NISAR spacecraft concept overview: Design challenges for a
 542 proposed flagship dual-frequency SAR mission. 2015 IEEE Aerospace Conference, 1–11.
- 543 https://doi.org/10.1109/AERO.2015.7118935
- Yeo, I.-Y., Lang, M. W., Lee, S., McCarty, G. W., Sadeghi, A. M., Yetemen, O., & Huang, C. (2019). Mapping
 landscape-level hydrological connectivity of headwater wetlands to downstream waters: A geospatial
 modeling approach Part 1. *Science of The Total Environment*, 653, 1546–1556.
- 547 https://doi.org/10.1016/j.scitotenv.2018.11.238
- 548 Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., & Wilke, C. O. (2019).
- 549 colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. *ArXiv:1903.06490 [Cs, Stat]*.
 550 http://arxiv.org/abs/1903.06490

551

552

Figure1.

Figure2.

Figure3.

Figure4.

