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Abstract

A relatively simple design of a segmented flow meter (SF meter) is presented for measuring in situ plasma flow velocities and

other space plasma parameters.

The response of the flow meter to space environment is simulated for plasma conditions representative of the ionosphere at mid

and low latitudes using a Particle In Cell (PIC) code.

A synthetic data set consisting of ion currents collected by several segments of the flow meter, and the physical parameters for

which they were calculated, is then used to construct a solution library from which inference models can be constructed, using

radial basis function (RBF) and neural network regressions.

Simulation results show that with such a flow meter, it should be possible to infer plasma flow velocities in the direction

perpendicular to the ram direction, with uncertainties of 45 m/s or less.

Models can also be constructed to infer plasma densities, with a relative error of 23 %.

This work is presented as a first assessment and proof of concept for an original design of a simple and robust flow meter.
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Abstract11

A relatively simple design of a segmented flow meter (SF meter) is presented for mea-12

suring in situ plasma flow velocities and other space plasma parameters. The response13

of the flow meter to space environment is simulated for plasma conditions representa-14

tive of the ionosphere at mid and low latitudes using a Particle In Cell (PIC) code. A15

synthetic data set consisting of ion currents collected by several segments of the flow me-16

ter, and the physical parameters for which they were calculated, is then used to construct17

a solution library from which inference models can be constructed, using radial basis func-18

tion (RBF) and neural network regressions. Simulation results show that with such a19

flow meter, it should be possible to infer plasma flow velocities in the direction perpen-20

dicular to the ram direction, with uncertainties of 45 m/s or less. Models can also be con-21

structed to infer plasma densities, with a relative error of 23 %. This work is presented22

as a first assessment and proof of concept for an original design of a simple and robust23

flow meter.24

1 Introduction25

Plasma winds are a key manifestation of the dynamical processes at play in the iono-26

sphere, including ionospheric coupling with the magnetosphere and with solid Earth. This27

has motivated the use of various instruments mounted on satellites to measure plasma28

flow velocities under different space plasma environments. In addition to affecting ground29

infrastructures (Pirjola, 2000), events such as magnetic storms or substorms can be re-30

sponsible for satellite malfunction and, in extreme cases, total loss (Baker, 2000). These31

storms cause turbulence in the magnetosphere, which often result in strong currents and32

winds. Thus monitoring ionospheric winds provides key information for a better under-33

standing of our near-space environment, which in turn can lead to improved mitigation34

measures in case of extreme events. Ionospheric winds can also provide information on35

solid Earth activity such as earthquakes, volcanic eruptions, or high yield underground36

explosions (Rudenko & Uralov, 1995; Davies & Archambeau, 1998; Krasnov & Drobzheva,37

2005; Parrot et al., 2006; Parrot, 2012; Yang et al., 2012; Ryu et al., 2014; Shen et al.,38

2018; De Santis et al., 2019). Two types of waves are being considered in relation to earth-39

quakes. Post seismic acoustic and gravitational waves have been observed with satellites40

in low Earth orbit (LEO), and their connection with solid Earth phenomena is well un-41

derstood from theory and computer simulations (Rudenko & Uralov, 1995; Davies & Ar-42

chambeau, 1998; Krasnov & Drobzheva, 2005; Yang et al., 2012). Direct observations43

and statistical analyses have also been reported to support the occurrence of electromag-44

netic wave signatures prior to large earthquakes (Parrot et al., 2006; Parrot, 2012; Ryu45

et al., 2014; Shen et al., 2018; De Santis et al., 2019). While not yet demonstrated, the46

possibility of observing ionospheric perturbations prior to large earthquakes remains a47

topic of vital interest, especially in countries located in seismically active parts of the planet48

(ibid).49

Several designs of plasma flow meters have been used on satellites to measure iono-50

spheric winds, including retarding potential analyzers (Hanson et al., 1973; R. A. Heelis51

& Hanson, 2013; Satir et al., 2015), ion drift meters (Hundhausen et al., 1967; Galperin52

et al., 1973; Hanson et al., 1973; Galperin et al., 1974; Hanson & Heelis, 1975; R. Heelis53

et al., 1981; Ogilvie et al., 1995; Reigber et al., 2003; Berthelier, Godefroy, Leblanc, Seran,54

et al., 2006; Stoneback et al., 2012; R. A. Heelis et al., 2017), “top hat” analyzers (C. Carl-55

son et al., 1982; C. W. Carlson & McFadden, 2013; C. W. Carlson et al., 2001), ion im-56

agers (Whalen et al., 1994; Yau et al., 1998; Knudsen et al., 2003; Yau et al., 2015; Knud-57

sen et al., 2017), and segmented Langmuir probes (Séran et al., 2005; Lebreton et al.,58

2006; Santandrea et al., 2013). The first satellites equipped with ion drift meters were59

deployed in the 1960s and 1970s (Hundhausen et al., 1967; Galperin et al., 1973; Han-60

son et al., 1973; Galperin et al., 1974; Hanson & Heelis, 1975; R. Heelis et al., 1981). While61

the names differed, the working principles were similar. A simplified schematic of such62
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Figure 1. Illustration of an ion drift meter with integrated retarding potential analyzer. The

side view in panel (a) illuminates a cross section of the aperture, grids, and collector plates.

Panel (b) illustrates the four collectors at the base of the sensor.

a device is shown in Fig. 1. In this configuration, ions enter the sensor from the top aper-63

ture, and are collected by four current collectors at the base. The ram speed is measured64

with a retarding potential analyzer from which incoming ion masses and speeds can be65

determined. As shown on panel (a) of the figure, the voltage applied to the top grid is66

swept so as to block ions with varying energies from entering the sensor. As voltage is67

increased, abrupt drops are measured in the collected currents (R. A. Heelis & Hanson,68

2013). The voltages at which these reductions occur, correspond to different energy to69

charge ratios of incoming ions, in the satellite reference frame. The magnitude and shape70

of these drops also provide information on ion temperatures and relative densities. The71

second grid is biased to a fixed negative voltage to prevent the escape of photoelectrons72

from the base collectors. When collectors are exposed to UV radiation, simulations sug-73

gest that most photoelectrons are reflected back to the collector from which they were74

emitted (Stoneback et al., 2012). The angle of incidence α of the plasma flow is deter-75

mined from the relative currents collected by the segments. This, combined with the ram76

speed measured with the retarding potential analyzer, is used to determine the trans-77

verse flow velocity. The retarding potential analyzer/ion drift meter is robust, and it was78

used in many space missions. For example, VEIS on the WIND spacecraft was used to79

study the foreshock subsonic particles reflected from the bow shock (Ogilvie et al., 1995).80

This instrument can also be used to measure electron energies by reversing the analyzer81

electric field polarization. Similarly, IAP on DEMETER was used to measure plasma82

flow velocities with particular attention to the perturbed flow induced by waves caused83

by seismic activity (Berthelier, Godefroy, Leblanc, Seran, et al., 2006). The accuracy of84

ram speed measurements, obtained with IAP on DEMETER, was estimated to be ap-85

proximately 10%, based on laboratory calibrations and computer simulations (Séran, 2003;86

Berthelier, Godefroy, Leblanc, Seran, et al., 2006). Similar flow meters are also used on87

spacecraft, such as Dynamics Explorer B (R. Heelis et al., 1981), C/NOFS satellite (Stoneback88

et al., 2012), and Ionospheric Connections Explorer (R. A. Heelis et al., 2017). A sim-89

ilar instrument has been developed based on the same basic principle, referred to as the90

”backplane design”. In this configuration, ions travel to the base of the sensor and are91

deflected by a strong electric field, to be collected on the backside of collector segments,92

as illustrated in Fig. 2. This configuration was used in DIDM on the CHAMP satellite93

to prevent direct UV radiation from entering the collectors, and minimize perturbations94

from photoelectrons (Reigber et al., 2003).95
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Figure 2. DIDM on the CHAMP satellite uses a back-plane design of ion drift meter. Ions

are deflected 180° once they are in the detector dome using a -2000 volts potential.

The “top-hat” analyzer shown in panel a of Fig. 3 is widely used to sample charged96

particles over 360° in azimuthal (C. Carlson et al., 1982; C. W. Carlson & McFadden,97

2013; C. W. Carlson et al., 2001). Trajectories of incoming particles are bent by a ra-98

dial electric field between two hemispherical electrodes of different radii. For a given po-99

tential difference between the two hemispheres, only particles in a narrow range of en-100

ergy to charge ratio can follow a trajectory leading to the base collectors. The energy101

spectrum of the particles is then obtained by sweeping the potential difference between102

the two analyzer hemispheres. The “top hat” analyzer provides a pitch-angle range over103

the full 2-dimensional plane through the analyzer aperture. Ion imagers are yet another104

type of flow meter in which, as illustrated in panel b of Fig. 3. In this configuration, ions105

enter through an aperture, and are dispersed by an electric field between two concen-106

tric hemispherical shields, onto a detector array, as determined by their energy to charge107

ratio. Depending on the setup, incoming particle velocities are measured over 180°, or108

the full 360° degrees in azimuthal angles. For example, the F3C Cold Plasma Analyzer109

(CPA) instrument on Freja can sample ions over a range of 360° in azimuthal angles around110

the satellite (Whalen et al., 1994). On Swarm, the Electric Field Instrument (EFI) con-111

sists of two imagers, each with 180° wide apertures, oriented perpendicularly to one an-112

other, thus providing a three-dimensional sample of incoming ion distributions (Knudsen113

et al., 2017). Other spacecraft are also equipped with ion imagers, including ePOP (Yau114

et al., 2015), and Plante-B (Yau et al., 1998). In principle, ion imagers can accurately115

measure ion drift velocities and ion masses without the need for sweeping voltage. The116

accuracy with which plasma flow velocity can be inferred with ion imagers has been as-117

sessed to be of order 20 m/s based on rocket-based measurements (Sangalli et al., 2009).118

In space, performance can vary due to several factors, including satellite potentials, chang-119

ing plasma conditions, and aging of sensor components (Marchand et al., 2010; Knud-120

sen et al., 2017).121

Segmented Spherical Langmuir Probes have also been used to measure bulk plasma122

flow. The surface of the probe is divided into several equipotential spherical caps or seg-123

ments facing different directions, from which individual currents are measured. The rel-124

ative currents from these segments and the supporting sphere can in principle be used125

to infer plasma density, temperature, and plasma flow velocity (Lebreton et al., 2006).126

This instrument was used on satellites such as DEMETER and Proba-2 (Séran et al.,127

2005; Lebreton et al., 2006; Santandrea et al., 2013). It is also possible to infer plasma128

flow velocities indirectly from measured electric fields and the relation for the ~E × ~B129

drift. Boom-supported electric field probes are used on numerous satellite and rocket ex-130

periments, including ICE on DEMETER (Berthelier, Godefroy, Leblanc, Malingre, et131
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Figure 3. Illustration of a ‘top hat’ analyzer and ion imager. Both devices can sample ions

over 360° azimuthal angles.

al., 2006) and the Fields Instrument on FAST (Ergun et al., 2001). At lower latitudes,132

it is also possible to measure the neural wind speed in the ram direction, from the Doppler133

shift in atmospheric emission lines using an interferometer with laser beams (Englert et134

al., 2007).135

One important difference between flow meters and more familiar Langmuir probes136

is that several theories have been developed to interpret measurements made with the137

latter, while no theory exists for the former. As a result, the inference of plasma flow ve-138

locities from flow meters must rely on laboratory calibration and computer simulations.139

Thus the goals of this study are to i) characterize the response of a proposed simple flow140

meter applicable to ionospheric wind, using computer simulations, ii) construct inference141

models based on multivariate regression, and iii), assess their predictive skills for con-142

ditions representative of the lower ionosphere. In the remainder of this paper, we present143

the geometry of a plasma flow meter, which should combine simplicity, robustness, and144

accuracy. The performance of the proposed instrument is assessed based on a combina-145

tion of synthetic data constructed with computer simulations, and multivariate regres-146

sions. The simulation techniques, the sensor geometry, and the regression approaches are147

presented in Section 2. Simulation results and assessments of inference skills are presented148

in Section 3. The final section summarizes our findings and contains some concluding149

remarks.150

2 Methodology151

The flow meter geometry considered is shown in Fig. 4. It is sufficiently compact152

to be mounted on small satellites such as CubeSats. In the satellite reference frame, ions153

are incident from the ram direction, with speeds approximately equal to the satellite or-154

bital speed. Thus, the meter needs to be mounted on the ram face of the satellite to al-155

low ions to enter the aperture. In the proposed design, there are a total of 19 collect-156

ing segments, from which individual currents are measured. The top ring aperture is bi-157

ased to −4 V with respect to the spacecraft in order to repel electrons and attract ions158

into the cone. This negative voltage at the top also serves to increase the radial disper-159

sion of entering ions. All other segments at the base are biased to +3 V in order to i)160

enhance dispersion of the ion beam penetrating the sensor, and ii) retain photoelectrons161

that might be emitted, should solar UV enter the cavity. Enhancing radial spread of the162

incident ion beam at the base should make the distribution of collected currents more163
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Figure 4. Illustration of the 3D geometry of the SF meter (left), and the 18 sectors at the

base (right). The conical shell has a height of 5 cm, the outer radius at the base is 2.3 cm, and

that at the top ring is 0.7 cm.

sensitive to the ion mass distributions and hence, to the ion effective mass. The curved164

conical faces of the sensor, both inside and outside, are assumed to be grounded to the165

satellite bus, implying that they would also be at the satellite potential Vs with respect166

to background plasma. Simulations indicate that if the satellite potential Vs is positive167

and larger than ∼ 1 V, the base sensors start collecting a noticeable amount of electrons168

passing through the top aperture, which in turn would interfere with the measurement.169

In the lower ionosphere at mid and low latitudes where photoelectron and secondary elec-170

tron emission are not significant, a spacecraft should be charged negatively. In the fol-171

lowing, the proposed sensor response is assessed assuming spacecraft potentials ranging172

from -2 to 1 V. The following paragraphs describe the approaches used to characterize173

the response of the flow meter to diverse space environment conditions, to construct mod-174

els to infer physical parameters of interest from measurements, and to assess their pre-175

dictive skills.176

2.1 Symmetry177

One key feature of the device considered is symmetry. In order to characterize the178

response of the multiple sensors to flows with components transverse to the cone axis,179

we need to carry out many three-dimensional kinetic simulations assuming different plasma180

parameters, consisting of densities, temperatures, ion compositions, flow velocities, and181

satellite potentials. These simulations are used to construct a solution library consist-182

ing of collected currents by each of the 19 segments, with corresponding space-plasma183

conditions. Without symmetry, simulations would be required for transverse flows cov-184

ering the full 360◦ around the sensor axis. With the six-fold rotational symmetry, and185

the mirror symmetry in the 18 collecting segments at the base of the sensor seen in Fig.186

4, however, simulations are only needed in a much smaller 30◦ angular sector. For ex-187

ample, simulations can be carried out to calculate currents collected by all segments, for188

flow velocities with transverse velocities in only the 30◦ sector 8. These currents can then189

be mirror imaged with respect to the horizontal axis between sectors 7 and 8 (or 13 and190

14), to extend results to transverse velocities directed in sector 7. From there, the six-191

fold rotational symmetry can be used to further extend our simulation results to trans-192

–6–
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Figure 5. Scatter plot of plasma parameters obtained from the IRI model, corresponding

to different latitudes, longitudes, altitudes, and times, as listed in Table 1. Numbered squares

identify parameters used in the kinetic simulations.

verse velocities in all sectors, covering the full 360◦ of azimuthal angles; thus reducing193

the number of simulations by a factor 12 compared to what would be needed in the ab-194

sence of symmetry.195

2.2 Kinetic Simulations196

The response of the sensor to different ionospheric wind conditions is simulated us-197

ing the three-dimensional PIC code PTetra (Marchand, 2012; Marchand & Resendiz Lira,198

2017). In this model, space is discretized with unstructured adaptive tetrahedral meshes199

(Frey & George, 2007; Geuzaine & Remacle, 2009), and Poisson’s equation is solved at200

each time step, using Saad’s GMRES sparse matrix solver (Saad, 2003). Electrons and201

ions are treated kinetically, accounting for their physical masses, and particle trajecto-202

ries are calculated self-consistently using computed electric fields. The parameters as-203

sumed in the simulations have been selected so as to be representative of ionospheric con-204

ditions encountered by satellites in low Earth orbit (LEO) at mid, and low latitudes. A205

sample of electron and ion temperatures, electron densities, and ion mass distributions206

was obtained from the International Reference Ionosphere (IRI) (Bilitza et al., 2014) model207

for different latitudes, longitudes, altitudes, and times. The result is shown in Fig. 5, with208

points in the density-temperature scatter plot, and colors indicating ion effective masses.209

The numbered squares in the figures identify the twenty sets of plasma parameters (Te, Ti, ne, mi eff )210

for which simulations were made. For each of the selected set of plasma parameters, sev-211

eral simulations were made for different satellite potentials, incoming plasma ram speeds,212

and transverse velocities distributed in the 30◦ sector 7, for a total of 310 simulations.213

When extended to the full 360◦ circle as described above, this produces a solution library214

consisting of 2676 entries used to train and assess our inference models.215

For simplicity, and considering that in the conditions considered, O+ and H+ con-216

stituted 94% or more of all ion species, only these two ion species were considered in the217
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Table 1. Range of ionospheric conditions considered with the IRI model, and corresponding

ranges in space plasma parameters.

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009
Date Jan 4 Apr 4 Jul 4 Oct 4
Latitude −65◦ - +65◦ with increment of 26◦

Longitude 0◦ - −360◦ with increment of 30◦

Hours 0-24 with increment of 8 hours

Height 450-550 km
Ion temperature 0.07-0.12 eV
Electron temperature 0.09-0.25 eV
Effective ion mass 4-16 amu
Density 2× 1010 − 1× 1012m−3

Ram velocity 7000 -8000 m/s
Transverse speed 0-500 m/s
Angles 0-30°

Spacecraft potential -2-1 eV

simulations. Earth magnetic field is not accounted for in the simulations, owing to the218

fact that typical ion gyroradii in the ionosphere are of order 1 m for H+, and 4 m for219

O+, which are much larger than the ∼ 5 cm size of the sensor considered. Secondary220

electron emission is ignored in the calculations because of the low electron temperatures221

(below 0.5 eV) encountered in the regions of interest. Photoelectron emission is also not222

taken into account, which is justified when the satellite is on the night side of its orbit223

or when the meter aperture is not exposed to solar illumination.224

2.3 Multivariate regression225

Given a solution library, the next step is to construct models capable of inferring226

plasma parameters from measurements. In the following, we describe two approaches for227

constructing such models, which will be applied and assessed for their inference skills in228

Sec. 3. Several approaches are possible, including empirical parametric fits and multi-229

variate regressions. Here we use two regression approaches based on i) Radial Basis Func-230

tions (RBF), and ii) Deep Learning Neural Networks. In either case, two steps are in-231

volved in the construction of a model. The first step consists of training a model on a232

subset of the solution library; the “training set”, while the second step consists of ap-233

plying the trained model to a distinct data set; the validation set, consisting of the re-234

maining subset of the library. The inference skill of the model is generally better on the235

training than on the validation set. Model skills applied to the training set can be im-236

proved by further refining the model, but improvements in training do not necessarily237

correspond to improvements in validation inferences. Beyond a certain level of refine-238

ment in training, “overfitting” occurs, and inference skill degrades for the validation set.239

A good model is one with the right level of refinement so as to provide the best infer-240

ence skill when applied to the validation set. Let us now briefly present the two regres-241

sion methods used in our study.242
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2.3.1 Radial Basis function243

Radial basis Function is one of the most basic regression techniques, and it is ap-244

plied in many fields, including image mapping, and data tracking (Buhmann, 2003). Given245

a set of independent vectors ~X and corresponding dependent vectors ~Y , a general ex-246

pression for RBF regression is given by247

~Y =

n∑
i=1

aiG
(∣∣∣ ~X − ~Xi

∣∣∣) , (1)

where ~Y is a vector of parameters to be inferred, ~X is a vector consisting of independent,248

measured quantities, and ( ~Xi, ~Yi) are reference nodes or pivots in the space of independent-249

dependent variables. G is a function of a real variable, ai are fitting coefficients, and n250

is the number of pivots used in the regression. In RBF, ~X and ~Y can be vectors of dif-251

ferent dimensions. In what follows, however, dependent variables ~Y will always be scalars252

(vectors of dimension one), and ~X will be vectors of different dimensions, depending on253

the physical parameter being inferred. In Eq. 1, the argument of G is the L2 norm, or254

Euclidean distance between ~X and ~Xi; whence the name “radial” in RBF. The choice255

of G is arbitrary, provided that, for a given set of pivots, the set of n interpolating func-256

tions in Eq. 1 be independent of one another. When constructing a regression model with257

RBF, the function G, and the number and distribution of pivots must be chosen so as258

to yield the best possible predictive skill for a given problem. Two G functions have been259

found to give good predictive skill for the inferred physical parameters considered. They260

are described with the physical parameters in Sec. 3. The number and distribution of261

pivots have similarly been selected so as to provide optimal accuracy when inferring de-262

pendent parameters in a validation set. Two types of cost functions have been consid-263

ered, the maximum absolute error (MAE):264

εabs = Max | Ysim − Ymod |, (2)

and the maximum relative error (MRE):265

εrel = Max

∣∣∣∣Ysim − YmodYmod

∣∣∣∣ , (3)

calculated over a given data set, where Ysim are known plasma parameters used in the266

simulation such as density, and Ymod are the model-inferred parameters.267

In order to carry out this task and construct a model, the fitting coefficients ai in268

Eq. 1 have to be determined. This is done first by requiring collocation of inferred and269

known parameters at pivots; that is, by solving the set of equations270

N∑
j=1

ajG(| ~Xi − ~Xj |) = ~Yi,sim, i = 1, N. (4)

Given a training data set of N nodes, the selection of N pivots is made by construct-271

ing models for all possible N choose N combinations of pivots among the N nodes, and272

selecting the one which minimizes the cost function. When the best distribution of piv-273

ots is found, the model can be further improved by relaxing collocation, by allowing for274

small deviations from the ~Yi,sim and minimizing the cost functions with respect to these275

deviations. Yet another improvement is to go over all N choose N possible combinations276

of pivots in parallel on n multiple processors, in such a way that each processor goes through277

different combinations. In this case, each processor finds its unique best combination of278

pivots. One obvious advantage of this is an increase in speed. Another one is that re-279

laxation, or accounting for the “nugget effect”, can be applied to each of the distinct n280

best combinations, and selecting the combination which, after relaxation, produces the281

smallest cost function. It is found that the best combination then, is not necessarily the282

one that minimizes the cost function before relaxation. With this strategy, and using sev-283

eral processors, it is possible to reduce the cost function in a training set by several %,284

compared to a minimization made without relaxation.285
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Figure 6. Schematic of a feedforward neural network.

Given the size of the data, N choose N can be very large. One strategy is to com-286

bine RBF with the Monte Carlo method to do a non-exhaustive search for the model.287

In this approach, a small subset (e.g. 100 entries) is picked each time randomly from the288

training data set to train a model, then the model is applied to the entire training data289

set to calculate the cost function. The best model is selected after a certain time and290

it is applied to the validation data set to determine the validation error.291

2.3.2 Neural network292

Neural networks have increasingly been proven useful in many applications, includ-293

ing plasma physics and space physics (Barkhatov & Revunov, 2010; Breuillard et al., 2020).294

In this work, we use the feedforward deep learning networks to infer plasma parameters295

from currents collected from the 19 segments in the proposed flow meter. An illustra-296

tion of a feedforward network is shown in Fig. 6, with the input layer, hidden layers, and297

the output layer. In our problem, each node in the input layer is assigned a current from298

one of the segments. Node j in layer i is assigned a value ui,j , and each node of the next299

layer i+ 1 is “fed” by all the nodes of the previous layer according to300

ui+1,k =

ni∑
j=1

wi,j,kf(ui,j + bi,j), (5)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation func-301

tion. In this study, the bias terms are all set to zero. The w coefficients are first gener-302

ated using the Monte Carlo method, and then gradient descent is used to further decrease303

the cost function over the training data. Training sets consisting of 500 data entries are304

used to train neural network models. As with RBF, many models are trained before the305

final model is selected. The models are then applied to the validation data sets to ob-306

tain the validation error.307

2.4 Noise308

Given a trained model, the skill and robustness of inference are tested against noise309

in the validation sets. Noise in collected currents can be statistical in nature, or it can310

be associates with physical processes such as waves and turbulence. The current collected311

by a segment is given by the number of particles N collected in a given sampling time312

τ , multiplied by their respective charges, and divided by τ ; that is, assuming singly ion-313
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ized ions for simplicity,314

I =
Ne

τ
. (6)

Owing to the discrete nature of this process, the number N follows approximately Pois-315

son statistics. The standard deviation; that is, the noise level, in N is therefore approx-316

imately the square root of N̄ , the average value of N : σN '
√
N̄ . Thus, it follows that317

the standard deviation in the collected current is approximately318

σI '
σNe

τ
'
√
Ie

τ
. (7)

In simulations however, the number of simulation particles Ns accounted for, is gener-319

ally smaller than the actual number of physical particles in a plasma. In order to account320

for that, simulation particles carry a statistical weight w, corresponding to the number321

of actual particles that they “represent”. Currents calculated in simulations are there-322

fore obtained by multiplying the charge of each collected particle by its statistical weight323

as in324

I =
wNse

τ
, (8)

and the resulting standard deviation in the current calculated in a simulation is325

σI '
wσNe

τ
'
√
wIe

τ
. (9)

The standard deviation in the collected current can also be calculated directly from our326

simulation results, by considering a case with zero transverse flow velocity. In this case,327

by symmetry, all six inner segments should collect the same current, as should the twelve328

outer segments. Thus, calculating the standard deviation in these currents provides an329

estimate of the intrinsic statistical noise in the current collected by a single segment. For330

example, in one of the simulations, using a sampling time of 1µs, in which ions have a331

statistical weight w = 2, the average current per inner segment is calculated to be I '332

2nA. In this case, the standard deviation of the current over the six segments is found333

to be ' 29pA, which is in good agreement with the 25pA estimated from Eq. 9.334

In order to test the robustness of our models, additional noise is introduced in our335

validation sets, in addition to the intrinsic statistical noise mentioned above. Here again,336

this added noise is assumed to be proportional to the square root of the collected cur-337

rent as per338

Iσ = I0

(
1 + rσ

√
I0

1nA

)
, (10)

where Iσ is the current collected with added noise, I0 is the simulated collected current339

from the solution library for a given segment, σ is a relative standard deviation, and r340

is a zero-mean random number with Gaussian distribution and unit standard deviation.341

For each value of σ, 100 sets of random noise have been used to calculate the averages342

of the maximum errors and Root-Mean-Squared (RMS) errors reported in Tables 3.343

3 Results and discussion344

We now proceed with the construction of models for selected plasma parameters.345

3.1 Transverse flow velocity346

The inference of transverse velocities relies on the symmetry and the currents col-347

lected by the base 18 segments as described above. This is made in two steps in which348

i) the direction of the transverse flow velocity, and ii) its magnitude are determined.349
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Figure 7. Cross section of the ion density in and out of the SF meter (a), and collected cur-

rent density profile at the base (b). The density is in units of m−3, and current density in units

of Am−2. This corresponds to condition 14 in Fig. 5, with ne, mi eff , Te, Ti being 7× 1010 m−3,

12 amu, 0.15 eV and 0.11 eV respectively.

Table 2. Examples of transverse wind angles obtained from ~U in the vector approach. Each

run number corresponding to a set of plasma conditions mentioned in section 2.2. “Simulation”,

“Inner”, and “Outer” corresponding to the inner ring vector, outer ring vector and the wind

direction used in the simulation.

Plasma condition# Wind speed (m/s) Simulation Inner Outer

1 125 10° 18.8° 17.6°

1 250 10° 12.2° 13.0°

1 375 10° 12.4° 12.2°

1 500 10° 10.5° 11.9°

2 125 20° 28.4° 30.8°

2 250 20° 23.7° 23.6°

2 375 20° 23.3° 23.0°

2 500 20° 21.0° 22.8°

3.1.1 Transverse flow direction - The vector approach350

An obvious manifestation of a transverse flow velocity in incident plasma is an az-351

imuthal asymmetry in the currents collected at the base of the sensor, as shown in Fig.352

7. Given the geometry of the sensor, the shift in the centroid of the collected current must353

be in the direction of the transverse plasma flow velocity. This shift in turn can be de-354

termined from the average of the unit vector pointing in the middle of each sector, as355

shown in panel b of Fig. 7, weighted with the current that it collects. In practice, two356

averages are made, for the inner sectors as357

~U1 =

6∑
i=1

~ui · Ii, (11)

and a similar expression is used for ~U2, calculated with the 12 outer sectors. The direc-358

tion of the two vectors give indications of directions of the wind, as shown in Table 2.359

These vectors are then combined linearly as:360

~U = (1− α)~U1 + α~U2, (12)

–12–
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Figure 8. Correlation plot of the transverse wind speeds inferred for the validation set, vs.

actual speeds used in the simulations. For reference, the dotted line corresponds to a perfect

correlation. In this case, RBF is used with 5 pivots, leading to a maximum absolute error (MAE)

of 40 m/s, and a RMS error of 15 m/s.

Table 3. Errors in inferred angles, transverse speeds, velocities, and densities calculated with-

out, and with noise added to currents in the validation set.

Parameter: Angle (°) Speed (m/s) Velocity (m/s) Density (%)

Method: Vector RBF Vector+RBF RBF
Skill metric: RMS RMS RMS RMSrE

σ = 0 3.2 15 20 11
σ = 1% 3.6 16 20 12
σ = 2% 4.2 17 21 12

Skill metric: MAE MAE MAE MRE
σ = 0 10.7 40 45 23
σ = 1% 15 52 58 32
σ = 2% 20 70 75 49

where the parameter α is selected so as to minimize the absolute error in the inferred361

transverse velocity over a given training data set. α ' 0.94 is found to be optimal in362

all cases considered, and it is the value used in the inference models considered below.363

3.1.2 Transverse flow speed and velocity364

Given a direction of the flow from Eq. 12, the transverse velocity can then be ob-365

tained from the transverse speed. The speed is inferred using RBF regression, in which366

the magnitudes of ~U1 and ~U2 are used as the two components of independent vectors ~X.367

For example, a correlation plot of inferred speeds as a function of the actual speed from368

the solution library is shown in Fig. 8. In this case, the model is constructed on a train-369

ing set of 1338 randomly selected nodes from the solution library, using five pivots as ex-370

plained in Sec. 2.3.1, and it is applied to a validation set consisting of the 1338 remain-371

ing nodes. The regression function used here is G(x) = 0.5x1.6×log(x2) for x > 0 and372

the cost function is the maximum absolute error over the set considered. The figure also373

shows the value of the cost function (40 m/s) and the RMS error (15 m/s) computed on374

–13–
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Figure 9. Actual and inferred transverse velocities without (a) and with (b) 2% added noise

in the validation data set. The color scale shows the absolute errors in the model velocity predic-

tions. Inferred velocities were obtained with RBF regression, using 5 pivots.

the validation set. Figure 9 shows RBF predicted transverse predicted and actual trans-375

verse flow velocities without (left) and with (right) 2% (σ = 0.02) added statistical noise376

in the validation set using Eq. 10. Here the model uses the same training and valida-377

tion sets as for Fig. 8. When the model is applied to the validation set, the maximum378

absolute error, and root-mean-squared error are 45 m/s and 20 m/s respectively, when379

no noise is added. These errors increase respectively to 75 m/s, and 21 m/s when 2%380

relative noise is added to the validation set, which corresponds to approximately 72%381

of the simulation statistical noise estimated from Eq. 9. Results from neural network,382

not shown here, are comparable within 30%, with RBF prediction being slightly more383

accurate. More inference skill metrics are listed in Table 3, for different levels of added384

noise. As expected, our model predictive skill decreases as noise is added, and the max-385

imum absolute error is found to increase by a factor two for a level of added noise of ap-386

proximately 2%.387

3.2 Density Prediction388

While our primary objective is to infer ionospheric plasma flow velocities, it is in-389

teresting to explore the possibility for the proposed instrument to be used to infer other390

physical quantities. This is motivated by the fact that the currents collected by the many391

segments in the meter, and their relative values, are sensitive to several satellite plasma392

environment parameters, including ion densities and masses, ion temperatures, ram, and393

transverse velocities, and satellite potentials. Models were constructed for the plasma394

density using both RBF and neural network regression, and both are found to yield in-395

ferences with comparable skills. Here, however, considering the nearly two orders of mag-396

nitude range over which densities vary in our solution library and the fact that the den-397

sity is a positive definite quantity, the cost function chosen in the construction of the mod-398

els consists of the maximum relative error (in absolute value) over the training data set.399

This is preferred to the absolute error because, with the latter, models can be constructed400

with excellent skills for the larger densities, but poor ones for lower densities. Among401

the several G functions tested, the best one for predicting density was g(x) = x5. Here,402

5 pivots were used as a good balance between training and validation inference skills. 500403

entries were used to train models using neural networks, with a four-layer network with404

19, 15, 7, and 1 nodes. Figure 10 shows correlation plots of inferred density, as a func-405

tion of actual densities obtained with neural network (left) and RBF (right) regression,406
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Figure 10. Predicted densities vs. densities used in simulation obtained by minimizing the

maximum relative error. The neural network prediction with 500 points is shown on the left (rel-

ative error 27%) and the RBF predicted density using 5 pivots is shown on the right (relative

error 23%). The dotted line corresponds to a perfect correlation between predictions and actual

densities.

for the validation set without the addition of statistical noise. Both regression techniques407

yield comparable predictive skills, with maximum relative errors of 27% and 23%, and408

root-mean-square relative errors of 7.4% and 11% respectively for the neural network and409

RBF. As for the transverse flow velocity, the models’ robustness to statistical noise was410

assessed by adding random noise to the currents collected by each segment, as per Eq.411

10. The impact on predictive skills is given in Table 3, which again shows a degradation412

of skill with an increase in the level of noise.413

4 Summary and conclusion414

Results are presented for a particle sensor, which could be mounted on satellites,415

to infer in situ transverse plasma flow velocities. The device consists of several electri-416

cally biased segments at the base of a conical enclosure, and a circular ring on the top417

aperture, from which currents are measured. Three-dimensional kinetic particle in cell418

(PIC) simulations are made to construct a solution library and data sets, for plasma en-419

vironment conditions of relevance to satellites in low Earth orbit. The symmetry of the420

device enables the construction of data sets for transverse velocities directed in the full421

360◦ in the plane perpendicular to the ram direction of plasma flow velocities, from sim-422

ulations made in only a 30◦ sector. Owing to the large computational resources required423

to carry out kinetic simulations, symmetry is key in reducing the required number of sim-424

ulations. Training and validation data sets, constructed with our solution library, are used425

to construct regression models capable of inferring transverse velocities and plasma den-426

sities. Two approaches are assessed for constructing such models, consisting of radial ba-427

sis function, and neural network regressions. The two approaches are found to have com-428

parable skills for inferring both transverse velocities, and plasma densities. With the con-429

figuration considered, it was not possible to make an accurate inference of the plasma430

flow speed in the ram direction, because variations in that speed have a similar effect to431

variations in the plasma density. Better inference of the ram speed should nonetheless432

be achievable by using a separate, or integrated retarding potential analyzer as illustrated433

in Fig. 1.434

The level of statistical noise in the collected currents, associated with the discrete435

nature of kinetic simulations, explains in part the relatively small discrepancies between436

our model predictions and actual values in the data sets. Considering that simulations437

are made with significantly fewer particles than there would be in an actual plasma, the438
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statistical uncertainties in our simulated currents are larger than those that would oc-439

cur in space under similar conditions. The tolerance of our models to statistical noise440

is assessed by adding varying levels of normally distributed noise to the currents in our441

validation sets, in addition to the numerical simulation noise mentioned above. The skill442

of both RBF and neural network regressions decreases as noise is added, and it is esti-443

mated that an additional 2% relative noise leads only to approximately doubling in the444

uncertainty of model inferences in both cases.445

Several approximations were made in the simulations used to construct our train-446

ing and validation sets. In particular, the presence of a satellite bus was not taken into447

account, which is justified if the flow meter is mounted on the ram face of a satellite, and448

the fact that satellites in low Earth orbit have supersonic ram velocities. The geomag-449

netic field was also neglected, which is justified by the fact that typical ion thermal ion450

gyro-radii is a factor 10 or more, larger than the size of the sensor. The neglect of so-451

lar illumination and photoelectron emission is valid when the satellite is on the night side452

of its orbit. When the satellite is sunlit, however, it would be possible for the negatively453

biased ring at the sensor aperture, to emit photoelectrons which, owing to the negative454

bias, would be repelled, and appear as collected positive current. Solar UVs could also455

enter the aperture and reach directly, or indirectly through multiple reflections, the pos-456

itively biased segments. This in turn would result in photoelectrons being emitted in-457

side the flow meter which, owing to the positive bias of the segments at the base, would458

likely be attracted back to the segments, albeit, not necessarily at the exact position where459

they were emitted. This, and the exposition of the positive ring at the aperture, would460

likely affect measured currents, and require corrections in the models presented above461

to infer plasma parameters. These effects should be included in models constructed to462

support missions, in which specific spacecraft geometry, orbital parameters, and expected463

range of plasma environment parameters would be taken into account. Such an analy-464

sis is of course well beyond the scope of this preliminary study, as it would require ac-465

counting for a broader range of parameters and environmental conditions, and would re-466

quire significantly more simulations. Considering the investment and years of prepara-467

tion preceding a launch, such an investment, enabling better data acquisition, should nonethe-468

less be well justified.469
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