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Abstract

Sea surface temperature (SST) observations made at ships are distributed irregularly in space and time and are affected by

systematic biases and random errors. Such observations are often “binned”: split into samples, contained within “bins” -

grid boxes of a space-time grid (1oX1o monthly bins are used here), and their statistics are computed. Bin averages often

serve as gridded representations of such data, thus requiring reliable uncertainty estimates, which for ship observations are

particularly important because of their domination in the early observational records. Here ship SST observations for 1992–

2010 are compared with an independent high-resolution satellite-based SST data set. To remove systematic biases, seasonal

means were subtracted from the difference between bin-averaged data sets. In more than 66%(50%) of locations with binned

temporal coverage exceeding 50%(66%), the magnitude of remaining anomalies agreed within 20%(10%) with random error

model estimates. Separate estimates for sampling and measurement error components were obtained.
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Key Points:5

• Relative biases between SST data sets from ships and satellites, averaged to one6

degree monthly bins, are estimated as climatological means7

• Magnitudes of difference anomalies between one degree monthly averages of SST8

from ships and satellites agree with the random error model9

• Separate estimates are obtained for sampling and measurement error components10

of the total error in bin averages of ship SST observations11
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Abstract12

Sea surface temperature (SST) observations made at ships are distributed irregularly in13

space and time and are affected by systematic biases and random errors. Such observa-14

tions are often “binned”: split into samples, contained within “bins” – grid boxes of a15

space-time grid (1◦×1◦ monthly bins are used here), and their statistics are computed.16

Bin averages often serve as gridded representations of such data, thus requiring reliable17

uncertainty estimates, which for ship observations are particularly important because18

of their domination in the early observational records. Here ship SST observations for19

1992–2010 are compared with an independent high-resolution satellite-based SST data20

set. To remove systematic biases, seasonal means were subtracted from the difference21

between bin-averaged data sets. In more than 66%(50%) of locations with binned tem-22

poral coverage exceeding 50%(66%), the magnitude of remaining anomalies agreed within23

20%(10%) with random error model estimates. Separate estimates for sampling and mea-24

surement error components were obtained.25

Plain Language Summary26

Sea surface temperature (SST) is an important climate variable. SST observations27

made at ships are distributed irregularly in space and time and are affected both by sys-28

tematic biases and randomly-varying measurement errors. To make them easier to use,29

such data sets are often “binned”, i.e., split into samples contained within “bins”, which30

usually are grid boxes of some space-time grid (monthly 1◦ longitude by 1◦ latitude bins31

are used here), and the statistics of these binned samples are computed. Bin averages32

often serve as gridded representations for data sets of ship observations; hence their un-33

certainty estimates have to be reliable. This is especially important since ship observa-34

tions dominate early on in the historical observational record. Ship SST observations for35

1992–2010 are compared here with an independent high-resolution satellite-based SST36

data set. To remove systematic biases, seasonal means were subtracted from the differ-37

ence between bin-averaged versions of these data sets, and the remainder was interpreted38

as a sum of random errors. In more than 66%(50%) of locations where binned tempo-39

ral coverage exceeded 50%(66%), the remainder’s magnitude agreed within 20%(10%)40

with the random error model estimates. Error components due to incomplete sampling41

and due to measurement error were estimated.42

1 Introduction43

Sea surface temperature (SST) is one of the “essential” climate variables (Bojinski44

et al., 2014), particularly well-suited for monitoring changes in the Earth’s mean surface45

temperature and very visible in the climate change debate (Hartmann et al., 2013). More46

than two centuries of SST observations together with other in situ data for surface ocean47

are assembled in the International Comprehensive Ocean-Atmosphere Data Set (ICOADS,48

Woodruff et al., 1987; Freeman et al., 2017). These observations are irregularly distributed49

in space and time. A typical preparatory step for their use in climate studies is “binning,”50

i.e., splitting them into subsamples, contained in non-overlapping spatiotemporal “bins”,51

usually grid boxes of a regular space-time grid (hereinafter, “bins” are monthly 1◦×1◦52

grid boxes), and reporting statistical summaries of each bin’s sample, e.g., number of ob-53

servations No in the bin, their sample mean Mo, standard deviation (SD) So, etc. By54

construction, each of these statistics forms a gridded field, albeit usually incomplete. In55

lieu of averages over the complete bin’s volume, which are generally unavailable, bin means56

Mo (a.k.a. “super-observations”: Smith & Reynolds, 2005; Kennedy, 2014) are often used57

as input data for objective analyses or data assimilation; hence having reliable uncer-58

tainty estimates for binned data averages is important. For ship data this importance59

is especially high because of ships’ domination, as an observational platform, in the early60

part of historical data record.61
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If binned observations were independent and identically distributed (i.i.d.) with62

variance63

σ2
Bo

def= ES2
o , (1)64

the error SD estimate (ESDE) for Mo would be65

eMo
def=σBo/

√
No . (2)66

Hereinafter label “def” above the “=” sign introduces an expression on the left of this67

sign as denoting the expression on its right, and E denotes mathematical expectation.68

Error estimates computed by (2), but with σBo calculated as the root-mean-square (RMS)69

over the best data coverage period of all bins’ SDs in that location, was introduced by70

Kaplan et al. (1997) and used for objective analyses of historical SST observations by71

Kaplan et al. (1998), Ilin and Kaplan (2009), and, with further modifications to σBo es-72

timate, by Karspeck et al. (2012). Their analyzed fields and uncertainty estimates pro-73

vide some indirect validation for such uses of formula (2).74

However, a direct comparison of the RMS difference between ICOADS bin means75

and satellite SST data with error estimates based on (2), while showing general large-76

scale agreement between global patterns of error magnitude, had many regional and smaller-77

scale differences (Rayner et al., 2010, cf. their Figures 1e vs. 1f). There were many pos-78

sible reasons for this lack of detailed agreement: likely failure of the i.i.d. assumption,79

since the binned samples included observations from different platform types (ships, moor-80

ings, drifting buoys), obtained by different observational methods and affected by biases81

associated with particular methods of observations, platform types, or individual plat-82

forms (e.g., persistent thermometer biases on individual ships). Furthermore, the inter-83

pretation of that comparison was complicated by the dependence of the satellite-based84

SST data set on the in situ observations themselves.85

A high-resolution interpolated SST analysis product (available on a daily 0.05◦×0.05◦86

grid), based on the satellite data, independent of the concurrent in situ SST observations,87

and accompanied by verified uncertainty estimates, had become available several years88

ago (Merchant et al., 2014). The actual RMS differences for 1992-2010 between bin-averaged89

SST from ship observations and from this independent satellite-based analysis are com-90

pared here with their estimates based on the random error model and the analysis un-91

certainty estimates. While the bias structure of ship SST observations is complicated and92

remains a subject of active research (Kent et al., 2017), it is hypothesized here that a93

large part of biases in bin-averaged ship SST data can be approximated by its seasonally-94

dependent component. Once the climatological average is removed from the difference95

between ship and satellite bin means, the residual anomaly is treated as a combination96

of random errors. Separate estimates are obtained for sampling and measurement error97

components in bin-averaged ship SST data.98

Section 2 describes data sets used and their pre-processing for this study. Section 399

presents error models, their estimates, and the technique of their comparison with the100

RMS of difference anomaly between bin-averaged versions of ICOADS ship SST and the101

satellite analysis product. Section 4 presents the results, which are discussed in section 5.102

Conclusions are given in section 6.103

2 Data104

2.1 High-resolution satellite SST analysis product105

High-resolution globally-complete satellite SST data set, independent of in situ data106

(Merchant et al., 2014), produced within the Climate Change Initiative (CCI) of the Eu-107

ropean Space Agency (ESA), is used. It is based on the consistent re-processing of ma-108

jor global streams of the infrared satellite SST data, namely, the data from (Advanced)109

–3–
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Along-Track Scanning Radiometer and from the Advanced Very High Resolution Ra-110

diometer missions, with the deliberate avoidance of product dependency on the concur-111

rent in situ SST observations (coefficients in SST retrievals were computed by optimal112

estimation, based on the atmospheric radiative transfer simulations, rather than by best-113

fitting in situ SST observations). In addition to the more traditional “skin” SST, the time-114

adjusted temperature at 20 cm depth was also produced, by modeling the near-surface115

thermally-stratified ocean layer. These temperature values with their uncertainty esti-116

mates were fed into the optimal interpolation system for the U.K. Met Office Ocean Sea117

Surface Temperature and Sea Ice Analysis (OSTIA, Donlon et al., 2012; Roberts-Jones118

et al., 2012, 2016), producing globally-complete ocean temperature fields at 20 cm depth,119

0.05◦≈6 km spatial resolution, interpretable as local-time daily averages, with uncertainty120

estimates, for 09/1991–12/2010. This product, known as ESA SST CCI Analysis, ver-121

sion 1.0, hereinafter will be referred to as “CCI Analysis” or simply “CCI.” The period122

of complete 19 years (1992–2010) and 75◦S–75◦N global ocean domain will be used.123

2.2 Ship Observations of SST124

Ship observations of SST in ICOADS (Release 3.0; Freeman et al., 2017) were iden-125

tified by the “Platform Type” indicator value (PT=5), corresponding to the “ship” ob-126

servational platform type, and put through the ICOADS own quality control (QC) sys-127

tem with settings for the “enhanced Monthly Summary Trimmed Group”. For each ship128

SST observation o that passed QC, its local time and date were computed and included129

into its record (only Coordinated Universal Time and date are in the ICOADS own data130

format). Then “match-up” SST value ao and its uncertainty SD eao from the CCI Anal-131

ysis to this ship observation o were extracted and also added to the record for o. Match-132

up values from the CCI Analysis to the given ship observation are the analyzed SST value133

and its uncertainty SD for the daily 0.05◦×0.05◦ grid box within whose time-space lim-134

its this ship observation was made. (A small number of ICOADS ship SST observations135

that passed QC but did not have CCI Analysis match-up values were excluded from this136

study.)137

2.3 Data Preparation138

Consider bin B, representing a grid box of a regular monthly 1◦×1◦ grid, and a sam-139

ple Bo of No SST observations from ships that were taken within its space and time lim-140

its and successfully passed ICOADS QC:141

Bo
def= {o1, o2, · · · , oNo

} .142

This “binned” sample is characterized by its mean Mo and SD So, as follows:143

Mo
def=

1
No

No∑
i=1

oi , S2
o

def=
1

No−1

No∑
i=1

(oi−Mo)
2
. (3)144

Note that So can only be computed if No >1. Therefore bins with only one ship obser-145

vation (No=1) form a special class of data samples: their means, but not variability can146

be estimated directly from their data. Dealing with this more complicated subset is left147

for further investigaton, and only bins with No≥2 are considered in this study.148

Consider also a set Ba of Na SST values from the CCI Analysis for all daily 0.05◦×0.05◦149

grid boxes contained within that same bin B as above:150

Ba
def= {a1, a2, · · · , aNa} .151

Its statistics Ma and Sa are computed similarly to (3):152

Ma
def=

1
Na

Na∑
j=1

aj , S2
a

def=
1

Na−1

Na∑
j=1

(aj−Ma)2 . (4)153
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Unless the land or ice cover are present within the bin B, the number of data points in154

Ba is quite large: typically, Na ∼ 20×20×30 � No for ocean locations. In fact, con-155

straint Na≥2 is satisfied automatically for all non-empty binned samples Ba from the156

CCI Analysis.157

Recall that for each oi ∈ Bo, its CCI SST match-up ao
i has been identified and158

stored in the record for oi (Section 2.2). Therefore it is easy to assemble a sample of CCI159

Analysis match-ups to ship observations in Bo:160

Bao
def= {ao

1, a
o
2, · · · , ao

No
}161

and to compute its statistics Mao and Sao analogously to (3). Additionally, differences162

between ship observations and their CCI Analysis SST match-ups163

di
def= oi−ao

i , i = 1, · · · ,No (5)164

are binned as well, resulting in the sample165

Bd
def= {d1, d2, · · · , dNo

}166

and its bin statistics Md and Sd.167

It will prove useful to have bin statistics for CCI Analysis uncertainties pre-computed168

as well. These are calculated in exactly the same way as was done above for correspond-169

ing SST values. Specifically, let170

Bea
def= {ea

1 , ea
2 , · · · , ea

Na
},171

where each ea
j is the uncertainty SD for the CCI Analysis SST value aj ∈ Ba and com-172

pute Mea, Sea analogously to (4). For the sample of the CCI Analysis uncertainty value173

match-ups to the ship observations in B174

Beao
def= {eao

1 , eao
2 , · · · , eao

No
},175

where each eao
i is the uncertainty SD for the CCI Analysis SST value ao

i ∈ Bao and com-176

pute Meao, Seao analogously to (3).177

Described above calculations of Mx and Sx are done for all monthly 1◦×1◦ bins178

with sample sizes larger than one, i.e., for bins with No≥2, when x = o, ao, d, or eao,179

and for all bins with non-empty samples when x = a or ea. Temporal attribution of180

bin statistics Mx(y, m), Sx(y, m) is done using climatological (calendar) month m =181

1, · · · , 12 (January–December) and year y = 1, · · · , 19 (corresponding to 1992–2010).182

Depending on location, statistics Mx(y, m), Sx(y, m) for x = o, ao, d, and eao might183

not be availabe for all (y, m) combinations. To simplify the formal treatment of their tem-184

poral averaging, for each location if there are Ym >0 years for month m with No ≥2,185

other years are skipped, while available years are renumbered as y = 1, · · · , Ym for that186

month. If only M <12 climatological months are available, these are renumbered as well187

from 1 to M . This change in temporal arguments is applied to statistics No and Mx, Sx188

for x = o, ao, d, and eao, as well as for Ma and Mea, even though the latter two are189

available for all (y, m) for bins in ocean locations; statistics Na, Sa, Sea remain attributed190

to the full set of months and years in 1992-2010 period.191

With these definitions, available bin averages of SST from ship observations Mo192

and corresponding bin averages from CCI Analysis Ma have the same temporal argu-193

ments, with the timeseries length194

N
def=

M∑
m=1

Ym . (6)195

Hence for their differences196

dM
def=Mo −Ma , (7)197

–5–
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the full period RMS is computed as198

D def=

[
1
N

M∑
m=1

Ym∑
y=1

dM(y, m)2
]1/2

. (8)199

3 Methods200

3.1 Models and assumptions201

CCI Analysis values aj are estimates of water temperature at 20 cm depth, aver-202

aged over daily 0.05◦×0.05◦ grid boxes. Corresponding “true” values taj are averages of203

true water temperature t at 20 cm depth over such grid boxes, so for values within bin204

B205

taj = aj + εa
j , j = 1, · · · ,Na ; (9)206

Eεa
j = 0 , E

(
εa

j

)2 =
(
ea

j

)2
, j = 1, · · · ,Na , (10)207

where εa
j are the CCI analysis errors. These are assumed uncorrelated with the analyzed208

values aj , since the CCI Analysis is a form of optimal interpolation (Lorenc, 1986). Anal-209

ysis errors for different grid boxes, however, are not mutually independent, especially when210

these are not greatly separated in time and space. CCI Analysis uses the increased range211

(20–350 km) of spatial decorrelation scales of background error that resulted in improved212

feature resolution (Roberts-Jones et al., 2016), hence the analysis error is likely domi-213

nated by spatial scales larger than 1◦×1◦ . Since the OSTIA background solution uses214

day-to-day persistence and relaxes to reference climatology with the 30 day decorrela-215

tion time scale (Donlon et al., 2012), a near-perfect correlation of the analysis error within216

monthly 1◦×1◦ bins is assumed here:217

E
(
εa

j εa
k

)
≈ ea

je
a
k , j, k = 1, · · · ,Na . (11)218

For conceptual simplicity, the same “truth” definition, as for the CCI Analysis (9),219

is used for ship observations as well:220

oi = tao
i + b + εo

i , i = 1, · · · ,No , (12)221

where tao
i is true 20 cm depth temperature averaged over the daily 0.05◦×0.05◦ grid box222

containing ship observation oi, bias b is assumed constant within each 1◦×1◦ monthly223

bin, thus it does not depend on i in (12). Measurement errors εo
i are assumed indepen-224

dent of true temperature variations tao
i and i.i.d. within each bin, with225

Eεo
i = 0, E (εo

i )
2 = σ2

o, i = 1, · · · ,No , (13)226

where σ2
o is an (unknown) measurement error variance.227

Introduce bin average and intra-bin variance of true SST228

θ
def=Mta , υ2 def=

Na − 1
Na

S2
ta , (14)229

where Mta and Sta are the mean and variance of the set of true SST values in the bin230

B:231

Bta
def= {ta1 , ta2 , · · · , taNa

}.232

Note that υ definition above changes the denominator of S2
ta from Na−1 to Na, since (14)233

uses discrete analogues of the true value integrals over the bin, rather than statistical234

estimates.235

–6–
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Another important assumption is that times and locations of ship observations are236

random and uniformly distributed over the bin’s volume. Hence the true SST match-237

ups to them form a set of No equiprobable draws238

Btao
def= {tao

1 , tao
2 , · · · , tao

No}239

from the full set Bta of the true SST values in the bin. Based on statistical theorems that240

lay the foundation of the classical Monte Carlo method for evaluating definite integrals241

(e.g., Section 3.2 of Robert & Casella, 2004), sample mean Mtao and variance S2
tao of242

this set of random draws Btao are unbiased estimates of the true mean and variance of243

the bin244

EMtao = θ , ES2
tao = υ2 , (15)245

and the error of sample mean, a.k.a. sampling error,246

εs
def=Mtao − θ247

has variance248

Eε2
s = υ2/No (16)249

(for detailed derivation see Section 2.10 of Cochran, 1997).250

3.2 Single bin statistics251

3.2.1 CCI Analysis samples252

Averaging equations (9) over j and using (14), obtain253

θ = Ma +Mεa, (17)254

where Mεa is the CCI Analysis error, averaged over the bin. Based on (10) and (11),255

EMεa = 0,256

e2
Ma

def= EM2
εa =

1
N 2

a

Na∑
j,k=1

E
(
εa

j εa
k

)
≈ 1
N 2

a

Na∑
j,k=1

ea
j ea

k =
1
N 2

a

Na∑
j=1

ea
j

2= M2
ea. (18)257

Subtracting (17) from (9), averaging squares of both sides over j, find, using (14),258

for mathematical expectation of both sides259

Na

Na − 1
υ2 = ES2

a + ES2
εa , (19)260

where S2
εa is the sample variance of the CCI analysis error in the bin. Using (10), (11),261

and (18), derive262

ES2
εa =

1
Na − 1

No∑
i=1

E(εa
i )2 − Na

Na − 1
EM2

εa = S2
ea . (20)263

Substituting (20) into (19), find that264

υ̂2 =
Na − 1
Na

(
S2

a + S2
ea

)
, (21)265

is an unbiased estimator of υ2.266

Subselecting from equations (9) those for the CCI analysis match-ups ao to ship267

observations from Bo,268

tao
i = ao

i + εao
i , i = 1, · · · ,No , (22)269

analogously to the derivation of (21), find that270

υ̂2
o = S2

ao + S2
eao , (23)271

is another unbiased estimator of υ2, but based on a small subset of CCI Analysis grid272

points (No match-ups to ship observations) than the full set of Na CCI Analysis points273

in B, used in (21).274

–7–
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3.2.2 Ship observations sample275

Averaging both sides of (12) over i, obtain276

Mo = Mtao + b +Mεo, (24)277

where Mεo is the bin mean of measurement errors with, based on (13),278

EM2
εo = σ2

o/No . (25)279

Subtracting (24) from (12), averaging squares of both sides over i, find for mathemat-280

ical expectation of both sides, using (13), (15), and recalling (1),281

σ2
Bo = ES2

tao + ES2
εo = υ2 + σ2

o . (26)282

Inserting tao
i from (22) into (12), obtain, recalling (5),283

di = b + εo
i + εao

i , i = 1, · · · ,No . (27)284

By taking sample variances of both sides of (27) and considering their expectations, find285

an unbiased estimate of ship SST measurement error σ2
o:286

σ̂2
o = S2

d − S2
eao . (28)287

3.2.3 Bin mean differences288

For differences between bin-averaged ship observations and CCI Analysis, defined289

by (5):290

dM = b + εdM , (29)291

where292

εdM
def= εs +Mεo +Mεa ,293

and based on (16), (18), (25), and (26),294

EεdM = 0 , e2
dM

def= Eε2
dM = σ2

Bo/No +M2
ea . (30)295

3.3 Statistics for a temporal sample of bins296

3.3.1 Actual RMS differences297

Consider a temporal sample of bin statistics for a certain location of the bin. Due298

to (29), straight RMS D of differences dM(y, m), calculated by (8), is affected by bias299

b. Bias estimate b̂c(m) is obtained by climatological averaging of dM(y, m):300

b̂c(m) =
1

Ym

Ym∑
y=1

dM(y, m) , m = 1, · · · ,M . (31)301

The RMS of the differences dM with the estimated bias removed, taking into account302

the reduction in the number of degrees of freedom (DOF) from (6) to303

M∑
m=1

(Ym−1) = N−M ,304

becomes305

D′ =

[
1

N−M

M∑
m=1

Ym∑
y=1

(
dM(y, m)− b̂c(m)

)2]1/2

. (32)306

307

–8–
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(a) % of monthly 1◦×1◦ SST bins with No≥2, 47.8% (b) RMS D of ship–satellite difference dM, 0.99◦C
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(c) Zonal means of SST differences dM,◦C, between bin-averaged ship observations and CCI Analysis
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(d) Number of DOF in anomalies, 71.3 (e) RMS D′ of ship–satellite anomaly dM−b̂c, 0.91◦C
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(f) Estimate E of binned anomaly RMS D′, 0.74◦C (g) Relative discrepancy ρ, 81%
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Figure 1. Comparison of monthly 1◦×1◦ bin-averaged (No≥2) ICOADS ship SST obsera-

tions with the ESA CCI Analysis for 1992-2010: (a) Percentage of ICOADS ship SST bins with

No≥2 among all bins with data (No≥1); (b) RMS D, ◦C, of difference dM between bin-averaged

ship and satellite data; (c) Zonal averages of differences dM, ◦C; (d) DOF in anomalies of bin-

averaged ship data (zero DOF grids are shown as missing data, in white); (e) RMS D′, ◦C, of

ship–satellite difference anomalies dM-b̂c; (f) Estimate E , ◦C, of ship–satellite difference anomaly

RMS D′; (g) Relative difference ρ, %, between D′ and E . Numbers at the end of panel labels are:

for (a),(d) – global averages of displayed fields; for (b),(e),(f),(g) – global RMS of displayed fields.

3.3.2 Estimated RMS differences and errors308

Based on (29) and (31),309

ED′ 2 =
1

N−M
E

 M∑
m=1

Ym∑
y=1

(
εdM(y, m)− 1

Ym

Ym∑
q=1

εdM(y, m)

)2 =310

=
1

N−M

M∑
m=1

E
Ym∑
y=1

εdM(y, m)2 − 1
Ym

E

(
Y∑

q=1

εdM(y, m)

)2 =311

=
M∑

m=1

µm

Ym

Ym∑
y=1

edM(y, m)2 ,312

where313

µm
def= (Ym − 1)/(N−M) , m = 1, · · · ,M . (33)314

is the portion of the total DOF due to each climatological month m (note that
∑M

m=1 µm =315

1). Based on (30),316

edM(y, m)2 = σBo(m)2/No(y, m) +Mea(y, m)2317

and318

ED′ 2 =
M∑

m=1

µmσBo(m)2/N h
o (m) +

M∑
m=1

µmMq
ea(m)2 , (34)319

where320

N h
o (m)

def=

[
1

Ym

Ym∑
y=1

No(y, m)−1

]−1

, Mq
ea(m)

def=

[
1

Ym

Ym∑
y=1

Mea(y, m)2
]1/2

.321

are harmonic No(y, m) and quadratic Mea(m) means of No and Mea, respectively, over322

available years y = 1, · · · , Ym.323

An estimate of σBo(m)2 is computed as pooled variance (Section 9.2.16 in Von Storch324

& Zwiers, 2001) of binned samples over all available years y = 1, · · · , Ym:325

σ̂2
Bo(m)

def=
Ym∑
y=1

γ(y, m)So(y, m)2, m = 1, · · · ,M, (35)326

where weighting coefficients are327

γ(y, m)
def= [No(y, m)− 1] /Γ(m), y = 1, · · · , Ym, m = 1, · · · ,M, (36)328

Γ(m)
def=

Ym∑
y=1

[No(y, m)− 1] , m = 1, · · · ,M . (37)329
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Empirical probability of |ρ| as a function of DOF in
anomalies of bin-averaged ship SST observations
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Figure 2. Empirical probability (color) of |ρ| calculated for 10%-wide segments of 0–100%

interval (vertical axis) for each of 12-wide sub-ranges of the complete 1–216 range of the possi-

ble DOF in the climatological anomaly sample for 1992-2010 (horizontal axis). White lines are

contours of cumulative empirical probability of |ρ|, conditional on the given DOF range, corre-

sponding to the values of 0.5, 0.67, 0.95, and 0.99, as labels indicate.

Substituting estimate σ̂Bo(m)2 from (35) for the value of σBo(m)2 in (34), obtain330

an unbiased estimate for D′ 2:331

E2 def= E2
Mo + E2

Ma , (38)332

where the terms in the right-hand side are estimates of error variances in bin averages333

of ship observations334

E2
Mo

def=
M∑

m=1

µmσ̂Bo(m)2/N h
o (m) (39)335

and of the CCI Analysis336

E2
Ma

def=
M∑

m=1

µmMq
ea(m)2 . (40)337

4 Results338

Excluded from this study monthly 1◦×1◦ bins with a single ship SST observation339

constitute a surprisingly large percentage (31.8%) of all ICOADS 1992-2010 monthly 1◦×1◦340

bins with ship SST observations (with any No >0) Figure 1a shows local percentages341

of bins included in this study (No ≥2) among all bins with ship SST data (No >0), iden-342

tifying better-sampled areas in North Atlantic and North Pacific Oceans and along ship343

tracks. Figure 1b shows RMS D of differences dM between bin averages of ship SST ob-344

servations and CCI Analysis for 1992-2010 (see equations (7) and (8)).345
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(a)ERMSE EMo of bin-averaged ship SST, 0.67◦C (b)ERMSE EMa of bin-averaged CCI, 0.31◦C
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(c)Intra-bin SD of ship observations σ̂∗Bo, 1.20◦C (d) Error reduction factor 1/
√
N ∗, 0.57
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Figure 3. Components of estimated RMS difference anomaly between bin-averaged ship SST

observations and CCI Analysis: (a) ERMSE EMo of bin-averaged ship SST, ◦C; (b) ERMSE EMa

of bin-averaged CCI Analysis SST, ◦C; (c) Intra-bin SD σ̂∗
Bo of ship observations, ◦C; (d) Aver-

age error reduction factor 1/
√
N ∗; (e) Sampling ESDE υ̂∗o from the CCI Analysis match-ups to

ship observations, ◦C; (f) Measurement ESDE σ̂∗
o of ship SST, ◦C; (g) Sampling ESDE υ̂∗ from

the full CCI Analysis, ◦C; (h) ship SST random ESDE from Kent and Challenor (2006, their

Figure 2), ◦C; (i) same as (f), but in 30◦×30◦ averages, ◦C; (j) Relative difference ρ between (h)

and (i), %. Numbers at the end of panel labels indicate displayed fields’ global RMS.

These differences have substantial mean and seasonal components, as seen in the346

time-latitude plot of zonally-averaged dM (Figure 1c). Subtracting from dM their cli-347

matological mean reduces the DOF by one for each climatological month, represented348

in the data (Figure 1d), but even accounting for the reduced DOF, the RMS D′ of dM349

anomaly, calculated by (32) and shown in Figure 1e, is appreciably smaller than D (8%350

global RMS reduction).351

The difference dM anomaly is interpreted here as the sum of random errors in bin352

averages of ship observations and of CCI analysis; the estimate E of its RMS D′, based353

on this model, is computed by equation (38) and shown in Figure 1f. It matches D′ pat-354

tern (Figure 1e) in many details. To aid their visual comparison, their difference355

ρ = (D′ − E) /E356

is expressed as the percentage of the estimate E and is shown in Figure 1g, where large357

areas of the actual and estimated RMS agreeing within 10% or so are clearly seen.358

The areas of poor agreement in Figure 1g appear to colocate with areas of smaller359

DOF in Figure 1d. To quantify this relationship, the empirical probability of |ρ| in 10%360

intervals is shown in Figure 2 for different 12-wide DOF ranges of dM anomalies (1-12,361

13-24,..., 205-216). As DOF increases, |ρ| concentrates more in its interval of smallest362

values. For more than 67% of points where DOF exceeds 50% of its maximum value (108=363

0.5×12×(19-1)), |ρ|<20%; for more than half of the points, where for DOF exceeds 144364

(2/3 of its maximum), |ρ|<10%.365

The variance of difference anomaly between bin-averaged ship SST and CCI Anal-366

ysis is modeled by (38), as a sum of squares of two components: estimated RMS error367

(ERMSE) EMo of bin-averaged ship observations, calculated by (39) and shown in Fig-368

ure 3a, and ERMSE of bin-averaged CCI Analysis EMa, calculated using (40) and shown369

in Figure 3b. The former clearly dominates: the CCI analysis error represents only 17.6%370

of the global variance in the total ERMSE E (Figure 1f).371

As seen from (39), ERMSE for bin-averaged ship observations averages over the372

climatological month m products of intra-bin variance estimates σ̂Bo(m)2 with inverse373

harmonic means 1/N h
o (m) of observational counts. Figures 3c,d show square roots of these374

quantities averaged over available climatological months:375

σ̂∗Bo
def=

[
M∑

m=1

µmσ̂2
Bo(m)

]1/2

, 1/
√
N ∗ def=

[
M∑

m=1

µm/N h
o (m)

]1/2

, (41)376

where µm are defined by (33).377

Figure 3c shows, in effect, the ESDE for the bin-averaged ship SST, if all monthly378

bins in the given location only had single observations in them, while 3d shows the ESDE379

reduction factor due to the multiple observations. Because of No≥2 constraint, all val-380

ues shown in 3d do not exceed
√

1/2 ≈0.71; their global RMS is 0.57, and the reduc-381

tions to much smaller factors are relatively rare: the interquartile range is 0.51–0.64, and382

only 3.1% of shown grid boxes have a reduction factor below 0.3.383
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As seen from (26), the intra-bin variance σ2
Bo of ship observations consists of sam-384

pling and measurement error variance components. Using (23), (28), and pooled esti-385

mates like (35), these components can be estimated separately; with averaging analo-386

gous to (41), obtain387

υ̂∗2o =
M∑

m=1

µm

Ym∑
y=1

γ(y, m)
[
Sao(y, m)2 + Seao(y, m)2

]
, (42)388

σ̂∗2o =
M∑

m=1

µm

Ym∑
y=1

γ(y, m)
[
Sd(y, m)2 − Seao(y, m)2

]
, (43)389

where γ is defined by (36),(37). The intra-bin sampling υ̂∗o and measurement σ̂∗o ESDE390

for ship observations, computed by (42) and (43) are shown in Figures 3e,f. As with σ̂∗Bo,391

these are essentially ESDE components for a single observation, which are reduced by392

the factor 1/
√
N ∗ (Figure 3d), when more observations are available.393

5 Discussion394

5.1 Sampling error395

Estimate υ̂∗o , given by (42) is based on the match-ups of the CCI Analysis SST and396

its uncertainty to the ship SST observations, a relatively small data sample. An estimate,397

based on the equation (21) that uses full CCI Analysis and its uncertainty398

υ̂∗2 =
1

228

12∑
m=1

19∑
y=1

Na(y, m)− 1
Na(y, m)

[
Sa(y, m)2 + Sea(y, m)2

]
399

is shown in Figure 3g. Expectedly, this estimate is larger (by about 10% in areas of high400

DOF numbers) and smoother than the one based on the incomplete data (Figure 3e).401

It has the uncanny similarity in pattern, but generally is larger than the estimate pre-402

sented by Kennedy et al. (2011, their Figure 1d).403

5.2 Measurement error404

Kent and Challenor (2006) used the semivariogram method to estimate SST mea-405

surement error in 1970–1997 ICOADS data from ships. They identified pairs of ship SST406

observations made at the same hour and within 300 km of each other; squared differences407

between paired observations were binned by distance to construct the semivariogram;408

a linear fit to its points was extended towards zero distance separation to obtain the mea-409

surement error variance as the semivariogram’s nugget. Ship measurement ESDE in 30◦×30◦410

averages from Kent and Challenor (2006, their Figure 2) is compared here with the mea-411

surement error estimates σ̂∗o, averaged to the same 30◦×30◦ grid (Figure 3h,i). Two es-412

timates have a great deal of similarity (their pattern correlation is 0.75), despite the dif-413

ferences in the study period and estimation method. Relative difference ρ, shown in Fig-414

ure 3j has global RMS of 18.0%, with |ρ|≤10% in most of grid boxes. Grid boxes with415

|ρ| >10% are generallyly in the areas of poor data coverage (cf. Figure 1d).416

Kent and Berry (2008) introduced the measurement error model for marine obser-417

vations that combines random error with a “platform-dependent” bias or “micro-bias”,418

with the randomly distributed value over the platforms (ships). For this kind of error419

structure, if a bin contains many observations from a relatively small number of plat-420

forms, the error variance of its mean decreases inversely-proportionally to the number421

of platforms, rather than to the total number of observations. However, since moving422

ships, even at 14 knots (a relatively slow speed for modern ships), would cross the equa-423

torial 1◦×1◦ bin in less than six hours (a typical time interval between ship observations),424

multiple observations from the same ship would not typically appear in the same bin,425

thus making equation (2) usable in this study.426
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Kennedy (2014, Table 1) listed published in 1965-2011 ship SST measurement ESDE427

that did not separate micro-biases from the purely random error parts. There are 19 es-428

timates there, ranging from 0.11◦C to 3.5◦C, with the median of 1.2◦C, and 1–1.3◦C in-429

terquartile range. Depending on the way of averaging measurement error estimates and430

especially on the averaging domain, global estimates can change appreciably. (Kent and431

Challenor (2006) report their global ESDE for ship SST random error as 1.2◦C, if weighted432

by ocean area, and 1.3◦C, if weighted by number of observations.) Estimates σ̂∗o here433

can average to the global RMS of 1.14◦C (Figure 3f), 1.13◦C (Figure 3i), or 1.21◦C, if434

the latter is constrained to the exact domain, where estimates in Figure 3h (global RMS435

of 1.26◦C) are available.436

6 Conclusions437

Differences for 1992–2010 between monthly 1◦×1◦ bin averages (for bins that con-438

tain more than one observation) of ICOADS ship SST and of the ESA SST CCI Anal-439

ysis are presented here as the sum of their climatological bias component and remain-440

ing residuals (anomalies) with magnitudes that agree with the random error model in441

the areas of sufficient data coverage. The model assumes for ship observations the i.i.d442

measurement and sampling errors within bins and high intra-bin correlation for the CCI443

Analysis uncertainty. Location-dependent estimates of ship SST measurement and sam-444

pling error were obtained. Estimates of sampling error are similar in pattern, but larger445

than those previously published. Ship SST measurement error is consistent with previ-446

ous estimates in spatial pattern and global RMS (1.13-1.21◦C, depending on the aver-447

aging domain and procedure).448
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