
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
59
31
/v

1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Observing System Simulation Experiments double scientific return

of surface-atmosphere synthesis

Stefan Metzger1,1, David Durden2,2, Sreenath Paleri3,3, Matthias Sühring4,4, Brian J.
Butterworth3,3, Christopher R Florian5,5, Matthias R. Mauder6,6, David M. Plummer7,7,
Luise Wanner6,6, Ke Xu8,8, and Ankur Rashmikant Desai9,9

1NEON Program, Battelle
2Unknown
3Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison
4University of Hannover
5Battelle
6KIT
7Dept. of Atmospheric Science, University of Wyoming-Laramie
8Dept. of Climate and Space Sciences and Engineering, University of Michigan-Ann Arbor
9University of Wisconsin-Madison

November 30, 2022

Abstract

The observing system design of multi-disciplinary field measurements involves a variety of considerations on logistics, safety, and

science objectives. Typically, this is done based on investigator intuition and designs of prior field measurements. However, there

is potential for considerable increase in efficiency, safety, and scientific success by integrating numerical simulations in the design

process. Here, we present a novel approach to observing system simulation experiments that aids surface-atmosphere synthesis

at the interface of meso- and microscale meteorology. We used this approach to optimize the Chequamegon Heterogeneous

Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19). During

pre-field simulation experiments, we considered the placement of 20 eddy-covariance flux towers, operations for 72 hours of

low-altitude flux aircraft measurements, and integration of various remote sensing data products. High-resolution Large Eddy

Simulations generated a super-sample of virtual ground, airborne, and satellite observations to explore two specific design

hypotheses. We then analyzed these virtual observations through Environmental Response Functions to yield an optimal aircraft

flight strategy for augmenting a stratified random flux tower network in combination with satellite retrievals. We demonstrate

how this novel approach doubled CHEESEHEAD19’s ability to explore energy balance closure and spatial patterning science

objectives while substantially simplifying logistics. Owing to its extensibility, the approach lends itself to optimize observing

system designs also for natural climate solutions, emission inventory validation, urban air quality, industry leak detection and

multi-species applications, among other use cases.
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Abstract. The observing system design of multi-disciplinary field measurements involves a variety of considerations on 15 

logistics, safety, and science objectives. Typically, this is done based on investigator intuition and designs of prior field 

measurements. However, there is potential for considerable increase in efficiency, safety, and scientific success by 

integrating numerical simulations in the design process. Here, we present a novel approach to observing system simulation 

experiments that aids surface-atmosphere synthesis at the interface of meso- and microscale meteorology. We used this 

approach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density 20 

Extensive Array of Detectors 2019 (CHEESEHEAD19). 

During pre-field simulation experiments, we considered the placement of 20 eddy-covariance flux towers, operations for 72 

hours of low-altitude flux aircraft measurements, and integration of various remote sensing data products. High-resolution 

Large Eddy Simulations generated a super-sample of virtual ground, airborne, and satellite observations to explore two 

specific design hypotheses. We then analyzed these virtual observations through Environmental Response Functions to yield 25 

an optimal aircraft flight strategy for augmenting a stratified random flux tower network in combination with satellite 

retrievals. 

We demonstrate how this novel approach doubled CHEESEHEAD19’s ability to explore energy balance closure and spatial 

patterning science objectives while substantially simplifying logistics. Owing to its extensibility, the approach lends itself to 

optimize observing system designs also for natural climate solutions, emission inventory validation, urban air quality, 30 

industry leak detection and multi-species applications, among other use cases.  
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1 Introduction 

High-quality field data are the backbone of surface-atmosphere research. However, there are inevitable tradeoffs in any field 

measurement among cost, logistics, safety, and our ability to address science objectives. Most of the time, these tradeoffs are 

evaluated in a heuristic or haphazard approach, or at least with limited consideration of all possible options. Nevertheless, 35 

redundancy, experience, and good fortune usually save most field measurement Observing System Designs (OSDs) from 

failure. Inspired by Observing System Simulation Experiments (OSSEs) in the earth system sciences (Masutani et al., 2010; 

Hoffman and Atlas, 2016; Atlas et al., 2015) we contemplated whether this process could be improved. In particular, we note 

modern advances in conducting virtual experiments within high-resolution numerical simulations (NSs) of atmospheric 

turbulence (e.g., Steinfeld et al., 2007). We envisioned that such NSs could yield OSSEs that increase ‘scientific return on 40 

funding investments’, more effectively address field measurement objectives, and minimize problems that arise from safety, 

logistics, and cost. 

Here, we derive a novel approach to OSSEs that aids surface-atmosphere synthesis at the interface of meso- and microscale 

meteorology. We then apply it to preparing field campaign resources for the “Chequamegon Heterogeneous Ecosystem 

Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019” (CHEESEHEAD19; Butterworth et 45 

al., 2021). At the time of this study, the CHEESEHEAD19 field measurement campaign was to be conducted in northern 

Wisconsin, United States of America, from June to October of 2019, with the overarching science objective to examine how 

the atmospheric boundary layer (ABL) responds to spatial heterogeneity in the surface-atmospheric exchanges of heat and 

water. Further science objectives were to test whether resulting mesoscale atmospheric processes relate to the lack of energy 

balance closure frequently observed by eddy-covariance (EC) towers. Lastly, CHEESEHEAD19 sought to apply advanced 50 

analytics over a multi-scale set of observations to yield scale-aware, energy-balanced data products that help improve model 

representation of sub-grid processes. To that end, we wanted to harness the complementarity among various in-situ and 

remote-sensing measurement systems. 

However, the joint utility of these measurement systems for addressing the science objectives was not well characterized 

prior to the field measurement. Moreover, their joint utility is highly sensitive to the OSD including placement, and the 55 

resulting information overlap in space and time (Fig. 1). Consequently, CHEESEHEAD19 scientific return hinged on our 

ability to merge information among the perspectives of ground-based, airborne and space-borne measurements, and 

numerical models. Plentiful data that are insufficiently connected to infer meaning risks data deluge rather than the next 

interdisciplinary breakthrough. While advances in post-field data assimilation aim to rectify limited and variable information 

overlap statistically (Williams et al., 2009), only the careful OSD of the field measurements themselves can treat their root 60 

cause. We thus sought an approach that empowers making informed OSD choices for surface-atmosphere field 

measurements in advance of the experiment.  

https://doi.org/10.5194/amt-2021-86
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Figure 1. Space-time scope diagram for a surface-atmosphere synthesis observing system at the interface of meso- and microscale 65 
meteorology. The observing system consists of a hierarchy of ground-based (Ground), airborne (Air) and space-borne (Space) 

measurements, shown in relation to two principal approaches for scaling to an information continuum: pre-field observing system 

design and post-field data assimilation into earth system models. Modified after Metzger (2018). 

 

Simulation experiments involve asking what would happen in an imaginary scenario and trying to understand whether the 70 

predicted outcome is compatible with existing theory. This form of inquiry is not an invention of modern science, but can be 

traced back at least to the empirical thought experiments of ancient Greek philosophers (Brown and Fehige, 2019; 

Palmerino, 2018). Famously, Albert Einstein employed thought experiments for his theoretical generalizations, including in 

his works on special and general relativity (Norton, 1991). With the rise of NSs came the opportunity to increase the 

complexity and detail of thought experiments, such as how to design meteorological field measurements (e.g., Eddy, 1974; 75 

Gehrke et al., 2019; Cortina and Calaf, 2017). More frequently, however, these NSs were reserved for applications where 

real-world tests would have been impractical or impossible (e.g., Wiens et al., 2003). These NSs centered on prescribing and 

propagating a-priori knowledge, i.e. creating “data from knowledge”. As a result, the findings often remained subject to 

strong methodological assumptions that could not necessarily be met by real-world applications. More recently, the advent of 

data-intensive scientific discovery promises to offset some of these limitations by providing computational facilities that aid 80 

the inference of “knowledge from data”, including machine learning (Hey et al., 2009; Reichstein et al., 2019). We believe 

that ours is the first work that explicitly complements these paradigms of scientific knowledge creation for deriving surface-

atmosphere OSDs at the interface of meso- and microscale meteorology. 

https://doi.org/10.5194/amt-2021-86
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Previous studies employed data-intensive scientific discovery for post-field OSD assessments (e.g., Kumar et al., 2016; Chu 

et al., 2017; Mahecha et al., 2017; Koffi et al., 2013; Montanari et al., 2012; Loescher et al., 2014; Villarreal et al., 2019). In 85 

comparison, one innovation of the presented approach is that it provides design information prior to testing OSDs in the 

field. To achieve this, we expanded on recent studies of atmospheric turbulence in Large Eddy Simulations (LES; Sühring et 

al., 2018; Xu et al., 2020). Specifically, we computationally simulated virtual observations over the CHEESEHEAD19 

domain in decameter- and sub-second resolution. This “data from knowledge” feeds into a framework for data-intensive 

scientific discovery based on physics-guided Environmental Response Functions (ERFs; Metzger et al., 2013a; Metzger, 90 

2018; Xu et al., 2017, 2018). The resulting explicitness promises unprecedented realism and process inference in comparison 

to existing pre-field OSSEs that leverage “knowledge from data” principles (Hargrove and Hoffman, 2004; Kaminski et al., 

2012; Keller et al., 2008; Park and Kim, 2020; Ziehn et al., 2016; Lucas et al., 2015; Sulkava et al., 2011; Zhang and Pu, 

2010; Lauvaux et al., 2012). In the following, we derive this LES-ERF OSSE approach (in short “LES-ERF” hereafter) using 

the design of CHEESEHEAD19 airborne flux measurements as a specific application example. 95 

Airborne EC measurements have the particular benefit that they permit surface-atmosphere fluxes to be spatially resolved 

over a range of scales, from small, tower-sized flux footprints up to landscape scale. Thus, they build an important bridge 

among the differing scales of ground-based and space-borne measurements (Fig. 1). Moreover, these kinds of measurements 

have the particular advantage that they can capture dispersive fluxes resulting from mesoscale atmospheric processes, which 

we hypothesize to be a main reason for the long-standing energy balance closure problem of tower-based eddy-covariance 100 

measurements (Margairaz et al., 2020; Mauder et al., 2020). In comparison to other ground-based and space-borne 

measurements, aircraft can be deployed quite flexibly in space and time. They thus provide a key to maximize the joint 

scientific return of harnessing complementarity among various in-situ and remote-sensing measurement systems. However, 

airborne field campaigns are very costly and cannot be conducted continuously. Therefore, thorough planning of the flight 

strategy is of great importance. Previous large-scale field campaigns with similar airborne flux measurement objectives 105 

include the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE; Sellers et al., 

1988), the Boreal Ecosystem-Atmosphere Study (BOREAS; Sellers et al., 1995), the Northern Hemisphere Climate 

Processes Land-Surface Experiment (NOPEX; Halldin et al., 1999), the Lindenberg Inhomogeneous Terrain - Fluxes 

between Atmosphere and Surface: a Long-term Study (LITFASS-98; Beyrich et al., 2002) and LITFASS-2003 (Beyrich and 

Mengelkamp, 2006), MAtter fluxes in Grasslands of Inner Mongolia as influenced by stocking rate (MAGIM; Butterbach-110 

Bahl et al., 2011), ScaleX (Wolf et al., 2017) and others. In these campaigns the flight strategies were mostly based on 

experience and expert knowledge. Considerations included random and systematic errors (Lenschow et al., 1994) and the 

source area (or "footprint"; Kaharabata et al., 1997; Schuepp et al., 1990), sometimes supported by analyzing land-cover 

maps using Geographic Information Systems (Metzger et al., 2013a). However, measurement errors and source areas not 

only depend on the flight track itself but also vary with atmospheric conditions, such as stability, wind speed, and wind 115 

direction. Moreover, focusing solely on measurement errors can be misleading in relation to heterogeneity-induced signals 

and result in erroneous conclusions (Sühring and Raasch, 2013). 

https://doi.org/10.5194/amt-2021-86
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The aim of this manuscript is to derive the theoretical background of LES-ERF, and to demonstrate its application to the 

CHEESEHEAD19 OSD with focus on the EC flight strategy. Specifically, in the following sections we test the study 

hypothesis that CHEESEHEAD19 scientific return is sensitive to LES-ERF optimization. Two accompanying design 120 

hypotheses relate this sensitivity to the choice of flight patterns and flight sequence. Sect. 2 introduces the methodology 

beginning with CHEESEHEAD19 (Sect. 2.1), and then derives LES-ERF, the design hypotheses and candidate OSDs 

(Sects. 2.2–2.5). Sect. 3 presents the LES-ERF results, beginning with LES (Sect. 3.1) and ERF (Sect. 3.2) specifics, then 

evaluating the design hypotheses for each candidate OSD (Sect. 3.3), and providing CHEESEHEAD19 field campaign 

resources (Sect. 3.4). Sect. 4 discusses these LES-ERF results, in light of the CHEESEHEAD19 OSD (Sect. 4.1), possible 125 

benefits for coordinated environmental observations in general (Sect. 4.2), and remaining challenges and future work 

(Sect. 4.3). Sect. 5 then summarizes our findings and provides an outlook. 

2 Materials and methods 

2.1 CHEESEHEAD19 

The CHEESEHEAD19 study (Butterworth et al., 2021) was to be comprised of a four-month field measurement campaign to 130 

investigate how land surface heterogeneity influences energy balance closure. The energy balance closure problem refers to 

the situation, common in EC measurements, whereby downward energy from radiation and ground heat flux exceeds the 

measured upward energy from sensible and latent heat fluxes (Foken et al., 2011; Mauder et al., 2020). Previous studies have 

indicated that heterogeneity does impact energy balance (Stoy et al., 2013; Xu et al., 2016). The CHEESEHEAD19 project 

proposed to evaluate the hypothesis that mesoscale features, driven by surface heterogeneity, are an important cause of energy 135 

balance non-closure (Charuchittipan et al., 2014; Foken et al., 2011; Mauder et al., 2007b; Gao et al., 2016). 

Due to a persistent mismatch between the scales of observations and models, the spatial and temporal scaling of surface fluxes 

is essential for evaluating theories on what happens within the sub-grid of atmospheric models, and how those feed back onto 

larger scale dynamics. Therefore, an additional science objective of the project was to use the unique, multi-scale set of 

observations to improve model representation of sub-grid processes and to assess the performance of ERFs for estimating the 140 

‘flux in a box’ from the domain volume (Metzger, 2018; Xu et al., 2018). 

The field measurement campaign was to be conducted within a 10 × 10 km domain of heterogeneous forest in northern 

Wisconsin, USA. It included patches of homogenous and mixed forests of evergreen, hardwood, and softwood deciduous trees, 

as well as grasses, wetlands, streams, and lakes with a characteristic surface length scale of 411±88 m (Xu et al., 2017). The 

domain was relatively flat, ranging from 455 m ASL in southwest to 500 m ASL in the northeast. Previous years’ data from 145 

the study area showed that the summer months are characterized by light surface winds (typically < 5 m s−1) coming 

predominately from the western hemisphere (180 – 360º) and daytime ABL heights ranging from 0.5 to 2.5 km above ground 

(mean of 1.5 km).  

https://doi.org/10.5194/amt-2021-86
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Figure 2. Set of candidate locations for EC towers, ABL measurements and UWKA candidate flight tracks (west-east pattern) with 150 

 

To measure fluxes (momentum, sensible heat, latent heat, CO2) across the domain, 20 above-canopy EC towers were proposed 

to be deployed over a range of vegetation types (Fig. 2). They would measure all components of the energy balance, including 155 

 net radiation, sensible and latent heat fluxes, and ground heat flux. The majority of towers were expected to be instrumented 

at 3 m ‒ 32 m above ground, equaling 3 m ‒ 15 m above the canopy depending on land cover. The exception would be the tall 

tower at the center of the domain which is an existing AmeriFlux supersite (US-PFa; Desai, 1996 - ) that has been measuring 

fluxes at 30 m, 122 m, and 396 m above ground for the past 26 years (1995 - 2020; Desai et al., 2015). 

The project also proposed to deploy a suite of remote sensing instruments (lidar, radar, sodar, ceilometers, interferometers) for 160 

measuring the mesoscale atmospheric environment (profiles of wind, H2O, temperature, aerosols, ABL height). Aircraft and 

space-borne remote sensing would be used to map surface characteristics that will be used for the data-driven scaling methods. 

This would include airborne hyperspectral imaging of the land surface properties. Additionally, a land surface temperature 

product was planned to be developed for the domain from a multi-sensor fusion of in situ thermal drone and infrared camera 

imagery, ECOSTRESS, Landsat, VIIRS and/or GOES (e.g., Wu et al., 2013). 165 

Aircraft measurements would be used to link the differing scales of ground-based and space-borne observations over the 

domain. Airborne EC fluxes (momentum, sensible heat, latent heat, CO2) were to be measured with the University of Wyoming 

King Air (UWKA) during 24 research flights. The UWKA would also deploy an upward-pointing cloud lidar for estimating 

ABL height, and a downward pointing Raman lidar for providing a three-dimensional representation of air temperature and 

water vapor over the domain (Wu et al., 2016). During each research flight the UWKA would fly along 11 flight tracks (Fig. 2). 170 

respect to the 10 × 10 km CHEESEHEAD19 study domain (black box; image: © Google Earth). For a given flight track the 

UWKA would first fly outbound at 400 m above ground (red arrows) and return at 100 m above ground (blue arrows). 

https://doi.org/10.5194/amt-2021-86
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For a given flight track the UWKA would first fly outbound at 400 m above ground (Fig. 2 red arrows) with emphasis on the 

lidar ABL observations. This arrangement would also allow the crew to visually ensure flight safety for the immediate return 

at 100 m above ground (Fig. 2 blue arrows) with emphasis on the EC surface flux observations. Owing to the 

CHEESEHEAD19 science objectives we will focus on the 100 m EC surface flux flights in the following sections. A more 

complete description of the instruments deployed during CHEESEHEAD19 can be found in Butterworth et al. (2021). 175 

2.2 LES-ERF observing system simulation experiment 

Virtual atmospheres emulated in LES provide a controlled environment uniquely suited to disentangle surface-atmosphere 

feedbacks (e.g., Avissar and Schmidt, 1998; Kanda et al., 2004; Sühring et al., 2018; Xu et al., 2020; Margairaz et al., 2020). 

Our work on LES-ERF extends upon such previous use cases by simulating and analyzing candidate OSDs for real-world 

measurements in such virtual atmospheres. 180 

LES-ERF employs value engineering principles (e.g., Park, 1998; Tohidi, 2011; Younker, 2003) to maximize the return on 

real-world measurement investments for addressing science objectives across traditional disciplinary boundaries. So long as 

we consider a single discipline, existing parameterizations often provide sufficient constraints to ensure meeting basic 

assumptions. For example, consider determining the height of an EC flux tower measurement as a function of roughness 

sublayer effects (e.g., Foken, 2017; Munger et al., 2012), atmospheric blending (e.g., Mahrt, 1996; Mason, 1988) and target 185 

source area (e.g., Chen et al., 2011; Schmid, 1997). However, CHEESEHEAD19 relies on harnessing complementarity 

across disciplines, including ground-based, airborne, and space-borne measurements. These measurements operate on 

principally different space and time scales (Fig. 1), so that scientific return hinges on our ability to join information not only 

across disciplines, but also across scales. For example, the spatial context of each measurement is a function of its horizontal 

and vertical placement, thus providing a mechanism to maximize information overlap. Yet, optimizing each measurement’s 190 

utility for joint scientific inquiry is beyond the scope of discipline-specific parameterizations. Here, we propose the 

extensible LES-ERF approach that explicitly simulates the joint scientific return in response to different candidate OSDs for 

addressing user-defined design hypotheses. 

In this study, we apply LES-ERF to derive an airborne EC flux flight strategy that augments a network of EC flux towers for 

optimally addressing CHEESEHEAD19 science objectives: relating surface-atmosphere feedbacks over a 10 × 10 km study 195 

domain to energy balance closure and space-time scaling (Sect. 2.1). A preconceived network of 20 continuously operating 

EC flux towers form CHEESEHEAD19’s backbone for addressing these science objectives (Fig. 2). Tower placement within 

the study domain followed a stratified random pattern, taking into account practical considerations including distance to 

road, suitable gaps in trees for a tower, USFS-owned land, etc. Individual towers were an average of 1.4 km from their 

nearest neighboring tower, and an average of 3.5 km from the tall tower. Here, we focus on a strategy for airborne EC flux 200 

measurements because they offer the greatest potential but also the greatest risk: (i) they are central to linking the different 

https://doi.org/10.5194/amt-2021-86
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Figure 3. (a) Environmental Response Functions relate tower and airborne eddy-covariance flux ‘responses’ at very high space-time 

resolution to meteorological and surface drivers from ground-based, airborne and space-borne measurements. We then use the 

extracted relationships to reconstruct fluxes explicitly across the study domain. (b) To simulate different candidate OSDs ahead of 205 
the actual field measurement campaign, we used LES to obtain observations in virtual atmospheres over the CHEESEHEAD19 

domain. (c): We then benchmarked the different OSD candidates against their ability to reproduce the LES reference in the form 

of flux grids that ERF reconstructed from the virtual observations alone. Sect. 2.2 provides additional detail. Modified after 

Butterworth et al. (2021), copyright (2020), with permission from the American Meteorological Society to reuse under the CC BY 

4.0 license (https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/cc-by-4.0). 210 

 

scales of ground-based and space-borne observations (Fig. 1); (ii) their flexibility provides an accessible mechanism to 

maximize joint scientific return, and; (iii) their flight safety and cost warrant careful planning. 

LES-ERF principally consists of three modules: (i) joining information across disciplines and measurements in ERFs, (ii) 

generating virtual measurements, e.g. in LES, and (iii) benchmarking candidate OSDs (Fig. 3). ERFs augment expensive and 215 

thus sparse response observations (e.g., from tower and airborne EC) with inexpensive, abundant biophysical driver 

observations (e.g., from meteorological stations and satellites; Fig. 3a). High-rate time-frequency decomposition and source 

area modeling facilitate mathematically rigorous data overlays among these response and driver observations at minute- and 

decameter-scale. Machine learning then extracts a driver-response process model from the resulting space- and time-aligned 

dataset. Ultimately, this driver-response process model complements the properties of response and driver observations into 220 

a response data product. In the present example, the response data products are decameter-scale sensible heat flux maps, 

https://doi.org/10.5194/amt-2021-86
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projected explicitly in space and time across the study domain. Sect. 2.5 provides specific implementation details for this 

module. To obtain virtual measurements ahead of the actual field measurement campaign, we used LES to create virtual 

atmospheres over the CHEESEHEAD19 domain for different synoptic conditions (Fig. 3b). We then super-sampled these 

virtual atmospheres as observed by different yet simultaneous candidate OSDs. Sect. 2.4 details the specific implementation 225 

of this module. Each candidate OSD resulted in a separate set of virtual observations which we independently processed 

through the ERFs. Finally, we benchmarked each candidate OSD by comparing the flux maps that ERF reconstructed from 

the virtual observations alone to the original LES surface flux forcings (Fig. 3c). To judge the ability to reproduce the LES 

reference we used three optimality criteria directly related to the CHEESEHEAD19 science objectives, each ranging 0‒

100%: 230 

(CR1) Flux map spatial coverage, i.e. the percentage of grid cells across the study domain that ERF was able to 

reconstruct. 

(CR2) Energy balance ratio; 

          ��� =
〈��,
��〉�〈��
,
��〉

〈��,�
�〉�〈��
,�
�〉
; (1) 

with angle brackets indicating the horizontal average over all grid cells in the study domain, and FH and FLE the 

sensible and latent heat flux, respectively. 235 

(CR3) Spatial patterning from point-wise Pearson correlation between the ERF reconstructed flux maps and the 

corresponding LES forcings. 

We then used the arithmetic mean and standard deviation to aggregate CR1‒CR3 across flight patterns, flight sequences, and 

ultimately among themselves into a single score (Sect. 3.3). 

2.3 Design hypotheses and candidate observing system designs 240 

We used LES-ERF to determine the sensitivity of the optimality criteria in Sect. 2.2 in response to two specific design 

hypotheses. These design hypotheses define the trade space between CHEESEHEAD19 science objectives, flight time 

constraints, and straightforward flight operation. Related to flight pattern, we hypothesize that (H1) it is critical for airborne 

EC to measure perpendicular to the prevailing wind (e.g., Petty, 2020). And related to flight sequence, we hypothesize that 

(H2) within the flight time of a single research flight, it is more informative to fly a finely spaced pattern once compared to 245 

repeating a coarsely spaced pattern multiple times. To explore H1 and H2 we created candidate OSDs in an LES (Sect. 2.4), 

consisting of a virtual EC flux tower network in combination with virtual airborne EC flight patterns. 

The virtual EC tower network formed the backbone of each candidate OSD, and its horizontal distribution corresponded to 

the CHEESEHEAD19 stratified random grid pattern. Nineteen virtual towers performed EC time-series measurements at 

49 m above ground, i.e. 26±13 m higher compared to the real towers. The virtual AmeriFlux supersite tower at the center of 250 

the study domain measured at 49 m, 112 m, and 371 m above ground, i.e. −6±17 m lower compared to the real tower. These 

https://doi.org/10.5194/amt-2021-86
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choices were a compromise among realism, bounding LES computational expense (10 m vertical resolution), and keeping 

the LES sub-grid fluxes acceptably small (<1%) as suggested by Schröter et al. (2000), which will not be captured by the 

virtual EC flux computation. We analyzed 2 h of data for each of the 22 virtual tower-level combinations, or 44 hours in 

total. 255 

The virtual aircraft conducted EC space-series measurements along grid flight patterns at 100 m above ground, identical to 

the measurement height proposed for the real aircraft. The grid consisted of 11 flight tracks each 25 km long, including 6 

parallel flight tracks 2 km horizontally spaced from each other, and 5 diagonal flight tracks in between (Fig. 2 blue arrows). 

To create the dataset for assessing H1 we formed the virtual flight patterns by letting multiple aircraft fly simultaneous grids 

along four different azimuth angles of the parallel tracks: east-west (E-W), north-south (N-S), southwest-northeast (SW-NE), 260 

and south-southwest-north-northeast (SSW-NNE). Here, the term flight pattern refers to a set of georeferenced waypoints. 

To assess H2 we further considered three permutations of the flight sequence, i.e. the order in which the waypoints of a given 

pattern are flown. (i) Alternating refers to flying a parallel track, then the downwind diagonal track, then the downwind 

parallel track, and so forth. (ii) Outbound refers to first completing all parallel tracks in downwind order, then flying back to 

the first parallel track and completing all diagonal tracks in downwind order. (iii) Return refers to first completing all parallel 265 

tracks in downwind order and then completing all diagonal tracks in upwind (return) order. To summarize, the virtual 

airborne EC dataset consisted of 3 flight sequences × 4 flight patterns × 11 flight tracks, or a total of 132 analyzed flight 

tracks spanning 3,300 km of virtual airborne EC data. 

Based on this super-sample we evaluated 13 candidate OSDs. Applying LES-ERF to 44 site-hours of data from the virtual 

EC tower network alone provided the baseline OSD. Combining data from the virtual EC tower network with one of the 270 

3 flight sequences × 4 flight patterns = 12 airborne EC combinations provided 12 alternative OSDs. Each of the alternative 

OSDs consisted of 44 site-hours virtual tower EC data and 11 flight tracks × 25 km = 275 km virtual airborne EC data. This 

configuration allows us to evaluate the change in the optimality criteria (Sect. 2.2) for each of the 12 joint tower and aircraft 

alternative OSDs relative to the tower-only baseline OSD. 

2.4 Large Eddy Simulations 275 

We used the Parallelized LES Model PALM (Maronga et al., 2020; Maronga et al., 2015), revision 4007 to simulate the 

atmosphere over the CHEESEHEAD19 domain. PALM solves the non-hydrostatic incompressible Boussinesq-approximated 

equations. We used the turbulent kinetic energy scheme of Deardorff (1980) for the sub-grid model, a fifth-order scheme 

(Wicker and Skamarock, 2002) to discretize the advection terms, and a third-order Runge–Kutta scheme by Williamson 

(1980) for the time integration. 280 

The aim of the simulation was to optimize OSDs for the upcoming field measurement campaign, meaning that the surface 

and atmospheric conditions were unknown. Hence, we simulated a day with a well-developed summertime continental ABL 

on 2011-08-12, which is a typical situation for that region during the scheduled field measurement period. We considered the 

model surface to be flat, and as surface forcing we prescribe time-dependent, heterogeneous sensible and latent heat flux 
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grids that Metzger et al. (2013b) have previously determined for this day using ERF. In an intermediary step we downscaled 285 

the original heat flux grids from 100 m to 25 m horizontal grid spacing and from 1 hour to LES time step, and filled data 

gaps with the horizontally averaged flux. This approach provides a straightforward surface flux benchmark for evaluating 

LES-ERF results, and forgoes the extensive data requirements of a coupled land surface model that would be difficult to 

fulfill prior to the actual field measurements. We then applied Monin-Obukhov similarity theory locally between the surface 

and the first vertical grid level as surface boundary condition for the momentum equations. During the pre-field stage, 290 

information on forest size and patch distribution was insufficient to use a plant-canopy model for reliably describing 

momentum drag. Hence, we set a horizontally homogeneous roughness length of 2.0 m in the simulations, because 

significant parts of the measurement site and its surroundings consist of forests. We then applied cyclic conditions at the 

lateral boundaries, and provided initial vertical profiles of the horizontal wind components, potential temperature and water 

vapor mixing ratio from nearby radiosonde observations (Green Bay Observations, Station ID 72645; ~100 km to the south 295 

east of the study domain). We assumed the observed westerly wind within the free-atmosphere to be in geostrophic 

equilibrium and steady state, and thus prescribed vertically constant profiles of the geostrophic wind components. 

With this setup, we simulated a 30 × 30 × 3 km3 domain in x-, y-, and z-direction, respectively, centered over the 10 × 10 km 

CHEESEHEAD19 domain. The grid spacing was 25 m in the horizontal directions and 10 m in the vertical direction. The 

simulation ran for five hours (0700 ‒ 1200 CST), of which the first three hours were model spin-up time (0700 ‒ 1000 CST). 300 

During the final two hours (1000 ‒ 1200 CST) we took virtual tower and aircraft measurements. At each virtual EC tower 

location, a virtual sensor at 49 m above ground sampled time series of potential temperature, mixing ratio, and vertical wind 

at the LES time step of 0.4 s. For each aircraft measurement, a similar virtual sensor moved along a predefined flight track at 

100 m above ground with at a ground speed of 82 m s−1. 

2.5 Environmental Response Functions 305 

ERF incorporates spectral averaging, source area modeling, and machine-learning-based space-time explicit ensembling of 

environmental observations (Metzger et al., 2013a). Here we used ERF to reproduce the LES surface flux forcing from 

virtual EC tower, EC aircraft, and remote sensing observations (e.g., Serafimovich et al., 2018; Xu et al., 2017). These flux 

maps comply with observational assumptions that are not typically met from EC measurements alone, such as incorporation 

of mesoscale flows and spatial representativeness for the 10 × 10 km CHEESEHEAD19 target domain (Xu et al., 2020; Xu 310 

et al., 2018; Metzger, 2018). 

ERF commenced with the high-rate time-frequency decomposed computation of the sensible and latent heat flux responses 

in the atmosphere. This step is based on the Morlet Wavelet, while assuming constant ambient pressure in the LES. Spectral 

averaging over the Wavelet cross-scalograms facilitated high temporal (tower: 1 minute) and spatial (aircraft: 100 m) 

resolution of the resulting fluxes (Mauder et al., 2007a). To ensure that tower and aircraft fluxes are comparable in their 315 

inclusion of long-wave mesoscale flows we applied a joint rectangular cutoff. The aircraft data limited the long-wave 

transport scales, with the 25 km flight tracks equating to a maximum transport scale of ~17 km expressible by the Wavelet 
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cross-scalograms. We then applied Taylor’s hypothesis (Taylor, 1915) with an average wind speed of 3‒5 ms−1 to derive a 

corresponding tower cutoff scale of ~1 h for the tower. We time-matched the sensible and latent heat flux responses with the 

virtual observations of meteorological drivers consisting of potential temperature, water vapor dry mole fraction from mixing 320 

ratio, and relative measurement height in the ABL calculated from the potential temperature profile. 

Next, we used source area modeling (Metzger et al., 2012; Kljun et al., 2004) to quantify the source area contributions to 

each 1 min tower and 100 m aircraft flux observation. The source area weights provided a linkage between the sensible and 

latent heat flux responses in the atmosphere and their spatially resolved drivers at the LES surface (available energy as a 

proxy for net radiation) and in the first vertical LES layer (land surface temperature and moisture as a proxy for remote-325 

sensing observations). For simplicity, we used averages over the 2 h observation period for all spatially resolved drivers. The 

results are space- and time-aligned datasets consisting of the sensible and latent heat flux responses and their meteorological 

drivers in the LES atmosphere, and their spatially resolved drivers near the LES surface. The space-time aligned dataset for 

the baseline OSD (tower-only) thus consisted of 22 virtual tower-level combinations with 2 h of data each at 1 min output 

resolution = 2,640 observations. The space-time aligned dataset for each of the 12 alternative OSDs (tower + aircraft) 330 

additionally consisted of 11 flight tracks with 25 km data each at 100 m output resolution = 2750 observations. This is the 

first application of ERF to combine flux response information across platforms, here flux tower and flux aircraft. 

We then used boosted regression tree (BRT) machine learning to mine the information contained in the space-time aligned 

datasets. The results were individual ERF process models for each OSD, separately for the sensible and latent heat flux 

responses as a function of their meteorological and surface drivers. Overall, we built the driver-response model structure in 335 

accordance with first principles: an energy source, from which fluxes result in accordance to Fick’s law of (turbulent) 

diffusion along temperature and water vapor gradients, modulated with distance from the exchange surface. For example, we 

expressed the sensible heat flux response as a space-time function of the vertical temperature gradient. BRT then solved for 

the turbulent diffusion coefficient as a space-time function of available energy, modulated by vertical flux divergence and 

the vertical humidity gradient. 340 

In the final step we projected the space-time explicit heat flux response maps that the ERF process model yields when 

provided the full complement of space-time explicit drivers. Specifically, we provided the spatially distributed land surface 

temperature and moisture fields, the 2 h space-time median available energy across the 30 × 30 km domain, and the 2 h 

median meteorological drivers across all 20 virtual towers measuring at 49 m. This essentially equates to substituting the 

spatial information in the source areas with the distributed spatial information of land surface temperature and moisture 345 

fields akin to remote sensing. While it would have been possible to resolve the meteorological drivers temporally and hence 

also the resulting heat flux maps, we used the 2 h aggregates to streamline the overall analysis. We also limited the ERF 

projection to interpolate but not extrapolate outputs, i.e. to only populate grid cells with driver combinations in the range of 

the virtual measurements. By doing so, the resulting data coverage lets us directly estimate how well we sampled the domain 

for upscaling. In total, we trained and projected 78 ERF process models, consisting of two heat fluxes – sensible and latent 350 

heat – and 13 OSDs with 3 replicates each to constrain BRT tolerances. 
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3 Results 

3.1 LES virtual experiments 

As described in Sect. 2.4, the simulations were forced using ERF derived surface sensible and latent heat fluxes across the 

domain. Figure 4 shows the prescribed surface sensible and latent heat fluxes at different points in time which were used as 355 

lower boundary condition for the LES. The hourly input fluxes were interpolated in time to the current LES time step. 

Surface heterogeneities with distinct patches in the surface sensible and latent heat flux are visible at multiple scales that 

vary in time and among the latent and sensible fluxes as well. Distinct surface heterogeneity patches are maintained over the 

entire simulation period, representing particular landscape pattern within the field measurement site. 

 360 

  

Figure 4. Time-sequence of (a) – (c) the spatially heterogeneous surface sensible heat flux and (d) – (f) latent heat flux prescribed as 

LES lower boundary conditions. Superimposed red dots indicate candidate EC tower locations, alongside UWKA candidate flight 

tracks (west-east pattern). 

 365 

Figure 5 shows the domain-average initial and time-dependent vertical profiles of potential temperature, water vapor mixing 

ratio and wind speed. These explain the virtual setup and provide an overview of the ABL structure: The model was 

initialized with the early morning profiles of potential temperature and mixing ratio, and let to develop its own equilibrium 

for this design case. The profile of potential temperature indicates a vertically well mixed ABL which heats up during the 
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course of the day. Due to the strong capping inversion the ABL grows only slowly and reaches a height of about 400 m 370 

around noon, which is relatively low for a summertime convective ABL. We discuss this in more detail in Sect. 4. The 

mixing ratio within the ABL also increases during the simulation due to the surface latent heat flux as well as due to 

entrainment of moist air from the above-lying free-atmosphere, which exhibits higher values of mixing ratio than in the 

ABL. The profiles of the wind components indicate northwesterly winds within the ABL during the morning hours, turning 

to westerlies later. Westerlies during the actual virtual measurement duration from late morning until noon are required to 375 

investigate the candidate OSDs from Sect. 2.3. 

 

 

Figure 5. LES domain-averaged vertical profiles of (a) potential temperature, (b) water vapor mixing ratio and (c) horizontal wind 

velocities at different simulation times. 380 

 

Figure 6 shows a horizontal cross-section of the instantaneous and time-averaged vertical wind component at a height of 

100 m during the virtual measurement period at 11:00. Instantaneous up and downdrafts ranging from −2 m s−1 to 3 m s−1 can 

be observed. The up and downdrafts indicate elongated structures aligned with the mean-wind direction at this height level. 

Even though these organized structures are not stationary in space due to the slightly changing wind direction (see Fig. 5), 385 

they still can be observed in the temporal average.  
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Figure 6. LES x-y cross section of (a) instantaneous and (b) 30-minute time-averaged vertical velocity at 100 m height at 11:00 CST 

simulation time. 

 390 

 

Figure 7. Domain averaged vertical flux profiles of (a) sensible heat and (b) latent heat at 11:00 CST simulation time. The solid lines 

show the total simulated fluxes, consisting of resolved fluxes (dashed lines) and sub-grid parameterized fluxes (dotted lines). 
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Figure 7 shows vertical profiles of the domain-averaged sensible and latent heat flux. Both flux profiles display a similar 

shape, linearly decreasing with height and reaching a minimum at the ABL top. These negative heat fluxes indicate 395 

entrainment of warm and moist air from the inversion into the ABL. This is supported also by Fig. 5, where the inversion 

layer exhibits a higher mixing ratio compared to the ABL. Figure 7 further shows that the subgrid-scale fluxes contribute less 

than 1‒2 % to the total vertical transport at the measurement levels. This indicates that the vertical transport of heat and 

moisture is well resolved at these levels. 

3.2 ERF retrievals 400 

To create a space- and time-aligned data set (Fig. 3a), ERF first calculates Wavelet-decomposed EC fluxes directly from the 

high-frequency raw data. This facilitates inclusion of longer transporting scales compared to traditional EC, as well as 

unprecedented spatial and temporal resolution of the resulting fluxes (Fig. 8). 

 

 405 

Figure 8. Space-resolved sensible heat flux from high-rate space-scale decomposition of virtual airborne measurements. 

 

Next, ERF relates the time- and space-resolved EC flux responses in the atmosphere to biophysical drivers on the surface 

(Fig. 9), such as land surface temperature and land surface moisture. In the present application land surface temperature and 

land surface moisture are taken from cross-sections at the vertical LES level closest to the surface. In real-world ERF 410 

applications, these are substituted with space-borne and airborne remote sensing data products, or reanalysis data (e.g., 

Serafimovich et al., 2018). This facilitates mathematically rigorous data overlays among response and driver observations at 

minute- and decameter-scale. The result is a space-time aligned data set for each virtual EC tower and for each virtual EC 

flight track. Both, the tower and airborne EC data sets comprise the same variables in identical units, and were processed to 

ensure cross-platform compatibility and avoid biases (Sect. 2.5). This allows combining the virtual tower EC results with 415 

corresponding virtual airborne EC results into a single space-time aligned data set for each of the 12 alternative OSDs. 

The ERF machine learning component then extracts a driver-response process model from the resulting space- and time-

aligned dataset. Here, we trained a total of 78 machine learning models. These consisted of 13 candidate OSDs × 2 fluxes 

(sensible and latent heat) × 3 replicates (to quantify stochastic uncertainty in the response data products). Figure 10 shows 
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 420 

Figure 9. Source area modeling (30%, 60%, 90% contour lines) relates observations across platforms and representations by 

determining the surface sources of the time- and space-resolved EC fluxes. Here superimposed over the LES sensible heat flux 

surface forcing (a) Virtual AmeriFlux supersite tower at the center of the study domain at 112 m measurement height. (b) Virtual 

UWKA flight track at 100 m measurement height. 

 425 

 

Figure 10. Example ERF response surfaces. (a) Sensible heat flux as a function of energy input and land surface temperature (LST). 

(b) Latent heat flux as a function of energy input and land surface moisture (LSM). For this visualization, all other drivers are kept 

at their median value.  
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example driver-response surfaces for sensible and latent heat flux as a function of their principal drivers, energy input, land 430 

surface temperature and land surface moisture, respectively. This exemplifies how the turbulent diffusion coefficient 

connects the drivers to the flux response within the physics-guided ERF model structure. In Fig. 10a the sensible heat flux 

increases primarily with land surface temperature and secondarily with energy input. The relationship reaches a plateau 

around 290.3 K which deviates from a one-dimensional, monotonic and linear gradient-flux relationship, indicative of 

additional feedback processes. Conversely, in Fig. 10b the latent heat flux increases primarily with energy input and 435 

secondarily with land surface moisture, with monotonic and approximately linear relationships across the range of drivers. 

Ultimately, the physics-guided ERF driver-response process model complements the properties of response and driver 

observations into a response data product. In the present example the response data products are decameter-resolution 

sensible heat flux maps, projected explicitly in space and time across the study domain to the median relative measurement 

height of the 49 m towers (0.16 of the ABL height; Fig. 11). We projected the flux maps for the tower-only space-time 440 

aligned data set (baseline OSD; Fig. 11a), and then separately for each of the 12 joint tower and aircraft space-time aligned 

data sets (alternative OSDs; Fig. 11c). Now the flux maps that ERF reconstructed from the virtual measurements alone can 

be compared to the original LES surface flux forcings (Fig. 11b). 

 

 445 

Figure 11. Example ERF response data products: sensible heat flux maps independently derived for (a) the tower-only space-time 

aligned data set and (c) for the joint tower and aircraft space-time aligned data set, alongside (b) the LES reference surface flux 

field. 

 

3.3 Evaluation of design hypotheses 450 

The ERF-derived flux maps alongside the LES surface forcing in Fig. 11 allow us to assess the design hypotheses (Sect. 2.3) 

as a function of the different candidate OSDs. For this purpose, we evaluated the change in the optimality criteria (Sect. 2.2) 

for each of the 12 joint tower and aircraft alternative OSDs relative to the tower-only baseline OSD. In the following Table 1 
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‒ Table 3 we performed all aggregations using arithmetic mean and standard deviation operators. In all cases the 

aggregations include two fluxes (sensible and latent heat) with three machine learning replicates each, plus additional 455 

aggregation as specified. 

In response to the first design hypothesis H1 we address the question how critical it is for airborne EC to measure 

perpendicular to the prevailing wind. Table 1 shows the results for each optimality criterion as a function of the aircraft track 

angle on the mean wind direction, aggregated over all three flight sequences. We can see that track angles in the range of 

90°±45° on the mean wind direction yield limited improvement in spatial coverage (23.3±1.8% ‒ 25.6±0.1%) compared to 460 

wind-parallel patterns (0°; 20.9±1.9%). However, within the same range of track angles the improvement in energy balance 

ratio and spatial patterning approximately double to octuple (Table 1 green cells). 

 

Table 1. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, 

aggregated over all three flight sequences. The results are shown as a function of optimality criterion (rows) and aircraft flying the 465 
grid pattern in various track angles on the mean wind direction (columns). Green cells highlight marked improvements that are 

further discussed in the text. 

Optimality criterion All angles 0° 45° 60° 90° 

Spatial coverage 23.6±2.2 20.9±1.9 24.7±0.8 23.3±1.8 25.6±0.1 

Energy balance ratio 6.8±5.3 1.7±1.4 6.4±5.3 6.4±4.7 12.8±3.1 

Spatial patterning 23.2±11.7 13.7±9.2 34.6±3.3 26.2±6.8 18.3±15.2 

 

The improvement in spatial patterning when adding wind-parallel flights to the tower network is limited to 13.7±9.2%, 

compared to 18.3±15.2 ‒ 34.6±3.3% for adding flights with 45° ‒ 90° aircraft track angle on the mean wind. Irrespective of 470 

the track angle, the observations along a flight track are never entirely independent from each other due to along- and cross-

wind dispersion. For wind-parallel flights, Fig. 12a indicates a high degree of source area overlap and thus self-correlation 

among the observations, resulting from strong along-wind dispersion along the flight track. In contrast, Fig. 12b shows less 

overlapping source areas along the flight track of wind-perpendicular flights, with the comparatively weaker cross-wind 

dispersion now controlling the overlap. The latter strategy results in observations that capture more independent samples and 475 

spatial variability. Thus, the dominating mode of atmospheric dispersion with respect to the aircraft track angle helps to 

explain the differences in the spatial patterning optimality criterion. For our study setup we reach a critical overlap resulting 

from the combined effects of along- and cross-wind dispersion at track angles shallower than 90°±45° on the mean wind 

direction. 

Furthermore, at the virtual aircraft flight height of 100 m the time-averaged vertical wind cross-section in Fig. 6b shows 480 

organized structures that are elongated in the mean-wind direction. These organized structures are among the most promising 

leads to explain the frequently observed non-closure of the energy balance, in particular from tower EC measurements 

(Mauder et al., 2020). These structures consist of more spatially-expansive though weaker subsidence zones and more 
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Figure 12. Example virtual flight tracks and their 30%, 60% and 90% source area contours superimposed over the LES sensible 485 
heat flux surface forcing (W m−2). (a) Wind-parallel flights sample source areas that are elongated along the flight track leading to 

considerable overlap. (b) Wind-perpendicular flights sample less overlapping source areas along the flight track, and thus capture 

more independent samples and spatial variability. 

 

spatially-limited though stronger convection zones (Kanda et al., 2004; Lenschow and Stankov, 1986; Petty, 2020; Etling 490 

and Brown, 1993; Moeng and Rotunno, 1990). So, when applied to aircraft EC measurements, wind-parallel flights are more 

likely to occur along the subsidence zones than along the convection zones. This helps explain why adding wind-parallel 

flights to the tower network yields only a limited improvement of the energy balance ratio criterion (1.7±1.4%). Conversely, 

wind-perpendicular flights trend to observe combinations of subsidence- and convection zones that approximately balances 

the atmospheric conservation of mass and energy. This explains the eightfold improvement (12.8±3.1%) when adding wind-495 

perpendicular flights to the tower network compared to wind-parallel flights. In between these two extreme cases, adding the 

flights with 45° and 60° track angles to the tower network still yields an approximately fourfold improvement (6.4±4.7% ‒ 

6.4±5.3%) over the wind-parallel flights. 

Next, we address the design hypothesis H2 whether it is more informative to fly a finely-spaced pattern once, or to fly a 

coarsely-spaced pattern multiple times. Table 2 shows that the spatial coverage and energy balance ratio criteria are not 500 

particularly sensitive to the flight sequence. One exception is the particularly high and consistent improvement in the spatial 

patterning performance criterion of the alternating sequence (29.1±5.4%; Table 2 green cells). It is the only sequence that 

"carpets" the CHEESEHEAD19 domain side-to-side at fine time- and space increments. All other sequences progress in 

coarser increments, such as first completing all parallel flight tracks and then revisiting the interspersed diagonal flight 

tracks. In the context of the 2 km horizontally spaced parallel flight tracks, Xu et al. (2017) report a 411±88 m characteristic 505 
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surface length scale of landscape elements in the CHEESEHEAD19 domain. The finer increments of the parallel-diagonal 

alternating sequence let ERF relate drivers and responses closer to the characteristic surface length scale, and thus to 

reproduce the spatial patterning. 

 

Table 2. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, 510 
aggregated over all four aircraft track angles on the mean wind direction. The results are shown as a function of optimality criterion 

(rows) and aircraft flying the grid pattern in various sequences (columns). The green cell highlights a marked improvement that is 

further discussed in the text. 

Optimality criterion All sequences Alternating Outbound Return 

Spatial coverage 23.6±2.2 23.0±3.0 23.5±1.8 24.4±1.9 

Energy balance ratio 6.8±5.3 7.9±5.3 6.0±6.6 6.6±5.4 

Spatial patterning 23.2±11.7 29.1±5.4 14.9±15.7 25.6±9.0 

 

To summarize, flight patterns with a track angle in the range of 90°±45° on the mean wind direction yielded approximately 515 

double the performance improvement of wind-parallel patterns. This finding is irrespective of the flight sequence, but most 

consistent for the alternating flight sequence (21.6±11.5% ‒ 22.6±9.4%; Table 3 green cells). Compared to the worst-case 

combination of wind-parallel flight patterns with the outbound flight sequence (9.6±11.1% improvement) this equates to 

doubling the scientific return. 

 520 

Table 3. Percent improvement of the joint tower and aircraft EC alternative OSDs relative to the tower-EC-only baseline OSD, 

aggregated into a single score over all optimality criteria. The results are shown as a function of aircraft flying the grid pattern in 

various sequences (rows) and track angles on the mean wind direction (columns). Green cells highlight marked improvements that 

are further discussed in the text. 

Flight sequence All angles 0° 45° 60° 90° 

All sequences 17.9±10.8 11.6±8.8 19.9±12.2 16.9±10.0 18.5±9.6 

Alternating 20.0±10.2 13.3±11.4 22.6±9.4 21.6±11.5 22.4±11.7 

Outbound 14.8±11.6 9.6±11.1 21.3±15.9 13.8±11.2 14.5±11.9 

Return 18.9±10.7 13.4±10.3 21.8±17.7 20.5±10.2 19.8±6.2 

 525 

3.4 Field campaign resources 

Flying the grid pattern in the alternating sequence provided the best and most consistent results, while also being the most 

straightforward sequence for operational implementation. Further, to satisfy the 90°±45° track angle on mean wind condition 

we derived three rotationally symmetric sets of waypoints at 60° increments (Fig. 13). Flying the numbered waypoint in 
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ascending order results in three alternating flight sequences SE1, SW1 and WE1 with 330°, 30°, and 90° azimuth of the 530 

parallel tracks, respectively. Owing to rotational symmetry, flying the numbered waypoints in descending order results in 

three additional alternating flight sequences SE2, SW2 and WE2 with 150°, 210°, and 270° azimuth of the parallel tracks, 

respectively. Reversing the waypoint order allows the aircraft to progress through the flight tracks in downwind order for 

any given mean wind direction. This aims to reduce the space-time ambiguity resulting from airborne EC observing different 

surface conditions over hundreds of kilometers while at the same time the diurnal cycle progresses over the course of several 535 

hours. Lastly, to avoid the town and airfield of Park Falls, WI immediately west of the CHEESEHEAD19 domain, we 

shifted the WE1/WE2 set of waypoints 5 km to the east (Fig. 13c). 

 

 

Figure 13. Three sets of waypoints define three distinct flight patterns, named after the relative location of their first two waypoints: 540 
(a) south-west (SW), (b) south-east (SE), and (c) west-east (WE). Flying the numbered waypoints either in ascending order (SW1, 

SE1, WE1) or descending order (SW2, SE2, WE2) resulted in six distinct flight sequences that maximize data coverage under 

different wind conditions. Map credit: James Mineau, University of Wisconsin – Madison. 

 

To support daily flight planning we distilled the six alternating flight sequences into a flight planning wind rose (Fig. 14). 545 

There we implemented the track angle condition by superimposing over a wind rose the wind sector aligned 90°±45° to the 

parallel tracks of each of the six alternating flight sequences. This allows determining the appropriate flight sequence as a 

function of the forecasted mean wind direction. For example, if experiencing southerlies (180°) the most suitable flight 

sequence is WE2. Owing to rotational symmetry, the wind sector for each flight sequence overlaps with each of its two 

neighbors by 30°. This provides a margin for accommodating changing synoptic conditions. For example, if experiencing 550 

south-southwesterlies (210°) in the morning the WE2 and SE1 flight sequences would be equally suitable. If however the 
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mean direction is forecasted to shift to westerlies (270°) in the course of the day the SE1 flight sequence simplifies flight 

operation by satisfying the 90°±45° track angle on mean wind condition with a single flight sequence for a given day. 

 

 555 

Figure 14. Flight planning wind rose to choose the appropriate flight sequence as a function of the forecasted mean wind direction. 

Owing to rotational symmetry, the wind sector for each flight sequence overlaps with each of its two neighbors by 30°. This provides 

a margin for accommodating changing synoptic conditions. 

4 Discussion 

Upon deriving the LES-ERF framework, we identified an optimal OSD that promises to more than double 560 

CHEESEHEAD19 scientific return. Here we initially discuss how these numerical gains relate to improving our ability for 

addressing CHEESEHEAD19 science objectives, and their limitations. We then examine how the resulting field campaign 

resources improved flight operation and crew safety by an order-of-magnitude. Lastly, we reflect our findings in the light of 

existing design approaches, provide general recommendations for future OSDs, and discuss remaining challenges and future 

work. 565 

4.1 Optimizing the CHEESEHEAD19 observing system design 

LES-ERF used three optimality criteria (Sect. 2.2; CR1 spatial coverage, CR2 energy balance ratio, CR3 spatial patterning) 

that we tailored to represent CHEESEHEAD19’s science objectives numerically. Furthermore, we identified two specific 

design hypotheses that we postulate the science objectives, and hence optimality criteria to be sensitive to (Sect. 2.3; H1 

track angle on mean wind, H2 fine vs. coarse flight sequence). CHEESEHEAD19’s first science objective O1 is to show that 570 

higher surface heterogeneity promotes energy transport in atmospheric mesoscale eddies. Our ability to address this science 
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objective increases with the truthful reproduction of CR1 surface flux spatial coverage and CR3 spatial patterning. LES-ERF 

allowed us to assess changes in these criteria resulting from the different OSDs by comparing ERF flux map reproductions to 

the original LES surface flux forcing. We found that CR1 spatial coverage is largely insensitive to either H1 track angle on 

mean wind (Table 1), and H2 fine vs. coarse flight sequence (Table 2). Conversely, CR3 spatial patterning proved to be 575 

highly sensitive to H1 track angle on mean wind. Track angles in the range of 90°±45° on the mean wind yielded double to 

triple improvements over wind-parallel flights (Table 1). Similarly, we showed that CR3 spatial patterning is sensitive to H2 

fine vs. coarse flight sequence (Table 2). The finely spaced “Alternating” sequence yielded the highest and most consistent 

spatial patterning improvements of about 50% over the other flight sequences. 

CHEESEHEAD19’s second science objective O2 aims to account for energy transport in mesoscale eddies and determine 580 

the “true” surface energy balance to improve model representation of sub-grid processes. As such, our ability to address this 

science objective hinges on improved closure of CR2 the energy balance ratio, which proved to be highly sensitive to H1 

track angle on mean wind. Here, track angles in the range of 90°±45° on the mean wind yielded quadruple to octuple 

improvements over wind-parallel flights (Table 1). On the other hand, CR2 energy balance ratio was comparatively 

insensitive to H2 fine vs. coarse flight sequence (Table 2). 585 

Finally, CHEESEHEAD19’s third science objective O3 aims to demonstrate that ERF yields representative fluxes at model 

grid scale regardless of mesoscale eddies. ERF’s ability to reproduce the surface flux is thus directly related to the 

combination of all criteria discussed above, CR1 spatial coverage, CR2 energy balance ratio, and CR3 spatial patterning. 

From aggregating over all optimality criteria into a single score, we demonstrated that overall improvement is highly 

sensitive to H1 track angle on mean wind. Flight patterns with a track angle in the range of 90°±45° on the mean wind 590 

yielded approximately double the performance improvement of wind-parallel patterns (Table 3). This finding is less sensitive 

to H2 fine vs. coarse flight sequence, though most consistent for the finely spaced “Alternating” sequence. Overall, this 

combination doubles the scientific return compared to the worst-case combination of wind-parallel flight patterns with the 

outbound flight sequence. Overall, the study hypothesis that CHEESEHEAD19 scientific return is sensitive to LES-ERF 

optimization can thus be accepted. On the other hand, the design hypothesis H1 that it is critical for airborne EC to measure 595 

perpendicular to the prevailing wind should be rejected, as up to ±45° tolerance yielded comparable results for 

CHEESEHEAD19 science objectives. Lastly, the design hypothesis H2 that it is more informative to fly a finely spaced 

pattern should be accepted, with most consistent results for the finely spaced “Alternating” sequence. 

The field measurement resources (Sect. 3.4) encapsulate these findings into only three sets of waypoints and six alternating 

flight sequences incremented at 60° azimuth. These provide a balance between scientific fidelity and flight crew safety. On 600 

the one hand, the small number of waypoints and flight sequences is sufficient to maximize CHEESEHEAD19 scientific 

return by enabling to observe the 90°±45° track angle on mean wind condition at all times. Furthermore, the 60° 

incrementation in combination with the ±45° tolerance on perpendicularity to the mean wind provides 30° overlap among 

flight sequences to support decision-making during non-stationary synoptic conditions. On the other hand, the parsimonious 

number of only 6 flight sequences and an even smaller number of 3 sets of waypoints simplify flight planning and 605 
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navigation. In combination with entirely avoiding the town and airfield of Park Falls this promotes flight crew safety by an 

order of magnitude compared to the originally envisioned 48 flight sequences. Specifically, it frees up the flight crew from 

arduous navigation details, thus reducing fatigue, increasing awareness during the 100 m low-level flight maneuvers, and 

ultimately reducing the margin for human error. Due to its vicinity to the 400 m tall tower and related in-flight safety 

concerns the central diagonal flight track in this study was not performed during the actual CHEESEHEAD19 field 610 

measurement campaign. 

After deriving the above strategy, we detected an inconsistency in the vertical humidity profile that we used to initialize the 

LES and thus to produce the LES-ERF virtual observations. Specifically, we had erroneously added a positive vertical 

humidity gradient at 350 m above ground instead of the negative vertical humidity gradient typically observed by 

radiosondes adjacent to the CHEESEHEAD19 domain (sign reversal). As a result, we detected an ABL height of only 500 m 615 

in the LES while field observations typically indicate >1 km during similar conditions around the CHEESEHEAD19 

domain. In addition, during 1100 CST we detected a small entrainment flux of humid air from above the LES ABL into the 

dryer air below, which is not typical of summertime convective ABL conditions around the CHEESEHEAD19 domain. In 

the subsequent stages of LES-ERF, we used virtual tower EC observations at 49 m (N=20 towers), 112 m (N=1 tower), and 

371 m (N=1 tower) above ground, and virtual airborne EC observations at 100 m above ground. At any given time, the 620 

surface fluxes prescribed in the LES were orders of magnitude larger compared to the entrainment fluxes. Hence, the surface 

fluxes dominated all virtual tower and airborne observations, possibly with exception of the 371 m tower that however still 

reported an average upward latent heat flux of 2.2±6.6 W m−2. While the uncharacteristically shallow ABL height results in 

two to three times more pronounced vertical flux divergence, LES-ERF accounts for this by utilizing the relative 

measurement height in the ABL as an ERF driver. Furthermore, the study design cancels possible residual impacts on the 625 

CR2 energy balance ratio by normalizing all results for the alternative OSDs (tower and aircraft) with the results for the 

baseline OSD (tower-only). To summarize, the erroneous vertical humidity gradient resulted in a modelled LES atmosphere 

that was less specific to the CHEESEHEAD19 domain than originally envisioned. However, this should have little to no 

bearing on the general findings that informed the CHEESEHEAD19 OSD, owing to ERF accounting for vertical flux 

divergence and the normalized study design. If at all, surface heterogeneity scales across the CHEESEHEAD19 domain are 630 

more realistically reproduced compared to the idealized LES runs in many previous studies (e.g., Kanda et al., 2004; Xu et 

al., 2020; Sühring et al., 2018). 

Overall, the application of the LES-ERF-derived field measurement resources enabled the successful acquisition of 

14,400 km airborne data by the UWKA aircraft (Paleri et al., 2019). The 24 UWKA research flights and their on-site 

planning covered 480 flight legs during 72 hours of flight time and three CHEESEHEAD19 intensive observation periods 635 

(Butterworth et al., 2021). This further demonstrates the successful application of LES-ERF and its utility for determining 

concise and adaptive field measurement resources that optimize the effectiveness and safety of research flights. 
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4.2 Benefits for coordinated environmental observations 

LES-ERF extends on previous approaches to designing large-scale field campaigns such as FIFE, BOREAS, NOPEX, 

LITFASS-98, LITFASS-2003, MAGIM and ScaleX (Sect. 1). Specifically, LES-ERF not only utilizes but fully 640 

contextualizes expert knowledge by conducting virtual pre-field measurements in LES, and using evidence-driven ERF to 

quantify the resulting information contents. 

For decades, LES “data from knowledge” studies have investigated surface-atmosphere interactions including energy 

balance processes (Sühring and Raasch, 2013; Kanda et al., 2004; Deardorff, 1972; Wyngaard and Brost, 1984; Etling and 

Brown, 1993). Indeed, LES have become useful to contextualize observational phenomena with increasingly complex 645 

feedbacks, including natural resources such as air quality (Khan et al., 2020; Zhang et al., 2020). However, the resulting data 

is detailed to a point where it becomes challenging to fully utilize the provided information for extracting and describing the 

phenomena of interest. Xu et al. (2020) point to a possible solution to this dilemma, by complementing detailed LES outputs 

with the dedicated ERF “knowledge from data” approach. Here, we took a next step and demonstrated the usefulness of the 

LES-ERF symbiosis for designing real-world field measurements. Using LES for OSD has been a rare application to date 650 

(Gehrke et al., 2019; Cortina and Calaf, 2017), and to our knowledge the present study is the first of its kind that empowers 

investigators to harness the combined power of complementing NSs and data mining for this purpose. 

OSSEs are widely used in the earth-system sciences to predict the performance of major, long-term research equipment and 

facility investments (Hoffman and Atlas, 2016; Masutani et al., 2010; Lucas et al., 2015; Park and Kim, 2020; Hargrove and 

Hoffman, 2004; Zhang and Pu, 2010). The LES-ERF symbiosis now provides the necessary resolution of time, space, and 655 

processes to make the power of OSSEs also accessible for designing field measurements at smaller and previously 

inaccessible scales. Specifically, the CHEESEHEAD19 example application at the interface of meso- and microscale 

meteorology demonstrated a new degree of realism and explicitness in maximizing the joint information from ground-based, 

airborne, and spaceborne observations for scaling and modeling. 

Building on this central property, LES-ERF is modularly extensible in multiple directions. For example, LES-ERF can 660 

integrate new types of observations in addition to tower, aircraft, and satellite observations, so long as their source areas are 

readily quantifiable. Examples are remote sensing of the atmosphere (Wulfmeyer et al., 2018; Helbig et al., 2020) and soil 

and biometric observations (Metzger et al., 2019b). This provides a promising avenue to maximize cross-disciplinary, cross-

project, and ultimately cross-institutional synergies. For example, such as through simulating the design of super-sites that 

envision to synergize diverse observational infrastructures including from the US National Science Foundation’s National 665 

Center for Atmospheric Research and National Ecological Observatory Network (Metzger et al., 2019a). Then upon 

completion of the planned field measurements, the real-world data can immediately substitute the LES “data from 

knowledge” module, while the ERF “knowledge from data” module continues to perform the intended end-to-end analyses. 

LES-ERF thus provides a framework to prepare and test the quantification of science objectives well ahead of the actual 

field measurements, thus reducing latency from field data capture to knowledge creation. Ultimately, the characteristics of 670 

https://doi.org/10.5194/amt-2021-86
Preprint. Discussion started: 23 March 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

LES-ERF make the power of OSSEs accessible to an entirely new range of use cases. Examples include natural climate 

solutions (Hemes et al., in review), emission inventory validation (Desjardins et al., 2018), urban air quality (Squires et al., 

2020), industry leak detection (Kohnert et al., 2017), and multi-species applications (Vaughan et al., 2017). 

4.3 Remaining challenges and future work 

Notwithstanding these key benefits, a LES-ERF study such as presented here adds labor, computing, and hence funding 675 

requirements ahead of the actual field measurements. Considering a typical research grant cycle, one would ideally perform 

the LES-ERF OSDs prior to submitting a funding proposal, or at least request some level of design flexibility. We conducted 

the present study over the course of approximately three months, und utilized the labor and computing resources summarized 

in Table 4. Overall, we spent ~480 h of labor, or three person-months, of which the LES and ERF analyses consumed ~40% 

and ~60%, respectively. The main labor drivers were study conceptualization and setup including data acquisition for LES 680 

boundary conditions. It is possible to perform these steps well in advance, e.g. to reduce the LES-ERF effort between grant 

receipt and field measurements, which is typically also a period with high-demand for overall coordination. The 50 h spent 

on ERF interpretation also included active dialogue and iteration with the flight crew, resulting in balanced resources for 

airborne operation. 

 685 

Table 4. Labor and computing resources utilized for deriving the CHEESEHEAD19 observing system design, separately for Large 

Eddy Simulations (LES) and Environmental Response Functions (ERF). 

Resource LES ERF 

Total Labor 180 h 300 h 

 Conceptualization 30 h 70 h 

 Setup 110 h 130 h 

 Analysis 20 h 50 h 

 Interpretation 20 h 50 h 

Computing architecture High-performance High-throughput 

 CPU hours 230,000 7,000 

 CPUs 600 ‒ 1,800 2 ‒ 16 

 Memory 2 ‒ 120 TB 16 ‒ 128 GB 

 Data produced 210 GB 4 GB 

 

Table 4 also shows how LES and ERF differed in their computational needs. LES demanded high-performance computing 

with 230,000 CPU hours and up to 120 TB memory, which we primarily performed on the US National Center for 690 
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Atmospheric Research Cheyenne supercomputer (https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-

ERF/cheyenne). Conversely, ERF required a high-throughput computing architecture, for which we primarily used the US 

National Science Foundation’s CyVerse open science workspace (https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-

LES-ERF/cyverse). Overall, the strong data requirements of ERF, including use of high-frequency EC data, currently drive 

LES-ERF computational needs. Investigations into relaxing ERF data requirements while retaining overall performance are 695 

in progress. This could permit generating the necessary virtual observations with NSs that substantially reduce resource 

demand compared to LES, such as Reynolds-averaged Navier-Stokes (Sogachev et al., 2002; Santiago et al., 2010). In turn, 

this could enable application of a generalized “NS-ERF” approach to OSSEs for use cases that require consideration of more 

extensive space-, time-, and disciplinary domains. Furthermore, a unified graphical user interface could aid accessibility and 

usability to better support investigators from diverse backgrounds. 700 

In Sect. 4.1 we discussed several sources of uncertainty that emanated from the specific numerical analyses chosen to 

optimize the CHEESEHEAD19 flight strategy. In addition, sources of uncertainty that surround the LES-ERF concept as a 

whole also warrant discussion. One of the strengths of OSSEs in general and LES-ERF in particular is to quantify the 

efficacy of candidate OSDs for cross-disciplinary applications. However, individual disciplines themselves often invoke very 

specific criteria and assumptions so their contributions to the overall project are valid (Sect. 1). Also determining the OSD 705 

trade-offs for meeting these discipline-specific criteria requirements could complement LES-ERF to an end-to-end science 

traceability assessment. One direction of future work could use the CHEESEHEAD19 field measurements to derive and 

evaluate such an end-to-end assessment in general and the presented OSD results in particular. 

Furthermore, earth system observations are highly variable in their space-time extent and resolution (Fig. 1). However, data 

overlays such as done in ERF require a “least common denominator” space-time resolution among all considered 710 

observations. Attaining this least common denominator while retaining quasi-continuous data coverage remains an 

observational challenge, even for WMO Essential Climate Variables such as land surface temperature. Toolkits that leverage 

multi-sensor data fusion to provide the necessary resolution and coverage to support plot- to landscape-scale research are 

only recently emerging (Wu et al., 2013; Pincebourde and Salle, 2020). 

Earth system observations are also variable in their space-time representations. These include gridded remote sensing 715 

observations in Eulerian coordinates, and EC heat flux observations in Lagrangian coordinates (Metzger, 2018). Data 

overlays among these observations leverage source area models, which connect the two representations in space and time 

(Leclerc and Foken, 2014). However, e.g.Bertoldi et al. (2013); Xu et al. (2020) point out a possible dependency of the 

source area attribution performance on the thermodynamic properties of the quantity observed in Lagrangian coordinates. 

Robust data overlays across coordinate representations might thus depend on separate source area considerations for neutral 720 

density vs. self-buoyant quantities. 
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5 Conclusions 

Surface-atmosphere synthesis is traditionally in the vanguard of interdisciplinary research, with efforts ranging from 

empirical studies over theoretical generalizations to NSs. More recently, data-intensive information discovery promises to 

further expand our insight into momentum, energy, water, and trace gas cycling. However, “data deluge” rather than the next 725 

interdisciplinary breakthrough can result from poor information overlap among ground, airborne and satellite observations, 

as well as numerical models. Scientific return hinges on our ability to merge information among these perspectives, for 

which the pre-field stage provides a unique opportunity to optimize the study design accordingly. 

We harnessed this opportunity by catalyzing recent advances in conducting virtual experiments within high-resolution LESs 

(“data from knowledge”) and physics-guided data science (“knowledge from data”) to create the LES-ERF approach. 730 

Traditional data capture focusses on intra-disciplinary best practices, and the cross-discipline explanatory power only 

becomes clear afterward. In contrast, LES-ERF explores tolerances (“value engineering”) in a numerical framework ahead of 

the actual field deployments, which offers a wide margin for improving cross-discipline post-field synthesis. For the 

CHEESEHEAD19 OSD, we used LES-ERF to maximize the information overlap across micro- and mesometeorological 

space and time scales. To date, these scales have predominantly been dealt with in a discontinuous fashion, which we 735 

overcame by combining cross-platform flux tower and flux aircraft responses in a single ERF for the first time. This 

demonstrated that a carefully designed flight strategy has the potential to double CHEESEHEAD19 scientific return across 

two specific design hypotheses, and to order-of-magnitude improve flight operation and crew safety. 

LES-ERF thus makes the benefits of OSSEs accessible for maximizing the return of cross-disciplinary field measurements 

that previously had to rely on experience and expert knowledge alone. This property transcends academic field 740 

measurements such as presented here, and can inform natural climate solutions, emission inventory validation, urban air 

quality, industry leak detection and multi-species applications, among other use cases. 

Code availability.  Software used in this study are available per CHEESEHEAD Code Policy 

(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/code-policy), and are either already available from or being 

developed into public code repositories. 745 

Data availability.  All data used in this study are available per CHEESEHEAD Data Policy 

(https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-policy) from the FAIR-compliant CyVerse Data 

Commons (https://w3id.org/smetzger/Metzger-et-al_2021_OSSE-LES-ERF/data-commons). The top-level document 

“readme_Metzger-et-al_2021_OSSE-LES-ERF.md” provides specific dataset locations for individual processing steps. For 

final manuscript publication, we plan to curate these data into the FAIR-compliant CHEESEHEAD Data Archive Center at 750 

the National Center for Atmospheric Research, Earth Observing Laboratory (https://w3id.org/smetzger/Metzger-et-

al_2021_OSSE-LES-ERF/data-repo), mint a DOI and cite the dataset as full reference in the reference list. 
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