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Abstract

The potential benefits of seasonal streamflow forecasts for the hydropower sector have been evaluated for several basins across

the world, but with contrasting conclusions on expected hydropower production and economic gains. This raises the prospect of

a complex relationship between reservoir characteristics, forecast skill and value. Here, we unfold the nature of this relationship

by studying time series of simulated power production for 735 headwater dams worldwide. The time series are generated by

running a detailed dam model over the period 1958-2000 with three operating schemes: basic control rules, perfect forecast-

informed, and realistic forecast-informed. The realistic forecasts are issued by bespoke models, based on lagged global and

local hydroclimatic variables, predicting seasonal monthly dam inflows. Results show that most dams (94%) could benefit from

perfect forecasts. Yet, the benefits for each dam vary greatly and are primarily controlled by the time to fill and the ratio

between reservoir depth and hydraulic head. When realistic forecasts are adopted, 25% of dams demonstrate improvements

with respect to basic control rules. In this case, the likelihood of observing improvements is controlled not only by design

characteristics but also by forecast skill. We conclude our analysis by identifying two groups of dams of particular interest:

dams that fall in regions expressing strong forecast accuracy and have the potential to reap benefits from forecast-informed

operations, and dams with strong potential to benefit from forecast-informed operations but lack forecast accuracy. Overall,

these results represent a first qualitative step towards informing site-specific hydropower studies.
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Key Points:8
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Abstract15

The potential benefits of seasonal streamflow forecasts for the hydropower sector have16

been evaluated for several basins across the world, but with contrasting conclusions on17

expected hydropower production and economic gains. This raises the prospect of a com-18

plex relationship between reservoir characteristics, forecast skill and value. Here, we un-19

fold the nature of this relationship by studying time series of simulated power produc-20

tion for 735 headwater dams worldwide. The time series are generated by running a de-21

tailed dam model over the period 1958-2000 with three operating schemes: basic con-22

trol rules, perfect forecast-informed, and realistic forecast-informed. The realistic fore-23

casts are issued by bespoke models, based on lagged global and local hydroclimatic vari-24

ables, predicting seasonal monthly dam inflows. Results show that most dams (94%) could25

benefit from perfect forecasts. Yet, the benefits for each dam vary greatly and are pri-26

marily controlled by the time to fill and the ratio between reservoir depth and hydraulic27

head. When realistic forecasts are adopted, 25% of dams demonstrate improvements with28

respect to basic control rules. In this case, the likelihood of observing improvements is29

controlled not only by design characteristics but also by forecast skill. We conclude our30

analysis by identifying two groups of dams of particular interest: dams that fall in re-31

gions expressing strong forecast accuracy and have the potential to reap benefits from32

forecast-informed operations, and dams with strong potential to benefit from forecast-33

informed operations but lack forecast accuracy. Overall, these results represent a first34

qualitative step towards informing site-specific hydropower studies.35

Plain Language Summary36

Seasonal streamflow forecasts are an important asset for hydropower operators. Their37

value has been assessed in several regions, but with contrasting conclusions on how pre-38

dictive accuracy, or skill, and dam design specifications affect the expected increase in39

power production. Here, we discover the nature of this relationship by studying a large40

dataset comprising seasonal forecasts and simulated hydropower production for 735 head-41

water dams worldwide, representing 10% of the world’s installed hydropower capacity.42

Our results show that 25% of these dams demonstrate improvements. We conclude the43

analysis by identifying the values of forecast skill and design specifications that are nec-44

essary to reap immediate benefits from forecast-informed operations. Overall, the infor-45

mation revealed by this study could support the design and operations of large-scale hy-46

dropower projects.47
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1 Introduction48

Hydropower is the leading form of renewable power, contributing to 16% of global49

electricity production and supplying 62% of all renewable electricity (IHA, 2019). To-50

tal hydropower generation is expected to double by 2050, with substantial growth in Asia,51

Africa, and South America (Zarfl et al., 2015; X. Zhang et al., 2018). Sustainable op-52

erations of hydropower facilities, however, are challenged by climate variability and change,53

which modify short-term and long-term water availability, often with direct effects on54

regional and global economies (Turner, Hejazi, et al., 2017).55

Many studies assessed the potential impacts of climate change on global, continen-56

tal, and regional hydropower production using projected streamflow from hydrological57

models (Hamududu & Killingtveit, 2012; Van Vliet et al., 2016; Turner, Ng, & Galelli,58

2017; X. Zhang et al., 2018). For example, T. Zhou et al. (2018) outlines expected sub-59

stantial seasonal changes in hydropower generation in the western United States, while60

Kao et al. (2015) estimates that the United States federal hydropower production will61

decrease 1-2 TWh per year until 2039. Decreases in hydropower production in the late62

21th century are also expected in Europe (Lehner et al., 2005) and China (Liu et al., 2016),63

although regional variations are likely. Such projections in hydropower production can64

prompt policymakers to engage in strategic adaptation, including infrastructure expan-65

sion or alternative reservoir operating policies, to ensure water-energy security in the long66

run (Payne et al., 2004; Van Vliet et al., 2016).67

In contrast to climate change, climate variability presents a fundamentally differ-68

ent challenge, namely seasonal and inter-annual fluctuations in streamflow and hydropower69

output driven by large-scale climate drivers. Examples include the North Atlantic Os-70

cillation (NAO), affecting hydropower in Europe (De Felice et al., 2018), and the El Niño71

Southern Oscillation (ENSO), affecting one third of the world’s hydropower dams (Ng72

et al., 2017). In theory, the negative impact of climate variability on hydropower pro-73

duction can be tackled with adaptive reservoir operating policies based on seasonal stream-74

flow forecasts, but, in practice, the ripped benefits depend on the complex relationship75

between hydropower production, forecast skill, and reservoir characteristics.76

In previous studies, this relationship has been studied with either analytical or ex-77

perimental approaches. In the analytical approach, one typically uses synthetic forecasts78

and hypothetical reservoir systems (e.g., concave objective function, monotonic relation-79

ship between current operation decision and ending storage) to analytically derive a re-80

lationship between the aforementioned variables. For example, You and Cai (2008) de-81

rive a theoretical relationship linking the ideal forecast horizon to various factors, such82
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as water stress level, reservoir size, or inflow uncertainty. In a follow-up study, Zhao et83

al. (2012) investigate the relationship between forecast horizon and uncertainty, iden-84

tifying an effective forecast horizon that balances the effects of horizon and uncertainty,85

providing the largest benefit to the reservoir operators. In contrast, the experimental ap-86

proach simulates the operations of existing reservoirs systems with seasonal streamflow87

forecasts to determine their potential value—and, where possible, to build an empirical88

relationship linking forecast value, skill, and reservoir characteristics. A common, and89

expected, conclusion shared by many studies is that incorporating streamflow forecasts90

into reservoir operating policies can lead to increased hydropower production and eco-91

nomic gains (Kim & Palmer, 1997; Ahmad & Hossain, 2019). What is perhaps more in-92

teresting is that the expected gains vary widely. Maurer and Lettenmaier (2004), for in-93

stance, observed a modest 1.8% hydropower benefit for reservoirs along the Missouri River94

utilizing perfect forecasts. They attribute the relatively low gains to the system’s large95

storage capacity relative to annual inflow. Similarly, Rheinheimer et al. (2016) noted an96

expected 1.2% economic gain for hydropower systems in the Sierra Nevada (California)97

and found that forecast value is insensitive to storage capacity, yet highly sensitive to98

powerhouse capacity. By contrast, Hamlet et al. (2002) used ENSO and the Pacific Decadal99

Oscillation (PDO) signals to construct long-range streamflow forecasts, and estimated100

that such forecasts could increase hydropower revenue by $153 million/year (> 40%) for101

the Columbia River system. Recently, Anghileri et al. (2019) applied subseasonal hydrom-102

eteorological forecasts to improve both revenue and unproductive spill for the Verzasca103

hydropower system in the Swiss Alps. Similar benefits have been demonstrated in many104

other countries, such as Ecuador (Gelati et al., 2014), Ethiopia (Block, 2011), and the105

Philippines (Sankarasubramanian et al., 2009; Libisch-Lehner et al., 2019).106

While these studies illustrate the potential benefits of seasonal forecasts, they are107

limited to individual dams or specific river basins. A ‘synoptic’ assessment of the value108

of seasonal forecasts for global hydropower production is lacking. In addition, there is109

only fragmented knowledge on how forecast skill and reservoir characteristics translate110

into forecast value. Characterizing such relationship across multiple geographic areas and111

climatic conditions may provide valuable insights for planning and managing hydropower112

projects. Here, we address these gaps by presenting a global analysis carried out on 753113

headwater dams, representing 10% of the world’s installed hydropower capacity. Specif-114

ically, we leverage recent studies demonstrating global streamflow predictability condi-115

tioned on large-scale climate variability (Ward et al., 2014; Lee et al., 2018) and develop116

seasonal inflow forecasts for each dam. Then, we quantify the value of these forecasts117

by comparing the amount of hydropower simulated by three operating schemes based118

on realistic forecasts (issued by our model), perfect forecasts, and (no forecasts) control119
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rules. With this information at hand, we bank on the wide range of climatic conditions120

and dam characteristics available in our database to (1) explain how reservoir design prop-121

erties and forecast skill affect the value of seasonal forecasts, and (2) identify key geo-122

graphical regions where dams would benefit the most from forecasts. As we shall see, the123

relationship (between forecast skill and value) and spatial patterns revealed by our anal-124

yses represent a first qualitative step towards informing site-specific studies.125

2 Data126

2.1 Hydropower dams data127

We use the database introduced by Ng et al. (2017), which contains design spec-128

ifications for 1,593 hydropower reservoirs—representing almost 40% of the world’s in-129

stalled hydropower capacity. The database provides information on dam height, stor-130

age capacity, maximum surface area, long-term average discharge, upstream catchment131

area, geographic coordinates, installed power capacity, maximum turbine flow, and op-132

erating goals (e.g., hydropower supply, flood control). The majority of these data were133

originally retrieved from the Global and Dam (GRanD) database (Lehner et al., 2011),134

and complemented with data from the International Commission on Large Dams (ICOLD,135

2011), the Global Lakes and Wetlands Database (Lehner & Döll, 2004), and the Global136

Energy Observatory (GEO, 2016). The fact that not all dams in the database are located137

in the headwaters is a major challenge, since the inflows are forecasted based on hydro-138

meteorological data only (see Section 3.1. For this reason, we filter out all dams affected139

by upstream regulation, reducing the number of dams from 1,593 to 753. To this pur-140

pose, we first retrieve data on the Degree Of Regulation (DOR) for each dam, defined141

as the ratio between the storage volume of the upstream dam(s) and the natural aver-142

age discharge volume of a given river segment (Grill et al., 2019). We then keep only the143

dams with DOR equal to 0.144

To model the relationship between storage and depth, one ideally needs data on145

the bathymetry of each reservoir, an information not available at the global scale. Re-146

cent advances in remote sensing have shown that these data can be estimated from satel-147

lite images (Gao et al., 2012; Bonnema & Hossain, 2017), but for a number of reservoirs148

that is not yet compatible with the scale of our work (Busker et al., 2019). For this rea-149

son, we adopt a simpler bathymetry commonly adopted in global studies (Van Beek et150

al., 2011; Turner, Ng, & Galelli, 2017). Specifically, we model the storage-depth relation-151

ship with Kaveh’s method, which assumes an archetypal reservoir shape (Kaveh et al.,152

2013). This method estimates the reservoir surface area as a function of volume, max-153

imum surface area, depth, and maximum depth. For the limited number of cases in which154
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data on the maximum depth are not available, we adopt Liebe’s method, which assumes155

that a reservoir is shaped like an inverted pyramid cut diagonally in half (Liebe et al.,156

2005).157

For each dam, we obtain a monthly inflow time series from the Water and Global158

Change (WATCH) 20th century model gridded global runoff dataset (Weedon et al., 2011).159

The runoff data are generated by the global hydrological model WaterGAP (Alcamo et160

al., 2003), which estimates the accumulated runoff for each grid (0.5◦ × 0.5◦ resolution)161

using the DDM30 river network (Döll & Lehner, 2002). The model has found success-162

ful application in various global water resources studies (Döll et al., 2009; Haddeland et163

al., 2014), but its spatial resolution may be a source of uncertainty for dams located in164

small catchments. For this reason, we modify the original WATCH database in three ways.165

First, we consider only the period 1958–2000, which contains more detailed forcing data166

(Weedon et al., 2011). Second, we manually adjust the position of 270 dams (among the167

753 dams with DOR equal to 0) to properly align them with the DDM30 river network.168

To this purpose, we use the HydroSHEDS river network (Lehner et al., 2008) and satel-169

lite images. Lastly, we correct the discharge data to account for any disparity between170

the upstream catchment area defined by the DDM30 river network and the documented171

upstream catchment area of each dam (Ng et al., 2017).172

In addition to the inflow time series, we also retrieve information on the climate173

classification of each dam location, an information needed in the latter part of our anal-174

ysis to characterize the regions that would benefit the most from forecasts. To this pur-175

pose, we use the updated Köppen-Geiger Climate classification developed on the basis176

of a large global data set of long-term monthly precipitation and temperature time se-177

ries (Peel et al., 2007). Specifically, we use the most frequent Köppen-Geiger Climate178

classification in all upstream grids for each dam.179

2.2 Hydro-climatological data180

The seasonal forecasts developed here depend on seven predictors: four large-scale181

climate drivers (ENSO, PDO, NAO, and Atlantic Multidecadal Oscillation (AMO)), and182

three variables accounting for local processes (lagged inflow, snowfall, and soil moisture.)183

The four large-scale climate drivers are interannual, decadal, or multidecadal quasiperi-184

odic oscillations derived from oceanic and atmospheric fields, and play a key role in de-185

termining climate patterns across the world. To characterize ENSO, we use the Niño 3.4186

index, defined as the anomalies of 3-month running mean of Sea Surface Temperature187

(SST) in the Niño 3.4 region (https://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/188

Nino34/). The monthly PDO index is defined as the leading principal component of monthly189
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SST anomalies in the North Pacific basin (Y. Zhang et al., 1997). It is obtained from190

the Joint Institute for the Study of the Atmosphere and Ocean (http://research.jisao191

.washington.edu/pdo/). For NAO, we use the station-based seasonal NAO index, which192

is the difference in normalized sea level pressure between Reykjavik and Lisbon stations193

(Hurrell & Deser, 2010) (https://climatedataguide.ucar.edu/climate-data/hurrell194

-north-atlantic-oscillation-nao-index-station-based). Finally, the AMO index195

is defined as the area-weighted average SST over the North Atlantic basin (Enfield et196

al., 2001). We use the monthly de-trended and un-smoothed AMO index derived from197

the Kaplan SST (https://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/AMO). For198

the PDO and AMO indices, we calculate the 3-month running mean to maintain sea-199

sonal persistence.200

Monthly soil moisture and snowfall data are obtained from the ERA-40 reanaly-201

sis, developed by the European Centre for Medium-Range Weather Forecasts (https://202

apps.ecmwf.int/datasets/) and WATCH forcing data, respectively. For soil moisture,203

we aggregate all four volumetric soil water layers of the ERA-40. To properly account204

for the basin-scale soil moisture and snowfall states (Maurer & Lettenmaier, 2004), we205

calculate the area-weighted average soil moisture and snowfall of all upstream grids for206

each dam using the DDM30 river network.207

3 Methods208

The purpose of this study is to (1) quantify the value of seasonal inflow forecasts209

for global hydropower production, (2) explain how reservoir design properties and fore-210

cast skill affect the value of seasonal forecasts, and (3) identify regions that would ben-211

efit the most from seasonal forecasts. To achieve these goals, we first develop an inflow212

prediction model for each of the 753 dams (Section 3.1). Then, we simulate hydropower213

production for each dam under three operating schemes that are based on perfect fore-214

casts, realistic forecasts (issued by our inflow prediction model), and (no forecast) con-215

trol rules (Section 3.2). Finally, we evaluate the performance of each operating scheme216

and identify the reservoir design specifications that explain system’s performance (Sec-217

tion 3.3).218

3.1 Dam inflow prediction model219

Our long-range inflow prediction models are based upon the methodology presented220

by Lee et al. (2018), who employed lagged large-scale climate drivers and prior stream-221

flow conditions to predict streamflow at 1,200 stations globally. Lee et al. (2018) sug-222

gested that a Principal Component Regression (PCR) model with a set of predictors can223
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provide fair (realistic) predictive skills that can also be easily implemented globally. While224

Lee et al. (2018) predicted the seasonal (3-month) streamflow, here we develop indepen-225

dent monthly prediction (MP) models for the subsequent seven calendar months. For226

example, at the end of February, we predict monthly inflows from March (MP1) to Septem-227

ber (MP7).228

The methodology relies on the following steps, illustrated in Figure 1. First, we nor-229

malize (log-normalize for streamflow) and detrend all predictors and streamflow obser-230

vations to avoid artificial skill due to potential dependence. Then, we estimate the lag-231

correlations between monthly inflows over the next 7 months and climate indices (1-8232

months ahead), snowfall (current to 8 months ahead), and inflow and soil moisture (cur-233

rent month). Statistically significant predictors are subsequently used to develop the MP234

models. If a single (statistically significant) predictor exists, we apply a linear regression235

(LR) model; otherwise, we apply the PCR model to avoid possible multicollinearities.236

In the PCR process, we truncate only the last principal component, which is associated237

with multicollinearities, as suggested by Jolliffe (2002) and Wilks (2011). We apply a238

leave-one-out cross-validation (LOOCV) scheme to select the optimal lead-times of the239

lagged predictors. Specifically, all combinations of lead months for the lagged predictors240

are cross-validated with a block size of 3 years; then, the optimal set of lead-months is241

determined based on the minimum mean squared error (MSE). The models are calibrated242

with 70% of the available data (corresponding to the period 1958–1987) and validated243

with the remaining data (1988–2000). In the validation process, we evaluate the model244

performance using two skill scores, namely the mean squared error skill score (MSESS)245

and the Gerrity skill score (GSS) (Appendix A), as in Lee et al. (2018). If an MP model246

has no statistically significant predictors, or either an MSESS or GSS value less than 0,247

the climatological mean prediction is used instead.248

The overall accuracy of the reservoir inflow predictions is assessed with the Kling-249

Gupta efficiency (KGE), which compares correlation, bias, and variability of the pre-250

dicted and observed discharge (Gupta et al., 2009). The KGE is defined as:251

KGE = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2, (1)

where r is the correlation coefficient, β the bias ratio of the mean inflow (µs/µo), γ the252

variability ratio (CVs/CVo), µ the mean flow, CV the coefficient of variation, and s and253

o two indices indicating simulated (predicted) and observed inflow values, respectively.254
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3.2 Reservoir operation model255

3.2.1 Reservoir model256

An essential component of the operating schemes described below is the reservoir257

mass balance:258

St+1 = St +Qt − Et −Rt − Spillt, (2a)

0 ≤ St ≤ Scap, (2b)

0 ≤ Rt ≤ min(St +Qt − Et, Rmax), (2c)

where St is the reservoir storage at month t, Qt the inflow volume (retrieved from the259

WaterGAP model, as described in Section 2.1), Et the evaporation loss, and Rt the wa-260

ter released through the turbines. Both St and Rt are constrained by the reservoir de-261

sign specifications. Specifically, the storage cannot exceed the reservoir capacity Scap (eq.262

(2b)), while the discharge is bounded by the water availability and capacity Rmax of the263

turbines (eq. (2c)). Excess water, if any, is spilled:264

Spillt = max(0, St +Qt −Rt − Et − Scap). (2d)

The hydropower production Pt (in MW) is calculated as follows:265

Pt = η · ρ · g · rt · ht, (3)

where η is the efficiency of the turbines assumed constant over the simulation period),266

ρ the water density (1,000 kg/m3), g the gravitational acceleration (m/s2), rt the aver-267

age release rate (m3/s) implied by the monthly release volume Rt, and ht the hydraulic268

head (m). The latter is taken as the average head between time t and t+ 1.269

3.2.2 Benchmark scheme: control rules270

Our benchmark operating scheme relies on the approach proposed by Ng et al. (2017),271

in which the behaviour of the hydropower operators is modelled as an optimal control272

problem. This approach builds on two main assumptions, on which we shall return in273

Section 5. First, the goal of the operators is to maximize hydropower production over274
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the long term. This objective provides a tangible indication of hydropower performance,275

so it is commonly adopted in large-scale studies (e.g., Van Vliet et al. (2016)). Second,276

the release decision Rt depends on the reservoir storage St, the previous period’s inflow277

volume Qt−1, and month of year t—a common choice in real-world reservoir operating278

schemes (Hejazi et al., 2008). In other words, the approach assumes that each reservoir279

is operated through a bespoke, periodic look-up table of turbine release decisions, which280

is generated with stochastic dynamic programming (Loucks et al., 2005; Soncini-Sessa281

et al., 2007). In the optimization, the inflow process is modelled with a first order, pe-282

riodic Markov chain, whose parameterization is derived from the inflow data. A detailed283

validation of the operating rules—based on values of observed hydropower production284

in 107 countries during the period 1980–2000—is reported in Turner, Ng, and Galelli (2017).285

The time series of all process variables (e.g., inflow, storage, release, hydropower produc-286

tion) obtained by the benchmark control scheme are available on HydroShare (http://287

www.hydroshare.org/resource/ca365ffb1a1f49df8b77e393be965fd8).288

3.2.3 Forecast-informed scheme289

To assess the value of seasonal streamflow forecasts, we adopt an adaptive scheme290

based on the receding horizon principle (Bertsekas, 1976): at month t, we use a 7-month291

streamflow forecast to determine the value of the release decisions for the next seven months,292

and then implement only the decision Rt for the first month. At month t+1, when a293

new 7-month forecast becomes available, a new sequence of release decisions is determined.294

Each decision-making process is formulated through an optimization problem that max-295

imizes the hydropower production over the forecast horizon while accounting for the ben-296

efits associated with the resulting storage at the end of the forecast horizon:297

min
Rt,Rt+1,...,Rt+6

6∑
i=0

Pt+i +X(St+7) (4)

where Pt is the hydropower production (see eq. (3)) and X(·) a function accounting for298

the long-term effect of the release decisions. Specifically, the function penalizes decisions299

that solely optimize energy production in the short term, risking depleted water avail-300

ability in the long term. Following a common practice in forecast-informed schemes (Soncini-301

Sessa et al., 2007), we set X(·) equal to the benefit function obtained by the benchmark302

control rules, which contains information about the expected long-term hydropower pro-303

duction for a given storage level. Thus, the real-time information provided by the fore-304

casts may alter decisions otherwise based solely on the benchmark scheme (Turner, Ben-305

nett, et al., 2017). The optimization problem is solved at each time step using determin-306

istic dynamic programming [ibidem].307
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The scheme is implemented using both ‘perfect’ and realistic forecasts (described308

in Section 3.1). Both benchmark and forecast-informed schemes are simulated over the309

period 1958–2000. During the simulation, all release decisions are constrained to satisfy310

downstream environmental flow requirements, calculated using the variable monthly flow311

method (Pastor et al., 2014). All experiments are carried out with the R package reser-312

voir (Turner & Galelli, 2016).313

3.2.4 Dealing with additional operating objectives and finer temporal314

scales315

Of the 735 dams, 174 dams within the database are also operated for flood con-316

trol purposes. For these dams, we penalize spill to account for flood control and formu-317

late the optimization objective as follows (in both benchmark and forecast-informed schemes):318

min
∑
t

(w1 ·
Spillt
p95(Q)

+ w2 · (1−
Pt

P
)) (5)

where w1 and w2 are the weights associated to the flood control and hydropower objec-319

tives, set to 0.5 here, p95(Q) the 95th percentile of the inflow time series Q, and P the320

installed hydropower capacity (in MW). The presence of an additional goal may result321

in a change of the hydraulic head or release trajectory, thereby affecting hydropower pro-322

duction (Zeng et al., 2017).323

A second modification of the reservoir operation model concerns the monthly decision-324

making time step, which may not be suitable for reservoirs with small storage capacity325

relative to inflow (or time-to-fill). We therefore identify a group of 94 reservoirs for which326

the time-to-fill is smaller than two months, and adopt for this group only a weekly time327

step. Since the inflow forecasts have a monthly resolution, we disaggregate each forecast328

into four values using the k-nearest neighbors algorithm. Further details are reported329

in Text S1.330

3.3 Reservoir performance evaluation331

The value of seasonal streamflow forecasts—here measured in terms of hydropower332

production—certainly depends on predictive skill; however, a second important factor333

influencing forecast value are the reservoir characteristics. For example, a reservoir con-334

strained by small turbine capacity may perform adequately well utilizing control rules335

alone as storage is sufficient to buffer inflow variability. Thus, we are not only interested336

in quantifying forecast value, but also in understanding how value varies as a function337

of both skill and reservoir characteristics.338
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3.3.1 Impact of design characteristics for a perfect forecast-based ap-339

proach340

Initially excluding the effect of actual forecast skill, the following performance met-341

ric represents the expected improvement from perfect forecast-informed operations as342

compared to control rules-based operations:343

IPF =
HPF −Hctrl

HPF
× 100%, (6)

where HPF and Hctrl represent the total hydropower production (for the period 1958–344

2000) obtained with perfect forecast-informed operations and control rules, respectively.345

A negative value indicates that the control rules outperform the (perfect) forecast-informed346

operations, whereas a positive value suggests that forecast-informed operations could be347

beneficial.348

To understand how reservoir characteristics may influence benefits based on a per-349

fect forecast approach, we proceed in two steps. First, we label each dam as success or350

failure depending on whether the associated value of IPF is larger or smaller than the351

mean value of IPF across all dams. Note that failure implies that the control rules and352

(perfect) forecast-informed operations generate a similar amount of hydropower, and thus353

storage and previous month inflow quantities are sufficient for near-optimal release de-354

cisions. Second, we explain the likelihood of achieving success through a logistic regres-355

sion model in which the probability of the binary response variable taking a particular356

value is a function of the predictor variables. We consider two predictors, namely (1) the357

ratio of reservoir storage capacity to the mean monthly inflow (xfill, measured in months),358

and (2) the ratio of maximum reservoir depth to maximum hydraulic head (xdepth). The359

second predictor varies between 0 and 1, and indicates the extent to which hydraulic head360

is dependent on the depth of the reservoir. The logistic regression model is cross-validated361

with a 10-fold cross-validation scheme, and evaluated using two metrics, accuracy and362

Cohen’s kappa (McHugh, 2012). Accuracy is the ratio of correctly predicted observations363

(true positives and true negatives) to the total number of observations. Cohen’s kappa364

is an adjusted accuracy score that accounts for the possibility of correct predictions oc-365

curring by chance. The modelling exercise is carried out with the R package caret. For366

additional details, please refer to Text S2, and Table S1–S2 in the Supporting Informa-367

tion.368

–12–



manuscript submitted to Water Resources Research

3.3.2 Impact of forecast skill and design characteristics for a realistic369

forecast-based approach370

Integrating realistic forecasts in lieu of perfect forecast information, we introduce371

the following performance metric:372

IDF =
HDF −Hctrl

HPF
× 100%, (7)

where HDF represents the total hydropower production (for the period 1958–2000) ob-373

tained using realistic forecast-informed operations. IDF is then combined with IPF to374

calculate the performance metric I that quantifies the potential improvement between375

realistic and perfect forecast-informed operations:376

I =
HDF −Hctrl

HPF −Hctrl
=
IDF

IPF
. (8)

A value of I equal to 1 indicates that benefits from the actual forecasts equal those uti-377

lizing perfect forecasts. A value of 0 denotes performance equivalent to applying the con-378

trol rules only, while a negative value implies that the forecast-informed scheme is in-379

ferior to the control rules only approach. We calculate this metric only for the subset380

of dams achieving a value of IPF greater than the mean value of IPF to better under-381

stand if the benefits modeled with perfect forecasts may be attainable with realistic fore-382

casts.383

To explain how the metric I varies, we use a linear regression model accounting for384

both forecast skill and reservoir characteristics. The predictor characterizing the fore-385

cast skill is xMdAPE , the median absolute percentage error of the forecast, used in place386

of KGE because it shows a higher correlation with I. (While KGE gives a broad view387

of the forecast skill by comparing correlation, mean, and standard deviation of the pre-388

dicted and observed inflows, MdAPE looks at the forecast error at every time step of389

the inflow time series. This may make MdAPE a more suitable predictor, since the er-390

ror at each time step affects the release decisions and, ultimately, the hydropower pro-391

duction.) The second predictor is xexceed, the fraction of time that inflow exceeds the392

maximum turbine release rate. For more details on the choice of predictors, please re-393

fer to Text S3 and Table S3–S4.394

4 Results395

In this section, we first present the accuracy of the inflow prediction models (Sec-396

tion 4.1) and performance of the forecast-informed schemes (Section 4.2). Then, we quan-397
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tify the extent to which reservoir design characteristics and forecast skill affect the value398

of seasonal forecasts (Section 4.3). Lastly, we classify all dams according to their poten-399

tial to benefit from forecasts, and identify key geographical regions that may benefit the400

most from forecasts (Section 4.4).401

4.1 Potential predictors and accuracy402

Reservoir inflow exhibits significant correlation with climate and local drivers (po-403

tential predictors) at various monthly lags, and these relationships change across the an-404

nual cycle. This has a direct influence on expected predictive skill at each hydropower405

facility. From a global perspective for monthly dam inflow, the percentage of dams cor-406

related with climate and local drivers in each calendar month varies notably (Figure 2).407

Evaluating months when a higher percentage of dams are significantly correlated with408

predictors, some well-known climatic teleconnections can be observed—for example, ENSO409

and winter-spring streamflow in North America and Europe, NAO and spring-summer410

peak flows in the northern extratropic regions, and PDO and summer streamflow in south-411

eastern North America and central South America (Lee et al., 2018) (see Figure S1). On412

average, 27%, 37%, 28%, 20%, and 36% of dams are significantly correlated with ENSO,413

NAO, PDO, AMO, and snowfall, respectively. Additionally, and not surprisingly, inflow414

for most dams (72%) exhibits significant 1-month lead autocorrelation. An exception is415

for some dams during the period March-April, especially in areas with minimal base flow,416

such as East Asia (Figures 2 and S1). Soil moisture at a 1-month lead presents corre-417

lations at 47% of dams across all months with a seasonality similar to the one expressed418

by the inflow.419

Similar to the results of Lee et al. (2018), reservoir inflow and climate predictors420

are often significantly correlated across several lead months. In these cases, climate pre-421

dictors are very likely to be included in numerous MP models for various leads, although422

the correlations may decrease with longer lead-time. When a climate predictor is signif-423

icantly correlated with reservoir inflow at a 1-month lag (MP1), 74% and 38% of the time424

that is also included at the 4-month lag (MP4) and 7-month lag (MP7), respectively. Snow-425

fall has a similar retention rate. However, and as expected, autocorrelation in inflow and426

soil moisture drop more substantially with longer lead; only 53% (28%) of the time when427

lagged inflow (soil moisture) is included as a predictor in MP1 is it also still included in428

MP4 (MP7). Globally, an average of 2.7, 1.7, and 0.9 predictors are included in the MP1,429

MP4, and MP7 models, respectively. In very few cases, the number of predictors increases430

with longer lead-time. For months when no potential predictors are identified, or either431

MSESS or GSS is less than zero, the long-term mean inflow for that month is used.432
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On average, predictors are identified for 8.3 months (MP1), 6 months (MP4), and433

4.2 months (MP7) (see Figure 3). As noted previously, a lack of long-lead inflow auto-434

correlation is predominantly responsible for this drop-off. Prediction accuracy also de-435

creases with lead-time; average KGE values are 0.64 and 0.56 for MP1 and MP7, respec-436

tively (Figure 3). Given that prediction accuracy generally declines with lead time, the437

highest KGE scores across all MP models are associated with MP1 for 68% of dams.438

For the remaining models, the highest prediction accuracy is recorded for 5% (2%) of439

dams in the MP4 (MP7) models, emphasizing that skillful climate teleconnections at longer440

leads do exist, such as in Europe or northwestern and southeastern U.S. (Figure 3b). Glob-441

ally averaged, each MP model illustrates a significant relationship with KGE scores (r442

= 0.82–0.96 for all MP models). As for the geographical distribution of KGE, we find443

relatively high KGE scores in several regions, including North America, eastern South444

America, Europe, and some regions in western Africa and Asia, where inflows correlate445

with most of the predictors considered (Figures 3 and S1).446

For all MP models, the KGE has an average value of about 0.56, which is regarded447

as fair skill score. While uniquely tailored forecasts could be produced for each dam con-448

sidering more local influences, the current prediction approach performs well globally and449

reflects achievable long-range inflow prediction. Considering the superior performance450

of the MP1 model, the forecast skill of MP1 only is retained to represent the overall fore-451

cast skill for further analyses.452

4.2 Performance of forecast-informed operations453

The expected performance of perfect and realistic forecast-informed operations is454

notably different across the 735 hydropower dams (Figure 4). For perfect forecast-informed455

operations (Figure 4a), substantial increases in hydropower production are possible as456

compared with the baseline control rules, represented as expected increase in the per-457

formance metric IPF . Specifically, 94% of dams exhibit a positive value of IPF ; mean458

improvement is 4.7% and maximum improvement is 60%. For the small number of dams459

that do not benefit from perfect forecasts, the value of IPF does not drop below -1.7%.460

Considering all dams collectively, an additional 24 TWh per year of hydroelectricity are461

generated when adopting the perfect forecast-informed approach in lieu of baseline con-462

trol rules (IHA, 2019).463

When realistic forecast-informed operations are adopted (Figure 4b), a smaller num-464

ber of dams exhibits increased hydropower production; 25% of dams have a positive value465

of IDF . These 184 dams show an average improvement of 2.3% and can collectively con-466

tribute an additional 1.7 TWh per year in hydropower production. Across all dams, the467
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maximum and minimum values of IDF are 28% and -24%. This decline in performance,468

as compared with perfect forecasts, is expected, as realistic forecasts introduce a non-469

negligible prediction error. Yet, it should also be noted that less than 20% of dams have470

KGE below 0.5, whereas a disproportionately high number of dams exhibit a negative471

IDF value—a point on which we shall reurn in Section 4.4. This suggests that for a large472

number of dams control rule-based operations are superior to realistic forecast-informed473

operations. For dams with poor IDF and high KGE, the results indicate two points: KGE474

may not fully capture the relationship between forecast skill and value; and reservoir char-475

acteristics may be an important factor influencing the value of realistic forecasts.476

4.3 Coincident evaluation of prediction accuracy and reservoir charac-477

teristics478

To identify the extent to which reservoir characteristics may modulate the value479

of seasonal forecasts, we identify a logistic regression model that explains the likelihood480

of achieving success with perfect forecasts (i.e., IPF larger than 4.7%, the mean value481

of IPF across all dams) as a function of two predictors, xfill (the ratio of reservoir stor-482

age capacity to the mean monthly inflow) and xdepth (the ratio of maximum reservoir483

depth to maximum hydraulic head). A 10-fold cross-validation yields a model accuracy484

and Kappa statistic of 0.785 and 0.535. (Note that the percentage of dams falling into485

the success and failure categories is equal to 37% and 63%.)486

As illustrated in Figure 5 and Table 1, both predictors influence the probability of487

achieving success. For xfill values exceeding ten months, dams are highly unlikely to ben-488

efit substantially from seasonal forecasts. This suggests that a large storage capacity ef-489

fectively acts as a buffer against inflow uncertainty. Hence, both control rules and per-490

fect forecast-informed operations tend to attain similar performance. We also observe491

that some of the smaller dams (xfill <2) fail to attain increased hydropower production492

even though they are predicted to do so (red triangles in the blue shaded region). This493

may be attributed to the weekly operations, suggesting that more frequent release de-494

cisions may reduce forecast value. For the smaller dams, xdepth becomes a critical fac-495

tor. High values of xdepth indicate that the hydraulic head is highly dependent on the496

reservoir depth, which is in turn dependent on current and near future inflows for dams497

that cannot accumulate large inflow volumes. Thus, forecast-informed operations become498

crucial to maintain a high hydraulic head and maximize hydropower production. For hy-499

dropower dams that have a low value of xdepth, a high hydraulic head is maintained even500

when storage is low, thereby minimizing the utility of forecasts. These are systems re-501

lying on waterfalls, or hilly terrains, to divert part of the water and gain hydraulic head.502
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Considering only the subset of 269 dams that have an IPF value larger than 4.7%,503

we apply a linear regression model to estimate the performance metric I. This time, the504

predictors include xMdAPE (median absolute percentage error of forecast inflows) and505

xexceed (the fraction of time that inflow exceeds the maximum turbine release rate). The506

linear regression model has an adjusted R2 of 0.31—a reasonable performance if we con-507

sider that the relationship between forecast skill, value, and reservoir characteristics is508

explained using two predictors. The reader is referred to Table S3-4 for more complex509

models that include additional predictors.510

The results are presented in Table 2 and illustrated in Figure 6. As expected, higher511

forecast skill (lower xMdAPE) increases the potential benefits realized by the realistic fore-512

casts; a 1% decrease in xMdAPE increases I by 0.03. Reservoir characteristics can play513

an important role, as certain configurations allow dams and hydropower production to514

benefit from realistic forecasts. Specifically, we find that dams that have large fractions515

of time in which inflow exceeds the maximum turbine release (large values of xexceed)516

are expected to benefit from forecast-informed operations—even when forecasts are not517

very accurate (as shown by the diagonal divide in Figure 6). This is predominantly a re-518

sult of both forecast and observed inflow exceeding the maximum turbine release rate519

at many time steps, a situation in which the release decision would be the same regardless—520

inaccurate forecast will not penalize hydropower production.521

4.4 A classification of hydropower dams522

Banking on the results described above, we divide the dams into four categories523

on the basis of their potential to benefit from perfect forecast-informed operations (high524

potential if IPF > 4.7% and low potential otherwise) and forecast skill (good forecast525

if xMdAPE < 20% and poor forecast otherwise). The cut-off value for IPF is inherited526

from the previous analysis (logistic regression model), while the cut-off for xMdAPE di-527

vides the 735 dams into two groups containing one third (good forecast) and two thirds528

(poor forecast) of the observations. Two groups of dams of particular interest includes529

(1) dams that fall in regions expressing strong forecast accuracy and have the potential530

to reap benefits from forecast-informed operations (9% of the total number of reservoirs),531

and (2) dams with strong potential to benefit from forecast-informed operations but lack532

forecast accuracy (27%) (Table 3).533

As show in Section 4.3, the potential of a dam to benefit from forecasts is largely534

dependant on its design specifications, which present comparable values in areas with535

similar orography and design practices. Forecast skill, on the other hand, is largely de-536

pendant on climate and teleconnections, which tend to present regional patterns. With537
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this information at hand, we illustrate in Figure 7 the distribution of the four groups of538

dams across the thirty climate zones of the Köppen-Geiger climate classification system.539

Statistics for each climate zone, together with their significance calculated using Chi-squared540

test, are listed in Table 3. We notice a few interesting regions. First, hydropower dams541

in Central Europe have neither accurate forecast nor high potential to benefit from forecast-542

informed operations. This trend is significant (p < 0.05) for dams in the Alps (alpine543

climate, ET ), in particular for dams that have large capacity-inflow ratios and high hy-544

draulic heads. Second, hydropower dams in the tropical savanna climate (Aw, Thailand,545

India, Brazil, and western Africa) and subartic climate (Dfc, Canada, Russia, eastern546

Europe) have accurate forecast but poor to fair potential. Good forecast skill in the trop-547

ical savanna (subartic) climate can be attributed to the high correlation with lagged stream-548

flow, ENSO, PDO, and AMO (snowfall, PDO, and NAO) teleconnections (Figure S1).549

Third, dams in many regions have high potential to benefit but lack accurate forecast.550

This is particularly pronounced in the humid subtropical climate (Cwa, Cfa) lying in551

the southeast regions of Australia, China, U.S., and South America. The trend is also552

true—but not significant—for dams in Southeast Asia (tropical rainforest, Af) and Pa-553

cific Northwest in the U.S. (warm summer Mediterranean, Csb).554

5 Discussion555

5.1 Implications for planning and management of hydropower projects556

In this study, we examine the relationship between seasonal streamflow forecasts557

and global hydropower production, accounting for the influence of reservoir character-558

istics. Specifically, we develop seasonal inflow forecasts for 735 headwater dams based559

on lagged global and local hydro-climatic variables. The forecasts exhibit modest skill560

globally, but higher skill in several regions, including the snow-dominated northern ex-561

tratropic region and the tropical savannah climate in mainland Southeast Asia, eastern562

South America, and western Africa. In agreement with earlier works, our forecasts ex-563

hibit well-known teleconnections, such as the one between NAO and spring summer peak564

flow in northern extratropic regions (Lee et al., 2018) or the one between ENSO and stream-565

flow in Southeast Asia (Sankarasubramanian et al., 2009; Räsänen & Kummu, 2013) and566

winter-spring streamflow in the Pacific Northwest (Hamlet et al., 2002; Voisin et al., 2006).567

We then seek to uncover the relationship between forecast skill, value, and reser-568

voir characteristics by adopting forecasts in the reservoir operations model. While 94%569

of the dams could benefit from perfect forecasts, only 25% demonstrate improvements570

when using our realistic forecasts—a fairly low percentage if we consider the forecast skill571

achieved globally. This highlights the fundamental role of reservoir characteristics in shap-572
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ing the relationship between forecast skill and value. Key design specifications include573

a short time-to-fill—a characteristic identified by a few recent studies (Anghileri et al.,574

2016; Turner, Bennett, et al., 2017; Yang et al., 2020)—an hydraulic head largely depen-575

dent on reservoir depth, and inflows often exceeding the maximum turbine release, a de-576

sign specification that allows operators to work with a larger margin of forecast error dur-577

ing high inflow periods. It is worth stressing here that these results are not intended to578

provide site operation guidelines, but do represent a first, qualitative, step towards de-579

termining the potential benefit of seasonal streamflow forecasts for hydropower opera-580

tors. The relationships identified here could for example be used to understand how much581

skill is required for the reservoir inflow forecasts or to characterize the interplay between582

climatology, hydrology, and dam characteristics in a large region of interest.583

By combining information on reservoir characteristics, forecast skill, and climatic584

zones, we finally identify large regions in which dams would benefit the most from fore-585

casts. A particularly interesting group is formed by dams with strong potential to ben-586

efit from forecast-informed operations but lacking adequate forecast accuracy—located587

in the maritime Southeast Asia, the Pacific Northwest and the humid subtropical climate588

of the southeast regions of Australia, China, U.S., and South America. These are areas589

in which watershed-specific analysis may bring immediate benefits to hydropower op-590

erators. It is also worth mentioning that the implications of our study go beyond exist-591

ing reservoirs; dam planning over large scales may also benefit of some of our findings.592

For example, one could evaluate information on untapped hydropower potential (Y. Zhou593

et al., 2015; Hoes et al., 2017) and seasonal streamflow predictability to derive some first,594

qualitative, conclusions on the expected reservoir characteristics. A case in point are run-595

of-the-river dams: these systems present short time-to-fill and are therefore suitable to596

implement forecast-informed reservoir sizing and operations (Bertoni et al., 2020).597

5.2 Limitations and opportunities598

Given the global nature of this study, it is important to note that these results and599

their implications are not meant to provide site-specific guidelines, but rather qualita-600

tive information for watershed-specific studies. Like any other global study, the large spa-601

tial domain requires building on a number of assumptions that must be discussed to put602

our results into perspective.603

First, we assume that the goal of dam operators is to maximize hydropower pro-604

duction over the long term (in addition to providing flood control). While this objec-605

tive provides a tangible indication of forecast value, it may not be fully representative606

of the local conditions encountered by operators. For example, operators may be inter-607
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ested to maximize revenue (Anghileri et al., 2018) supply the bulk of power to the grid608

(Zambon et al., 2012), or complement the generation of other renewable (Graabak et al.,609

2019). To account explicitly for these aspects, one needs to model the role that dams play610

in the power market, as recently done for the Western U.S. (Voisin et al., 2020), Eng-611

land (Byers et al., 2020), Laos (A. K. Chowdhury et al., 2020), and the Greater Mekong612

(K. A. Chowdhury et al., 2020). With these models, one could also infer the willingness613

to pay for improved streamflow forecasts.614

Second, release decisions at individual dams may be affected by joint operations615

between multiple reservoirs and supported with more accurate data and tailor-made hy-616

drological models than those adopted here. Importantly, these data could include qual-617

itative or quantitative forecasts. Although precipitation and streamflow predictions are618

not used consistently across the world (Adams & Pagano, 2016), one must acknowledge619

that medium- to long-range forecasts are increasingly adopted by water utilities—as re-620

cently shown by Turner et al. (2020) for 300 dams in the conterminous United States.621

Access to observed and inferred release decisions could thus help researchers provide a622

more robust and nuanced estimate of forecast value.623

6 Conclusions624

Our study suggests that skilful forecasts generally lead to increasing benefits, with625

such benefits strongly modulated by reservoirs characteristics. However, for some dams,626

even accurate forecasts may not improve hydropower production if reservoir character-627

istics are not suitable. On the flipside, some dams can be profitable with little regard628

to forecast accuracy if their design specifications meet such conditions. Research that629

integrates these findings with hydrological-electricity models to quantify economic ben-630

efits is warranted. Specifically, this may reflect the willingness to pay for improved fore-631

cast models. Such an assessment could provide guidance and insights for large-scale hy-632

dropower planning and management, particularly as energy systems become more in-633

terconnected.634

Appendix A Skill scores for model validation635

The mean squared error skill score (MSESS) is a deterministic skill score that com-636

pares the MSE of prediction model and climatology. It is defined as follows (Wilks, 2011):637

MSESS =

(
1− MSEpred

MSEclim

)
, (A1)
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where MSEpred is the MSE of prediction, and MSEclim is the MSE of climatological638

mean prediction. The perfect score of the MSESS is 1, while a value equal to 0 indicates639

that the model skill is equal to that of the climatology.640

The Gerrity skill score (GSS) is a multi-categorical skill score that rewards correct641

predictions in rarer categories. The GSS is calculated as follows:642

GSS =

3∑
i=1

3∑
j=1

pijsij , (A2)

where pij is the joint probability of inflow in each category (i, j) of a contingency table643

(3 x 3 in this study) and sij is a scoring weight to yield more or less credits based on the644

frequency of the category (Wilks, 2011). The three categories correspond to the upper,645

middle, and lower thirds of the inflow during the model calibration period. The GSS ranges646

from -1 to 1, where a value of 1 represents a perfect forecast and a value of 0 means no647

predictive skill (compared to the climatology).648
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Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic mul-710

tidecadal oscillation and its relation to rainfall and river flows in the conti-711

nental US. Geophysical Research Letters, 28 (10), 2077–2080. Retrieved from712

https://doi.org/10.1029/2000GL012745713

Gao, H., Birkett, C., & Lettenmaier, D. P. (2012). Global monitoring of large reser-714

voir storage from satellite remote sensing. Water Resources Research, 48 (9).715

Gelati, E., Madsen, H., & Rosbjerg, D. (2014). Reservoir operation using El Niño716

forecasts—case study of Daule Peripa and Baba, Ecuador. Hydrological Sci-717

ences Journal , 59 (8), 1559–1581.718

GEO. (2016). Global Energy Observatory: Information on Global Energy Systems719

and Infrastructure. (Available online at http://globalenergyobservatory.org)720

Graabak, I., Korp̊as, M., Jaehnert, S., & Belsnes, M. (2019). Balancing future vari-721

able wind and solar power production in Central-West Europe with Norwegian722

hydropower. Energy , 168 , 870–882.723

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., . . . oth-724

ers (2019). Mapping the world’s free-flowing rivers. Nature, 569 (7755), 215.725

Retrieved from http://www.nature.com/articles/s41586-019-1111-9726

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition727

of the mean squared error and NSE performance criteria: Implications for728

improving hydrological modelling. Journal of hydrology , 377 (1-2), 80–91.729

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., . . . oth-730

ers (2014). Global water resources affected by human interventions and climate731

change. Proceedings of the National Academy of Sciences, 111 (9), 3251–3256.732

Hamlet, A. F., Huppert, D., & Lettenmaier, D. P. (2002). Economic value of long-733

lead streamflow forecasts for Columbia River hydropower. Journal of Water734

Resources Planning and Management , 128 (2), 91–101.735

Hamududu, B., & Killingtveit, A. (2012). Assessing climate change impacts on736

global hydropower. Energies, 5 (2), 305–322.737

Hejazi, M. I., Cai, X., & Ruddell, B. L. (2008). The role of hydrologic information738

in reservoir operation–learning from historical releases. Advances in Water Re-739

sources, 31 (12), 1636–1650.740

Hoes, O. A., Meijer, L. J., Van Der Ent, R. J., & Van De Giesen, N. C. (2017). Sys-741

tematic high-resolution assessment of global hydropower potential. PloS one,742

–23–



manuscript submitted to Water Resources Research

12 (2), e0171844.743

Hurrell, J. W., & Deser, C. (2010). North Atlantic climate variability: the role of the744

North Atlantic Oscillation. Journal of Marine Systems, 79 (3-4), 231–244. Re-745

trieved from https://doi.org/10.1016/j.jmarsys.2009.11.002746

ICOLD. (2011). World Register of Dams. Version Updates 1998–2009 (Tech. Rep.).747

Paris, France: International Commission on Large Dams. (Available online at748

www.icold-cigb.net)749

IHA. (2019). 2019 hydropower status report (Tech. Rep.). Retrieved from https://750

www.hydropower.org/status2019751

Jolliffe, I. (2002). Principal component analysis. Cambridge MA: Springer-Verlag752

New York. doi: 10.1007/b98835753

Kao, S.-C., Sale, M. J., Ashfaq, M., Martinez, R. U., Kaiser, D. P., Wei, Y., & Dif-754

fenbaugh, N. S. (2015). Projecting changes in annual hydropower generation755

using regional runoff data: An assessment of the United States federal hy-756

dropower plants. Energy , 80 , 239–250.757

Kaveh, K., Hosseinjanzadeh, H., & Hosseini, K. (2013). A new equation for calcu-758

lation of reservoir’s area-capacity curves. KSCE Journal of Civil Engineering ,759

17 (5), 1149–1156.760

Kim, Y.-O., & Palmer, R. N. (1997). Value of seasonal flow forecasts in Bayesian761

stochastic programming. Journal of Water Resources Planning and Manage-762

ment , 123 (6), 327–335.763

Lee, D., Ward, P., & Block, P. (2018). Attribution of large-scale climate patterns to764

seasonal peak-flow and prospects for prediction globally. Water Resources Re-765

search, 54 (2), 916–938. doi: 10.1002/2017WR021205766

Lehner, B., Czisch, G., & Vassolo, S. (2005). The impact of global change on the767

hydropower potential of Europe: a model-based analysis. Energy Policy , 33 (7),768

839–855.769
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Köppen-Geiger climate classification. Hydrology and Earth System Sciences,808

11 (5).809

Räsänen, T. A., & Kummu, M. (2013). Spatiotemporal influences of ENSO on pre-810

cipitation and flood pulse in the Mekong River Basin. Journal of Hydrology ,811

476 , 154–168.812

Rheinheimer, D. E., Bales, R. C., Oroza, C. A., Lund, J. R., & Viers, J. H. (2016).813

Valuing year-to-go hydrologic forecast improvements for a peaking hydropower814

system in the Sierra Nevada. Water Resources Research, 52 (5), 3815–3828.815

Sankarasubramanian, A., Lall, U., Devineni, N., & Espinueva, S. (2009). The role of816

–25–



manuscript submitted to Water Resources Research

monthly updated climate forecasts in improving intraseasonal water allocation.817

Journal of Applied Meteorology and Climatology , 48 (7), 1464–1482.818

Soncini-Sessa, R., Weber, E., & Castelletti, A. (2007). Integrated and participatory819

water resources management–Theory (Vol. 1). Amsterdam, NL: Elsevier.820

Turner, S. W., Bennett, J. C., Robertson, D. E., & Galelli, S. (2017). Complex821

relationship between seasonal streamflow forecast skill and value in reservoir822

operations. Hydrology and Earth System Sciences, 21 (9), 4841–4859.823

Turner, S. W., & Galelli, S. (2016). Water supply sensitivity to climate change: an824

R package for implementing reservoir storage analysis in global and regional825

impact studies. Environmental Modelling & Software, 76 , 13–19.826

Turner, S. W., Hejazi, M., Kim, S. H., Clarke, L., & Edmonds, J. (2017). Climate827

impacts on hydropower and consequences for global electricity supply invest-828

ment needs. Energy , 141 , 2081–2090.829

Turner, S. W., Ng, J. Y., & Galelli, S. (2017). Examining global electricity supply830

vulnerability to climate change using a high-fidelity hydropower dam model.831

Science of the Total Environment , 590 , 663–675.832

Turner, S. W., Xu, W., & Voisin, N. (2020). Inferred inflow forecast horizons guiding833

reservoir release decisions across the united states. Hydrology and Earth Sys-834

tem Sciences, 24 , 1275–1291.835

Van Beek, L., Wada, Y., & Bierkens, M. F. (2011). Global monthly water stress: 1.836

water balance and water availability. Water Resources Research, 47 (7).837

Van Vliet, M. T., Wiberg, D., Leduc, S., & Riahi, K. (2016). Power-generation838

system vulnerability and adaptation to changes in climate and water resources.839

Nature Climate Change, 6 (4), 375.840

Voisin, N., Dyreson, A., Fu, T., O’Connell, M., Turner, S. W., Zhou, T., & Mack-841

nick, J. (2020). Impact of climate change on water availability and its propa-842

gation through the Western US power grid. Applied Energy , 276 , 115467.843

Voisin, N., Hamlet, A. F., Graham, L. P., Pierce, D. W., Barnett, T. P., & Let-844

tenmaier, D. P. (2006). The role of climate forecasts in Western US power845

planning. Journal of applied meteorology and climatology , 45 (5), 653–673.846

Ward, P. J., Eisner, S., Flörke, M., Dettinger, M. D., & Kummu, M. (2014). Annual847

flood sensitivities to El Niño–Southern Oscillation at the global scale. Hydrol-848

ogy and Earth System Sciences, 18 (1), 47–66.849

Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., . . .850
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Figure 1. Graphical representation of the monthly prediction (MP) model scheme. At each

calendar month t, we develop seven independent models to predict monthly inflows for the next

seven months: MP1 (t + 1), MP2 (t + 2), ..., MP7 (t + 7).
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Figure 2. Percentage of dams significantly correlated with lagged predictors (ENSO, NAO,

PDO, AMO, and snowfall) and 1-month ahead predictors (inflow and soil moisture) in each

calendar month.
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with respect to MP4 (b) and MP7 (c).
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Figure 4. Improvements in hydropower production using perfect (a) and realistic (b) fore-

casts. The terms IPF and IDF indicate the relative improvement in hydropower production (with

respect to the basic control rules) provided by perfect and realistic forecasts. Nearly all dams are

able to benefit from perfect forecasts, but only 25% of dams benefits from realistic forecasts.
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Figure 5. Probability of success estimated using a logistic regression model with predictors

xdepth and xfill (in log scale). Red corresponds to a probability of success equal to zero, meaning

that the dam is likely to do well with the control rules. Blue represents a probability of suc-

cess equal to 1, meaning that a dam is likely to benefit from forecast-informed operations. Each

point in the plot represents one of the 735 dams. Blue circles represent dams labelled as success

(IPF > 4.7%) and red triangles represents failures. The size of the blue circles represents the

value of IPF . All red triangles have the same size. Dams below the dashed line (xfill = 2) are

operated with a weekly time step. Dams with low values of xfill (small storage capacity rela-

tive to inflow rate) and high xdepth (lacking a natural waterfall) are more likely to benefit from

forecast-informed operations.
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Figure 6. Potential benefits realized by realistic forecast (I ) predicted using linear regression

with predictors xexceed and the median absolute percentage error (xMdAPE). Red corresponds to

negative values of I, meaning that the performance of realistic forecasts is worse that the one at-

tained by control rules. Blue corresponds to positive values of I, meaning that realistic forecasts

outperform control rules. Each point corresponds to one of the 269 dams with IPF > 4.7%. The

corresponding color represents the value of I attained via simulation with the reservoir operation

model. Dams with accurate forecasts and high values of xexceed (inflow frequently exceeds maxi-

mum turbine release) tend to have greater hydropower benefits realized from realistic forecasts.
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Figure 7. Distribution of dams across climate zones based on their potential to benefit from

perfects forecasts. The top (a) and bottom (b) panels represent dams with ‘high potential’

(IPF > 4.7%) and ‘low potential’ (IPF ≤ 4.7%), respectively, while ‘good forecast’ and ‘poor

forecast’ represent dams with MdAPE less or greater than 20%, respectively.
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Table 1. Coefficients of logistic regression to predict if IPF > 4.7% . The term ‘Estimate’ rep-

resents the increase in log-odds of a dam attaining success per unit increase in the value of the

predictors.

Predictors Estimate Std. Error Z-value Pr(>|z|)

(Intercept) -1.16 0.25 -4.62 <0.01

xdepth 2.84 0.31 9.25 <0.01

xfill -0.10 0.01 -8.76 <0.01

Table 2. Coefficients of linear regression to predict I.

Predictors Estimate Std. Error Z-value Pr(>|z|)

(Intercept) -0.18 0.12 -1.485 0.139

xMdAPE -0.03 0.004 -8.554 <0.01

xexceed 2.36 0.30 7.752 <0.01
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Table 3. Distribution of dams across climate zones. H and L represent high/low potential, G

and P represent good/poor forecast. Columns 2-5 (6-9) are the number (percentages) of dams in

each group. Column 10 and 11 are the percentages of dams with high potential and good forecast

respectively and are in bold if the observed frequency is different from the expected frequency

(global average in final row) significantly (p < 0.05 using Chi-squared test).

Climate HG HP LG LP HG% HP% LG% LP% High% Good%

Af 0 9 3 3 0.00 0.60 0.20 0.20 0.60 0.20

Am 4 6 5 4 0.21 0.32 0.26 0.21 0.53 0.47

Aw 7 6 26 4 0.16 0.14 0.61 0.09 0.30 0.77

BWh 2 2 2 0 0.33 0.33 0.33 0.00 0.67 0.67

BWk 0 3 1 0 0.00 0.75 0.25 0.00 0.75 0.25

BSh 1 2 4 6 0.08 0.15 0.31 0.46 0.23 0.39

BSk 0 2 6 5 0.00 0.15 0.46 0.39 0.15 0.46

Csa 4 11 9 19 0.09 0.26 0.21 0.44 0.35 0.30

Csb 6 15 4 10 0.17 0.43 0.11 0.29 0.60 0.29

Cwa 5 25 8 16 0.09 0.46 0.15 0.30 0.56 0.24

Cwb 1 3 7 2 0.08 0.23 0.54 0.15 0.31 0.62

Cfa 2 56 6 58 0.02 0.46 0.05 0.48 0.48 0.07

Cfb 9 15 9 41 0.12 0.20 0.12 0.55 0.33 0.24

Dsa 0 2 1 2 0.00 0.40 0.20 0.40 0.40 0.20

Dsb 2 3 5 4 0.14 0.21 0.36 0.29 0.36 0.50

Dsc 0 1 1 1 0.00 0.33 0.33 0.33 0.33 0.33

Dwa 0 5 1 8 0.00 0.36 0.07 0.57 0.36 0.07

Dwb 1 1 2 1 0.20 0.20 0.40 0.20 0.40 0.60

Dwc 2 1 2 0 0.40 0.20 0.40 0.00 0.60 0.80

Dfa 0 1 6 5 0.00 0.08 0.50 0.42 0.08 0.50

Dfb 13 21 32 41 0.12 0.20 0.30 0.38 0.32 0.42

Dfc 7 10 33 20 0.10 0.14 0.47 0.29 0.24 0.57

ET 1 2 7 36 0.02 0.04 0.15 0.78 0.07 0.17

Total 67 202 180 286 0.09 0.28 0.25 0.39 0.37 0.34
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