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Abstract

Land surface temperature(LST) is the key indicators to assess land surface models (LSMs). CLM4.5 has attracted much

attention in mainland China. However, there have been few comprehensive LST assessments of CLM4.5 that used abundant

latest long-term observation data from mainland China and considered land-atmosphere coupling. Therefore it is difficult to

evaluate its performance for an actual climate simulation. In this work, LST data from the recent 30 years were collected from

809 Chinese meteorological stations, and the simulation capability of CLM4.5 for LST was comprehensively assessed for the

first time. Then, in order to improve the model, sensitivity tests of soil thermal conductivity (STC) were carried out. Although

CLM4.5 could accurately simulate the spatial distribution character of LST, there was a cold bias of 4.5{degree sign}C for all

of mainland China. Seasonally, larger bias was observed in summer and autumn, which had more precipitation and greater

soil moisture than other seasons. Deviation increased from southeast to northwest, but varied greatly between seasons. There

was a significant linear regression relationship between two LSTs, with annual correlation coefficients of the two LSTs for all

stations between 0.75 and 0.9 (P < 0.001). LST increased at a rate of 0.058{degree sign}C/a. Though it was successfully

simulated, the trend value was smaller. The bias of CLM4.5 was better than that of ERA-interim but slightly worse than

that of ERA-interim/Land. Assessment of three different STC schemes showed that the Lu-Ren scheme was the most one that

suitalbe for LST siumulation in mainland china.
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Key Points: 8 

 Considering land–atmosphere coupling,the longest and latest observed Land surface 9 

temperature(LST) dataset for mainland China was used for the first time to 10 

comprehensive assess LST in that region as simulated by CLM4.5.   11 

 There are systematic cold deviations in the simulation of land surface temperature in 12 

mainland China by CLM4.5. There was a significant linear regression relationship 13 

between two LSTs. Though the trend of  the LST varation was successfully simulated, 14 

the value was smaller than that of observation. 15 

 We added a new scheme of soil thermal conductivity that more suitalbe for LST 16 

siumulation in mainland china, which has made CLM4.5 get further development in 17 

Chinese mainland.  18 
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Abstract LST is the key indicators to assess land surface models (LSMs). Common Land Model 19 

4.5 (CLM4.5) has attracted much attention in mainland China. However, there have been few 20 

comprehensive LST assessments of CLM4.5 that used abundant latest long-term observation 21 

data from mainland China and considered land–atmosphere coupling. Therefore it is difficult to 22 

evaluate its performance for an actual climate simulation. In this work, LST data from the recent 23 

30 years were collected from 809 Chinese meteorological stations, and the simulation capability 24 

of CLM4.5 for LST was comprehensively assessed for the first time. Then, in order to improve 25 

the model, sensitivity tests of soil thermal conductivity (STC) were carried out. Although 26 

CLM4.5 could accurately simulate the spatial distribution character of LST, there was a cold bias 27 

of 4.5°C for all of mainland China. Seasonally, larger bias was observed in summer and autumn, 28 

which had more precipitation and greater soil moisture than other seasons. Deviation increased 29 

from southeast to northwest, but varied greatly between seasons. There was a significant linear 30 

regression relationship between two LSTs, with annual correlation coefficients of the two LSTs 31 

for all stations between 0.75 and 0.9 (P < 0.001). LST increased at a rate of 0.058°C/a. Though it 32 

was successfully simulated, the trend value was smaller. The bias of CLM4.5 was better than that 33 

of ERA-interim but slightly worse than that of ERA-interim/Land. Assessment of three different 34 

STC schemes showed that the Lu-Ren scheme was the most one that suitalbe for LST 35 

siumulation in mainland china.  To develop a new STC scheme considering the role of water 36 

vapor is an effective way for improving the model in mainland China. 37 

Plain Language Summary LST is an important indicator to evaluate the performance of Land 38 

Surface Model(LSM)−one of the major components of Regional Climate Models(RCMs). 39 

Although the third generation LSM CLM4.5 has been extensively studied in mainland China, its 40 

simulated performance has not been systematically evaluated due to the lack of observational 41 

LST data, which has affected the improvement of the model. In this paper, by considering land-42 

atmosphere interaction, the latest LST dataset including 809 sites in mainland China are first 43 

used to evaluate the LST simulation capability of CLM4.5 comprehensively. Based on the 44 

physical model for calculating LST in CLM4.5, three numerical experiments on STC schemes 45 

were carried out and the result has reveal the best STC scheme for the Chinese mainland. Then, a 46 

new scheme of STC in CLM4.5 was added and it is verified to be useful, which has made further 47 

development of CLM4.5 in Chinese mainland. 48 

1.Introduction 49 

Changes of land surface temperature (LST) can alter the balance of energy and material between 50 

land and atmosphere, and cause major changes in precipitation, temperature, vegetation and 51 

ecological processes (Wilson et al. 2003; Zhong et al. 2011). Thus, it is an important indicator 52 

for studying global climate change (Wan and Li 1997; Coll et al. 2016; Duan et al. 2017; Jones 53 

and Trewin 2015). LST is calculated by a land surface model (LSM) that provides necessary 54 

lower boundary conditions for regional climate models (RCM). The accuracy of that calculation 55 

has a direct impact on soil water, heat, and ecological process simulation. Therefore, it is also 56 

one of the main indicators to assess LSM performance. 57 

LSM has undergone three generations of development. After the 1st-generation box model and 58 

2nd-generation model considering vegetation physiological and physical processes, the LSM has 59 

developed into its 3rd generation, considering biochemical effects of the carbon cycle. The 60 

Community Land Model (CLM) (Zeng et al. 2002) developed by the National Center for 61 

Atmospheric Research (NCAR) in the United States, based on 2nd-generation LSMs such as 62 
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BATS, IAP94 and NCAR-LSM, is a typical 3rd-generation LSM. It has 10 uneven soil layers, 5 63 

snowfall layers, and 1 vegetation layer. The data of land surface cover include soil color, soil 64 

texture, percent coverage of plant functional types (PFTs) per grid, leaf and stem area indexes. 65 

CLM classifies surface vegetation into 17 PFTs. Each grid point can contain 17 different PFTs, 66 

which are treated as the percentage of each PFT area to the grid area. This includes physical, 67 

chemical, hydrological and biochemical processes such as biogeophysics, the hydrologic cycle, 68 

biogeochemistry, and dynamic planting related to climate change (Hoffman et al. 2004). It has 69 

developed rapidly across versions CLM2.0, CLM3.0, CLM3.5 and CLM4.0. CLM4.5 is the 70 

latest released version, which revises the photosynthesis scheme, improves hydrologic processes 71 

and the wetland distribution in cold regions, and includes new parameterization schemes of snow 72 

cover, lake model, crop model, and various city types. In addition, a nitrogen fixation mechanism 73 

and methane emission model in the soil vertical direction have been introduced. Since the release 74 

of this LSM, it has been widely applied in ecology (Tang et al. 2015; Duarte et al. 2017; Bilionis 75 

et al. 2014; Chen et al. 2018; Peng et al. 2018; Brunke et al. 2016; Wu and Dickinson 2004), 76 

climate change (Umair et al. 2018; Lawrence et al. 2012), assessment of the role of greenhouse 77 

gases (Zhang et al. 2016; Zhang and Wang 1997; Akkermans et al. 2014), and hydrology (Fu et 78 

al. 2016; Liu et al. 2017; Hack et al. 2006). It is considered one of the most developed and 79 

potentially useful LSMs in the world (Lai et al. 2014). 80 

The model has also been used in studies on the simulation and assessment of LST in mainland 81 

China (Meng et al. 2017; Wang et al. 2015; Song et al. 2014; Wang et al. 2015). Sun et al. (2017) 82 

drove CLM3.5 based on CLDAS (CMA Land Data Assimilation System) atmospheric driving 83 

data, using LST from ground observation stations to assess the quality. The results show that the 84 

bias and root-mean-square error (RMSE) of simulated LST vs. observed data varied seasonally. 85 

Further, the bias and RMSE of simulated LST vs. observed data were smaller in eastern China 86 

than in its west. Meng et al. (2017) found that the CLM3.5 model had the greatest difference 87 

between simulated and observed LSTs in Xinjiang, with a maximum difference of ~5 K in July 88 

each year. Guo et al. (2017) used NCEP atmospheric forcing data to drive CLM4.5 for 89 

simulating changes of soil temperature on the Tibetan Plateau over the past century. The 90 

simulation results were validated by observation data of soil temperature from meteorological 91 

stations and field borehole monitoring stations. The results show that CLM4.5 could reasonably 92 

simulate observed changes of soil temperature on the plateau. Chen et al. (2010) used CLM3.0 93 

and global atmospheric near-surface forcing data from Princeton University to conduct offline 94 

simulation experiments on soil temperature in China from 1948 to 2001, further assessing the 95 

capability of CLM3.0 to simulate soil temperature at different levels. The results show that the 96 

model could simulate the spatial distribution of multiyear average soil temperature in the 97 

country. The simulated soil temperature was generally lower than observed except for some 98 

areas where the simulated values were larger than observed. The model could well-reflect the 99 

interannual variation of soil temperature in China. Moreover, the model could basically grasp the 100 

trend of that temperature, but the simulated trend was weaker than observed. Xie et al. (2017) 101 

used observation data from Nagqu Station of Plateau Climate and Environment of the Chinese 102 

Academy of Sciences to assess model simulation performance for surface energy exchange at the 103 

underlying surface of an alpine meadow on the Tibetan Plateau. The results showed that CLM4.5 104 

could effectively simulate seasonal variations and diurnal cycles of surface longwave, reflected 105 

and net radiations; sensible and latent heat fluxes; and surface soil heat fluxes during non-106 

freezing periods in spring, summer and autumn on the plateau. However, the simulation of LST 107 

during the winter freezing period gave values smaller than observed. 108 
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Nevertheless, most evaluations only had a few LSM stations with short observation periods. But 109 

the Chinese mainland is vast and its land surface characteristics vary substantially by region. 110 

Therefore, the associated conclusions lack spatial and temporal representativeness. In addition, 111 

land–atmosphere interaction feedback has a major impact on LST calculation. Most assessments 112 

considered only the forcing effect of the atmosphere on the land surface, neglecting the transport 113 

of energy and mass from that surface. Therefore, it is difficult to fully evaluate the performance 114 

of CLM4.5 for an actual climate simulation. All of these limit the development of CLM4.5 for 115 

mainland China. To solve these problems, we designed a long-term (30 years) numerical 116 

simulation test of LST for mainland China on the basis of long-term observational LST data. 117 

Finally, the experiment of improving soil thermal conductivity model was carried out. The 118 

results will promote the development of CLM4.5 in mainland China. 119 

2 Materials and Methods 120 

2.1 Regional Climate Model version 4.6 (RegCM 4.6) 121 

Regional Climate Model version 4.6 (RegCM 4.6) was used to provide atmospheric forcing 122 

fields. RegCM is a regional climate model established by Dickinson and Giorgi in the late 1980s 123 

through expansion and modification of the radiation scheme, convection parameterization 124 

scheme, and land surface physical process in mesoscale model MM4 (Dickinson et al. 1989; 125 

Giorgi and Bates 1989). Giorgi et al. subsequently produced RegCM2, RegCM3 and RegCM4 126 

by improving the physical process scheme and mesoscale model (Giorgi et al. 1993; Giorgi et al. 127 

1993). RegCM4.6 is the latest mature version. In this version, a MM5 non-static dynamic frame 128 

option is added, which improves model spatial resolution to 10 km and updates the radiation and 129 

convection parameterization schemes. RegCM is the most widely used regional climate model in 130 

China. It is not only used for climate simulation and diagnosis but is also one of the supporting 131 

tools for climate prediction. 132 

2.2 Soil Thermal Conductivity (STC) 133 

The calculation model of soil temperature used in CLM4.5 is as follows. 134 

𝑐
𝜕𝑇

𝜕𝑧
=

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
)                                   (4) 

Here, T is soil temperature (K), z is downward in the vertical direction (m), c is the snow/soil 135 

heat capacity (J m
–3

 K
–1

), t is time (s), and λ is the STC (W m
–1

 K
–1

). The results show that λ had 136 

a great influence on the calculation of soil temperature. In CLM4.5, the model proposed by 137 

Johansen (1975) was used for the calculation of λ. This is a semi-theoretical and semi-empirical 138 

model for calculating λ. Its expression is 139 

𝜆 = (𝜆𝑠𝑎𝑡 − 𝜆𝑑𝑟𝑦) ∙ 𝐾𝑒 + 𝜆𝑑𝑟𝑦                           (5) 

Here, 𝝀𝒔𝒂𝒕 is the thermal conductivity for saturated soil, 𝝀𝒅𝒓𝒚 is the thermal conductivity for dry 140 

soil, and 𝑲𝒆 is the Kersten constant, whose expression in this model is 141 

𝐾𝑒 = {
0.7 𝑙𝑜𝑔 𝑆𝑟 + 1.0,0.05 < 𝑆𝑟 ≤ 0.1

𝑙𝑜𝑔 𝑆𝑟 + 1.0,         𝑆𝑟 > 0.1
                   (6) 
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where 𝒔𝒓 is the saturation of soil. Results (Su et al. 2016) have shown that 𝑲𝒆 in the model is 142 

logarithmic, and the calculated 𝝀 was clearly smaller than the measured value. To overcome this 143 

problem, Côté and Konrad (2005) proposed a new expression of 𝑲𝒆: 144 

𝐾𝑒 =
𝑘𝑆𝑟

1 + (𝑘 − 1)𝑆𝑟
                                   (7) 

where k is a parameter related to soil texture. To make the Johansen model more suitable for low 145 

soil moisture content, Lu and Ren (2006) proposed a new scheme: 146 

𝑲𝒆 = 𝐞𝐱𝐩 (𝜶(𝟏 − 𝑺𝒓
𝜶−𝟏.𝟑𝟑))                          (𝟖) 

where 𝜶 is a parameter related to soil texture. 147 

2.3 Major assessment indicators 148 

(1) Bias 149 

𝑩𝑰𝑨𝑺 =
𝟏

𝒏
∑ (𝑺𝒊 − 𝑶𝒊)

𝒏

𝒊=𝟏
                               (𝟏) 

Here, Si is the simulated element (such as precipitation and temperature); Oi is the corresponding 150 

observed element, which can be used to test whether simulated values from the model are large 151 

or small as well as the corresponding magnitude. 152 

(2)RMSE 153 

𝑹𝑴𝑺𝑬 = √∑ (𝑿𝒐𝒃𝒔,𝒊 − 𝑿𝒎𝒐𝒅𝒆𝒍,𝒊)
𝟐𝒏

𝒊=𝟏

𝒏
                          (𝟐) 

This reflects the deviation of simulated from observed data. The smaller the value, the greater the 154 

simulation accuracy and the better the performance. 155 

(3)Pearson correlation coefficient 156 

𝒓 =
∑ (𝒙𝒊 − 𝒙̅)(𝒚𝒊 − 𝒚̅)𝒏

𝒊=𝟏

√∑ (𝒙𝒊 − 𝒙̅)𝒏
𝒊=𝟏

𝟐 √∑ (𝒚𝒊 − 𝒚̅)𝒏
𝒊=𝟏

𝟐

                    (𝟑) 

This is a statistical quantity reflecting the linear correlation of two variables. The larger the 157 

absolute value, the stronger the correlation. 158 

2.4 Design of Numerical Experiment 159 

The simulation area is shown in Fig. 1. The latitude range was 15.76–57.36°N and longitude 160 

range 66.25–141.13°E. There were 160 grid points in latitude and 145 in longitude. The 161 

horizontal grid size was 30 km, and the vertical was divided into 23 layers. ERA-Interim 162 

reanalysis data from January 1987 to December 2017 were used for the lateral boundary. The 163 
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data had a horizontal resolution of 0.75° × 0.75° (~80 km), 37 layers in the vertical, and a 164 

temporal resolution of 6 hours. Sea surface temperature data were OSSST monthly average data 165 

of NOAA from the same period. Model parameters are listed in Table 1. 166 

 167 

 168 
Fig1. The simulation area. Shadow represents terrain height in m 169 

 170 

Table.1 Main simulation parameters 171 

Dynamic structure Test scheme 

Dynamic frame MM5 non-static frame 

Large-scale precipitation 

scheme 

SUBEX (Subgrid explicit 

water vapor scheme) 

Radiation transmission 

scheme 
NCAR CCM3 

Sea surface flux scheme Zeng 

Pressure gradient scheme Hydrostatic recursion 

 172 

As in Fig.2,mainland China was divided into four regions (Huang 1989): (1) the northern region 173 

is the northern part of China with a monsoon climate. (2) The southern region is south of the 174 

Qinling-Huaihe River and east of the Tibetan Plateau. It faces southeast to the East China Sea 175 

and South China Sea, includes the middle and lower reaches of the Yangtze River, the southern 176 

coast and southwest provinces (cities and autonomous regions), and is the southern part of China 177 

with a monsoon climate. (3) The northwestern region is generally west of the Great Khingan 178 

Range and north of the Great Wall and Kunlun-Altun Mountains. It embraces the non-monsoon 179 

climate portions of Inner Mongolia, Xinjiang, Ningxia and northwestern Gansu. (4) The Tibetan 180 

Plateau. 181 

 182 

 183 

Fig 2. Four natural regions in mainland China 184 
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3 Data 185 

3.1 Observation data of LST 186 

Observed data of LST in mainland China were collected from the daily climate dataset of 187 

Chinese ground international exchange stations compiled by the China Meteorological 188 

Administration. The dataset contains daily data of meteorological elements from China reference 189 

and basic meteorological stations since January 1951. During dataset construction, repeated 190 

quality detection and control measures were applied to the observation data, thereby correcting a 191 

large number of erroneous data. Furthermore, digitized missing data were entered, suspicious 192 

and erroneous data found were manually verified and corrected, and quality control codes were 193 

labeled for all element data. These steps substantially improved data quality. To ensure data 194 

reliability, we used daily observed LST data from the 30-year study period (January 1, 1988 to 195 

December 31, 2017). 196 

3.2 Reanalysis data of ERA-Interim and ERA-Interim/Land 197 

ERA-Interim is the latest global atmospheric reanalysis dataset from the European Centre for 198 

Medium-Range Weather Forecasts (ECMWF). Using advanced 4Dvar variational assimilation 199 

system Cy31r2, ERA-Interim assimilates satellite brightness temperature, scatterometer, satellite 200 

inversion of the atmospheric motion state, GPS occultation, satellite inversion of ozone, and 201 

conventional observations. It is one of the highest-quality reanalysis datasets in the world. ERA-202 

Interim/Land is a reanalysis dataset of atmospheric forcing fields using the ECMWF land surface 203 

model, Hydrology Tiled ECMWF Scheme for Surface Exchange over Land, and ERA-Interim. 204 

Global Precipitation Climatology Project version 2.1 was used as the reanalysis dataset of land 205 

surface parameters, generated after precipitation adjustment. ERA-Interim/Land provides 206 

comprehensive and consistent estimates of the global water resource and is used to initialize 207 

numerical weather forecasting and climate models (Balsamo et al. 2015; Albergel et al. 2013). 208 

4 Results 209 

4.1 Simulation of CLM4.5 for LST  210 

4.1.1 Bias 211 

The analysis of annual average LST in mainland China showed that it decreased gradually from 212 

the southeast coast to interior northwest. The annual average LST of the southeast coast was > 213 

20°C and that between the Yangtze and Yellow rivers was about 15°C. That of most areas in 214 

North China was 5–10°C. LST of the Tibetan Plateau was the coolest, with most areas < 5°C. 215 

LST from northern Xinjiang to the southern Xinjiang Basin increased from 10°C to 15°C (Fig. 216 

3a). CLM4.5 showed favorable simulation performance in the spatial variation of annual average 217 

LST in China. The LST decrease from the southeast coast to interior northwest was accurately 218 

simulated(Fig. 3b). However, simulated values were clearly smaller than observed, which most 219 

regions had a cold bias > 2°C. Specifically, there was a cold bias of ~2–4°C east of 105°E, 6–220 

8°C west of 105°E, and 4–6°C in other regions (Fig. 3b). 221 
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 222 
(a)                                                             (b) 223 

Fig 3. The observed and simulated LST and the bias: (a) observation; (b) simulation; (c) bias; unit: °C. 224 

The simulations of average LST in the four seasons were very similar to the observed, with a 225 

decreasing trend from southeast to northwest. CLM4.5 showed good simulation performance for 226 

this spatial distribution, but the bias varied greatly seasonally (data not shown). In spring, the 227 

bias was smallest in southern China. There, a cold bias of 2–4°C was most common, with some 228 

areas having a cold bias of 0–2°C. There was a cold bias of 6–8°C in most of northern and 229 

northwestern China and the Tibetan Plateau (Fig. 4a). In summer, except for some parts of 230 

southwestern and southern China where there was a cold bias of 4–6°C, bias in other regions was 231 

large (> 6°C). The Tibetan Plateau had a cold bias of > 8°C (Fig. 4b). In autumn, there was a 232 

cold bias of 2–4°C east of 105°E, 6–8°C west of that meridian, and 4–6°C in North China and 233 

some of the plateau (Fig. 4c). In winter, the simulated bias of all regions in China decreased 234 

considerably. Except for the simulated bias (~6°C) in southwestern China, that in most regions 235 

was < 4°C (Fig. 4d). 236 

 237 

Analyzing the climatic background, summer and autumn are the principal rainy seasons in China 238 

because they are strongly affected by the East Asian summer monsoon. Precipitation in most of 239 

mainland China was heavy, which increased soil moisture. Winter and spring were controlled by 240 

a single westerly circulation system. Precipitation was weak and soil moisture decreased in most 241 

of the mainland. This indicates that the bias was closely related to soil moisture. 242 

 243 
(a)                                                             (b) 244 

 245 
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(c)                                                             (d) 246 

Fig 4. Bias for (a) spring, (b) summer, (c) autumn, and (d) winter; unit: °C 247 

There were clear regional differences and seasonal variations (Fig. 5) in the bias of CLM4.5 for 248 

LST. For the regional difference, bias was small in the southern and northern regions, with an 249 

average annual cold bias of ~4°C. Bias in the northwestern region was large, with an average 250 

annual cold bias of ~5.5°C. Bias of the Tibetan Plateau was the greatest, with an average annual 251 

cold bias of ~6°C. For seasonal variation, the plateau region had the largest bias in spring. 252 

Summer bias was maximum in other regions. Summer cold bias in the northwestern region was 253 

~9°C, and that in the northern and southern regions was ~5°C. In winter, the bias was small in all 254 

regions. The cold bias in the northwestern and northern regions was ~2°C. The cold bias in the 255 

plateau region was maximum (~4°C). ERA-Interim and ERA-Interim/Land exhibited bias 256 

similar to that of CLM. ERA-Interim/Land had the smallest bias. The bias of ERA-Interim was 257 

similar to that of CLM4.5, and the latter showed the smallest bias in the Tibetan Plateau region. 258 

 259 

Fig 5. Bias in (a) all areas, (b) northwest, (c) north, (d) south, and (e) Tibetan; unit: °C. 260 

4.1.2 RMSE 261 

The annual RMSE analysis showed that the RMSE in mainland China increased gradually from 262 

southeast to northwest. The RMSE of most of the southern regions was 1–3°C, with that of most 263 

of the northern regions at 5–7°C. That of the eastern part of the northwestern region was 7–9°C 264 

and that of the southern Xinjiang Basin was 9–11°C. That of the plateau was 3–11°C (Fig. 6a). 265 

In spring, the RMSE in China was relatively large. There was again a decrease from southeast to 266 

northwest. The RMSE of most of the southern regions was < 5°C, whereas that of other regions 267 

was 9–11°C (Fig. 6b). Summer and autumn had the minimum RMSE among the four seasons. 268 
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Except for the plateau region where the RMSE was 9–11°C, Chinese regions had 3–5°C (Fig. 6c 269 

and d). The RMSE distribution in winter was similar to that of the entire year (Fig. 6e). 270 

 271 
(a)                                                             (b) 272 

 273 
(c)                                                             (d) 274 

 275 
(e) 276 

Fig 6. RMSE in (a) all year, (b) spring, (c) summer, (d) autumn, and (e) winter, unit: °C. 277 

 278 

The RMSE of CLM4.5 also showed clear regional differences and seasonal variations. 279 

Regarding the former, the RMSE in the northern and southern regions was small (< 4°C), 280 

followed by the northwestern region (4–5°C). That of the Tibetan Plateau was the largest (~7°C). 281 

For seasonal variation, the smallest RMSE was observed in summer and autumn, with the largest 282 

in winter and spring. The RMSE of CLM4.5 was slightly smaller than that of ERA-Interim, with 283 

ERA-Interim/Land having the minimum RMSE(Fig.7). 284 
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 285 
Fig 7. RMSE in different seasons and areas, unit: °C. 286 

 287 

4.1.3 Simulation of LST Change 288 

1) Correlation 289 

Correlation coefficients between simulation and observation LST at all stations in China were 290 

between 0.75 and 0.9 (P < 0.001). The largest correlation coefficient was observed in summer, 291 

between 0.70 and 0.85 (P < 0.001). The next largest correlation coefficient was in autumn(0.5–292 

0.75, P < 0.001). The results in spring are similar to those in autumn. and its maximum 293 

correlation coefficient was 0.80 (P < 0.001). The coefficient was between 0.35 and 0.65 in winter 294 

(P < 0.05), respectively (Fig. 8). 295 

 296 
Fig 8. Correlation between observed and simulated LST. The green line showed that the correlation coefficient 297 

reached the significance level of α = 0.01.   298 
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Regression of the regional average LST simulated by CLM4.5 with the observed showed that 299 

annual and seasonal predictions were linearly correlated with observed values. Except for the 300 

wide prediction area for winter, the 95% prediction interval for each season was narrow and the 301 

95% confidence level was reached at most points. In addition, the LST simulated by CLM4.5 302 

was ~4–5°C lower than observed (Fig. 9a–e). The above analysis shows that CLM4.5 could 303 

effectively simulate the trend of LST in mainland China. 304 

  305 
 306 

(a)                                                             (b) 307 
 308 

  309 
 310 
 311 

(c)                                                             (d) 312 
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 313 
(e) 314 

Fig 9. Correlation and linear regression between observed and simulated LST. (a) regression of regional annual 315 

average LST; (b) regression of regional annual spring LST; (c) regression of regional summer average LST; (d) 316 

regression of regional autumn average LST; (e) regression of regional winter average LST. 317 

2) Trends 318 

The Theil-Sen (Lavagnini et al. 2011) method was used to analyze the trend of annual average 319 

LST in China over the past 30 years. The results show that this temperature increased at a rate of 320 

0.58°C/decade over that period. The plateau and northwestern regions had the maximum 321 

increases (0.77 and 0.71°C/decade respectively), while the northern region had little change 322 

(0.33°C/decade). LST simulated by CLM4.5 also increased, but the increase was less than 323 

observed. In spring, the rate of increase of LST in China was 0.77°C/decade, with that in the 324 

plateau region having the maximum increase (1.33°C/decade), and other regions showing small 325 

increases. CLM successfully simulated the increasing trend of LST in all regions during spring, 326 

but the increase was smaller than observed. Notably, the rapid temperature increase in the 327 

plateau region was not reproduced by the simulation. In summer, the LST in all of mainland 328 

China increased fastest, at 0.94°C/decade. However, the value simulated by CLM was 329 

0.72°C/decade smaller than observed. The plateau temperature also increased sharply, at 330 

1.33°C/decade, with the simulated value 1.48°C/a smaller than observed. Similar to spring and 331 

summer, the trend of LST increase in autumn and winter was accurately simulated, but the 332 

simulated increase was smaller than observed (Table 2). 333 

Table 2. Simulation of trend in land surface temperature of mainland China in recent 30 years by CLM4.5 334 

(unit: °C/decade), entire year and seasonally 335 

Period Product 
Entire 

country 
Northwestern  Northern  Southern  Plateau  

Year 

Ob 0.58 0.71 0.33 0.50 0.77 

CLM4.5 0.29 0.44 0.36 0.25 0.00 

CLM4.5-Ob -0.29 -0.27 0.03 -0.25 -0.77 

Spring 

Ob 0.77 0.8 0.50 0.50 1.33 

CLM4.5 0.39 0.53 0.43 0.28 0.10 

CLM4.5-Ob -0.38 -0.27 -0.07 -0.22 -1.23 

Summer 

Ob 0.94 1.00 0.74 0.71 1.33 

CLM4.5 0.22 0.47 0.50 0.17 -0.15 

CLM4.5-Ob -0.72 -0.53 -0.24 -0.54 -1.48 
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Autumn 

Ob 0.37 0.62 0.16 0.42 0.29 

CLM4.5 0.31 0.50 0.27 0.37 0.06 

CLM4.5-Ob -0.06 -0.12 0.11 -0.05 -0.23 

Winter 

Ob· 0.67 0.68 0.45 0.67 0.88 

CLM4.5 0.25 0.20 0.39 0.31 0.20 

CLM4.5-Ob -0.42 -0.48 -0.06 -0.36 -0.68 

 336 

Comparison of the simulated trend of the three LST products (Table 3) shows that their 337 

variations were all smaller than observed. CLM4.5 showed a performance similar to ERA-338 

Interim/Land for annual average variation. Among the regions, the simulated variation of the 339 

plateau was the most different from observation, whereas that of the northern region was the 340 

best. The simulated variations in the northwestern and southern regions were similar. Seasonally, 341 

the simulated variation in autumn was closest to observation, and those in spring and winter were 342 

also close. The difference between simulation and observation in summer was the largest. 343 

Table 3. Simulation of trend in land surface temperature of mainland China in recent 30 years by CLM4.5 344 

(unit: °C/decade), entire year and seasonally 345 

Period Product 
Entire 

country 
Northwestern  Northern  Southern  Plateau  

Annual 
Interim-ob -0.4 -0.36 -0.1 -0.3 -0.86 

Interim/Land-ob -0.31 -0.15 -0.04 -0.25 -0.77 

MAM 
Interim-ob -0.57 -0.35 -0.17 -0.38 -1.44 

Interim/Land-ob -0.57 -0.16 -0.13 -0.36 -1.66 

JJA 
Interim-ob -0.85 -0.69 -0.36 -0.71 -1.66 

Interim/Land-ob -0.81 -0.5 -0.14 -0.71 -2.08 

SON 
Interim-ob -0.13 -0.2 0 -0.09 -0.21 

Interim/Land-ob 0.03 0.05 -0.02 -0.02 0.11 

DJF 
Interim-ob -0.53 -0.54 -0.26 -0.56 -0.8 

Interim/Land-ob -0.34 -0.08 -0.34 -0.62 -0.35 

 346 

The Taylor (2001) diagram provides a visual framework for comparing a set of variables from 347 

one or more test datasets to one or more reference datasets. In the present work, the diagram was 348 

used to comprehensively assess the performance of the three types of simulations of LST in 349 

mainland China (Fig. 10). The results show that CLM4.5 was better than the other two types of 350 

simulations in winter and the full year (blue solid circles closer to the REF), with its performance 351 

intermediate to those of the other two products in the other seasons. 352 
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(e) 392 

Fig 10.Taylor diagrams of CLM45, EC-interim, and EC-interim/Land 393 

4.2 Improverment of LST simulation 394 
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Although CLM4.5 effectively simulated the spatial distribution of LST in the region, there was a 395 

cold bias of 4.5°C for all of mainland China. The simulated LSTs were about 2–4°C cooler than 396 

observed east of 105°E, and 6–8°C cooler west of 105°E. Bias of the Tibetan Plateau was 397 

maximum among the regions, with an annual average cold bias of ~6°C. Maybe the model of the 398 

thermal conductivity in CLM4.5 is the main reason. To study the effect of STC (λ) on the 399 

simulation of LST, two long-term (30-year) simulation tests were conducted for two schemes. The 400 

results shows that the LST in most of northern China simulated by the Côté-Konrad scheme was 401 

increased by 0.5–1.0°C over that of the Johansen scheme, whereas that temperature in most other 402 

regions was reduced by 0–0.5°C (Fig. 11a). In the Lu-Ren scheme, LST was increased by 0.5–403 

1.0°C over that of Johansen scheme in most regions except the Tibetan Plateau and Guangdong 404 

and Guangxi regions, where that temperature was reduced by 0–0.5°C. LST in most of northern 405 

China was increased by 1–1.5°C, with the increase in some areas reaching 3°C (Fig. 11b).  406 

 407 
(a)                                                             (b) 408 

 409 
(c) 410 

Fig 11. Bias of LST values simulated by the Côté-Konrad (2005) and Lu-Ren (2006) schemes from the values 411 

simulated by the Johansen (1975) scheme; unit: °C. 412 

 413 

According to the bias of the three schemes, there is little difference between the Johansen and the 414 

Côté-Konrad scheme(Fig.12a). While the Lu-Ren scheme can significantly reduce the cold 415 

deviation in most regions. Therefore, it is more suitable for Chinese mainland LST 416 

simulation(Fig.12b). 417 

 418 

On the other hand, the bias in summer and autumn was greater than in other seasons. Because of 419 

the heavy rainfall, the soil moisture in these two seasons is higher than that in other periods. 420 

While the soil moisture change had an important effect on the simulation of LST, especially in 421 

arid and semiarid areas of northern China, where evaporation at the soil surface is intense. 422 

However, the isothermal model used in CLM4.5 did not consider the effect of soil moisture 423 
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change on soil temperature, maybe resulting in a large simulated bias in northern and 424 

northwestern regions with low soil moisture and large soil moisture variation. Therefore, 425 

developing a new λ calculation scheme and considering the role of water vapor in the calculation 426 

model of soil temperature are effective means for improving the performance of the model in 427 

simulating LST in mainland China. 428 

 429 
(a)                                                             (b) 430 

 431 

Fig 12. Bias of LST values simulated by the Côté-Konrad (2005) and Lu-Ren (2006) schemes, unit: °C. 432 

5 Conclusions 433 

We ran the CLM4.5 in a land–atmosphere coupling approach. And the longest and latest 434 

observed LST dataset for mainland China was used for the first time to comprehensive assess 435 

LST in that region as simulated by CLM4.5. The results show that there are systematic cold 436 

deviations in the simulation of land surface temperature in mainland China by CLM4.5. The 437 

RMSE in mainland China increased gradually from southeast to northwest, with the smallest 438 

value in the south (1–3°C) and largest in the southern Xinjiang Basin (9–11°C). Summer and 439 

autumn had the smallest RMSEs for each region in a year. Correlation coefficients between 440 

simulation and observation for all stations in China were between 0.75 and 0.9 (P < 0.001). The 441 

strongest correlation was observed in summer, with the correlation coefficient from 0.70 to 0.85 442 

(P < 0.001). In winter, that coefficient was the smallest, 0.35 to 0.65 (P < 0.05). As a result, the 443 

observed annual and seasonal average LSTs in mainland China had strong linear relationships 444 

with those simulated by CLM4.5. In the past 30 years, the LST of mainland China increased at 445 

the rate 0.058°C/a, with that of the plateau and northwestern regions increasing fastest (0.077 446 

and 0.071°C/a, respectively) and that in the northern region changing the least (0.033°C/a). The 447 

LST simulated by CLM4.5 also increased, but that increase was smaller than observed.  448 

 449 

The STC sensitivity numerical tests show that STC had a major influence on the reduction of 450 

simulated LST. However, the simulated cold bias from the Lu-Ren scheme remained large, and 451 

there was an increasing trend of the bias for the Tibetan Plateau. In addition, the bias in summer 452 

and autumn was greater than in other seasons, which shows that soil moisture change had an 453 

important effect on the simulation of LST, especially in arid and semiarid areas of northern 454 

China, where evaporation at the soil surface is intense. However, the isothermal model used in 455 

CLM4.5 did not consider the effect of soil moisture change on soil temperature, resulting in a 456 
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large simulated bias in northern and northwestern regions with low soil moisture and large soil 457 

moisture variation. Therefore, developing a new λ calculation scheme and considering the role of 458 

water vapor in the calculation model of soil temperature are effective means for improving the 459 

performance of the model in simulating LST in mainland China. 460 

 461 

Overall, although CLM4.5 can effectively simulated the spatial distribution and the variation of 462 

LST in the region.there exists larger cold bias for all of mainland China. The introduction of soil 463 

thermal conductivity model considering soil moisture may reduce the simulation deviation. 464 
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