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Abstract

Advances in machine learning (ML) techniques and computational capacity have yielded state-of-the-art methodologies for

processing, sorting, and analyzing large seismic data sets. In this work, we consider an application of ML for automatically

identifying dominant types of impulsive seismicity contained in observations from a 34-station broadband seismic array deployed

on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017. The RIS seismic data contain signals and noise generated by many

glaciological processes that are useful for monitoring the integrity and dynamics of ice shelves. Deep clustering was employed

to efficiently investigate these signals. Deep clustering automatically groups signals into hypothetical classes without the need

for manual labeling, allowing for comparison of their signal characteristics and spatial and temporal distribution with potential

source mechanisms. The method uses spectrograms as input and encodes their salient features into a lower-dimensional latent

representation using an autoencoder, a type of deep neural network. For comparison, two clustering methods are applied to the

latent data: a Gaussian mixture model (GMM) and deep embedded clustering (DEC). Eight classes of dominant seismic signals

were identified and compared with environmental data such as temperature, wind speed, tides, and sea ice concentration. The

greatest seismicity levels occurred at the RIS front during the 2016 El Niño summer, and near grounding zones near the front

throughout the deployment. We demonstrate the spatial and temporal association of certain classes of seismicity with seasonal

changes at the RIS front, and with tidally driven seismicity at Roosevelt Island.
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Abstract13

Advances in machine learning (ML) techniques and computational capacity have yielded14

state-of-the-art methodologies for processing, sorting, and analyzing large seismic data15

sets. In this work, we consider an application of ML for automatically identifying dom-16

inant types of impulsive seismicity contained in observations from a 34-station broad-17

band seismic array deployed on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017.18

The RIS seismic data contain signals and noise generated by many glaciological processes19

that are useful for monitoring the integrity and dynamics of ice shelves. Deep cluster-20

ing was employed to efficiently investigate these signals. Deep clustering automatically21

groups signals into hypothetical classes without the need for manual labeling, allowing22

for comparison of their signal characteristics and spatial and temporal distribution with23

potential source mechanisms. The method uses spectrograms as input and encodes their24

salient features into a lower-dimensional latent representation using an autoencoder, a25

type of deep neural network. For comparison, two clustering methods are applied to the26

latent data: a Gaussian mixture model (GMM) and deep embedded clustering (DEC).27

Eight classes of dominant seismic signals were identified and compared with environmen-28

tal data such as temperature, wind speed, tides, and sea ice concentration. The great-29

est seismicity levels occurred at the RIS front during the 2016 El Niño summer, and near30

grounding zones near the front throughout the deployment. We demonstrate the spa-31

tial and temporal association of certain classes of seismicity with seasonal changes at the32

RIS front, and with tidally driven seismicity at Roosevelt Island.33

Plain Language Summary34

We demonstrate the ability of a machine learning technique called deep clustering35

to automatically identify different types of seismic signals. A neural network encodes spec-36

trograms into simplified representations. Application of a clustering algorithm separates37

the representations into distinct clusters of signal types. The deep clustering technique38

was applied to seismic data recorded by an extensive array of broadband seismometers39

deployed on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017. In addition to know-40

ing when and where on the RIS signals are detected, clustering enables users to deter-41

mine the signal characteristics. Paired with environmental data, deep clustering can be42

used to identify whether certain environmental factors are associated with particular classes43

of seismicity.44

–2–



manuscript submitted to JGR: Solid Earth

1 Introduction45

Ice sheets and ice shelves in West Antarctica are experiencing rapid change. Be-46

tween 2003 and 2019, the West Antarctic Ice Sheet (WAIS) experienced a net ice loss47

of 169 billion tons per year, contributing 7.5 mm to sea level rise (Smith et al., 2020).48

Warming oceans are enhancing basal melting of ice shelves that reduces the buttress-49

ing of grounded ice sheets (De Angelis & Skvarca, 2003; Thoma et al., 2008; Pritchard50

et al., 2012; Paolo et al., 2015), leading to increased discharge of ice into the ocean and51

raising sea level (Scambos, 2004; Dupont & Alley, 2005; Rignot et al., 2014; Fürst et al.,52

2016). With West Antarctica alone containing a sea level rise potential of 5.6 m (Smith53

et al., 2020), monitoring the loss of ice shelves plays a critical role in anticipating future54

sea level rise and associated societal impacts on coastlines and the environment. Increased55

seismic activity, such as icequakes resulting from fracturing, can give indications of changes56

in iceberg calving rates and the integrity of ice shelves and are observable using glacial57

seismology methods (Aster & Winberry, 2017). However, the prevalence of extensive, con-58

tinuously recording seismic observing systems has led to an abundance of data which is59

becoming increasingly difficult to analyze using conventional signal processing. At the60

same time, advances in computing capabilities and machine learning algorithms have en-61

abled more efficient, data-driven approaches to study natural processes and phenomena.62

To analyze large seismic data sets more efficiently, we adapt contemporary machine learn-63

ing techniques to augment existing signal processing and data analysis techniques.64

Seismology is a data-intensive field with well-developed signal processing and an-65

alytical methods. The recent introduction of machine learning techniques has led to the66

development of complementary tools that give seismologists novel approaches to tradi-67

tional analyses, such as earthquake detection and early warning, phase picking, ground-68

motion prediction, tomography, and geodesy (Kong et al., 2019; Bianco & Gerstoft, 2018;69

Bianco et al., 2019; Johnson et al., 2019). In this study we present an implementation70

of clustering, a form of unsupervised machine learning used to discover classes of sim-71

ilar signals within a data set (Bishop, 2006; Holtzman et al., 2018; Johnson et al., 2020),72

and which is commonly used as an exploratory tool for large, unlabeled data sets.73

To test the applicability of clustering groups of similar signals for monitoring ice74

shelves, we focus specifically on the Ross Ice Shelf (RIS), Antarctica, where a 34-station75

passive seismic array was deployed from November 2014 to January 2017 to observe the76
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response of the RIS to ocean gravity wave impacts and investigate the structural dynam-77

ics of the ice shelf (Bromirski et al., 2015). The array, shown in Figure 1, continuously78

recorded long- and short-period seismic signals that exhibited seasonal and spatial vari-79

ations related to the shelf’s coupling to the ocean, atmosphere, and crust (Baker et al.,80

2019). Signals and ambient noise of interest on the RIS include tidally-driven stick-slip81

seismicity at Whillans Ice Stream (Bindschadler, King, et al., 2003; Bindschadler, Vorn-82

berger, et al., 2003; D. A. Wiens et al., 2008); basal micro-earthquakes and tremor (Barcheck83

et al., 2018); tidally and thermally driven rift fractures (Olinger et al., 2019); diurnal seis-84

micity associated with subsurface melting (MacAyeal et al., 2019); wind-generated res-85

onance in the ice (Chaput et al., 2018); flexural and plate waves generated by ocean swell,86

infragravity waves, and tsunami (Bromirski & Stephen, 2012; Bromirski et al., 2017; Chen87

et al., 2018); regional and teleseismic earthquakes (Baker et al., 2020); and icequakes gen-88

erated by ocean gravity waves (Chen et al., 2019). Ambient seismic noise, which can be89

used to estimate the RIS structure (Diez et al., 2016), also contains spectra from ocean90

gravity waves, whose dispersion can be used to identify their source distance and origin91

(Bromirski et al., 2015; Hell et al., 2019).92

The seismic data recorded on the RIS are diverse and encompass numerous source93

mechanisms with a wide range of spatiotemporal variability. In this study, we apply two94

unsupervised clustering methodologies to the RIS array seismic data to identify classes95

of seismic events with similar temporal and spectral characteristics. The occurrences and96

distributions of these signal classes provide information on glaciological processes affect-97

ing ice shelf evolution.98

2 Background99

Grouping seismic signals with similar characteristics (clustering) allows investiga-100

tion of spatiotemporal variability associated with glaciological processes that result from101

environmental forcing.102

2.1 Clustering103

There are numerous methods to cluster data, (Aggarwal & Reddy, 2014), many of104

which have been adapted for use in seismology and geophysics (Kong et al., 2019). A105

related approach based on sparse modeling, called dictionary learning, has been applied106
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Figure 1. The passive broadband seismic array deployed from November 2014 to January

2017 consisted of 34 seismic stations and was deployed as part of the Ross Ice Shelf Dynamic

Response to Wave-Induced Vibrations Project (Bromirski et al., 2015). RIS surface elevation,

ice and water layer thicknesses, and grounding and coast lines were obtained from Bedmachine

(Morlighem et al., 2017; Greene et al., 2017).
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to regularizing seismic inverse problems (Bianco & Gerstoft, 2018; Bianco et al., 2019).107

Hierarchical clustering has been used by Mousavi et al. (2016) to automatically discrim-108

inate between shallow and deep earthquakes, and by Trugman and Shearer (2017) to more109

precisely localize earthquakes. Graphical clustering has been used to localize sources in110

a dense seismic array by Riahi and Gerstoft (2017), and by Telesca and Chelidze (2018)111

to cluster seismic events in time. Distance-based clustering, like the popular k -means al-112

gorithm, (MacQueen, 1967; Hartigan & Wong, 1979) has been used by Chamarczuk et113

al. (2020) to cluster seismicity based on features extracted from seismic data. Perol et114

al. (2018) used k -means to define probabilistic earthquake locations as part of their con-115

volutional neural network (CNN) detection and localization technique. Wallet and Hardisty116

(2019) used Gaussian mixture model (GMM) clustering, which assumes clusters in the117

data exist that can be represented as linearly superimposed Gaussian distributions, en-118

abling identification of seismic facies. Seydoux et al. (2020) detected and clustered seis-119

mic signals and background noise with the use of a deep scattering neural network and120

GMM.121

Not all clustering methods involve machine learning. Template matching, in which122

a matched filter is constructed from a template waveform, is used to scan through con-123

tinuous recordings to locate similar signals (Gibbons & Ringdal, 2006; Beaucé et al., 2018;124

Chamberlain et al., 2018). Yoon et al. (2015) and Bergen and Beroza (2018) presented125

computationally efficient techniques in which locality-sensitive hashing is used to map126

seismic signals into a hash table, allowing similar signals to be identified by table entry.127

Hotovec-Ellis and Jeffries (2016) developed an approach that uses correlation-based sim-128

ilarity search to automatically detect and cluster repeating volcanic seismicity in con-129

tinuous data. Cole (2020) adopted the method of Hotovec-Ellis and Jeffries (2016) to clus-130

ter RIS array data at stations RS09, RS10, and RS11 in order to characterize tidal forc-131

ing of seismicity at these stations.132

2.2 Dimensionality133

Data are considered high-dimensional when many features are required to repre-134

sent or describe the data. Seismic data represented as time series, spectrograms, scalo-135

grams, or energy envelopes can contain thousands of features (e.g., discrete samples in136

a time series, or bins in a spectrogram). Clustering performed directly on such input data137

is vulnerable to the “curse of dimensionality” (Bellman, 1961; Bishop, 2006; Murphy, 2012;138
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Aggarwal & Reddy, 2014), i.e., as the dimensionality of the input data increases, the num-139

ber of data points required to maintain sufficient sampling density increases exponen-140

tially. A further consideration is that clustering error metrics can give less meaningful141

results as dimensionality increases.142

As high-dimensional data are difficult to cluster (Aggarwal et al., 2001; Steinbach143

et al., 2004), dimensionality reduction remains a major focus of development (Yang et144

al., 2017). It is often desirable to transform the input data to a lower-dimensional rep-145

resentation described by fewer, more salient features. A popular approach is to use prin-146

cipal component analysis (PCA), which projects higher dimensional data into lower di-147

mensional space (Goodfellow et al., 2016) and was used by Reddy et al. (2012) to com-148

press seismic data to maximize feature variance.149

The approach to reducing dimensionality in this study employs an autoencoder,150

a model whose output aims to reproduce its input via a series of non-linear transforma-151

tions employing a deep neural network (DNN) (Hinton, 2006; Murphy, 2012; Yang et al.,152

2017). These non-linear transformations provide greater capacity in dimension reduc-153

tion, and can better model data with low-dimensional representations than, for exam-154

ple, PCA. The autoencoder first encodes input data such as an image—in our case, a155

spectrogram—into a latent feature vector. Next, the autoencoder decodes the latent fea-156

tures and reconstructs the original image. Since the autoencoder provides a non-linear157

transformation of the data, it must be trained using gradient descent. In this iterative158

training, the error between the input and output is minimized. In doing so, the salient159

features of the data are learned by the network weights. With the dimensionality of the160

input data reduced in the latent feature space, clustering algorithms can be applied to161

the data’s latent feature space.162

2.3 Deep Embedded Clustering163

In deep clustering, a DNN such as an autoencoder is used to reduce the dimension-164

ality of the data. A recent deep clustering method that has shown improvement over tra-165

ditional clustering techniques was developed by Xie et al. (2016), whose deep embedded166

clustering (DEC) consists of two processes: (1) An autoencoder is trained to represent167

the data’s salient features; and (2) the encoding layers and clustering layer are jointly168

optimized. Yang et al. (2017) extended the approach in DEC by jointly optimizing the169

–7–
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clustering step with training the entire autoencoder, not just the encoder layers. Addi-170

tional variations of DEC have been proposed: Xie et al. (2016) used a stacked denois-171

ing autoencoder (Vincent et al., 2010) in their original implementation, but Min et al.172

(2018) employed autoencoders composed of CNN layers and other architectures. More173

recently, Chazan et al. (2019) developed an approach in which joint clustering is performed174

with a mixture of autoencoders, each representing a cluster, and Boubekki et al. (2021)175

demonstrated improved performance using a clustering algorithm that is jointly optimized176

with the embeddings of the autoencoder.177

Mousavi et al. (2019) used DEC to predict whether seismic detections were local178

or teleseismic, and Snover et al. (2021) demonstrated the ability of DEC to cluster an-179

thropogenically generated seismic noise. In a similar signal processing and clustering work-180

flow to ours, Ozanich et al. (2021) compared DEC and GMM on spectrograms of acous-181

tic data collected on a coral reef, but in their case found GMM performed better than182

DEC.183

In this study, we implement GMM clustering in the latent feature space and com-184

pare its performance with DEC. Using RIS seismic data from December 2014 to Novem-185

ber 2016, we identify several different classes of signals, and further demonstrate the util-186

ity of deep clustering as an exploratory tool for large, real-world seismic data sets by as-187

sociating the clustering results with observed environmental factors.188

3 Ross Ice Shelf (RIS) Seismic Array and Data189

Each station in the RIS seismic array consisted of 3-component Nanometrics Tril-190

lium 120 PHQ seismometers emplaced 1 m below the surface of the ice, powered by so-191

lar panels during the austral summers, and lithium-ion batteries during the austral win-192

ters. Two subarrays comprised the array. The larger subarray consisted of 18 stations193

spaced approximately 80 km apart (prefix RS), primarily oriented parallel to the RIS194

front. The RS stations sampled short-period orthogonal components of ground veloc-195

ity at a sampling rate of 100 Hz, except for two stations that sampled at 200 Hz. The196

smaller subarray consisted of 16 stations (prefix DR) arranged approximately orthog-197

onal to the ice shelf front along the international date line, sampling ground velocity with198

a sampling rate of 200 Hz. For this study, we were primarily interested in the detection199

and classification of icequakes and local/regional earthquakes, using only vertical com-200
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Figure 2. Seismic signals detected on the Ross Ice Shelf exhibited diverse characteristics with

variation in time, space, and source mechanism. Shown are examples of acceleration response

seismograms and their respective normalized spectrograms spanning the 3-20 Hz band that were

typical for the data set. The normalized spectrograms were used as input to the deep clustering

analysis.

ponent observations with frequencies of interest occurring between 3 and 20 Hz. This201

passband was selected to preserve impulsive signals, eliminate high-energy noise preva-202

lent at low frequencies, and exclude resonances generated by wind at frequencies above203

20 Hz. Representative types of signals detected are shown in Figure 2.204

Seismic data from each station were processed in 24-hour segments as follows: 1) Data205

were linearly de-trended and tapered with a Hann window. 2) Instrument responses for206

all stations were removed, giving acceleration in m/s2. 3) Since the bandwidth of inter-207

est was from 3 to 20 Hz, data were decimated to 50 Hz, using low-pass filtering followed-208

by downsampling. 4) A band-pass filter with cutoff frequencies at 3 and 20 Hz was ap-209

plied to remove long-period signals originating from tides, tsunamis, infragravity waves,210

ocean swell, and teleseisms. 5) A short-term average/long-term average (STA/LTA) de-211

tection algorithm (Allen, 1982) was used to detect impulsive signals, particularly icequakes212

and local earthquakes, employing an STA window of 0.5 s, LTA window of 30 s, trigger213

threshold of 15, and de-trigger threshold of 10. The detector was applied to data from214
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each station from 3 December 2014 to 21 November 2016 for a total of 719 days of ar-215

ray data, yielding 531,407 detections.216

Upon detection, a 4 s trace centered on the spectral peak of each triggered event217

was saved for processing. Centering the trace at the spectral peak yielded more unique218

clusters by preventing the clustering algorithm from labeling similar signals as different219

classes based only on their relation to the trigger time. For each seismic trace saved, a220

spectrogram was computed using the short-time Fourier transform with a 0.4 s Kaiser221

window, NFFT=256, and 90% overlap. Spectrograms (samples) contained one channel222

of amplitude information, 87 frequency bins, and 100 time bins for a total of 8,700 fea-223

tures per spectrogram. To improve DNN learning, sample-wise normalization was per-224

formed by dividing each spectrogram by its vector norm (LeCun et al., 2012).225

4 Deep Clustering Implementation226

The objective of deep clustering models is to first encode the input data—in this227

case, spectrograms of seismic signals—into a layer containing latent (lower-dimensional)228

features, called the embedded layer, and to then apply a clustering algorithm in this la-229

tent feature space. In the implementation that follows, the 8,700 features of an input spec-230

trogram are reduced to a latent feature space of just 9 embedded features with the use231

of a convolutional autoencoder, a type of DNN composed of convolutional and transposed232

convolutional layers. We then describe the GMM and DEC clustering algorithms that233

are used in the clustering analysis.234

4.1 Dimensionality Reduction with a Convolutional Autoencoder235

Autoencoders provide a useful means of data approximation using a lower-dimensional236

representation via a sequence of non-linear transformations. The autoencoder model con-237

sists of three components: an encoder, a bottleneck, and a decoder (Murphy, 2012). First,238

the encoder maps input data from a data space X into a latent feature space Z, which239

is contained within the bottleneck of the model. Next, the decoder attempts to recon-240

struct X from Z. This process is performed iteratively with the objective of minimiz-241

ing the error between X and the decoder output, X ′. In minimizing the error, the au-242

toencoder learns the salient features of X and accurately encodes them in Z, thus re-243

ducing the dimensionality of the clustering task.244
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Figure 3. The deep clustering framework in this study uses a convolutional autoencoder that

encodes the data space X into the latent feature space Z, and a decoder that recovers the origi-

nal input X from Z. The mean squared error (MSE) between the input X and the reconstruction

X ′ is used as the autoencoder loss function. The latent feature space Z lies at the bottleneck

between the encoder and decoder, providing the input to the clustering layer. Gaussian mixture

model (GMM) clustering labels each data sample according to its most likely cluster member-

ship using an expectation-maximization algorithm. Deep embedded clustering (DEC) provides

label assignments, and also outputs a clustering loss function that is combined with the MSE to

further train the parameters that map X → Z → X ′.
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Consider a data set of spectrograms D = {xn ∈ XM}Nn=1, where xn is a vector rep-245

resentation of the nth spectrogram in a data set containing N spectrograms, and the num-246

ber of features in xn, M , is the spectrogram size (the product of the number of frequency247

bins and time bins). In the encoder stage, the mapping of X to Z is described by fθ : X → Z,248

where θ are parameters that are learned through iterative model training. The decoder249

stage is a mirror operation of the encoder and seeks to map the latent feature space Z250

to the reconstruction X ′ by gθ : Z → X ′. The overall mapping of the autoencoder can251

be described as Fθ : X → Z → X ′, where Fθ = gθ ◦ fθ. Input spectrograms xn map to252

their corresponding latent feature vectors by zn = fθ(xn) ∈ ZD, where D is the num-253

ber of embedded features, and to their reconstructions by x′
n = Fθ(xn) ∈ X ′.254

As the autoencoder is composed of convolutional and transposed convolutional lay-255

ers, Fθ is a nonlinear mapping that must be appropriately parameterized. This is accom-256

plished by iteratively learning the parameters θ in order to minimize the error between257

the input and reconstructed data. The mean squared error (MSE) between an input spec-258

trogram with M features and its reconstruction, defined as259

`(x,x′) =
1

M

M∑
m=1

(xm − x′m)2, (1)260

is averaged over the N samples in the data set to obtain the autoencoder loss function:261

LAEC =
1

N

N∑
n=1

`(xn,x
′
n). (2)262

Performing this calculation over the entire data set at once is computationally expen-263

sive, memory intensive, and can lead to poor convergence. Instead, the loss is calculated264

in mini-batch subsets of the data space. For each mini-batch loss, stochastic gradient de-265

scent (Goodfellow et al., 2016) is used to update the weights. When all mini-batches have266

been processed, the next training epoch begins and the process is repeated. After each267

epoch, a subset of the data separate from the training data is used to validate the model’s268

performance without updating the weights, yielding a validation MSE. Training is per-269

formed until a specified maximum number of epochs is reached, or stopped early if the270

validation MSE fails to decrease below its minimum value after ten epochs. The early271

stopping criterion prevents the autoencoder from overfitting the training data.272

The design choice of autoencoder architecture can be informed by prior knowledge273

of a data set and its features, as well as practical considerations such as computational274

resources available. Our DNN architecture, detailed in Table 1, is designed to be com-275

putationally efficient, simple to construct, and robust enough to learn salient features276
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Table 1. Convolutional Autoencoder Architecture

Layer

Name

Type
Input

Shape

Filters Activation
Output

Shape

Trainable

Parameters

Input - - - - [1, 87, 100] -

Conv1 Convolution [1, 87, 100] 8 ReLU [8, 44, 50] 80

Conv2 Convolution [8, 44, 50] 16 ReLU [16, 22, 25] 1,168

Conv3 Convolution [16, 22, 25] 32 ReLU [32, 11, 13] 4,640

Conv4 Convolution [32, 11, 13] 64 ReLU [64, 6, 7] 18,496

Conv5 Convolution [64, 6, 7] 128 ReLU [128, 3, 3] 73,856

Flat Flatten [128, 3, 3] - - [1152] 0

Encoded Fully Connected [1152] - ReLU [9] 10,377

FC Fully Connected [9] - ReLU [1152] 11,520

Reshape Reshape [1,152] - - [128, 3, 3] 0

ConvT1 Transposed Conv [128, 3, 3] 64 ReLU [64, 5, 7] 73,792

ConvT2 Transposed Conv [64, 5, 7] 32 ReLU [32, 11, 13] 18,464

ConvT3 Transposed Conv [32, 11, 13] 16 ReLU [16, 23, 25] 4,624

ConvT4 Transposed Conv [16, 23, 25] 8 ReLU [8, 47, 51] 1,160

Decoded Transposed Conv [8, 47, 51] 1 Linear [1, 95, 101] 73

Output Crop [1, 95, 101] - - [1, 87, 100] -

Total 218,250
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Table 2. Sample Sizes and Hyperparameters used to Train the Autoencoder and Deep Embedded

Clustering Model

Samples Hyperparameters

Total

(N)

Training

(Ntrain)

Validation

(Nval)

Initial

learning rate

Mini-batch

size

Classes

(K)

Clustering loss

factor (λ)

Updates

per epoch

531,407 40,000 10,000 10−3 64 8 10−4 10

from a noisy seismic data set. In total, θ contains 218,250 trainable parameters under277

this DNN architecture.278

Autoencoder training is implemented using 50,000 spectrograms randomly selected279

without replacement from the 531,407 detections. Of the selected spectrograms, 80% are280

used for training and 20% for validation. The trainable parameters are optimized using281

the Adaptive Moment Estimation (Adam) algorithm (Kingma & Ba, 2017). In training,282

there are two principal hyperparameters to address. First is the initial learning rate, which283

controls the initial step size used by Adam to step down the gradient of the loss. The284

second hyperparameter is the mini-batch size, which sets the number of spectrograms285

to be passed through the model at one time. The optimal configuration is found through286

a grid search of the hyperparameters. A summary of the optimal hyperparameters and287

the number of spectrograms used are listed in Table 2. As seen in Figure 4a, training288

and validation losses fall off exponentially with each training epoch until the early stop-289

ping criterion is met; in this case, at 48 epochs. The effectiveness of the autoencoder’s290

ability to reconstruct the input spectrogram is illustrated in Figure 5. Though some loss291

of resolution in time and frequency is expected due to the convolutional and transposed292

convolutional layers, the structure of the spectrogram is largely preserved, with the salient293

information of the input encoded to the latent feature space. To test that the autoen-294

coder adequately generalized the entire data set, all spectrograms were fed through the295

model, yielding an average MSE of 5.9381×10−6, which is consistent with the valida-296

tion MSE at the early stopping point.297
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Figure 4. (a) Training and validation losses during autoencoder training. To avoid over-

fitting the model, training is stopped when the early stopping criterion is met (in this case, at 48

epochs). (b) In the upper plot, loss curves are shown for deep embedded clustering (DEC). In the

lower plot, the percentage of samples which undergo class reassignment at each update interval is

shown; training is stopped once the change is less than 0.4%
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Figure 5. A trained autoencoder takes an input spectrogram x, encodes it to a 9-dimensional

latent feature vector z, then reconstructs the input as x′. The autoencoder preserves features

correlated within a given cluster and discards the remaining signal, which can help with signal

identification.

4.2 Clustering Methodologies298

In our deep clustering framework, clustering is performed in the latent feature space,299

Z, to find K distinct classes of signals within the data. We assume that the data form300

clusters which are separable in Z space, and that these clusters coalesce around unique301

locations {µk ∈ Z}Kk=1, i.e., centroids around which other similar signals may be found.302

We use Euclidean distance between a centroid and a latent feature vector to measure sim-303

ilarity:304

dn,k = ‖zn − µk‖2. (3)305

dn,k is a measure of the similarity between features indexed by n and k.306

4.2.1 Gaussian Mixture Model (GMM)307

In GMM clustering, the latent feature vectors z are described by a mixture of K308

Gaussian distributions that are linearly superimposed in the latent space Z, where each309

Gaussian model has its own centroid µk and covariance Σk. We follow the methods of310

Bishop (2006, p. 430) and Murphy (2012, p. 339). The overall distribution of the mix-311

ture model is given by the convex combination of their distributions,312

p(z) =

K∑
k=1

πkN (z | µk,Σk). (4)313
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Consider the latent feature vectors zn as rows of a matrix Z ∈ RN×D with N sam-314

ples and D features. To estimate the parameters of each Gaussian distribution, an expectation-315

maximization (EM) algorithm is used to maximize the Gaussian mixture model’s like-316

lihood function of Z with respect to the parameters µk, Σk, and πk (Bishop, 2006, p. 433):317

ln p(Z | {µ1, ...,µK}, {Σ1, ...,ΣK}, {π1, ..., πK}) =

N∑
n=1

ln

[ K∑
k=1

πkN (zn | µk,Σk)

]
. (5)318

For every sample zn, a binary K-dimensional random variable ξk ∈ {0, 1} is intro-319

duced that has one element equal to one and all others to zero. The marginal distribu-320

tion over ξ is p(ξk = 1) = πk, where the mixing coefficients πk satisfy 0 ≤ πk ≤ 1 and
∑K
k=1 πk = 1321

in order to be valid probabilities. Since ξ is a 1-of-K (categorical) representation, this322

distribution is written as323

p(ξ) =

K∏
k=1

πξkk , (6)324

and the conditional distribution of zn given ξ as325

p(zn | ξ) =

K∏
k=1

N (zn | µk,Σk)ξk . (7)326

Equation (4) is then rewritten in terms of the factored joint distribution p(zn, ξ) = p(ξ)p(zn | ξ):327

p(zn) =

K∑
k=1

πkN (zn | µk,Σk) =
∑
ξ

p(ξ)p(zn | ξ). (8)328

Using Bayes’ theorem and equations (4) and (8), the conditional probability of ξ given329

zn is:330

γ(ξk) ≡ p(ξk = 1 | zn) =
p(ξk = 1)p(zn | ξk = 1)∑K
j=1 p(ξj = 1)p(zn | ξj = 1)

=
πkN (zn | µk,Σk)∑K
j=1 πjN (zn | µj ,Σj)

, (9)331

where πk is the prior probability of ξk = 1, and γ(ξk) is the posterior probability hav-332

ing observed zn. As with Z, we construct a matrix Ξ ∈ RN×K whose rows consist of333

the binary random variables ξn for each sample zn. Thus indexed, γ(ξnk) is defined as334

the responsibility that distribution k has for explaining sample zn, and is analogous to335

soft clustering, where the probability that sample zn belongs to distribution k is deter-336

mined for each of the K distributions. In practice, each latent feature vector zn is as-337

signed to one of K Gaussian distributions by arg max
ξ

[γ(ξnk)].338

Using superscript t to denote the iteration index, the EM algorithm for a Gaus-339

sian mixture is:340

1. Initialization of parameters µt−1k , Σt−1
k , and πt−1k .341
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2. Expectation step. This step encodes the samples’ probability of assignment to each342

Gaussian distribution by evaluating responsibilities γ(ξnk) using µt−1k , Σt−1
k , and πt−1k343

(equation (9)).344

3. Maximization step. Using the responsibilities γ(ξnk), this step updates the centroid345

location (µtk), shape (Σt
k), and normalization (πtk) of each distribution in the latent space346

Z by:347

µtk =
1

Nk

N∑
n=1

γ(ξnk)zn

Σt
k =

1

Nk

N∑
n=1

γ(ξnk)(zn − µtk)(zn − µtk)T

πtk =
Nk
N

where

Nk =

N∑
n=1

γ(ξnk).

(10)348

4. Convergence check. The log likelihood of Z is evaluated with respect to the param-349

eters µtk, Σt
k, and πtk (equation 5). If convergence occurs in the log likelihood or in the350

parameters µtk, Σt
k, and πtk, the EM algorithm has reached a local maximum and ter-351

minates; otherwise, the algorithm returns to step 2.352

To accelerate EM convergence, k -means clustering is used to initialize the GMM353

clustering algorithm (Bishop, 2006, p. 438). EM stops after 1,000 iterations have elapsed354

or when the change in log likelihood from equation (5) is less than 0.001. To avoid con-355

verging on local maxima, the initialization is run 100 times and the initialization with356

the best log likelihood is retained.357

4.2.2 Deep Embedded Clustering (DEC)358

In DEC, clustering is performed in conjunction with continued training of the au-359

toencoder, with the clustering layer attached to the bottleneck providing an additional360

loss function that is backpropagated through the autoencoder layers (Figure 3). The DEC361

model DNN parameters are initialized using the parameters of the trained autoencoder,362

and clustering layer parameters are initialized using the centroids from GMM cluster-363

ing. DEC seeks to improve the GMM clustering by using the Euclidean distance between364

embedded spectrograms and cluster centroids (equation (3)) as an additional loss func-365

tion for updating model parameters. Because the input data is unlabeled, a self-supervised366
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method is required. We implement the method developed by Xie et al. (2016), who, draw-367

ing from the t-distributed stochastic neighbor embedding (t-SNE) algorithm (van der368

Maaten & Hinton, 2008), propose measuring the difference between a Student’s t-distribution369

kernel of the latent feature vectors z and an auxiliary target distribution. A simplified370

Student’s t-distribution is used to measure the similarity between embedded spectrograms371

zn and the cluster centroids µk:372

qnk =
(1+ ‖ zn − µk ‖2)−1∑
k(1+ ‖ zn − µk ‖2)−1

. (11)373

Equation (11) results in a set of soft class assignments, i.e., the probability that embed-374

ded spectrogram n will be assigned to class k. Latent feature vectors zn are assigned to375

one of K classes by arg max
q

[qnk]. The soft class assignments qnk are then used to com-376

pute the auxiliary target distribution, p, whose form is designed to improve clustering377

performance, emphasize embeddings with high-confidence assignments, and normalize378

each cluster centroid’s contribution to the loss function so that large clusters minimally379

distort Z (Xie et al., 2016):380

pnk =
q2nk/

∑
n qnk∑

k(q2nk/
∑
n qnk)

. (12)381

The dissimilarity between the distributions given by equations (11) and (12) is measured382

using the Kullback-Leibler divergence (Kullback & Leibler, 1951). From the divergence383

the clustering layer’s loss function is obtained:384

LC = DKL(P ‖ Q) =
∑
n

∑
k

pnk log
pnk
qnk

. (13)385

In DEC, the clustering layer is attached to the trained autoencoder’s bottleneck.386

During training of the DEC model, the loss functions from equations (2) and (13) are387

combined into a total loss function,388

L = LAEC + λLC, (14)389

where λ is a hyperparameter that balances the contributions of the two losses, since they390

are of differing magnitudes. λ must be tuned: if it is too large, the clustering loss will391

cause model instability and lead to distortion of the latent space, in which case the la-392

tent space will no longer represent the salient features of the data. If λ is too small, the393

effect on clustering performance will be minimal. We found that λ = 10−4 yielded op-394

timal performance for model training and clustering.395

Two constituent processes occur simultaneously during DEC model training. First,396

the full loss from equation (14) is backpropagated through the DEC model parameters,397
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which include the autoencoder as well as the cluster centroids. Second, to account for398

the cluster centroids changing as training progresses, the distributions qnk and pnk are399

updated at intervals. The update interval is a hyperparameter that must be tuned. Through400

hyperparameter tuning, an update interval of 10 per training epoch was found to be op-401

timal for clustering performance, minimizing DEC loss, and training within a reasonable402

time frame. Training is stopped after the number of samples changing assignments af-403

ter every update interval reaches less than 0.4% of the total number of training samples.404

The same mini-batch size and initial learning rate are used to train both the autoencoder405

and DEC model (Table 2). Figure 4b shows how losses decrease over time and the per-406

cent change in label assignments for every mini-batch training iteration. Though the over-407

all trends in the loss curves show exponential decay, periodic spikes occur at every up-408

date interval, when qnk and pnk are recalculated, and are visible since the losses are recorded409

after every mini-batch rather than every epoch.410

4.3 Selecting Optimal Number of Clusters411

Determining the optimal number of clusters, K, is a major challenge in unsuper-412

vised machine learning. In this study we treat K as a hyperparameter, iterating the deep413

clustering workflow over a range of values for K and evaluating the results to choose the414

best value. Results are evaluated both quantitatively and qualitatively. Quantitative eval-415

uation is performed for each class by examining cumulative distribution functions and416

probability density functions as functions of distance to each class centroid, dn,k (equa-417

tion (3)). Additionally, traditional statistical methods for choosing the optimal number418

of clusters, such as the gap statistic (Tibshirani et al., 2001) and silhouette score (Rousseeuw,419

1987), are consulted. The qualitative approach is to visually inspect the similarity of the420

latent feature vectors zn to their respective class centroids µk, and to see if the spec-421

trograms and seismograms assigned to each class likewise exhibit similarity. In general,422

the formation of two or more similar classes may indicate that too many classes were ini-423

tialized, and the data in those classes can be grouped into a single class in post-processing.424

Too much variance among the spectrograms within a class may indicate the need for one425

or more additional classes. We found that K = 8 was the optimal number of classes for426

the RIS data set.427
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5 Results428

The following analysis of GMM and DEC performance focuses on how the cluster-429

ing algorithms affect the latent space Z and whether the methods yield meaningful re-430

sults in the data space X. Since the samples in the data set are unlabeled and there is431

no “ground truth” against which to compare results, measurements of intra-class sim-432

ilarity among spectrograms and latent feature vectors are examined. We conclude that433

neither GMM nor DEC provides a clear advantage in clustering performance. Accord-434

ingly, we recommend implementation of GMM for deep clustering of RIS seismic data.435

The statistical and mathematical underpinnings of GMM are well understood, and the436

complexity of implementation and interpretation of DEC is difficult to justify in the ab-437

sence of compelling performance improvement. Furthermore, in practice GMM cluster-438

ing on a graphics processing unit takes approximately one minute to cluster the entire439

data set, whereas one DEC hyperparameter tuning run can take several hours.440

In the analyses that follow, results are presented for the entire data set of 531,407441

spectrograms, including the training and validation data subsets. We mitigate the risk442

of the DNN in the DEC model overfitting on the training data (Murphy, 2012, p. 23)443

by using less than 10% of the data set for training and validation, and by drawing train-444

ing samples randomly without replacement to achieve a training subset representative445

of the entire data set.446

5.1 Clustering Performance447

Deep clustering performance is qualitatively checked by comparing centroids to their448

respective assigned latent data samples. Results for GMM are shown in Figure 6. Each449

class k is represented by the columns in Figure 6, with each centroid µk and its recon-450

struction gθ(µk) plotted along the top row. Although the centroid is not a member of451

the data set, because the centroid represents the salient features of its class, its recon-452

struction is expected to resemble the spectrograms xn assigned to its class. Subsequent453

rows show the latent feature vectors zn, spectrograms xn, and associated seismograms454

of the data samples assigned to the respective classes. To inspect whether intra-class sim-455

ilarity holds with increasing distance from the centroid, samples zn and xn are shown456

for n = {1, 1000, 5000, 10000, 15000, 20000, 25000}. Near the centroid, latent feature vec-457

tors zn generally exhibit similar values to their class centroid µk, indicating that GMM458
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has successfully grouped similar latent data samples into the class, and that the centroid459

is representative of the data in its class. The spectrograms in each class are likewise sim-460

ilar to each other and to the centroid reconstruction gθ(µk), confirming that the latent461

features embedded in the centroids are representative of the spectrograms in the class.462

Finally, the similarity in the latent space and time-frequency domain extends to the time463

domain, where seismograms in each class are similar to one another. As distance increases464

(i.e., with increasing n), cases of dissimilarity begin to arise as samples overlap with ad-465

jacent clusters.466

In addition to checking the efficacy of the clustering, visual examination of the re-467

sults in Figure 6 gives indication of whether or not an appropriate number of clusters468

was chosen. For example, classes 4 and 8 exhibit similar characteristics in time and fre-469

quency, distinct from each other primarily in peak amplitude characteristics. If such dis-470

tinctions are not useful or if similarities are redundant, classes can be combined in post-471

processing. If too few clusters are selected, classes may contain widely differing signals,472

indicating the need to increase the number of clusters.473

Clustering with DEC involves two steps: first, the GMM clustering algorithm ini-474

tializes the centroids, but the latent data are left unmodified. Second, during DEC, cen-475

troids are further refined while the latent data are moved much closer to their respec-476

tive centroids, with some data reassigned to different classes altogether. To determine477

to what extent this occurs, t-SNE is used to visualize the 9-dimensional latent space in478

two dimensions (van der Maaten & Hinton, 2008). t-SNE can illuminate possible clus-479

ters within data in an unsupervised manner by displaying data in geometrically sepa-480

rated clusters. In Figure 7a, t-SNE results of the latent feature space clustered with GMM481

show that the data are largely contiguous with few exceptions. Applying the labels as-482

signed by GMM clustering to the data points shows that, while there is some geomet-483

ric separation between the clusters, the embedding is characterized by overlapping and484

dispersed class members, indicating poor separation in the latent space. Contrast this485

with Figure 7b, in which t-SNE results at the conclusion of DEC show both geometric486

separation as well as nearly homogeneous class assignments.487

While t-SNE offers an intuitively visual way to look for clusters in data, results are488

sometimes difficult to interpret and are impossible to reproduce exactly due to the in-489

herent randomness of the algorithm. Running t-SNE iteratively and with the same ran-490
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Figure 6. Gaussian mixture model (GMM) clustering results are shown, with samples zn and

xn the nth closest to their respective centroids. Within a given class k, the cluster centroids µk

are similar to the latent feature vectors zn, whose nine elements are shown above each spectro-

gram. Though the centroids are not members of the data set, their reconstructions gθ(µk) exhibit

similar characteristics to the spectrograms xn assigned to each class. Seismograms plotted below

each spectrogram also exhibit similarity within each class. With increasing distance from the

centroid (i.e., as n increases), dissimilarity and potential cases of mis-assignment are visible in

latent feature vectors, spectrograms, and seismograms, e.g for k = 7, n = 15000.
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Figure 7. (a) Visualization of the 9-dimensional latent data space is shown in two dimen-

sions using the t-distributed stochastic neighbor embedding (t-SNE) plot for Gaussian mixture

model (GMM) clustering. GMM exhibits limited separation within the data and overlapping

classes. (b) t-SNE plot for deep embedded clustering (DEC), whose clusters are well separated

and contain nearly homogeneous class members. (c) The effects of DEC in the latent feature

space are evident for each class probability density function (PDF) with respect to the distance

from the centroids. In addition to moving the assigned class members closer to the centroid, DEC

increases the distance between the other class centroids and PDFs.
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dom seed can mitigate these limitations, but examination of the effects of deep cluster-491

ing on the densities of the clusters provides a more concrete visualization. Of interest492

to the ability for the clustering algorithms to identify clusters is the distance of each clus-493

ter to the others. In Figure 7c, the probability density functions (PDF) of all clusters494

are shown as functions of distance to each centroid. Before DEC, though GMM cluster-495

ing usually results in the PDF of each class being closest to its centroid, there is signif-496

icant overlap with other clusters, and the clusters themselves are not particularly dense.497

With DEC, the PDF of each class is closer to its centroid, denser, and farther removed498

from the other clusters. Thus, DEC effectively separates each cluster from the others,499

allowing for better distinction between clusters in the latent space.500

The effects of DEC become readily apparent when the latent feature vectors are501

stacked and sorted according to their distance from each centroid, as shown in Figure 8.502

By sorting the latent space by sample index n such that dn+1,k > dn,k, cluster sepa-503

ration can be visualized directly in the latent space. Before DEC, centroids are initial-504

ized with the GMM clustering algorithm without modification to the latent data. Clos-505

est to each class centroid, the latent feature vectors are similar in appearance to the cen-506

troid, but transition continuously to different patterns as the sorted index n increases.507

The contrast with the latent feature space after DEC is stark: because DEC moves la-508

tent data assigned to a particular class closer to the centroid, the effect is that the la-509

tent feature vectors take on similar values, and therefore appearance, to the centroid.510

The result is that the latent space appears more sharply segmented after DEC, with the511

samples closest to the centroid of nearly uniform appearance to the centroid itself. For512

reference, the relative location of the other class centroids are marked with white ver-513

tical lines. With GMM, the latent feature vectors belonging to the other classes are not514

readily apparent, whereas after DEC, most of the other centroid locations are associated515

with their distinctive latent feature vectors.516

While DEC effectively transforms the latent feature space Z by moving latent fea-517

ture vectors closer to their centroids, less clear is whether this transformation causes a518

corresponding improvement in clustering quality in the data space X. To evaluate intra-519

class similarity among spectrograms, four pairwise metrics are used to compare the clus-520

tering assignments obtained from GMM and DEC.521
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Figure 8. For each classk, latent data samples zn are shown stacked according to their dis-

tance kzn � � k k from the centroid � k (shown to the left). Distance of the other cluster centroids

relative to the selected classk are indicated with vertical dotted lines. Deep embedded clustering

(DEC) brings assigned data zn closer to the class centroid, resulting in homogeneity among the

latent feature vectors assigned to that class.
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Figure 12. Two years of (a) temperature and (b) wind speed observations at Margaret

automated weather station (MGT, approximately 122 km southwest of RS09, Figure 1), c)

model-derived tides calculated at station RS10, and (d-k) icequake detection statistics for each

signal class. Interannual timescale is shown at left with vertical red lines indicating the sub-

set weekly time-scale at right. The diurnal tidal signal correlates with seismicity for classes 2,

3, and 6. Tidal model from (Padman et al., 2002); weather station data from AMRC, SSEC,

UW{Madison.
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Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018,916

May). Machine learning reveals cyclic changes in seismic source spec-917

tra in Geysers geothermal field. Science Advances, 4 (5), eaao2929. doi:918

10.1126/sciadv.aao2929919

Hotovec-Ellis, A. J., & Jeffries, C. (2016, April). Near Real-time Detection, Cluster-920

ing, and Analysis of Repeating Earthquakes: Application to Mount St. Helens921

and Redoubt Volcanoes [Invited]. Reno, NV, USA.922

Johnson, C. W., Ben-Zion, Y., Meng, H., & Vernon, F. (2020, August). Identifying923

Different Classes of Seismic Noise Signals Using Unsupervised Learning. Geo-924

physical Research Letters, 47 (15). doi: 10.1029/2020GL088353925

Johnson, C. W., Meng, H., Vernon, F., & Ben-Zion, Y. (2019, August). Characteris-926

tics of Ground Motion Generated by Wind Interaction With Trees, Structures,927

–43–



manuscript submitted to JGR: Solid Earth

and Other Surface Obstacles. Journal of Geophysical Research: Solid Earth,928

124 (8), 8519–8539. doi: 10.1029/2018JB017151929

Kingma, D. P., & Ba, J. (2017, January). Adam: A Method for Stochastic Opti-930

mization. arXiv:1412.6980 [cs] .931

Klein, E., Mosbeux, C., Bromirski, P. D., Padman, L., Bock, Y., Springer, S. R., &932

Fricker, H. A. (2020, October). Annual cycle in flow of Ross Ice Shelf, Antarc-933

tica: Contribution of variable basal melting. Journal of Glaciology , 66 (259),934

861–875. doi: 10.1017/jog.2020.61935

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P.936

(2019, January). Machine Learning in Seismology: Turning Data into Insights.937

Seismological Research Letters, 90 (1), 3–14. doi: 10.1785/0220180259938

Kullback, S., & Leibler, R. A. (1951, March). On Information and Sufficiency.939

The Annals of Mathematical Statistics, 22 (1), 79–86. doi: 10.1214/aoms/940

1177729694941

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient BackProp.942

In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks943

of the Trade: Second Edition (pp. 9–48). Berlin, Heidelberg: Springer Berlin944

Heidelberg. doi: 10.1007/978-3-642-35289-8 3945

MacAyeal, D. R., Banwell, A. F., Okal, E. A., Lin, J., Willis, I. C., Goodsell, B.,946

& MacDonald, G. J. (2019, September). Diurnal seismicity cycle linked to947

subsurface melting on an ice shelf. Annals of Glaciology , 60 (79), 137–157. doi:948

10.1017/aog.2018.29949

MacQueen, J. (1967). Some methods for classification and analysis of multivariate950

observations. In Proceedings of the fifth berkeley symposium on mathematical951

statistics and probability, volume 1: Statistics (pp. 281–297). Berkeley, Calif.:952

University of California Press.953

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). A Survey of Clus-954

tering With Deep Learning: From the Perspective of Network Architecture.955

IEEE Access, 6 , 39501–39514. doi: 10.1109/ACCESS.2018.2855437956

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., . . .957

Zinglersen, K. B. (2017, November). BedMachine v3: Complete Bed Topog-958

raphy and Ocean Bathymetry Mapping of Greenland From Multibeam Echo959

Sounding Combined With Mass Conservation. Geophysical Research Letters,960

–44–



manuscript submitted to JGR: Solid Earth

44 (21). doi: 10.1002/2017GL074954961

Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016, October).962

Seismic features and automatic discrimination of deep and shallow induced-963

microearthquakes using neural network and logistic regression. Geophysical964

Journal International , 207 (1), 29–46. doi: 10.1093/gji/ggw258965

Mousavi, S. M., Zhu, W., Ellsworth, W., & Beroza, G. (2019, November). Un-966

supervised Clustering of Seismic Signals Using Deep Convolutional Autoen-967

coders. IEEE Geoscience and Remote Sensing Letters, 16 (11), 1693–1697. doi:968

10.1109/LGRS.2019.2909218969

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge,970

MA: MIT Press.971

Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P.,972

Bromwich, D. H., . . . Wille, J. D. (2017, August). January 2016 extensive973

summer melt in West Antarctica favoured by strong El Niño. Nature Commu-974

nications, 8 (1), 15799. doi: 10.1038/ncomms15799975

Olinger, S. D., Lipovsky, B. P., Wiens, D. A., Aster, R. C., Bromirski, P. D., Chen,976

Z., . . . Stephen, R. A. (2019, June). Tidal and Thermal Stresses Drive Seismic-977

ity Along a Major Ross Ice Shelf Rift. Geophysical Research Letters, 46 (12),978

6644–6652. doi: 10.1029/2019GL082842979

Ozanich, E., Thode, A., Gerstoft, P., Freeman, L. A., & Freeman, S. (2021). Deep980

embedded clustering of coral reef bioacoustics. J. Acoust. Soc. Am., 16.981

Padman, L., Fricker, H. A., Coleman, R., Howard, S., & Erofeeva, L. (2002). A new982

tide model for the Antarctic ice shelves and seas. Annals of Glaciology , 34 ,983

247–254. doi: 10.3189/172756402781817752984

Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice985

shelves is accelerating. Science, 348 (6232), 327–331. doi: 10.1126/science986

.aaa0940987

Perol, T., Gharbi, M., & Denolle, M. (2018, February). Convolutional neural net-988

work for earthquake detection and location. Science Advances, 4 (2), e1700578.989

doi: 10.1126/sciadv.1700578990

Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den991

Broeke, M. R., & Padman, L. (2012, April). Antarctic ice-sheet loss992

driven by basal melting of ice shelves. Nature, 484 (7395), 502–505. doi:993

–45–



manuscript submitted to JGR: Solid Earth

10.1038/nature10968994

Reddy, T. A., Devi, K. R., & Gangashetty, S. V. (2012, March). Nonlinear principal995

component analysis for seismic data compression. In 2012 1st International996

Conference on Recent Advances in Information Technology (RAIT) (pp. 927–997

932). Dhanbad, India: IEEE. doi: 10.1109/RAIT.2012.6194558998

Riahi, N., & Gerstoft, P. (2017, March). Using graph clustering to locate sources999

within a dense sensor array. Signal Processing , 132 , 110–120. doi: 10.1016/j1000

.sigpro.2016.10.0011001

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. (2014, May).1002

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and1003

Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research1004

Letters, 41 (10), 3502–3509. doi: 10.1002/2014GL0601401005

Rousseeuw, P. J. (1987, November). Silhouettes: A graphical aid to the interpre-1006

tation and validation of cluster analysis. Journal of Computational and Applied1007

Mathematics, 20 , 53–65. doi: 10.1016/0377-0427(87)90125-71008

Scambos, T. A. (2004). Glacier acceleration and thinning after ice shelf collapse1009

in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31 (18),1010

L18402. doi: 10.1029/2004GL0206701011

Seydoux, L., Balestriero, R., Poli, P., de Hoop, M., Campillo, M., & Baraniuk, R.1012

(2020, December). Clustering earthquake signals and background noises in1013

continuous seismic data with unsupervised deep learning. Nature Communica-1014

tions, 11 (1), 3972. doi: 10.1038/s41467-020-17841-x1015

Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., . . .1016

Zwally, H. J. (2020, June). Pervasive ice sheet mass loss reflects compet-1017

ing ocean and atmosphere processes. Science, 368 (6496), 1239–1242. doi:1018

10.1126/science.aaz58451019

Snover, D., Johnson, C. W., Bianco, M. J., & Gerstoft, P. (2021, March). Deep1020

Clustering to Identify Sources of Urban Seismic Noise in Long Beach,1021

California. Seismological Research Letters, 92 (2A), 1011–1022. doi:1022

10.1785/02202001641023
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