Reply to Comment on: 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'

Joeri Rogelj^{1,1} and Carl-Friedrich Schleussner^{2,2}

¹Imperial College London ²Climate Analytics, Berlin, Germany

November 30, 2022

Abstract

This is a reply to a comment on the original research study with the title: 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'. This reply responds to some of the claims made in the comment and provides a scientific rebuttal.

Reply to Comment on: 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'

- 6
- 7 Joeri Rogelj^{1,2}, Carl-Friedrich Schleussner^{3,4}
- 8 ¹ Grantham Institute, Imperial College London, London, UK
- 9 ² International Institute for Applied Systems Analysis, Laxenburg, Austria
- 10 ³ Climate Analytics, Berlin, Germany
- 11 ⁴ IRITHESys, Humboldt University, Berlin, Germany
- 12
- 13 In reaction to a recent study with the title 'Unintentional unfairness when applying new
- 14 greenhouse gas emissions metrics at country level', Cain *et al.* submitted a comment to
- 15 which we here respond. The study referred to by the comment presents a critique of some
- of the ethical implications of applying a GWP*-like metric at the country level. Henceforth,
- 17 the original study (Rogelj and Schleussner, 2019) is referred to as RS19. The comment by
- 18 Cain *et al.* is referred to as CCmt.ⁱ
- 19 Some of the points made by CCmt might contribute to a constructive debate on the
- 20 application of greenhouse gas metrics in climate policy. Moreover, a broader debate of the
- 21 ethical implications of greenhouse gas metrics for inter- and intragenerational justice
- 22 continues to be timely. Unfortunately, most of the discussion provided in CCmt doesn't
- address the point made by the criticized RS19 study, and seems to start from a
- 24 misunderstanding of RS19 or from context unrelated to it. We are grateful for this
- 25 opportunity to clarify these aspects.

26 Key points of RS19

- 27 To contextualize this rebuttal, we first reiterate what RS19 is and is not about. RS19
- 28 provides a scientific critique of the potential ethical implications of applying GWP*-like
- 29 metrics at the country level. RS19 therewith highlights an ethical blind spot in the current
- 30 greenhouse gas metrics literature.
- 31 RS19 establishes that applying GWP*-like metrics at any but the global level raises ethical
- 32 questions of how historic and on-going methane emissions in an atmosphere common to all
- 33 are nationally accounted for in a fair and equitable manner (see Box 1). RS19 provides a
- 34 discussion and potential solutions to address this issue.

- 35 BOX 1: Illustration of grandfathering of historical methane contributions when applying GWP*-like metrics 36 The equity issues that are identified in RS19 can best be clarified by means of an example. Imagine three 37 farmers A, B, C who can be called Abraham, Bethany, and Chris – and can be used as analogues for three 38 illustrative countries. Abraham is 21 years old and has ten cows. His father was a farmer and so was his 39 grandfather. Abraham lives a happy and fulfilled life with his ten cows, and does not want to increase their 40 number. Bethany is also 21 years old and comes from a poorer family that historically was not able to afford 41 cattle. However, through a bank credit she was able to also buy ten cows. Also Bethany is happy with her ten 42 cows, and intends to keep her herd constant at that level. Finally, there is Chris, who is also 21 years old and 43 comes from an established farming family. His father and grandfather had a herd of 20 cows passed down over 44 generations. Chris, however, has decided to downsize and now also keeps a herd of just ten cows. Also Chris is 45 happy. Abraham, Bethany, and Chris thus have exactly the same number of cows, with the only difference 46 between them the number of cows their fathers owned. Following equation (1) in CCmt from (Lynch et al., 47 2020) this would nevertheless result in very different GWP*-based CO₂-equivalent emissions for each of them 48 over their adult farming lives (here assumed to be from about 21 to 70 years, and assuming that 10 cows emit 49 about 1 tonne of methane per year): 50 - Abraham, keeping his cows at the level of his father and grandfathers, is assigned 140 and 350 tCO2*-51 equivalent methane emissions over the first 20 and 50 years, respectively. 52 - Bethany, who was able to buy 10 cows despite her parents not owning any, is assigned 2240 and 2450 tCO₂*-53 equivalent methane emissions during the first 20 and 50 years, respectively. 54 - Chris, who kept half of the 20 cows of his father, is assigned negative 1960 and negative 1750 tCO₂*-55 equivalent methane emissions during the first 20 and 50 years, respectively. 56 - Globally (in this case, simply all three farmers together), methane emissions would be estimated at 420 and 57 1050 tCO₂*-equivalent during the first 20 and 50 years, respectively. The latter global CO₂*-equivalent 58 emissions reflect the equivalent global warming impact of the on-going global methane emissions. 59 - Meanwhile, the dung produced by each farmer's herd was also responsible for several additional tonnes (in 60 CO₂-equivalence) of long-lived N₂O emissions which are more similar to CO₂ in their climatic effect and are 61 accounted for identically under GWP and GWP*. 62 Despite Abraham, Bethany, and Chris having kept exactly the same number of cows for 50 years, their assigned 63 CO₂-equivalent emissions under the grandfathering application of a GWP* metric vary both in sign and 64 magnitude with the only reason for this variation being the number of cows their fathers owned. This example 65 does not provide a solution yet, but clearly illustrates the potential fairness and equity issues as they are 66 presented in RS19 and which surround the application of a GWP*-based metric for policy at any but the global 67 scale. 68 RS19 explores solutions by looking at the implications of different considerations of equity including 69 redistributing (historic) emissions allowances per capita. These approaches would provide a level playing field 70 for Abraham, Bethany, and Chris. For example, using one of the approaches discussed in RS19, each farmer 71 would be assigned the same share of global CO_2^* -equivalent emissions instead of one that depends on the 72 emissions of their fathers. While redistributing national emissions, this approach still accurately captures the 73 global warming implications of short-lived greenhouse gases at the global level expressed in GWP*. 74 END BOX 1 75 RS19 does not discuss equity considerations in relation to (historic) CO₂ emissions, and 76 neither does it provide a comprehensive assessment of all ethical implications of treating 77 different greenhouse gases (GHGs) with a common metric. However, the well-established 78 equity context of (historic) CO_2 emissions provides a useful starting point to illustrate the 79 core issues addressed in RS19. For CO₂, a long-lived greenhouse gas, cumulative emissions 80 are linked approximately linearly to global average temperature increase. Considerations of
- 81 equity and fairness generally lead to the conclusion that actors with higher historical
- 82 cumulative emissions have contributed more to current warming and therefore have a larger
- responsibility to reduce their emissions in the future, for example, see McKinnon (2015),

- 84 Vanderheiden (2008), or Robiou du Pont *et al.* (2016) and Kartha *et al.* (2018). The linear
- 85 relationship between cumulative CO₂ and global temperature increase allows one to align
- 86 ethical considerations based on historical emissions and historical warming.
- 87 For a short-lived greenhouse gas, like methane, this is different. Here, annual emissions over
- time determine largely the resulting warming effect, and changes in their emissions rate
- 89 cause this warming contribution to increase or decrease. A metric like GWP*, focuses on
- 90 capturing these changes in warming when aggregating different time series of GHGs into
- 91 CO₂-equivalent emissions, not on the total warming per se. This focus results in a different
- 92 relation between CO₂-equivalent emissions and warming that raises new questions of equity
- and fairness. These issues were for the first time highlighted in RS19.
- 94 It highlights ethical issues that arise from moving away from an emissions centred metric like
- 95 GWP-100 where every unit of emissions of a certain greenhouse gas (GHG) is treated
- 96 equally and independent of the emitter or timing of emissions to metrics like GWP* –
- 97 which focus on additional warming and where the treatment of a unit of emissions depends
- 98 on the emitter and their emission history. As a consequence, the concept of environmental
- 99 pollution thus changes when moving towards GWP*. Under an emissions centred metric
- such as GWP-100 every GHG emission constitutes an act of environmental pollution.
- 101 Warming centred metrics like GWP*, on the other hand, only capture the additional
- 102 pollution outcome. RS19 clarifies that a switch between metrics is thus not just a question of
- 103 physics but represents a change to the normative framework.
- 104 Specifically, RS19 outlines how application of the GWP* metric, which focusses on warming
- 105 differentials, can strongly benefit actors with high historic methane emissions in ways an
- 106 emissions-focused perspective (represented by GWP-100, or by the direct reporting of
- 107 individual gases) would not. This potential benefit for high historic methane emitters
- 108 contrasts with considerations of equity and fairness (Dooley et al., 2021; Kartha et al., 2018),
- and constitutes what is typically referred to as 'grandfathering' in the equity debate. When
- 110 considering to use a GWP*-like metric, one first needs to address the equity and fairness
- 111 issues related to the right of an emitter to occupy their current share of global atmospheric
- warming, which is caused by their past and present emissions of short-lived greenhouse
- 113 gases. Only thereafter, a GWP*-like metric can be applied to give credit to changes in
- 114 countries' warming contribution due to changes in on-going and future emissions of short-115 lived greenhouse gases. The standard application of GWP* starting from today disregards
- 116 the question of historic responsibilities and is referred to in RS19 as the 'grandfathering'
- . 117 GWP*.
- 118 The issues highlighted in RS19 are most effectively illustrated by CCmt, with an altered
- version of the example available in Box 1. CCmt's adaptation describes three different
- 120 methane sources A, B and C. For each of the sources, CCmt describes how future CO₂-
- 121 equivalent emissions of methane estimated with GWP* and their warming contributions
- 122 differ as a function of the sources' respective historical emissions (as does our example in
- Box 1). The CCmt example, however, remains silent on the ethical implications of the
- different starting points of the various sources, highlighting the ethical blind spot that RS19
- described. By not acknowledging this ethical question, CCmt's example implicitly suggests
- 126 that it is OK, by default, to grandfather historical levels of methane warming into
- assessments of future mitigation contributions. Conceptually, a historical high emitter is thus

- 128 rewarded for its past pollution by receiving, either literally or figuratively speaking, credit for
- 129 continuing to pollute at a lower level than before. Overlooking ethical aspects of countries'
- emissions while focussing on their warming impact alone, as is the case in CCmt, neglects
- the point that besides aiming to hold warming well below 2°C and 1.5°C, international
- climate policy as set out under the Paris Agreement *"will be implemented to reflect equity*
- and the principle of common but differentiated responsibilities and respective capabilities, in
- 134 *the light of different national circumstances"* (UNFCCC, 2015).
- 135 RS19 outlines real-world consequences of the application of GWP* and outlines how
- developed countries, some of which have per capita methane emissions that are about an
- 137 order of magnitude higher than most developing countries, would clearly benefit from the
- 138 grandfathering perspective that is implied by a direct application of GWP* relative to the
- 139 recent past (see Figure 1 in RS19).
- 140 Having identified the issue, RS19 proposes a set of possible solutions. It highlights various
- 141 concepts of equity, such as burden sharing vs resource sharing (Rao, 2011), to establish
- 142 equitable reference levels for countries' methane emissions and quantifies five different
- 143 variants of GWP* metrics that reflect these concepts in different ways. Several of these
- 144 variants keep *global* GWP* emissions at exactly the same level as would be the case under
- 145 the original GWP* formulation, but redistribute (historic and other) reference emissions on a
- 146 per capita basis to the level of individual countries, therewith exploring various possible
- interpretations of equity. Furthermore, RS19 also discusses how GWP* emissions in a given
 year can vary by an order of magnitude because of methodological choices, highlighting
- year can vary by an order of magnitude because of methodological choices, highlighting
 challenges for avoiding loopholes in international emissions trading if GWP* metrics are
- 150 applied by countries. Despite giving examples, RS19 neither indicates a specific approach to
- 151 be ethically superior nor does RS19 define what is or isn't fair in the context of a specific
- 152 country.

153 **Observations and reflections**

- 154 CCmt's first section titled 'Overview' unfortunately fails to acknowledge or address the
- 155 fairness perspectives presented in RS19. CCmt instead repeats the already well-established
- discussion of how GWP* provides a closer link between cumulative CO₂-equivalent
- 157 emissions and global mean temperature increase, compared to CO₂-equivalent emissions
- estimated with a common GWP-100 metric. This aspect has been extensively described in
- the scientific literature by the same authors (Allen et al., 2018; Cain et al., 2019a; Lynch et
- al., 2020), is not disputed, and is explicitly acknowledged and repeated in RS19.
- 161 CCmt further presents aspects related to comparing different greenhouse gases, such as CO₂
- and methane, which are fairness aspects different from those that were critiqued in RS19.
- 163 These aspects of CCmt's criticism on RS19 hence do not address the initial critique but
- 164 instead simply mention other only vaguely related issues. This approach in our view rather
- distracts than contributes to a constructive exchange. The existence of equity issues when
- 166 comparing different greenhouse gases in different metrics does not negate the
- 167 grandfathering or other distributive justice issues that arise as part of on-going emissions of
- short-lived climate forcers between countries. The latter can occur when a GWP*-like metric
 is applied to individual countries without considering the fairness and equity of their
- 170 historical levels of short-lived emissions. Unfortunately, CCmt chose not to engage with this

- 171 question of distributional justice that is central to RS19. Meanwhile, a group of the world's
- 172 biggest diary producers seems happy to consider the grandfathering GWP* perspective and
- 173 explicitly dismisses other fairness perspectives that would increase their companies'
- 174 responsibility for reducing methane emissions (Cady, 2020).
- 175 CCmt's overview section contains several statements that require clarification or correction.

176 GWP* metric version – CCmt writes that it appears that RS19 applied the equation provided 177 by Allen et al. in 2018 (Allen et al., 2018) and not the expanded version published by Lynch 178 et al. in 2020 (Lynch et al., 2020). We'd like to clarify that there should be no doubts on this 179 matter to the attentive reader. RS19 explicitly states that it is "following Allen et al. (2018)" 180 and it reproduces the equation that is used. Furthermore, RS19 was published in the year 181 preceding the publication of Lynch et al. (2020), which provides a compelling reason for why 182 the equation from Lynch et al. (2020) was not yet applied. Missing from the observations by 183 CCmt, however, is an acknowledgment that RS19's ethical critique of GWP* remains valid, 184 also if more recent expressions to estimate CO₂-equivalent emissions with GWP* (Cain et al., 185 2019a; Lynch et al., 2020) would be applied. In a constructive and valuable contribution to 186 the debate, CCmt does, however, highlight that RS19's critique is also more widely 187 applicable beyond GWP*, to metrics with similar characteristics such as the Combined

- 188 Global Temperature Potential (Collins et al., 2020).
- 189 Greenhouse gas metrics in UNFCCC – CCmt correctly notes that the GWP-100 metric has 190 been agreed as the default greenhouse gas metric for the reporting of aggregated national 191 emissions and removals, and this is hence the only metric for which internally consistent 192 information will be made available across all countries under the United Nations Framework 193 Convention on Climate Change's (UNFCCC) Paris Agreement (UNFCCC, 2018). Countries can 194 also choose to apply other metrics to aggregate emissions, as part of supplemental 195 information or in the context of their national targets. Hence the important warning in RS19 196 that applying default GWP* metrics to national emission targets by countries with
- 197 historically high methane emissions would lead to grandfathering and unfairness issues.
- 198 CCmt incorrectly claims that because *"calculating the current rate of CO₂-warming-*
- 199 equivalent (CO₂-we) emissions using GWP* (E*) involves differencing two rates of GWP100-
- 200 based CO₂-e emissions" it is hence "entirely compatible with the UNFCCC decision to report
- 201 *emissions using GWP100"*. This is a misrepresentation of the UNFCCC decision in question
- 202 (UNFCCC, 2018). In this 2018 decision, the UNFCCC decided that *"each Party shall report*
- 203 estimates of emissions and removals for all categories, gases and carbon pools considered in
- 204 the [greenhouse gas] inventory [...] on a gas-by-gas basis in units of mass at the most
- *disaggregated level"* (UNFCCC, 2018). All gases are thus reported separately without using a
- 206 greenhouse gas metric. However, when considering all greenhouse gas emissions together it
- specifies that "each Party shall use the [GWP-100] values from the IPCC Fifth Assessment
 Report, or 100-year time-horizon GWP values from a subsequent IPCC assessment report [...]
- to report aggregate emissions and removals of GHGs, expressed in CO₂ eq["] (UNFCCC, 2018).
- 210 In the context of UNFCCC decisions, it has been established for over a decade that
- aggregating greenhouse gas emissions with GWP-100 means that each individual gas is
- 212 multiplied by its respective GWP-100 value and all contributions subsequently summated. To
- argue as CCmt and other papers by the same authors (Lynch et al., 2020) do that a very
- 214 different metric would be *"entirely compatible"* with the Paris Agreement because it is based

- 215 on a manipulation of GWP-100 values can therefore not be taken seriously in light of the
- 216 long-established legal context of the UNFCCC and the interpretation of international treaties
- 217 (Gardiner, 2015).
- 218 We agree with CCmt that the ambiguity in the temperature outcome of emissions levels and
- 219 targets can be avoided by treating each greenhouse gas separately. Fortunately, historical
- and current greenhouse gas emissions are reported by countries for each greenhouse gas
- individually for the past two decades already. As indicated above, this separate treatment is
- also the established standard for greenhouse gas reporting under the Paris Agreement.
- 223 Scientifically, this represents the best and most transparent approach, which is also being
- discussed as part of the transparency guidelines for how projections of greenhouse gas
- emission and removals should be communicated for pledged Nationally Determined
- 226 Contributions (NDCs) by countries, for example, see UNFCCC (2020).
- 227 **CO₂ versus short-lived forcer mitigation** A second misrepresentation by CCmt is their
- suggestion that the equity perspectives for short-lived climate forcer mitigation across
- 229 countries presented in RS19 would imply a value judgement not "to implement active CO₂
- 230 *removal"*. As clarified above, RS19 does not deal with equity considerations in relation to
- 231 CO₂ and thus neither implies that CO₂ should not be reduced, nor that it should not be
- reduced beyond zero. Without any doubt, considerations of equity are important to inform
- fair levels of CO₂ removal between countries, and we have contributed to recent literature
- that pioneers fairness approaches in this context (Fyson et al., 2020).
- 235 RS19 highlights that perceived negative contributions under a grandfathering GWP* metric
- could be used by countries to offset or not implement further CO₂ emission reductions. This
- 237 understanding is shared by RS19 and CCmt, as members of the CCmt author team have
- earlier written that "[A] decline [of 24%] in methane emissions [by 2050] would actually
- 239 generate enough cooling to compensate for the warming generated by all the non-methane
- 240 greenhouse gases emitted by New Zealand as they approach net zero. [...] [The reductions in
- 241 New Zealand's agricultural methane emissions] would offset the warming impact of all the
- 242 other emissions. New Zealand could declare itself climate neutral almost immediately, well
- before 2050, and only because farmers were reducing their methane emissions. That's a free
- 244 *pass to all the other sectors, courtesy of New Zealand's farmers"* (Cain, 2019). There is thus a
- clear and acknowledged risk that negative GWP* contributions that result from reductions
 of short-lived climate forcer emissions are considered to compensate or as a *"free pass"* for
- 247 CO₂ emissions in other sectors a point for which RS19 highlights that it would favour
- 248 historic high emitters of methane (or other short-lived greenhouse gases) when the
- 249 grandfathering GWP* metric is applied.
- 250 The above quote also provides the precise context in which Cain (2019) earlier referred to 251 the cooling effect of methane reductions. RS19 indicated that such a statement would 252 amount to a misunderstanding or misrepresentation. To be sure, the physics of what occurs 253 in this case are undisputed but the RS19 critique comments on the ethical position of the 254 statement. When the effects of lowering methane emissions from a high baseline are 255 described exclusively as cooling, historically accrued annual methane emissions are 256 considered a *fait accompli* relative to which deviations are expressed irrespective of the 257 ethical consequences of that choice. Equally unethical is the use of the term climate neutrality in this context, which implies grandfathering and is fundamentally skewed 258

- towards benefitting historical high emitters of methane. Because methane warming is
- 260 largely the effect of on-going emissions, an equally valid, emissions-focussed perspective is
- 261 to describe this evolution merely as 'less warming' from on-going methane emissions.
- 262 Physically the same, but ethically different. The difference in views result from different
- 263 ethical choices about historical responsibility and time horizon. In context of RS19, which
- 264 discusses these ethical challenges, failure to communicate the existence and implications of
- this choice was considered an inaccurate representation of the full picture of ethical
- implications. We thus consider the initial critique by RS19 to remain valid both at the
- 267 national and the global level.
- 268 **Grandfathering of emissions versus warming** – A third misrepresentation by CCmt is what 269 they refer to as a "fundamentally flawed assumption" in making no clear distinction between 270 grandfathering of emissions and grandfathering of warming. CCmt only seems to argue in 271 terms of ethical principles that are linked to historical warming contributions and between 272 various greenhouse gases, disregarding the points raised in RS19. RS19 highlights equity 273 issues that are linked to distributive justice as part of on-going emissions of short-lived 274 climate forcers between countries. These equity issues are additional to historical warming 275 considerations from long-lived greenhouse gases. What is described as a fundamentally
- flawed assumption is thus based on a misrepresentation of RS19.
- 277 CCmt highlights that it is not evident to them if different ethical standards should be applied
- to methane and CO₂. Although not part of the discussion in RS19, considerations of the
- treatment of ongoing emissions from short lived non-CO₂ gases such as methane and long-
- 280 lived gases such as CO_2 exist. It is intuitive to understand that different equity implications
- can be identified for warming caused by multi-decade-old emissions of long-lived
 greenhouse gases (emitted by a cohort of the global population at a time when climate
- greenhouse gases (emitted by a cohort of the global population at a time when climatescience was less robustly established or widely understood and no clear low-carbon
- alternatives were available) compared to on-going warming of short-lived climate forcers of
- which the effects and impacts are currently well established and that could be reduced
- today with available technologies. No different ethical standards have hence to be applied
- for different ethical implications to emerge. Reflecting on distributive versus corrective
- approaches to climate justice can further contribute to this discussion of the treatment of
- various greenhouse gases, as has been done earlier for CO₂ (McKinnon, 2015).
- Fairness consequences of specific GWP* use CCmt state that the unintentional unfairness
 consequences from GWP* are not a characteristic of the metric in itself, but of the policy
 framework in which it is embedded. This is indeed correct. As RS19 describes: the equity and
 unfairness consequences that could result from using CWP* accur coordinately when CWP* is
- unfairness consequences that could result from using GWP* occur specifically when GWP* is
- applied to the country level without taking into account historical contributions of short lived climate forcers like methane. RS19 clarifies this point and states that *"Applied at the"*
- 295 lived climate forcers like methane. RS19 clarifies this point and states that "Applied at the 296 global level they provide clear scientific merit with a more direct link between the
- global level they provide clear scientific merit with a more direct link between the
 representation of CO₂-equivalent emissions and their warming impact. However, v
- 297 representation of CO_2 -equivalent emissions and their warming impact. However, when 208 applied at a patienal level they all suffer from the same implicit grandfathering bigs. [17]
- 298 applied at a national level they all suffer from the same implicit grandfathering bias, [...]".
- Without evidence or examples in support of CCmt's implicit claim that specific policy
 frameworks would exist in which the application of GWP* metrics at the country level would
- 301 not result in unintended fairness consequences, the original statement by RS19 remains a
- 302 valid and correct reflection of limitations of GWP* metrics. We agree with CCmt that many

alternative ways of using GWP*-like metrics exist which may offer a way to address this issue
 – a first, but very likely not last, example of such alternative ways is described in RS19.

305 CCmt write that "there is nothing inherently unfair or inconsistent in the use of a metric that 306 more accurately reflects impact on [global mean surface temperature] to inform decisions". 307 This is only partially true: it is the specific use of a metric that determines whether it will be 308 considered unfair or inconsistent within a policy context. Indeed, RS19 highlights that 309 applying GWP* to compare methane mitigation contributions between countries without 310 taking into account their historically grandfathered starting position is deeply unfair. CCmt in 311 addition writes that "the use of a metric that reflects the impact of all gases on [global mean 312 surface temperature] makes it easier to include methane in discussions of historical 313 responsibility, not the reverse". We agree, and RS19 provides a way of applying GWP* 314 concepts while dealing with these fairness aspects. This perspective can be further expanded 315 with the additional inclusion of fairness considerations that discuss contributions between 316 various greenhouse gases. Unfortunately, such an expanded, integrative perspective was not

317 provided by CCmt.

318 Sensitivity of GWP*-based metrics to parameter choices – Finally, CCmt write in their

319 comment that the choice of time interval ΔT used to determine rates of change for GWP*-

320 like emission metrics does not "strongly alter results". This statement holds only in the

highly idealized case considered by CCmt in which climate targets are expressed purely in

322 terms of cumulative warming-equivalent emissions and under the stylized assumption that

- annual emissions change smoothly over time. Reality contrasts strongly with these
- 324 simplifying assumptions.

325 As part of their NDCs (<u>https://www4.unfccc.int/sites/ndcstaging/</u>), countries are submitting

326 targets for *annual emissions* at *five-yearly intervals* instead of the cumulative emissions

327 targets assumed by CCmt. Furthermore, real-world methane emissions do not necessarily

328 change smoothly over time, as illustrated by data in historical national emission inventories

329 (Crippa, M. et al., 2019). These real-world emission features make estimated GWP*

emissions in a given year sensitive to the choice of time interval ΔT . Annual GWP* emission values in a given year are thus sensitive to time intervals that can potentially be arbitrary

- 332 picked to set and describe 'nationally determined' targets for a specific year and can hence
- vary strongly from country to country and NDC to NDC. The ad-hoc application of GWP*
- 334 metrics at the country level thus opens a potential door to undermining emission accounting
- integrity and comparability across countries and over time.

336 For the eGWP* metrics introduced in RS19, changes in the time interval ΔT further affect

337 the reference levels that are used to estimate per capita fair shares of global short-lived

338 methane emissions (defined in Equation 3 in RS19). These shares are not just informed by

individual countries' historic emissions, but also by emissions of other countries and

340 population dynamics (see the orange line in RS19 Fig. 2b to see China's 'per capita equitable

341 emissions' changing over time).

342 The 'zero reference' case in RS19 is indeed an extreme case that can be used to approximate

343 the warming resulting from historical methane emissions in the first timestep of an

- 344 emissions series analysis. The choice of time interval ΔT has the strongest influence here
- because the reference point is invariably zero. Whether ΔT is chosen to be 1 or 20 years,

- 346 $\Delta E(t)$ always equals E(t). If countries choose to continue with a different eGWP* metric and
- 347 different time interval ΔT thereafter, this would lead to inconsistencies. Robust guidance is
- 348 required but would be difficult to enforce as countries can pick and choose their preferred
- 349 'nationally determined' approach. In the past, countries have shown to be unhelpfully
- 350 creative in defining nationally determined targets for their land use, land-use change, and
- 351 forestry (LULUCF) sectors (Fyson and Jeffery, 2019).
- In RS19 Figure 3, and throughout the manuscript, a standard time interval of $\Delta T = 20$ years
- was applied to estimate emissions under varying metrics for the year 2015. The figure
- 354 correctly shows how CO₂-equivalent methane emissions in the year 2015 can vary
- 355 depending on the type of GWP*-based metric that is used, following equations cited in the
- 356 manuscript. This suggestion by CCmt that an error in the rate of change contribution in the
- 357 GWP* equation was made in RS19 is thus unsubstantiated and invalid.

358 **Policy context for greenhouse gas metrics**

- In this last section, we have a closer look at the international policy context in which greenhouse gas metrics are used, and which CCmt comments on in several instances.
- 361 CCmt writes that *"metrics were introduced to inform and evaluate policy options, not to dictate policy outcomes"*. This is only part of the story.
- 363 Although initially devised to inform and evaluate policy, decisions and established practice 364 mean that the use of GWP-100 has become part of the policy context and the interpretation 365 of UNFCCC policy decisions, including the Paris Agreement. The metric therefore does not 366 dictate the policy outcome, but the decisions of countries to apply a given metric does. For 367 example, under the Paris Agreement, countries have decided to use GWP-100 as the 368 standard metric to aggregate emissions and removals (UNFCCC, 2018). This has clear and 369 measurable implications for the policy outcome of the Paris Agreement's 'net-zero' goal that 370 is described in its Article 4 (Fuglestvedt et al., 2018; Rogelj et al., 2021): global warming will 371 peak and subsequently start to decline. When considering alternative metrics, also policy 372 targets that refer to emissions reductions have to be adequately converted for their original
- 373 meaning or ambition not to be changed.
- 374 CCmt further writes that statements by RS19 would suggest that *"the policy context is immutable, but it is not"*. This is only partially correct.
- 376 First, the past policy context is indeed immutable. In particular, the Vienna Convention on
- 377 the Law of Treaties states that "a treaty shall be interpreted in good faith and in accordance
- 378 with the ordinary meaning to be given to the terms of the treaty in their context" (Gardiner,
- 2015). The context in which the Paris Agreement was negotiated and adopted is situated in
- the past and does not change. The suggestion by CCmt that countries cannot have given
- 381 meaning to parts of the Paris Agreement based the standard GWP-100 metric is baseless,
- given that GWP-100 was the established approach to report aggregate emissions under the
 UNFCCC in 2015 and had already been used to this end for more than a decade in similar
- 384 contexts. The historical policy context in which the Paris Agreement was adopted is thus
- 385 undeniably one in which GWP-100 is the standard metric to assess aggregated emissions and
- 386 removals of greenhouse gas emissions.

- 387 Second, the current and future context of policy *can* change. However, UNFCCC policy in
- 388 itself only changes through new policy decisions adopted by all Parties to the Agreement,
- not by scientists redefining past decisions through new, alternative methods.

390 These important reservations are not appreciated by CCmt. CCmt discusses the use of novel 391 metrics in a climate policy context including under the Paris Agreement. CCmt claims that 392 "there is no inconsistency between warming-equivalent emissions and the Paris architecture, 393 and since all metrics are based on a linearization, to allow the responses to different 394 emissions to be added up, there is also no reason to restrict their application to global 395 emissions". However, this discussion misses out on the fact that the mitigation action 396 architecture of the Paris Agreement encompasses more than just a temperature goal. 397 Analysis elsewhere has shown that GWP* cannot be considered directly consistent with the 398 Paris Agreement (Schleussner et al., 2019). In fact, the latter study shows that a plain 399 application of GWP* to net zero greenhouse gas targets as a proxy for the Paris Agreement's 400 Article 4 could undermine the integrity of the mitigation architecture of the Agreement, with 401 extreme cases even failing to ensure that warming would be halted during this century.

402 Applying novel metrics to a pre-defined policy context is thus problematic if no appropriate 403 measures are taken to ensure internal consistency with the earlier use of metrics in that 404 context. Switching to GWP* without adjusting the targets that rely on the policy context in 405 which the Paris Agreement was adopted changes the agreement's ambition and is thus not 406 merely a technical or scientific clarification, but a masked change in policy ambition. This 407 outcome can be avoided, but only by diligently considering how the ambition and outcome 408 of the Paris Agreement goals are affected by this change.

409 Finally, using the GWP* metric to compare various greenhouse gases provides an improved 410 equivalence between cumulative CO₂-equivalent emissions and their global temperature rise 411 implications. However, the challenge for its robust application in the current climate policy 412 context lies in the fact that targets are not expressed in terms of cumulative CO₂-equivalent 413 emissions. They are expressed as single-year milestones instead. This is true both for NDCs 414 and long-term low-carbon strategies that include many net-zero targets. For such single-year 415 targets, GWP*-weighted CO₂-equivalent emissions provide a weak metric because small 416 single-year fluctuations in methane emissions have a very strong impact on the amount of 417 net WGP*-weighted emissions in a given year.

418

419 To conclude our reflections on policy context, we want to highlight how requirements of an 420 accounting metric differ between policy and physics. The climate policy context includes 421 distributional questions between countries and sectors, and over time; it also includes 422 market mechanisms. As we have outlined above, accounting based on GWP* is both time as 423 well as (historical) context dependent. This dependence renders its direct application in a 424 real-world policy context problematic. A crucial requirement for a functioning metric in 425 policy or market mechanisms would be that a tonne of emissions of a certain greenhouse 426 gas is accounted the same, independent from who emits it or when it is emitted. Being 427 based on the long-term warming effect of an isolated emission pulse, GWP-100 provides 428 this. To be sure, we acknowledge the limitations of the standard GWP-100 metric that are by 429 now well understood. However, this context might provide an explanation for its prevalence 430 in climate policy despite its shortcomings in representing the direct warming effect of short-

- 431 lived greenhouse gases. GWP* provides a physical-science improvement to the metric, but
- 432 its use for policy still requires important further work. As RS19 illustrates, it would be
- 433 overhasty to conclude that because something is deemed to be the better choice from a
- 434 physical science perspective, it is also automatically the better choice from an ethical or
- 435 policy perspective.

436 Conclusion

- 437 In conclusion, we welcome CCmt's thoughts on this issue but have only to a limited degree
- 438 been able to engage constructively because many statements misrepresent the original
- 439 position of RS19, or speak to other issues. Nevertheless, this exchange highlights the
- 440 difficulties to accurately communicate the wider implications of using GWP* because of
- different choices that are built into the metric and which are easily underappreciated or
- 442 misunderstood by users. This exchange furthermore also provides a good illustration of
- persistent interdisciplinary gaps in understanding as well as implicit and disciplinary biases
 that have to be addressed when translating insights from physics-oriented modelling
- 445 exercises to policy and society. We conclude that this topic would benefit strongly from
- 446 contributions by interdisciplinary, science-policy and climate ethics scholars.

447 References

- Allen, M.R., Shine, K.P., Fuglestvedt, J.S., Millar, R.J., Cain, M., Frame, D.J., Macey, A.H., 2018.
 A solution to the misrepresentations of CO2-equivalent emissions of short-lived
 climate pollutants under ambitious mitigation. npj Climate and Atmospheric Science
 1, 16. https://doi.org/10.1038/s41612-018-0026-8
- 452 Cady, R., 2020. A Literature Review of GWP*: A proposed method for estimating global
 453 warming potential (GWP*) of short-lived climate pollutants like methane. Global
 454 Dairy Platform, Rosemont, Illinois, USA.
- 455 Cain, M., 2019. New Zealand's farmers have a chance to be climate leaders. Climate Home456 News.
- Cain, M., Lynch, J., Allen, M.R., Fuglestvedt, J.S., Frame, D.J., Macey, A.H., 2019a. Improved
 calculation of warming-equivalent emissions for short-lived climate pollutants. npj
 Climate and Atmospheric Science 2, 29. https://doi.org/10.1038/s41612-019-0086-4
- Cain, M., Shine, K., Frame, D., Lynch, J., Macey, A., Pierrehumbert, R., Allen, M., 2019b.
 Comment on 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level.' https://doi.org/10.31223/osf.io/r7epb
- 463 Collins, W.J., Frame, D.J., Fuglestvedt, J.S., Shine, K.P., 2020. Stable climate metrics for
 464 emissions of short and long-lived species—combining steps and pulses. Environ. Res.
 465 Lett. 15, 024018. https://doi.org/10.1088/1748-9326/ab6039
- 466 Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E.,
 467 Monforti-Ferrario, F., Olivier, J.G.J., Vignati, E., 2019. Fossil CO2 and GHG emissions
 468 of all world countries 2019 Report, EUR 29849 EN (No. JRC117610). Publications
 469 Office of the European Union, Luxembourg.
- Dooley, K., Holz, C., Kartha, S., Klinsky, S., Roberts, J.T., Shue, H., Winkler, H., Athanasiou, T.,
 Caney, S., Cripps, E., Dubash, N.K., Hall, G., Harris, P.G., Lahn, B., Moellendorf, D.,
 Müller, B., Sagar, A., Singer, P., 2021. Ethical choices behind quantifications of fair
 contributions under the Paris Agreement. Nature Climate Change 11, 300–305.
 https://doi.org/10.1038/s41558-021-01015-8
- Fuglestvedt, J., Rogelj, J., Millar, R.J., Allen, M., Boucher, O., Cain, M., Forster, P.M., Kriegler,
 E., Shindell, D., 2018. Implications of possible interpretations of 'greenhouse gas
 balance' in the Paris Agreement. Philosophical Transactions of the Royal Society A:
 Mathematical, Physical and Engineering Sciences 376.
- 479 https://doi.org/10.1098/rsta.2016.0445
- 480 Fyson, C.L., Baur, S., Gidden, M., Schleussner, C.-F., 2020. Fair-share carbon dioxide removal
 481 increases major emitter responsibility. Nature Climate Change 10, 836–841.
 482 https://doi.org/10.1038/s41558-020-0857-2
- 483 Fyson, C.L., Jeffery, M.L., 2019. Ambiguity in the Land Use Component of Mitigation
 484 Contributions Toward the Paris Agreement Goals. Earth's Future 7, 873–891.
 485 https://doi.org/10.1029/2019EF001190
- 486 Gardiner, R., 2015. Treaty Interpretation (Oxford International Law Library), 2nd Edition. ed.
 487 Oxford University Press, Oxford, UK.
- Kartha, S., Athanasiou, T., Caney, S., Cripps, E., Dooley, K., Dubash, N.K., Fei, T., Harris, P.G.,
 Holz, C., Lahn, B., Moellendorf, D., Müller, B., Roberts, J.T., Sagar, A., Shue, H., Singer,
 P., Winkler, H., 2018. Cascading biases against poorer countries. Nature Climate
- 491 Change 8, 348–349. https://doi.org/10.1038/s41558-018-0152-7

- 492 Lynch, J., Cain, M., Pierrehumbert, R., Allen, M., 2020. Demonstrating GWP*: a means of 493 reporting warming-equivalent emissions that captures the contrasting impacts of 494 short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023. 495 https://doi.org/10.1088/1748-9326/ab6d7e McKinnon, C., 2015. Climate justice in a carbon budget. Climatic Change 133, 375–384. 496 497 https://doi.org/10.1007/s10584-015-1382-6 498 Rao, N., 2011. Equity in climate change: The range of metrics and views, in: Dubash, N.K. 499 (Ed.), Handbook of Climate Change and India: Development, Politics and Governance. 500 Oxford University Press, New Delhi India, pp. 147–156. 501 Robiou du Pont, Y., Jeffery, M.L., Gütschow, J., Rogelj, J., Christoff, P., Meinshausen, M., 502 2016. Equitable mitigation to achieve the Paris Agreement goals. Nature Climate 503 Change 7, 38. https://doi.org/10.1038/nclimate3186 Rogelj, J., Geden, O., Cowie, A., Reisinger, A., 2021. Net-zero emissions targets are vague: 504 505 three ways to fix. Nature 591, 365–368. https://doi.org/10.1038/d41586-021-00662-506 3 507 Rogelj, J., Schleussner, C.-F., 2021. Reply to Comment on: 'Unintentional unfairness when 508 applying new greenhouse gas emissions metrics at country level' [WWW Document]. 509 Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10505891.1 510 Rogelj, J., Schleussner, C.-F., 2019. Unintentional unfairness when applying new greenhouse 511 gas emissions metrics at country level. Environmental Research Letters 14, 114039. 512 https://doi.org/10.1088/1748-9326/ab4928 513 Schleussner, C.-F., Nauels, A., Schaeffer, M., Hare, W., Rogelj, J., 2019. Inconsistencies when 514 applying novel metrics for emissions accounting to the Paris agreement. 515 Environmental Research Letters 14, 124055. https://doi.org/10.1088/1748-516 9326/ab56e7 517 UNFCCC, 2020. Progress of the work on CTFs for the electronic reporting of the information 518 necessary to track progress made in implementing and achieving NDCs. 519 UNFCCC, 2018. FCCC/PA/CMA/2018/3/Add.2 Modalities, procedures and guidelines for the 520 transparency framework for action and support referred to in Article 13 of the Paris 521 Agreement. United Nations Framework Convention on Climate Change. UNFCCC, 2015. FCCC/CP/2015/L.9/Rev.1: Adoption of the Paris Agreement. UNFCCC. 522 523 Vanderheiden, S., 2008. Atmospheric Justice: A Political Theory of Climate Change. Oxford 524 University Press, Oxford, UK. 525 https://doi.org/10.1093/acprof:oso/9780195334609.001.0001
- 526

ⁱ The first version of the comment, published online as a pre-print (Cain et al., 2019b) misrepresented RS19 and statements throughout the comment included contradictions. A reply to this first version of the comment is documented in the associated pre-print archive (Rogelj and Schleussner, 2021), and was shared bilaterally. This reply responds to the revised version of CCmt.