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Abstract

Triple collocation is an established technique for retrieving linear calibration coefficients and observation error variances of a

physical quantity observed simultaneously by three different observation systems. The formalism is extended to an arbitrary

number of systems, and representativeness errors and associated cross-covariances are included in a natural way. It is applied

to quadruple collocations of ocean surface vector winds from two scatterometers (ASCAT-A, ASCAT-B, or ScatSat), buoy

measurements, and NWP model forecasts. There are fifteen possible sets of quadruple collocation equations, twelve of which

are solvable for the essential variables (calibration coefficients, observation error variances, and common variance) as well as

two additional error covariances, each set leading to a different solution. A remarkable property of the quadruple collocation

equations is proven: when the two additional error covariances from a particular solution are used to correct the corresponding

observed covariances, all sets yield the same solution. Therefore the quadruple collocation equations by themselves give no

information on the representativeness errors involved; these have to be estimated using other methods. The spreading in the

solutions is a measure of the accuracy of the underlying error model. Variation of the scale at which the spatial variances are

evaluated yields an optimal scale of 100 to 200 km. For the datasets used in this study the error in the scatterometer error

variances is 0.03 to 0.05 ms-1, more than expected on statistical grounds. A more precise determination requires an error model

better describing the data.
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Key Points: 

 Triple and quadruple collocation analyses show consistent results to a high degree. 

 Scatterometer error estimates from triple collocation are well within 0.05 m/s. 

 Using prior information on error variances, quadruple collocation analyses can provide 

limited information on representativeness error. 
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Abstract 1 

Triple collocation is an established technique for retrieving linear calibration coefficients and 2 

observation error variances of a physical quantity observed simultaneously by three different 3 

observation systems. The formalism is extended to an arbitrary number of systems, and 4 

representativeness errors and associated cross-covariances are included in a natural way. It is 5 

applied to quadruple collocations of ocean surface vector winds from two scatterometers 6 

(ASCAT-A, ASCAT-B, or ScatSat), buoy measurements, and NWP model forecasts. There are 7 

fifteen possible sets of quadruple collocation equations, twelve of which are solvable for the 8 

essential variables (calibration coefficients, observation error variances, and common variance) 9 

as well as two additional error covariances, each set leading to a different solution. A remarkable 10 

property of the quadruple collocation equations is proven: when the two additional error 11 

covariances from a particular solution are used to correct the corresponding observed 12 

covariances, all sets yield the same solution. Therefore the quadruple collocation equations by 13 

themselves give no information on the representativeness errors involved; these have to be 14 

estimated using other methods. The spreading in the solutions is a measure of the accuracy of the 15 

underlying error model. Variation of the scale at which the spatial variances are evaluated yields 16 

an optimal scale of 100 to 200 km. For the datasets used in this study the error in the 17 

scatterometer error variances is 0.03 to 0.05 ms
-1

, more than expected on statistical grounds. A 18 

more precise determination requires an error model better describing the data. 19 

Plain Language Summary 20 

When a quantity like wind speed over the ocean is measured at (almost) the same time and place 21 

by three different measuring systems, it is possible to calculate the calibration of two systems 22 

with respect to the third as well as the measurement errors in each of the three systems. This is 23 

not possible if the measurements are made by only two systems. In case of quadruple 24 

collocations there are four measurement systems, and besides the calibrations and the 25 

measurement errors also two additional error correlations can be obtained. The advent of new 26 

satellite systems makes it possible to perform quadruple collocation analyses of the wind speed 27 

at the ocean surface. Triple and quadruple collocation analyses give no clue on how to improve 28 

the error model; such improvements must be found using other techniques. However, they do 29 

show the weaknesses of the error model. In particular, they show that the scatterometer error 30 

estimates are less precise than previously thought, but it should be remembered that this is “the 31 

error in the error”: the scatterometer errors in the wind components are around 0.5 m/s, and the 32 

accuracy of this estimate is 0.05 m/s - an order of magnitude smaller, so quite useful. 33 

1 Introduction 34 

The triple collocation method, introduced by Stoffelen (1998), is a well-established 35 

method for calculating the relative linear calibration coefficients and absolute error variances of 36 

a data set consisting of triplets of in space and time collocated measurements. The method that 37 

simultaneously evaluates three geophysical measurement systems has, for example, been applied 38 

to ocean vector winds measured by scatterometers (Stoffelen, 1998; Vogelzang et al., 2011; 39 

McColl et al., 2014), to ocean surface wind speed from scatterometer and altimeter (Abdalla and 40 

De Chiara, 2017), and soil moisture from scatterometer (Gruber et al., 2016). The method can be 41 

readily extended to quadruple and higher-order collocations. This has been done for ocean wave 42 

height by Janssen et al., (2007) and for ocean surface currents by Danielson et al. (2018). 43 
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The multi-collocation problem is cast in an elegant form by the covariance equations. The 44 

diagonal terms yield the error variances, while the other essential unknowns (the calibration 45 

scalings and the variance common to all systems) are obtained by setting the necessary number 46 

of off-diagonal error covariances to zero. For triple collocation there are six equations with six 47 

unknowns and all off-diagonal error covariances must be neglected. For quadruple collocation 48 

there are ten equations with eight unknowns, so two off-diagonal error covariances can be solved 49 

in addition. There are fifteen possible pairs of off-diagonal error covariances, and therefore 50 

fifteen possible ways to solve the covariance equations, of which twelve have a solution. 51 

As stated above, the triple collocation equations are solved assuming that the error 52 

covariances are zero. In most cases this is not the case, because error covariances originate not 53 

only from correlated measurement errors, but also from differences in resolution between the 54 

various observing systems involved. The latter error covariances are known as representativeness 55 

errors, and they can easily be included in the multi-collocation formalism by correcting the 56 

observed covariances for them. The first estimate of representativeness errors was given by 57 

Stoffelen (1998) in the spectral domain assuming a 𝑘−5/3 spectrum. This was refined by 58 

Vogelzang et al. (2011) using spectra calculated from scatterometer data. A direct approach in 59 

the spatial domain was developed by Vogelzang et al. (2015). Finally Lin et al. (2015) used a 60 

method based on the triple collocation analysis itself, in order to obtain representativeness errors 61 

for extreme conditions where spectral and spatial methods are inapplicable. In many studies 62 

representativeness errors are simply neglected or circumvented by averaging all systems to a 63 

common scale (Abdalla and De Chiara, 2017). The latter approach yields the error characteristics 64 

of the products at some average resolution, rather than at the original resolutions. 65 

The Indian Space Research Organisation (ISRO) launched the ScatSat satellite carrying a 66 

Ku-band pencil-beam scatterometer on September 26, 2016. ScatSat was launched in the same 67 

orbital plane as ASCAT-A and ASCAT-B, so quadruple collocations of ScatSat and ASCAT 68 

winds combined with observations from moored buoys and ECMWF model forecasts are 69 

available. 70 

The twelve soluble quadruple collocation equations (further referred to as models) all 71 

have different values for the essential unknowns and for the two additional off-diagonal error 72 

covariances. One can interpret the additional error covariances as extra information or as a 73 

measure of how well the error model satisfies the underlying assumptions (sufficiency of linear 74 

calibrations and independence of the measurement error from the magnitude of the wind 75 

component). The latter view is to be preferred. When representativeness errors are neglected, all 76 

models yield additional error covariances of the order of 0.1 m
2
s

-2
, though their signs may differ. 77 

They can’t be used to estimate the representativeness errors, as this would require the values of 78 

three additional off-diagonal covariances. Increasing the representativeness errors diminishes the 79 

additional covariances and brings the essential unknowns closer together until an optimum value 80 

is found. This optimal value of the representativeness errors agrees with those from earlier 81 

studies. 82 

The additional error covariances from a particular model can be made to vanish by first 83 

determining them and then solve the covariance equations again with the additional error 84 

covariances subtracted from the corresponding observed covariances. A remarkable phenomenon 85 

is proven: if the observed covariances are corrected in this way, all models yield the same 86 

solution and all additional error covariances vanish. In that case the covariance equations are 87 

called mathematically consistent. Numerical experiments show that mathematical consistency 88 
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can also be achieved with a linear combination of additional off-diagonal error covariances from 89 

different models. This implies that there is an infinite number of ways to make the covariance 90 

equations mathematically consistent. Only one of them is physically consistent, i.e., the 91 

covariances are corrected in such a way that the covariance equations yield the right solution. 92 

The quadruple collocation method itself gives no clue on what choice should be made, so this 93 

information must come from external sources. 94 

It is possible to reformulate the quadruple collocation error model in order to directly 95 

incorporate two unknown representativeness errors. The resulting solution is numerically highly 96 

unstable and can be used for huge collocation data sets only. 97 

In section 2 the multi-collocation formalism is shortly presented. The covariance 98 

equations are derived and representativeness errors are included in the formalism. The solution 99 

method is presented. Mathematical and physical consistency are introduced and discussed. In 100 

section 3 the quadruple collocation data sets are presented. Section 4 contains the results for a 101 

simulated dataset. Section 5 contains the results of the real quadruple collocation data sets. The 102 

paper ends with conclusions in section 6. Some technical details are presented in Appendices A, 103 

B, and C. 104 

2 Multi collocation formalism 105 

2.1 Covariance equations 106 

Suppose we have a set of 𝐾 collocated measurements made by 𝑛 observation systems, 107 

{𝑥𝑖
(𝑘)

}, with 𝑘 the collocation index, 𝑘 = 1, … , 𝐾, and 𝑖 the observation system index, 𝑖 =108 

1, … , 𝑛. Assuming that linear calibration is sufficient for intercalibration and omitting the 109 

collocation index 𝑘, we can pose the following simplified observation error model: 110 

𝑥𝑖 = 𝑎𝑖(𝑡 + 𝜀𝑖) + 𝑏𝑖 (1) 111 

where 𝑡 is the signal common to all observation systems (also referred to as the truth), 𝑎𝑖 the 112 

calibration scaling, 𝑏𝑖 the calibration bias, and 𝜀𝑖 a random measurement error with zero average 113 

and variance 𝜎𝑖
2. It is also assumed that 𝜀𝑖 is uncorrelated with the common signal 𝑡, 〈𝑡𝜀𝑖〉 = 0, 114 

where the brackets 〈  〉 stand for averaging over all measurements 𝑘 made by system 𝑖, for 115 

instance 116 

〈𝑡𝜀𝑖〉 =
1

𝐾
∑ 𝑡(𝑘)𝜀𝑖

(𝑘)𝐾
𝑘=1  (2) 117 

Of course, the assumptions made should be checked first by inspecting scatter plots. Note that 𝑥𝑖 118 

is uncalibrated and 𝑡 is calibrated, so (1) actually constitutes an inverse calibration 119 

transformation. 120 

Without loss of generality we can select the first observation system as calibration 121 

reference, so 𝑎1 = 1 and 𝑏1 = 0. Forming first moments 𝑀𝑖 = 〈𝑥𝑖〉 one readily finds that 122 

𝑀𝑖 = 𝑎𝑖〈𝑡〉 + 𝑏𝑖. For 𝑖 = 1 this yields 〈𝑡〉 = 𝑀1 and the calibration biases for all 𝑖 are given by 123 

𝑏𝑖 = 𝑀𝑖 − 𝑎𝑖𝑀1 (3) 124 

The second moments 𝑀𝑖𝑗 = 〈𝑥𝑖𝑥𝑗〉 satisfy 125 

𝑀𝑖𝑗 = 𝑎𝑖𝑎𝑗(〈𝑡2〉 − 𝑀1
2 + 〈𝜀𝑖𝜀𝑗〉) + 𝑀𝑖𝑀𝑗  (4) 126 
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where (3) was used to get rid of the biases. Forming covariances 𝐶𝑖𝑗 = 𝑀𝑖𝑗 − 𝑀𝑖𝑀𝑗, introducing 127 

the common variance 𝑇 = 〈𝑡2〉 − 𝑀1
2, and writing 𝑒𝑖𝑗 = 〈𝜀𝑖𝜀𝑗〉 this reduces to the covariance 128 

equations 129 

𝐶𝑖𝑗 = 𝑎𝑖𝑎𝑗(𝑇 + 𝑒𝑖𝑗) (5) 130 

Note that 𝐶𝑖𝑗 and 𝑒𝑖𝑗 are symmetric in their indices. 131 

Equations (3) and (5) completely define the multi collocation problem for error model 132 

(1). The covariances 𝐶𝑖𝑗 are calculated from the observed, uncalibrated data. Since 𝑎𝑖 is the 133 

scaling of the inverse calibration transformation as remarked above, 𝑇 and 𝑒𝑖𝑗 are in terms of the 134 

calibrated data. The calibrated covariances are given by 𝑎𝑖
−1𝑎𝑗

−1𝐶𝑖𝑗, and the error variances by 135 

𝜎𝑖
2 = 𝑒𝑖𝑖 = 𝑎𝑖

−2𝐶𝑖𝑖 − 𝑇. 136 

2.2 Essential and additional unknowns 137 

Equation (5) is symmetric in 𝑖 and 𝑗, so for 𝑛 collocated measurements there are 𝑛(𝑛 +138 

1)/2 equations. These have to be solved for 2𝑛 essential unknowns: 𝑛 error variances 𝜎𝑖
2 = 𝑒𝑖𝑖, 139 

(𝑛 − 1) calibration scalings 𝑎𝑖 , 𝑖 = 2, … , 𝑛, and the common variance 𝑇. The error variances 140 

must be obtained from the diagonal covariance equations of (5), leaving 𝑛(𝑛 − 1)/2 off-141 

diagonal equations to solve for the 𝑛 remaining essential unknowns 𝑎𝑖 and 𝑇. 142 

For double collocation, 𝑛 = 2, there are more unknowns than equations, and further 143 

assumptions must be made to obtain a solution. If the reference system is assumed to be free of 144 

errors, 𝜎1
2 = 0, the covariance equations can be solved as 145 

𝑇 = 𝐶11,   𝑎2 =
𝐶12

𝐶11
,   𝜎2

2 =
𝐶22

𝑎2
2 − 𝐶11 (6) 146 

which is the well-known linear regression result. Note that alternatively one may for example 147 

assume equal errors, 𝜎1
2 = 𝜎2

2 = 𝜎2, such that 𝑎2 = √𝐶22 𝐶11⁄ , representing a symmetric linear 148 

regression. In this case the value of 𝜎2 and hence that of 𝑇 can be approximated by estimating 149 

the covariance of 𝑥1 − 𝑥2 following (1). It is clear that the results of a linear regression depend 150 

on the assumptions in the two underlying observation error models. Also in triple and quadruple 151 

collocation the results will depend on the appropriateness of the underlying error model, though 152 

more advanced error models may be tested. 153 

In the case of triple collocation, 𝑛 = 3, there are three off-diagonal equations and three 154 

remaining essential unknowns 𝑎2, 𝑎3, and 𝑇. By setting 𝑒𝑖,𝑗 = 0 for 𝑖 ≠ 𝑗 the covariance 155 

equations are readily solved in terms of the uncalibrated covariances as 156 

𝑇 =
𝐶12𝐶13

𝐶23
,   𝑎2 =

𝐶23

𝐶13
,   𝑎3 =

𝐶23

𝐶12
 (7) 157 

Note that (7) implies that 𝑇 = 𝑎2
−1𝐶12 = 𝑎3

−1𝐶13 = 𝑎2
−1𝑎3

−1𝐶23, so the calibrated off-diagonal 158 

covariances are all equal to the common variance, as can be expected from (5). 159 

For quadruple collocation, 𝑛 = 4, there are six off-diagonal equations and four remaining 160 

essential unknowns. Four error covariances 𝑒𝑖𝑗 must be set to zero to solve the covariance 161 

equations for 𝑎𝑖 and 𝑇; the remaining two can easily be solved to obtain two additional error 162 

covariances 𝑒𝑖𝑗 as 163 
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𝑒𝑖𝑗 =
𝐶𝑖𝑗

𝑎𝑖𝑎𝑗
− 𝑇 (8) 164 

Alternatively, one could pose assumptions on the partial correlation between errors of different 165 

systems, e.g., due to equal spatial representation error between 2 or 3 systems (e.g., all 166 

scatterometers); see next section. Solution closure is also possible by assuming known or equal 167 

parameters of 𝑎𝑖 or 𝜎𝑖
2 for several systems. Obviously, in all cases the number of unknowns in 168 

the equations should not exceed six. 169 

As 𝑛 increases, the number of additional variables that can be solved grows. For 170 

quintuple collocation, 𝑛 = 5, there are ten off-diagonal equations with five remaining essential 171 

unknowns and five additional ones. 172 

For collocation data sets with 𝑛 > 3 there is freedom in which off-diagonal equations to 173 

choose for solving 𝑎𝑖 and 𝑇. For quadruple collocation there are (
6
4

) = 15 possible 174 

combinations. Each particular combination of off-diagonal covariance equations will further be 175 

referred to as a model, and all quadruple model solutions are listed in Appendix A. It appears 176 

that three models have no solution: those for which the unused off-diagonal terms 𝐶𝑖𝑗 and 𝐶𝑘𝑙 177 

have indices {𝑖, 𝑗, 𝑘, 𝑙} that are a permutation of {1,2,3,4}. For quintuple collocation the number 178 

of models is (
10
5

) = 252. 179 

2.3 Representativeness errors 180 

As stated above, the covariance equations are solved assuming that a sufficient number of 181 

error covariances are zero, so it is important to know which off-diagonal error covariances 𝑒𝑖𝑗 182 

can be safely neglected. This is not an easy problem since nonzero off-diagonal error covariances 183 

can be caused not only by correlated measurement errors but also by differences in resolution 184 

between the various observation systems. The latter error covariances are known as 185 

representativeness errors, which may be of spatial, temporal, or geophysical origin. For triple 186 

collocation this happens when systems 1 and 2 (say buoys and scatterometer) have better 187 

resolution than system 3 (say Numerical Weather Prediction (NWP) model background). In such 188 

a case systems 1 and 2 share a common signal that is not resolved by system 3, and this shared 189 

signal expresses itself as an error covariance between systems 1 and 2 – hence the name 190 

representativeness error (Stoffelen, 1998; Vogelzang et al., 2011). 191 

Suppose that in a triple collocation analysis the representativeness error is known as 𝑟2
2 192 

(the meaning of the subscript will be made clear below). Denoting �̅�𝑖𝑗 as the covariances 193 

corrected for the representativeness error and 𝐶𝑖𝑗 the uncorrected ones, the correction reads 194 

�̅�𝑖𝑗 = {
𝐶𝑖𝑗 − 𝑟2

2, 𝑖, 𝑗 = 1,2

𝐶𝑖𝑗 , 𝑖 = 3 ⋁  𝑗 = 3
 (9) 195 

This relation is obtained when assuming that a common signal 𝜌2 with zero average and variance 196 

𝑟2
2 is part of the errors in systems 1 and 2 in (1), but not of system 3. In such a case, the solution 197 

of the off-diagonal covariance equations from (7) reads 198 

�̅� = 𝑇 −
𝐶13

𝐶23
𝑟2

2,   �̅�2 = 𝑎2,   �̅�3 =
𝐶23

𝐶12−𝑟2
2 (10) 199 
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where the bar denotes correction for the representativeness error. Consequently, the error 200 

variances follow from (8) as 201 

�̅�1
2 = 𝜎1

2 + 𝑟2
2 (

𝐶13

𝐶23
− 1) (11a) 202 

�̅�2
2 = 𝜎2

2 + 𝑟2
2 𝐶13

𝐶23
(1 −

𝐶13

𝐶23
) (11b) 203 

�̅�3
2 = 𝜎3

2 + 𝑟2
2 (

𝐶13

𝐶23
− 2

𝐶12𝐶33

𝐶23
2 ) + 𝑟2

4 𝐶33

𝐶23
2  (11c) 204 

In the practical cases considered in this work the off-diagonal uncalibrated covariances 205 

differ little among themselves and are larger than the representativeness error by at least an order 206 

of magnitude. Therefore correction of the representativeness error only reduces the error 207 

variance of system 3 and increases its calibration scaling. Note that Lin et al. (2015) find the 208 

representativeness error from (10) by demanding that �̅�3 has a reasonable, pre-defined value. 209 

If the variance of the signal in system 1 that is not measured by the other systems is 210 

known as 𝑟1
2, equation (9) can be extended for 𝐶11 as �̅�11 = 𝐶11 − 𝑟1

2 − 𝑟2
2, leaving the other 211 

covariances unaltered. This only decreases �̅�1
2 by 𝑟1

2; the other essential variables remain the 212 

same. Assuming that the systems are ordered in decreasing resolution, this suggest a general 213 

form with representativeness errors 𝑟𝑘
2, 𝑘 = 1, 𝑛 − 1 that give the signal contained in system 𝑘 214 

but not measured by system 𝑘 + 1. A representativeness error 𝑟𝑘
2 is taken into account by 215 

subtracting it from all 𝐶𝑖𝑗 with 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘, and (9) becomes 216 

�̅�𝑖𝑗 = 𝐶𝑖𝑗 − ∑ 𝑟𝑘
2𝑛−1

𝑘=𝑚𝑎𝑥 (𝑖,𝑗)  (12) 217 

Note that this leaves the structure of the covariance equations (5) unaltered. 218 

2.4 Mathematical and physical consistency 219 

If in a quadruple collocation analysis a substitution 𝐶𝑖𝑗 → 𝐶𝑖𝑗 − 𝐸𝑖𝑗, with 𝐸𝑖𝑗 an external 220 

correction to the observed covariance, leads to a solution with error covariances 𝑒𝑖𝑗 ≡ 0 (𝑖 ≠ 𝑗) 221 

for all solvable models, the correction 𝐸𝑖𝑗 is said to make the covariance equations 222 

mathematically consistent. If, in addition, the corrections 𝐸𝑖𝑗 are equal to the true error 223 

correlations and/or representativeness errors, the covariance equations are also physically 224 

consistent. It is shown below for quadruple collocations that physical consistency is a much 225 

stronger requirement than mathematical consistency. 226 

Suppose one runs the quadruple collocation analysis without any correction for 227 

representativeness or error correlations. For a specific model 𝑀 between 1 and 12 this yields an 228 

error covariance matrix 𝑒𝑖𝑗
(𝑀)

 with two nonzero additional error covariances, see (8). Redoing the 229 

analysis for model 𝑀 with transformed covariances 𝐶𝑖𝑗 → 𝐶𝑖𝑗 − 𝐸𝑖𝑗, where 230 

𝐸𝑖𝑗 = 𝑎𝑖
(𝑀)

𝑒𝑖𝑗
(𝑀)

𝑎𝑗
(𝑀)

 (13) 231 

will yield the same solution for the essential unknowns as before, but the additional error 232 

covariances 𝑒𝑖𝑗 will now all become zero, because they were incorporated in the covariances. 233 

Now the following remarkable property holds: if one solves any other model with transformation 234 

(13), the solution becomes the same as that for model 𝑀. Therefore it no longer matters which 235 

model is used to solve the covariance equations in such a case: all models yield the same 236 
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solution. The authors conjecture that this is a mathematical property of the covariance equations 237 

that also holds for higher order collocations. 238 

In Appendix B this is shown explicitly for quadruple collocation models model 12 and 1. 239 

All other cases were checked in the same way using FORM, a program for algebraic 240 

manipulation (Vermaseren et al., 2018). Moreover, numerical experiments showed that the 241 

transformation (13) can be generalized to 242 

𝐸𝑖𝑗 = ∑ 𝑤𝑀𝑀 𝑎𝑖
(𝑀)

𝑒𝑖𝑗
(𝑀)

𝑎𝑗
(𝑀)

 (14) 243 

where the summation is over an arbitrary number of models 𝑀. The weights 𝑤𝑀 may take any 244 

value, also negative ones, but their sum should be between zero and two to ensure convergence 245 

of the calculation, with optimal convergence when the sum of the weights equals one. 246 

This implies that there is an infinite number of ways to make the covariance equations 247 

mathematically consistent. Therefore mathematical consistency does not ensure physical 248 

consistency. 249 

It is possible to retrieve representativeness errors 𝑟2
3 and 𝑟3

2 in a quadruple collocation 250 

analysis by adjusting the error model (1). The details are given in Appendix C. Unfortunately, 251 

the solution is numerically highly unstable. 252 

2.5 Method of solution 253 

The covariance equations are solved iteratively, thus enabling detection and removal of 254 

outliers. The iteration starts with assuming that the systems are perfectly calibrated, so 𝑎𝑖 = 1 255 

and 𝑏𝑖 = 0 for all 𝑖. The first and second moments are calculated with the input data, covariances 256 

are formed, and equations (3) and (5) are solved analytically for calibration coefficients �̃�𝑖 and 257 

�̃�𝑖. These are used to update 𝑎𝑖 → 𝑎𝑖�̃�𝑖 and 𝑏𝑖 → 𝑏𝑖 + �̃�𝑖. In each iteration also 𝑠𝑡𝑑(𝑑𝑖𝑗), the 258 

standard deviation of the difference between each pair of measurements is calculated. When 259 

during calculation of the moments it is found that 𝑑𝑖𝑗 for a particular measurement exceeds four 260 

times 𝑠𝑡𝑑(𝑑𝑖𝑗) from the previous iteration, that collocation is excluded – also known as four-261 

sigma test. The iteration has converged when both |1 − �̃�𝑖| < 𝜖 and |�̃�𝑖| < 𝜖, with 𝜖 the required 262 

precision. Then the common variance 𝑇 can be calculated, as well as all other unknowns.  263 

In this study the calculations are done in double precision. Starting with 𝑠𝑡𝑑(𝑑𝑖𝑗) = 3, 264 

which is sufficiently large, the iteration converges within 10 iterations to a precision 𝜖 = 10−9. 265 

3 Data 266 

3.1 Collocation data 267 

In order to distinguish easily between the quadruple collocation data sets and the triple 268 

collocation subsets that can be formed from them, “b” will stand for the buoys, “A” for ASCAT-269 

A, “B” for ASCAT-B, “S” for Scatsat, and “E” for the ECMWF forecast. 270 

In this paper three quadruple collocation data sets are studied: 271 

1. buoys – ASCAT-A – ASCAT-B – ECMWF (bABE) 272 

2. buoys – ASCAT-A – ScatSat – ECMWF (bASE) 273 
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3. buoys – ASCAT-B – ScatSat – ECMWF (bBSE) 274 

3.1.1 Buoy data 275 

The buoy measurements are obtained from ECMWFs Meteorological Archival and 276 

Retrieval System (MARS) at www.ecmwf.int/services/archive. Only data from buoys not 277 

blacklisted by ECMWF are used. Buoys are blacklisted by ECMWF when they show large 278 

differences with the model fields over prolonged periods (Bidlot et al., 2002). Most of the 279 

accepted buoy data is from the buoy arrays in the Tropics and from buoys off the coasts of the 280 

U.S.A. and Europe. The buoy measurements are point measurements averaged over 10 minutes 281 

time issued once per hour. At a typical wind speed of 7 m/s this corresponds to a scale of 4.2 km, 282 

making the buoys the measurement system with highest spatial resolution. Effects of air mass 283 

density and stability that affect the dispersion of the 10-m wind for given sea surface roughness 284 

are taken out by using the so-called stress-equivalent wind (de Kloe et al., 2017). 285 

3.1.2 ASCAT data 286 

ASCAT is a C-band scatterometer that measures the Normalized Radar Cross Section 287 

(NRCS, denoted as 𝜎0, with six fan beam antennas at VV polarization (Figa-Saldaña et al., 288 

2002). Two antennas look forward to either side of the satellite track, two antennas look 289 

sideward, and two antennas look backward. ASCAT is mounted on the MetOp series of satellites 290 

operated by EUMETSAT. ASCAT-A was launched 19 October 2006 and ASCAT-B on 17 291 

September 2012, both in a polar orbit with an altitude of 817 km and in the same orbital plane. 292 

The 𝜎0 values over the open ocean are processed with the ASCAT Wind Data Processor 293 

(AWDP) to ocean surface vector winds (Verhoef et al., 2020). First, a Geophysical Model 294 

Function (GMF) giving radar cross section as a function of wind speed and direction, 295 

observation geometry, and radar frequency and polarization (Stoffelen et al., 2017) is inverted 296 

numerically. This procedure generally yields two to four solutions. After quality control, a 297 

preferred solution is selected in the ambiguity removal step. AWDP uses Two-Dimensional 298 

Variational Ambiguity Removal (2DVAR), see (Vogelzang et al., 2007) for more details. 299 

In this study ASCAT-25 data on a 25 km grid are used. These data have a true spatial 300 

resolution of about 50 km. 301 

3.1.3 ScatSat data 302 

ScatSat is an Indian satellite launched on 26 September 2016 by the Indian Space 303 

Research Organization (ISRO) in a polar orbit at a height of 720 km in the same orbital plane as 304 

ASCAT-A and ASCAT-B. It carries a Ku-band scatterometer measuring 𝜎0, the radar cross 305 

section of the Earth’s surface with a rotating pencil-beam antenna operating at HH and VV 306 

polarization [Bhowmick et al., 2019]. 307 

In this study 25-km sampled ScatSat data from 6 October 2016 to 22 July 2017 were 308 

used, because these were generated using version 1.1.3 of the ISRO L1B processor. The L1B 𝜎0 309 

values were processed with the Pencil beam Wind Data Processor (PenWP) (Verhoef et al., 310 

2018a). The inversion step in PenWP is similar to that in AWDP, but ambiguity removal is 311 

different. Wind data from rotating pencil beam scatterometers are noisy in the nadir part of the 312 

swath because of the unfavourable observation geometry. This noise can be reduced by the so-313 

called Multi Solution Scheme (MSS) that takes the full wind pdf into account rather than only up 314 



manuscript submitted to Journal of Geophysical Research - Oceans 

 

to four local minima in the inversion residual. The empirical ECMWF background error 315 

covariances used in 2DVAR spatially filter the noisy local wind inversion pdfs and hence 316 

somewhat degrade spatial resolution (Vogelzang and Stoffelen, 2018). 317 

ScatSat product verification for the 25-km winds by triple collocation shows that on the 318 

scatterometer scale the wind vector error of ScatSat, ECMWF and buoys is resp. 0.98 m/s, 1.58 319 

m/s and 1.96 m/s (Verhoef et al., 2018b). Recent verification shows wind vector errors of 320 

ASCAT-B, ECMWF and buoys of resp. 0.69 m/s, 1.74 m/s and 1.83 m/s (Verspeek et al., 2019). 321 

Although different weather samples were used in these two triple collocations, it illustrates that 322 

1) ASCAT winds are more accurate than ScatSat winds, 2) ECMWF wind vector errors are much 323 

larger than scatterometer wind vector errors, 3) ScatSat 25-km winds have somewhat lower 324 

spatial resolution than ASCAT 25-km winds. The latter assertion refers to the larger buoy error 325 

variance on the ScatSat scatterometer scale as compared to the buoy error variance on the 326 

ASCAT scatterometer scale. Since buoy wind measurements are very accurate, most of the buoy 327 

error variance in triple collocation is due to true wind variance within the scatterometer spatial 328 

resolution cell. This is further corroborated by verifications of scatterometer winds at varying 329 

spatial resolutions (Verhoef et al., 2018b; Verspeek et al., 2019). 330 

3.1.4 ECMWF data 331 

NWP forecasts from the Integrated Forecast System (IFS) of ECMWF are contained in 332 

the ASCAT and ScatSat wind products, since they are used as background for the ambiguity 333 

removal in AWDP and PenWP. The ECMWF forecasts are interpolated quadratic in time and 334 

bilinear in space to the time and position of the scatterometer measurement. The forecast lead is 335 

three hours at least to prevent that any collocated wind may have been assimilated by the IFS. 336 

Over the ocean ECMWF stress-equivalent winds are relatively smooth and prone to certain 337 

systematic errors (Vogelzang et al., 2011, Belmonte and Stoffelen, 2019; Trindade et al., 2020). 338 

3.1.5 Data preparation 339 

First three triple collocation files of buoys, scatterometer, and ECMWF forecast were 340 

made with a maximum distance between the buoy and the center of the scatterometer wind 341 

vector cell of 17.7 km and a maximum time difference of 30 minutes. Next, each pair of triple 342 

collocation files was merged into a quadruple collocation file, by searching for the same buoy 343 

(using the buoy identification number) at the same date and time plus or minus one hour. If the 344 

buoy measurement times differed by one hour, then the one closest in time to the two 345 

scatterometer measurements was selected. The maximum time difference between scatterometer 346 

measurements in the quadruple collocation files was set to one hour. The ECMWF wind forecast 347 

associated with ASCAT-A or ASCAT-B (in order of preference) was added to the quadruple 348 

collocation file. The number of collocations is 4034 for bASE, 3976 for bBSE, and 10083 for 349 

bABE. 350 

3.2 Scatterometer resolution and representativeness errors 351 

As argued in the previous subsection, ScatSat has a poorer resolution than ASCAT 352 

because of the use of 2DVAR in combination with MSS in ScatSat processing. As an example, 353 

figure 1 shows a wind front observed simultaneously by ASCAT and ScatSat on October 24, 354 

2016 around 17:00. Winds flagged by the AWDP and PenWP quality control are depicted in 355 
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grey. The ScatSat wind field is smooth, in particular in the nadir part of the swath and broadens 356 

the frontal zone, while the front is very sharp in ASCAT. 357 

Figure 2 shows the difference in spatial variance of scatterometer and ECMWF, ∆𝑉(𝑠) =358 

𝑉𝑠𝑐𝑎𝑡(𝑠) − 𝑉𝐸𝐶𝑀𝑊𝐹(𝑠), as a function of separation distance 𝑠 for ASCAT-A, ASCAT-B, and 359 

ScatSat. In the terminology of equation (12), the ScatSat representativeness error with respect to 360 

the ECMWF model in bASE or bBSE collocations, 𝑟3
2, is defined as 𝑟3

2 = 𝑉𝑆𝑐𝑎𝑡𝑆𝑎𝑡(𝑠) −361 

𝑉𝐸𝐶𝑀𝑊𝐹(𝑠), the height of the dotted curve. The representativeness error 𝑟2
2 of ASCAT-A or 362 

ASCAT-B relative to ScatSat equals the vertical distance between the dotted curve on one hand 363 

and the solid or dashed curve on the other. This is rather small for the zonal wind component 𝑢. 364 

The ASCAT 365 

representativeness 366 

error with respect 367 

to the ECMWF 368 

background equals 369 

𝑟2
2 + 𝑟3

2. 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

Figure 1. Wind field observed simultaneously by ASCAT (upper panel) and ScatSat (lower 388 

panel) on October 24, 2016 around 17:00. 389 

 390 
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 391 

Figure 2. Difference between the spatial variance of ASCAT-A, ASCAT-B, and ScatSat and that 392 

of ECMWF, ∆𝑉(𝑠), as a function of 𝑠 for the zonal and meridional wind components, 𝑢 and 𝑣. 393 

The scale 𝑠 at which the representativeness errors are evaluated is defined in (Vogelzang 394 

et al., 2015) as 𝑠 equal to 200 km, the estimated real spatial resolution of the ECMWF model 395 

over the open ocean. Since the representativeness errors will be used with quadruple collocations 396 

including buoys, the spatial variances were calculated for the Northern Hemisphere and the 397 

Tropics only (latitude > -30°) because the data sets contain no buoys in the Southern 398 

Hemisphere. 399 

3.3 Simulated data 400 

The simulated data are constructed from the ASCAT-A measurements in the bABE 401 

collocation data set. In principle, any wind data set could be chosen, but this choice has the 402 

advantage that statistical errors caused by the limited number of observations are equal for real 403 

and simulated data. 404 

The 𝑢 and 𝑣 components of these data are considered as the true signal to which linear 405 

calibrations with known coefficients may be applied and to which Gaussian errors with known 406 

spread may be added. There are two ways of introducing representativeness errors: by explicitly 407 

adding the same Gaussian error of known amplitude to two or more systems, or by running with 408 

a certain stride through the data and taking averages. The second method comes closer to what 409 

happens in reality, but has the disadvantage that the averaging procedure introduces a calibration 410 

shift which complicates interpretation of the results. Moreover, the averaging requires a large 411 

data set. Therefore the first method is chosen. 412 

4 Simulations 413 

Solving the quadruple collocations using simulated data with known characteristics yields 414 

insight in the behavior of the solutions. In this section the effect of representativeness errors that 415 

are not explicitly accounted for is studied. From (12) the full error model reads 416 

𝑥1 = 𝑎1(𝑡 + 𝜀1) + 𝑏1 + 𝜌2 + 𝜌3 (15a) 417 

𝑥2 = 𝑎2(𝑡 + 𝜀2) + 𝑏2 + 𝜌2 + 𝜌3 (15b) 418 
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𝑥3 = 𝑎3(𝑡 + 𝜀3) + 𝑏3 + 𝜌3 (15c) 419 

𝑥3 = 𝑎4(𝑡 + 𝜀4) + 𝑏4 (15d) 420 

with 𝑎1 = 1, 𝑏1 = 0, and 𝜌2 and 𝜌3 are Gaussian random signals with zero average and variances 421 

𝑟2
2 and 𝑟3

2, respectively. This model will be solved neglecting representativeness errors, despite 422 

the fact that they are included in the collocation data. The simulated data in this section have 423 

error variances 𝜎1
2 = 0.6 m

2
s

-2
, 𝜎2

2 = 0.8 m
2
s

-2
, 𝜎3

2 = 1.0 m
2
s

-2
, and 𝜎4

2 = 1.2 m
2
s

-2
. The 424 

calibration scalings are 𝑎2 = 0.99, 𝑎3 = 0.98, and 𝑎4 = 0.95. The error correlations can be 425 

included by adding 𝜌2 and 𝜌3 to the collocation data or, easier, to add the resulting error 426 

covariances 𝑒𝑖𝑗 at the appropriate place in the covariance equations (5). 427 

The first simulation addresses the case of only a representativeness error 𝑟2
2, 428 

corresponding to a situation in which systems 1 and 2 have high resolution while systems 3 and 4 429 

have poor resolution, so 𝑟3
2 = 0. This is accomplished by setting 𝑒12 = 𝑟2

2, and the 430 

representativeness error only affects covariance 𝐶12. Figure 3 shows the resulting error variances 431 

as a function of 𝑟2
2 for each of the twelve solvable models listed in Appendix A. 432 

 433 
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 434 

Figure 3. Error variances as a function of representativeness error 𝑟2
2 for the twelve quadruple 435 

collocation models. 436 
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 437 

Figure 4. Additional error covariances as a function of representativeness error 𝑟2
2 for the twelve 438 

quadruple collocation models. 439 
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As can be seen from the figure and understood from the equations in appendix A, only 440 

models 8, 9, 11, and 12 give the correct constant error variances for all systems, as these models 441 

have 𝑒12 as additional estimated covariance, so the value of 𝐶12 and hence 𝑟2
2 does not affect the 442 

solution. If 𝑟2
2 were corrected for, 𝜎1

2 and 𝜎2
2 would both be diminished by 𝑟2

2. All other models 443 

give incorrect estimates for the error variances, because these assume that 𝑒12 = 0. There is a 444 

clear similarity between the solutions of the various models. This is because systems 1, 2, and 3 445 

form a triple collocation subset in models 1 - 3. Therefore only system 4 has a different solution 446 

in these models. In the same way, systems 1, 2, and 4 form a triple collocation subset in models 4 447 

- 6, systems 1, 3, and 4 a triple collocation subset in models 7 - 9, and systems 2, 3, and 4 a 448 

subset in models 10 - 12. Being the only model for which all 𝑎𝑖 and 𝑇 depend on 𝐶12, model 10 449 

is an exception: here all four error variances deviate from their correct value, though the 450 

deviation is small for systems 2, 3, and 4. Figure 3 makes clear that incorrect assumptions on 451 

system covariances or error models invalidate quadruple collocation results, while correct 452 

assumptions lead to the desired result. 453 

Figure 4 shows the additional error covariances 𝑒𝑖𝑗 resulting from each of the models. As 454 

can be seen from the figure and understood from the equations in appendix A, only models 8, 9, 455 

11, and 12 give the correct results as these have 𝑒12 as additional covariance. Hence, quadruple 456 

collocation is able to estimate the representativeness error common to systems 1 and 2, but only 457 

when the other off-diagonal error covariances are zero. All other models give incorrect estimates 458 

for the additional error covariances, because of the assumption that 𝑒12 = 0. Note that the 459 

additional error covariances 𝑒𝑖𝑗 take only a limited number of values among the models. 460 

In the second simulation 𝑟3
2 is set to 0.3 m

2
s

-2
, while 𝑟2

2 is varied from 0 to 0.3 m
2
s

-2
. This 461 

is achieved by setting 𝑒12 = 𝑟2
2 + 𝑟3

2 and 𝑒13 = 𝑒23 = 𝑟3
2. When 𝑟2

2 equals zero, systems 1, 2, 462 

and 3 all have the same representativeness error 𝑟3
2 relative to system 4, as one would expect for 463 

bABE collocations. When 𝑟2
2 = 0.3 m

2
s

-2
 system 3 has a finer resolution than system 4, and 464 

systems 1 and 2 have finer resolution than system 3. This corresponds to bASE and bBSE 465 

collocations of the meridional wind 𝑣 as can be inferred from Figure 2. 466 

Figure 5 shows the resulting error variances. For 𝑟2
2 = 0, when systems 1, 2, and 3 have 467 

the same representativeness error, all models give the same solution. Models 8,9, 11, and 12 468 

again yield constant error variances, though that of systems 1 and 3 is lower by about 0.3 m
2
s

-2
 469 

and that of systems 2 and 4 higher by about 0.35 m
2
s

-2
. The curves in figure 5 resemble those in 470 

figure 3, except for shifts in the ordinates. 471 

Figure 6 shows the free error covariances for the second simulation. Figure 6 very much 472 

resembles figure 4, except for a small shift in ordinates. At 𝑟2
2 = 0 all models yield zero free 473 

error covariances. This indicates statistical consistency, and all models will give the same 474 

solution as shown in Figure 5. Note that models 8, 9, 11, and 12 give a value of 𝑒12 that is 475 

remarkably close to the value of 𝑟2
2. This suggests that the value of the free error covariance 𝑒12 476 

may be a good approximation of the value of 𝑟2
2, provided that the error model sufficiently 477 

describes the data. 478 

 479 

 480 

 481 
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 482 

Figure 5. Error variances as a function of representativeness error 𝑟2
2 with constant 𝑟3

2 = 0.3 483 

m
2
s

-2
 for the twelve quadruple collocation models. 484 
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 485 

Figure 6. Additional error covariances as a function of representativeness error 𝑟2
2 with constant 486 

𝑟3
2 = 0.3 m

2
s

-2
 for the twelve quadruple collocation models. 487 
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5 Results and discussion 488 

5.1 Observation error covariances 489 

The simulations in the previous section showed that representativeness error variances 490 

are important for understanding the results of quadruple collocation analyses. The free error 491 

covariance 𝑒12 might be used to infer the value of 𝑟2
2 (this will be addressed further in section 492 

5.3), but the value of 𝑟3
2 is not determined. Therefore estimates based on differences in spatial 493 

variances as presented in section 3.2 and figure 2 are used. To further illustrate the importance of 494 

representativeness, results will be shown as a function of the scale 𝑠 (in km) at which the 495 

differences are evaluated. 496 

As mentioned before, the buoys (system 1) have the finest resolution, followed by 497 

ASCAT-B (system 2 in bBSE and system 2 in bABE) and ASCAT-A (system 2 in bASE and 498 

system 3 in bABE). Note that ScatSat (system 3) has a coarser resolution than ASCAT, in 499 

particular for the meridional wind component 𝑣, while the ECMWF background field (system 4) 500 

has the coarsest resolution. Thus 𝑟2
2(𝑠) = 𝑉2(𝑠) − 𝑉3(𝑠) and 𝑟3

2(𝑠) = 𝑉3(𝑠) − 𝑉4(𝑠), 𝑉𝑖(𝑠) being 501 

the spatial variance of system 𝑖 at scale 𝑠. 502 

Figure 7 shows the bASE error variances for each of the four systems and each of the 12 503 

solvable models as a function of scale 𝑠. The systems are, from top panels to bottom panels, 504 

buoys, ASCAT-A, ScatSat, and ECMWF. Left hand panels give results for the zonal wind 505 

component 𝑢, right hand panels for the meridional wind component 𝑣. Note that some variances 506 

are the same for different models, because the solution of the covariance equations is the same, 507 

see table A.1 in Appendix A. This is because the systems involved form a triple collocation 508 

subset: bAS in models 1 - 3, bAE in models 4 – 6, bSE in models 7 – 9, and ASE in models 10 – 509 

12. A similar situation occurred in the simulations of section 4. 510 

Figure 7 shows that at 𝑠 = 0 (no correction for representativeness errors) the error 511 

variances from the various models differ considerably, a clear indication that representativeness 512 

is important. With increasing scale the results come closer together, in particular for 𝑣. The 513 

smallest variation is for scales around 200 km for 𝑢 and 100 km for 𝑣. This is consistent with 514 

earlier findings [Vogelzang et al., 2015] when taking into account that the true spatial resolution 515 

of the ECMWF model over the open ocean improves over time because of model development. 516 

Nevertheless, the spreading among the models is considerable, notably for 𝑢, indicating that the 517 

representativeness errors used do not lead to mathematical consistency. 518 

Figure 8 is similar to figure 7, but now for bBSE collocations. The minimum spreading in 519 

error variances for 𝑣 occurs even below 100 km, so for lower representativeness errors than for 520 

bASE. The spreading in 𝑣 is smaller than for bASE, but for 𝑢 it is larger. 521 

Figure 9 shows the error variances for bABE collocations. Here the value of the 522 

representativeness errors have little effect on the error variances of buoys and scatterometers, and 523 

only affect those of the ECMWF background. Moreover, the results of all models are close 524 

together. This is because the representativeness errors of ASCAT-A and ASCAT-B are almost 525 

the same, so the covariance equations are close to mathematical consistency, in agreement with 526 

the simulations (figure 6). Note that the spreading in the error variances is slightly larger for 527 

ASCAT-A than for ASCAT-B, while the error variances themselves are slightly larger for 528 

ASCAT-B than for ASCAT-A. 529 
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 530 

Figure 7. Error variances for bASE quadruple collocation analyses as a function of scale. 531 

 532 
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 533 

Figure 8. As figure 7, but for bBSE. 534 

 535 
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 536 

Figure 9. As figure 7, but for bABE. 537 

 538 
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From figure 3 one expects about the same reprentativness errors in 𝑢 for ASCAT-A, 539 

ASCAT-B, and ScatSat. The results for 𝜎𝑢
2 in figures 7 – 9 indeed resemble each other. 540 

However, at a scale of 500 km the representativeness errors for ASCAT-A and ScatSat become 541 

equal, while this is not visible in figure 7 as a convergence in the results. The fact that the 542 

representativeness errors are calculated from spatial variances over all of the Tropics and the 543 

Northern Hemisphere and may therefore not be representative for the specific locations of the 544 

buoys can only partly explain this, because the bABE collocations give consistent results. It is 545 

most likely caused by deficiencies in the error model. 546 

5.2 Common variance 547 

Figure 10 shows the common variance as a function of scale. The results resemble those 548 

for the error variances: for bASE and bABE the spreading in 𝑇𝑣 has a minimum, for 𝑠 around 549 

100 km, while the minimum is weak or absent in 𝑇𝑢. For bABE the values of 𝑇𝑢 and 𝑇𝑣 are close 550 

together and slightly diverge for large scales. Note that the common variances for bABE (bottom 551 

panels of figure 10) are substantially lower than those for bASE and bBSE (top and middle 552 

panels). This is due to sampling effects: 45 % of the bASE and bBSE collocations are outside the 553 

Tropics, and only 26% of the bABE collocations. The bABE collocations are therefore 554 

dominated by the Tropics where high winds are much less frequent than in the Extratropics. 555 

For all three quadruple collocation data sets the values of the additional error covariances 556 

found for the various models appear as differences in the common variances and propagate into 557 

differences between error covariances. Moreover, the additional error covariances are very 558 

similar among the models, as shown in the simulations, figures 4 and 6. This explains the 559 

similarity in the results for error variances, common variance, and additional error covariances. 560 

5.3 Estimation of representativeness errors 561 

Table 1 gives the values of the free error covariance 𝑒12 from models 8, 9, 11, and 12 in 562 

case no correction for representativeness error is made. Models 8 and 12 give almost the same 563 

result, as indicated in the table, and the same applies to models 9 and 11, though for a different 564 

value. The last row in table 1 gives the representativeness error derived from spatial variance 565 

differences, at 200 km for 𝑢 and at 200 km for 𝑣. 566 

 567 

quantity 

(m2s-2) 

bASE bBSE bABE 

𝒖 𝒗 𝒖 𝒗 𝒖 𝒗 

𝑒12 (8 & 12) 0.122 0.205 0.160 0.126 0.055 0.059 

𝑒12 (9 & 11) 0.072 0.125 0.089 0.080 0.012 0.031 

𝑟2
2 0.045 0.127 0.074 0.136 0.028 0.009 

Table 1. Representativeness error estimates 568 

 569 

 570 

 571 

 572 

 573 
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 574 

Figure 10. Spreading in the common variance as function of scale for the three quadruple 575 

collocation datasets. 576 

 577 

 578 
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Table 1 shows that 𝑒12 is of the same order of magnitude as 𝑟2
2, with accidental good 579 

agreement either with models 9 and 11 (meridional wind component of bASE) or models 8 and 580 

12 (meridional wind component of bBSE). The simulation results do not appear in the real data, 581 

so apparently the error model used is not fully appropriate. 582 

One may speculate on what causes the difference between the different quadruple 583 

collocation models. For bASE and bBSE retrieval problems in ScatSat may play a role, while for 584 

bABE it may be caused by the relatively large time difference of 50 minutes between the 585 

ASCAT-A and ASCAT-B overpasses. It has been shown that the meteorological situation can 586 

change significantly in this period, even on the ASCAT resolution scale (King et al., 2017). 587 

Other possible causes are insufficiency of linear calibration w.r.t. buoys for one or more 588 

observation systems, error covariances between some of the systems, or observation errors that 589 

are not independent of the common signal. 590 

5.4 Triple collocation 591 

In order to further investigate the differences between the various quadruple collocation 592 

runs, attention is focused on the triple collocation subsets. From each quadrupole collocation 593 

data set one can form four triple collocation subsets. Tables 2, 3, and 4 show the error standard 594 

deviations (in ms
-1

) for all triple collocation subsets of the bASE, bBSE, and bABE data sets, 595 

respectively, with representativeness errors at a scale of 200 km for 𝑢 and 100 km for 𝑣. The first 596 

column characterizes the triple collocation subset for later reference. The second last row of each 597 

table, labeled “range” gives the range of values (maximum minus minimum) in each column, 598 

while the last row labeled “2𝜎”, gives twice the precision estimate assuming that the errors are 599 

Gaussian (Vogelzang et al., 2011). 600 

 601 

Subset 
 Buoy ASCAT-A ScatSat ECMWF 

 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 

bAS  1.03 1.12 0.41 0.49 0.78 0.65 -- -- 

bAE  1.06 1.15 0.34 0.41 -- -- 0.94 1.03 

bSE  1.09 1.21 -- -- 0.72 0.59 0.92 1.03 

ASE  -- -- 0.43 0.49 0.76 0.65 0.90 0.98 

range  0.06 0.09 0.09 0.08 0.06 0.06 0.04 0.05 

2𝜎  0.04 0.04 0.02 0.02 0.03 0.02 0.04 0.04 

Table 2. Triple collocation error standard deviations (in ms
-1

) for the bASE collocations. 602 

 603 

Subset 
Buoy ASCAT-B ScatSat ECMWF 

𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 

bBS 1.04 1.14 0.44 0.56 0.78 0.61 -- -- 

bBE 1.07 1.16 0.35 0.51 -- -- 0.92 0.99 

bSE 1.11 1.19 -- -- 0.72 0.62 0.91 1.02 

BSE -- -- 0.46 0.50 0.78 0.66 0.89 0.99 

range 0.07 0.05 0.11 0.06 0.06 0.05 0.03 0.03 

2𝜎 0.04 0.05 0.02 0.02 0.03 0.02 0.04 0.04 

Table 3. Triple collocation error standard deviations (in ms
-1

) for the bBSE collocations. 604 

 605 
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 606 

Subset 
Buoy ASCAT-A ASCAT-B ECMWF 

𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 𝝈𝒖 𝝈𝒗 

bAB 0.90 1.06 0.40 0.47 0.47 0.53 -- -- 

bAE 0.93 1.09 0.31 0.39 -- -- 0.91 1.08 

bBE 0.93 1.08 -- -- 0.38 0.49 0.90 1.09 

ABE -- -- 0.41 0.44 0.45 0.54 0.86 1.04 

range 0.03 0.03 0.09 0.08 0.09 0.05 0.05 0.05 

2𝜎 0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.02 

Table 4. Triple collocation error standard deviations (in ms
-1

) for the bABE collocations. 607 

 608 

The spread in values is quite similar for the bASE, bBSE, and bABE collocations, as 609 

expressed by the range in tables 2, 3, and 4, indicating that the scatterometer error variances are 610 

reliable within 0.05 m
2
s

-2
, and that the error variances of buoys and ECMWF background are 611 

even more precise. The range in values for the meridional wind component 𝑣 is slightly smaller 612 

than that for the zonal wind component 𝑢, in particular for the scatterometers. The 2𝜎 accuracy 613 

estimate agrees quite well with the range for the buoys and the ECMWF background, but is 614 

substantially smaller for the scatterometers. 615 

Clearly, the interpretation of the error model and true variance are not identical in the 616 

different comparisons between the different systems. Again, one may speculate on what causes 617 

the modest differences between the different triple collocation models and may point to ScatSat 618 

retrieval problems (Ebuchi, 1999; Bhowmick et al., 2019) Other possible causes are the time 619 

difference of 50 minutes between the ASCAT-A and ASCAT-B overpasses, insufficiency of 620 

linear calibration w.r.t. buoys for one or more observation systems, mis-specified error 621 

covariances between some of the systems, or observation errors that are not independent of the 622 

common signal or not constant in expectation, such as ocean currents. Triple and quadruple 623 

collocation analyses provide little clue on how the error model can be improved, but help show 624 

the uncertainties involved . 625 

5.5 Direct calculation of the representativeness errors 626 

It is possible to extend the collocation model (1) in such a way that the two 627 

representativeness errors 𝑟2
2 and 𝑟3

2 appear as additional unknowns. The technical details are 628 

given in Appendix C. However, the solution is numerically highly unstable because it involves 629 

the quotient of two differences between quantities of almost equal magnitude. It gives no 630 

sensible results for the bABE, bASE, and bBSE collocations. 631 

It is also shown in Appendix C that the solvability of the quadruple collocation model 632 

including representativeness depends critically on the precise formulation of the collocation 633 

model. It is therefore advisable to check the stability of solutions of any quadruple or higher 634 

collocation model, also when numerical solution methods are applied. 635 

A way out for estimating representativeness errors may seem to construct a quintuple 636 

collocation data set with as fifth system the ECMWF forecast from one analysis earlier. This is 637 

named an instrumental variable (Su et al., 2014; Danielson et al., 2018). Now the covariance 638 

equations can be solved for five essential and five additional variables. One must also solve for 639 

the additional error covariances 𝑒12, 𝑒13, and 𝑒23 to find the representativeness errors, and for the 640 
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NWP model error correlation 𝑒45. Then there are five possible sets of equations, each with one 641 

extra additional error correlation. Unfortunately no set has a solution. 642 

6 Conclusions 643 

The covariance equations give an elegant and concise formulation of the multi-644 

collocation problem. Representativeness errors can be easily included. The formalism is applied 645 

to simulated data and to three quadruple collocation data sets, bASE, bBSE, and bASE, 646 

involving buoys (b), ASCAT-A (A), ASCAT-B (B), ScatSat (S), and ECMWF forecasts (E). For 647 

quadruple collocation there are fifteen ways to solve the covariance equations, referred to as 648 

models, only twelve of which have a solution. Besides the linear calibration coefficients and the 649 

error variances, a quadruple collocation analysis also yields two additional error covariances. 650 

The covariance equations are named mathematically consistent if the observed 651 

covariances are corrected in such a way that the resulting additional error covariances vanish for 652 

all models. If the corrections to the covariances also equal the true error covariances and 653 

representativeness errors, the covariance equations are named physically consistent. Physical 654 

consistency is a much stronger requirement than mathematical consistency. From a linear 655 

combination of additional error covariances an infinite number of error covariance corrections 656 

can be constructed that make the quadruple covariance equations mathematically consistent. 657 

Therefore mathematical consistency gives no clue to the correct values of the error covariances. 658 

Simulations suggest that the representativeness error 𝑟2
2 equals the additional error 659 

covariance 𝑒12 for models 8, 9, 11, and 12. The additional error covariances take a limited 660 

number of values for the various models. The simulations indicate that the covariance equations 661 

also become mathematically consistent if two systems have the same representativeness error. 662 

For the real data representativeness errors were obtained from differences in spatial 663 

variance. The scale at which these differences were evaluated was varied. For bASE and bBSE 664 

collocations, the smallest spread in observation error variances was obtained at scales around 200 665 

km for the zonal wind component 𝑢 and around 100 km for the meridional wind component 𝑣, in 666 

good agreement with earlier studies and the expected true spatial resolution of the ECMWF 667 

model over the open ocean. Comparison of the free error covariance 𝑒12 from models 8, 9, 10, 668 

and 12 with the optimum value of 𝑟2
2 only showed agreement in order of magnitude. For bABE 669 

collocations the value of the representativeness error only affects the ECMWF results, in 670 

agreement with the simulations, because the ASCAT-A and ASCAT-B representativeness errors 671 

are almost the same. A similar remark holds for the zonal wind component in the bASE and 672 

bBSE collocations, where the difference between the scatterometer representativeness errors is 673 

also small. 674 

For the buoys and the ECMWF background the spread in the error standard deviations 675 

agrees quite well with estimates assuming Gaussian error distributions, but for all scatterometers 676 

it is substantially larger. Apparently, the scatterometer errors are less accurate than previously 677 

thought, but their accuracy is well within 0.05 ms
-1

. 678 

The spread in the results is due to imperfections in the error model that may have various 679 

causes. For bASE and bBSE it may be caused by retrieval problems in the ScatSat winds, while 680 

for bABE the large time difference of 50 minutes between the scatterometer overpasses may play 681 

a role. Other possible causes are nonlinearities in one or more calibrations w.r.t. buoys and 682 

dependencies of one or more observation errors on the common signal However, the involved 683 
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remaining uncertainties in the interpretation of true variance, collocation errors, 684 

representativeness errors, and other observation errors are rather modest. Triple and quadruple 685 

collocation analyses provide little clue on how the error model can be improved, but help show 686 

the uncertainties involved . 687 

The quadruple collocation error model can be modified in order to directly incorporate 688 

representativeness errors. However, the resulting solution is numerically unstable and of no 689 

practical use. More generally speaking, solutions of higher-order collocation analyses should be 690 

carefully checked for their numerical stability. 691 

Appendix A Quadruple collocation solutions 692 

For quadruple collocation there are six off-diagonal equations to solve for four essential 693 

unknowns (three calibration scalings and one common variance). From the six off-diagonal 694 

equations one can form fifteen combinations of four equations. Table A.1 shows the solutions as 695 

well as the additional error covariances and the ones that are set to zero to solve the covariance 696 

equations. 697 

From the table it is easily inferred that all models will give the same solution when all 𝐶𝑖𝑗 698 

are equal for 𝑖 ≠ 𝑗. In that case all 𝑎𝑖 equal one, so all systems are perfectly intercalibrated, and 699 

the error model completely describes the data. 700 

 701 

Model Used (set to zero) Additional 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝑻 

1 𝑒12 𝑒13 𝑒14 𝑒23 𝑒24 𝑒34 
𝐶23

𝐶13
 

𝐶23

𝐶12
 

𝐶14𝐶23

𝐶12𝐶13
 

𝐶12𝐶13

𝐶23
 

2 𝑒12 𝑒13 𝑒23 𝑒24 𝑒14 𝑒34 
𝐶23

𝐶13
 

𝐶23

𝐶12
 

𝐶24

𝐶12
 

𝐶12𝐶13

𝐶23
 

3 𝑒12 𝑒13 𝑒23 𝑒34 𝑒14 𝑒24 
𝐶23

𝐶13
 

𝐶23

𝐶12
 

𝐶34

𝐶13
 

𝐶12𝐶13

𝐶23
 

4 𝑒12 𝑒13 𝑒14 𝑒24 𝑒23 𝑒34 
𝐶24

𝐶14
 

𝐶13𝐶24

𝐶12𝐶14
 

𝐶24

𝐶12
 

𝐶12𝐶14

𝐶24
 

5 𝑒12 𝑒14 𝑒23 𝑒24 𝑒13 𝑒34 
𝐶24

𝐶14
 

𝐶23

𝐶12
 

𝐶24

𝐶12
 

𝐶12𝐶14

𝐶24
 

6 𝑒12 𝑒14 𝑒24 𝑒34 𝑒13 𝑒23 
𝐶24

𝐶14
 

𝐶34

𝐶14
 

𝐶24

𝐶12
 

𝐶12𝐶14

𝐶24
 

7 𝑒12 𝑒13 𝑒14 𝑒34 𝑒23 𝑒24 
𝐶12𝐶34

𝐶13𝐶14
 

𝐶34

𝐶14
 

𝐶34

𝐶13
 

𝐶13𝐶14

𝐶34
 

8 𝑒13 𝑒14 𝑒23 𝑒34 𝑒12 𝑒24 
𝐶23

𝐶13
 

𝐶34

𝐶14
 

𝐶34

𝐶13
 

𝐶13𝐶14

𝐶34
 

9 𝑒13 𝑒14 𝑒24 𝑒34 𝑒12 𝑒23 
𝐶24

𝐶14
 

𝐶34

𝐶14
 

𝐶34

𝐶13
 

𝐶13𝐶14

𝐶34
 

10 𝑒12 𝑒23 𝑒24 𝑒34 𝑒13 𝑒14 
𝐶23𝐶24

𝐶12𝐶34
 

𝐶23

𝐶12
 

𝐶24

𝐶12
 

𝐶12
2 𝐶34

𝐶23𝐶24
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11 𝑒13 𝑒23 𝑒24 𝑒34 𝑒12 𝑒14 
𝐶23

𝐶13
 

𝐶23𝐶34

𝐶13𝐶24
 

𝐶34

𝐶13
 

𝐶13
2 𝐶24

𝐶23𝐶34
 

12 𝑒14 𝑒23 𝑒24 𝑒34 𝑒12 𝑒13 
𝐶24

𝐶14
 

𝐶34

𝐶14
 

𝐶24𝐶34

𝐶14𝐶23
 

𝐶14
2 𝐶23

𝐶24𝐶34
 

13 𝑒12 𝑒13 𝑒14 𝑒24 𝑒14 𝑒23 no solution 

14 𝑒12 𝑒14 𝑒23 𝑒34 𝑒13 𝑒24 no solution 

15 𝑒13 𝑒14 𝑒23 𝑒24 𝑒12 𝑒34 no solution 

Table A.1. All possible quadruple collocation solutions for the essential unknowns. 702 

 703 

Appendix B. Quadruple covariance transformations 704 

It will be shown here how the covariance equations can be made mathematically 705 

consistent for models 12 and 1 by applying the error covariance correction transformation 706 

𝐶𝑖𝑗 → 𝐶𝑖𝑗 − 𝐸𝑖𝑗, where 𝐸𝑖𝑗 = 𝑎𝑖
(𝑀)

𝑒𝑖𝑗
(𝑀)

𝑎𝑗
(𝑀)

, equation (13), with 𝑀 the model number. 707 

The model 12 solution reads (see Appendix A) 708 

𝑎2
(12)

=
𝐶24

𝐶14
, 𝑎3

(12)
=

𝐶34

𝐶14
,   𝑎4

(12)
=

𝐶24𝐶34

𝐶14𝐶23
,   𝑇(12) =

𝐶14
2 𝐶23

𝐶24𝐶34
 (B.1) 709 

In obtaining this solution, the terms with 𝐶12 and 𝐶13 were not used. Therefore the residual errors 710 

𝑒12
(12)

 and 𝑒13
(12)

 are nonzero; all others have been set to zero to solve the covariance equations. It 711 

readily follows from (8) and (B.1) that 712 

𝑒12
(12)

=
𝐶12𝐶14

𝐶24
−

𝐶14
2 𝐶23

𝐶24𝐶34
,   𝑒13

(12)
=

𝐶13𝐶14

𝐶34
−

𝐶14
2 𝐶23

𝐶24𝐶34
 (B.2) 713 

Now consider the solution for model 1 which reads 714 

𝑎2
(1)

=
𝐶23

𝐶13
,   𝑎3

(1)
=

𝐶23

𝐶12
,   𝑎4

(1)
=

𝐶14𝐶23

𝐶12𝐶13
,   𝑇(1) =

𝐶12𝐶13

𝐶23
 (B.3) 715 

Applying the error covariance correction transformation (remember that 𝑎1
(12)

= 1) 716 

𝐶12 → 𝐶12 − 𝑎2
(12)

𝑒12
(12)

=
𝐶14𝐶23

𝐶34
 (B.4a) 717 

𝐶13 → 𝐶13 − 𝑎3
(12)

𝑒13
(12)

=
𝐶14𝐶23

𝐶24
 (B.4b) 718 

one easily obtains 719 

𝑎2
(1)

→
𝐶24

𝐶14
= 𝑎2

(12)
 (B.5a) 720 

𝑎3
(1)

→
𝐶34

𝐶14
= 𝑎3

(12)
 (B.5b) 721 

𝑎4
(1)

→
𝐶24𝐶34

𝐶14𝐶23
= 𝑎4

(12)
 (B.5c) 722 

𝑇(1) →
𝐶14

2 𝐶23

𝐶24𝐶34
= 𝑇(12) (B.5d) 723 
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This proves the proposition for models 12 and 1. For any other combination, the proof is 724 

analogous and has been checked using FORM, a program for algebraic manipulation 725 

(Vermaseren et al., 2018). From the solutions listed in Appendix A it is clear that a change in 726 

both 𝐶12 and 𝐶13 affects every solution except that of model 12. 727 

All transformations of the form (B.4a) and (B.4b) are listed in table B.1. Each off-728 

diagonal covariance 𝐶𝑖,𝑗 can be transformed in two ways, and each transformation applies to two 729 

models. The general form is 730 

𝐶𝑖𝑗 →
𝐶𝑖𝑘𝐶𝑗𝑙

𝐶𝑘𝑙
 (B.6) 731 

with {𝑖, 𝑗, 𝑘, 𝑙} a permutation of {1,2,3,4}, taking into account the symmetry of the covariance 732 

matrix. The error covariance correction transformation (B.6) is nonlinear, because the 733 

substitutions may occur in the denominators of the solutions for the calibration scalings and the 734 

common variance. However, (8) implies that it is approximately linear when the off-diagonal 735 

error covariances are almost equal, which occurs when the systems are well intercalibrated, 736 

𝑎𝑖𝑎𝑗 ≈ 1, and when the error covariances are small, 𝑒𝑖𝑗 ≪ 𝑇, conditions satisfied by the bASE, 737 

bBSE, and bABE collocation data sets. 738 

 739 

Transformation models Transformation models 

𝐶12 →
𝐶14𝐶23

𝐶34
 8 12 𝐶12 →

𝐶13𝐶24

𝐶34
 9 11 

𝐶13 →
𝐶14𝐶23

𝐶24
 5 12 𝐶13 →

𝐶12𝐶34

𝐶24
 6 10 

𝐶14 →
𝐶13𝐶24

𝐶23
 2 11 𝐶14 →

𝐶12𝐶34

𝐶23
 3 10 

𝐶23 →
𝐶13𝐶24

𝐶14
 4 9 𝐶23 →

𝐶12𝐶34

𝐶14
 6 7 

𝐶24 →
𝐶14𝐶23

𝐶13
 1 8 𝐶24 →

𝐶12𝐶34

𝐶13
 3 7 

𝐶34 →
𝐶14𝐶23

𝐶12
 1 5 𝐶34 →

𝐶13𝐶24

𝐶12
 2 4 

Table B.1. Covariance transformations. 740 

 741 

Appendix C. Quadruple collocation with representativeness errors 742 

In order to incorporate representativeness errors, the collocation model (1) may be 743 

extended as 744 

𝑥1 = 𝑎1(𝑡 + 𝜀1) + 𝑏1 + 𝜌2 + 𝜌3 (C.1a) 745 

𝑥2 = 𝑎2(𝑡 + 𝜀2) + 𝑏2 + 𝜌2 + 𝜌3 (C.1b) 746 

𝑥3 = 𝑎3(𝑡 + 𝜀3) + 𝑏3 + 𝜌3 (C.1c) 747 

𝑥3 = 𝑎4(𝑡 + 𝜀4) + 𝑏4 (C.1d) 748 

with 𝑎1 = 1 and 𝑏1 = 0. Here, 𝜌3 is the signal detected by systems 1 – 3 but not by system 4 and 749 

𝜌2 is the signal detected by systems 1 and 2 but not by systems 3 and 4. Signal 𝜌𝑖 , 𝑖 = 2, 3, has 750 
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zero average and variance 𝑟𝑖
2. It is uncorrelated with 𝑡 and 𝜀𝑖, and 〈𝜌2𝜌3〉 = 0. The covariance 751 

equations can now be formed as in section 2.1. The error variances 𝜎𝑖
2 must be obtained from the 752 

diagonal covariance equations, the other unknowns from the off-diagonal equations which read 753 

𝐶12 = 𝑎2𝑇 +  𝑟2
2 + 𝑟3

2 𝐶23 = 𝑎2𝑎3𝑇 +  𝑟3
2 𝐶34 = 𝑎3𝑎4𝑇

𝐶13 = 𝑎3𝑇 +  𝑟3
2 𝐶24 = 𝑎2𝑎4𝑇

𝐶14 = 𝑎4𝑇

 (C.2) 754 

From the term with 𝐶14 one obtains 755 

𝑎4 =
𝐶14

𝑇
 (C.3) 756 

Substituting this in the terms with 𝐶24 and 𝐶34 yields 757 

𝑎2 =
𝐶24

𝐶14
𝑎3 =

𝐶34

𝐶14
 (C.4) 758 

Substituting (C.4) in the term with 𝐶13 gives 759 

𝑟3
2 = 𝐶13 −

𝐶34

𝐶14
𝑇 (C.5) 760 

Now 𝑇 can be solved from (C.5) and the term with 𝐶23 as 761 

𝑇 =
𝐶14

2

𝐶34

𝐶13−𝐶23

𝐶14−𝐶24
 (C.6) 762 

Finally 𝑎4 is easily obtained from (C.3), 𝑟3
2 from (C.5), and 𝑟2

2 from the term in (C.2) with 𝐶12. 763 

Unfortunately, this solution is numerically highly unstable. The common variance is 764 

expected to have a value between 18 m
2
s

-2
 and 32 m

2
s

-2
, see figure 10, so the covariances 𝐶𝑖𝑗 are 765 

of the same order of magnitude. Equation (C.6) shows that 𝑇 is given by the product of two 766 

factors: the first one is of the order of 𝐶𝑖𝑗 and the second one is the quotient of the two 767 

differences 𝐶13 − 𝐶23 and 𝐶14 − 𝐶24, i.e., the quotient of two differences between quantities that 768 

are almost the same. The quotient should be close to 1, and if it is required to be precise by 2%, 769 

each of the differences should be precise by 1% or 0.01 as the differences are of order 1. This 770 

requires each of the covariances to be precise by 0.005, which can only be satisfied by a huge 771 

collocation dataset of at least 10 million points. This makes the solution unusable for the datasets 772 

considered in this paper. 773 

Note that the precise formulation of the collocation model is quite critical: if the model 774 

(C.1) is changed into 775 

𝑥1 = 𝑎1(𝑡 + 𝜀1+𝜌2 + 𝜌3) + 𝑏1 (C.7a) 776 

𝑥2 = 𝑎2(𝑡 + 𝜀2+𝜌2 + 𝜌3) + 𝑏2 (C.7b) 777 

𝑥3 = 𝑎3(𝑡 + 𝜀3 + 𝜌3) + 𝑏3 (C.7c) 778 

𝑥3 = 𝑎4(𝑡 + 𝜀4) + 𝑏4 (C.7d) 779 

then the resulting covariance equations have no solution because 𝑇 and 𝑟3
2 can not be separated 780 

from each other in the terms with 𝐶13 and 𝐶23. 781 

 782 

 783 
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