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Abstract

The ocean mixed layer plays an important role in subseasonal climate dynamics because it can exchange large amounts of heat

with the atmosphere, and it evolves significantly on subseasonal timescales. Estimation of the subseasonal variability of the

ocean mixed layer is therefore important for subseasonal to seasonal prediction and analysis. The increasing coverage of in-situ

Argo ocean profile data allows for greater analysis of the aseasonal ocean mixed layer depth (MLD) variability on subseasonal

and interannual timescales; however, current sampling rates are not yet sufficient to fully resolve subseasonal MLD variability.

Other products, including gridded MLD estimates, require optimal interpolation, a process that often ignores information from

other oceanic variables. We demonstrate how satellite observations of sea surface temperature, salinity, and height facilitate

MLD estimation in a pilot study of two regions: the mid-latitude southern Indian and the eastern equatorial Pacific Oceans.

We construct multiple machine learning architectures to produce weekly 1/2 degree gridded MLD anomaly fields (relative to a

monthly climatology) with uncertainty estimates. We test multiple traditional and probabilistic machine learning techniques to

compare both accuracy and probabilistic calibration. We find that incorporating sea surface data through a machine learning

model improves the performance of MLD estimation over traditional optimal interpolation in terms of both mean prediction

error and uncertainty calibration. These preliminary results provide a promising first step to greater understanding of aseasonal

MLD phenomena and the relationship between the MLD and sea surface variables. Extensions to this work include global and

temporal analyses of MLD.
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Abstract14

The ocean mixed layer plays an important role in subseasonal climate dynamics because15

it can exchange large amounts of heat with the atmosphere, and it evolves significantly16

on subseasonal timescales. Estimation of the subseasonal variability of the ocean mixed17

layer is therefore important for subseasonal to seasonal prediction and analysis. The in-18

creasing coverage of in-situ Argo ocean profile data allows for greater analysis of the asea-19

sonal ocean mixed layer depth (MLD) variability on subseasonal and interannual timescales;20

however, current sampling rates are not yet sufficient to fully resolve subseasonal MLD21

variability. Other products, including gridded MLD estimates, require optimal interpo-22

lation, a process that often ignores information from other oceanic variables. We demon-23

strate how satellite observations of sea surface temperature, salinity, and height facili-24

tate MLD estimation in a pilot study of two regions: the mid-latitude southern Indian25

and the eastern equatorial Pacific Oceans. We construct multiple machine learning ar-26

chitectures to produce weekly 1/2 degree gridded MLD anomaly fields (relative to a monthly27

climatology) with uncertainty estimates. We test multiple traditional and probabilistic28

machine learning techniques to compare both accuracy and probabilistic calibration. We29

find that incorporating sea surface data through a machine learning model improves the30

performance of MLD estimation over traditional optimal interpolation in terms of both31

mean prediction error and uncertainty calibration. These preliminary results provide a32

promising first step to greater understanding of aseasonal MLD phenomena and the re-33

lationship between the MLD and sea surface variables. Extensions to this work include34

global and temporal analyses of MLD.35

Plain Language Summary36

The top layer of the ocean, called the surface mixed layer, features temperature and37

salinity that are relatively uniform throughout its depth. The depth of this layer can vary38

depending on the exact location, time of year and is impacted by many physical processes.39

Although it is typically only a few percent of the ocean depth, the mixed layer is impor-40

tant because it regulates heat exchange between the deep ocean and the atmosphere, and41

it hosts virtually all photosynthesis that sustains ocean ecosystems. Observations of the42

mixed layer depth are infrequent in time and space because of the size of the ocean in43

comparison to the number of observing instruments. Satellite data is widely available44

for information about the surface of the ocean, but unfortunately there is not an exact45

relationship between the surface information and the mixed layer depth. In this paper,46

we study machine learning models’ abilities to learn this relationship with the available47

data and to produce reasonable fine-scale estimates of the mixed layer depth. In partic-48

ular, we emphasize the ability of the machine learning model to estimate how uncertain49

it is about its estimates.50

1 Introduction51

Because of the ocean surface mixed layer’s role as intermediary between ocean and52

atmosphere, many important processes, such as water mass formation and ocean circu-53

lation (Hanawa & Talley, 2001; Stommel, 1979) and air-sea interaction (Frankignoul &54

Hasselmann, 1977; Kraus & Turner, 1967) are sensitive to the ocean surface mixed layer55

depth (MLD). While there have been several recent efforts to observe and quantify the56

global climatological behavior of the MLD based on the in-situ array of thousands of vertically-57

profiling Argo floats (Holte et al., 2017; Schmidtko et al., 2013; D. B. Whitt et al., 2019),58

little effort has been devoted to quantifying the subseasonal and interannual (aseasonal)59

variability of the MLD because the Argo array is not sufficiently large to fully resolve60

subseasonal MLD variability. Through this study, we take a preliminary step toward im-61

proved observational estimates of aseasonal MLD variability by investigating the rela-62

tionship between MLD and sea surface salinity, temperature, and height anomalies.63
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Due largely to the increasing coverage of the Argo array (Holte et al., 2017), the64

MLD is increasingly well-observed globally. Despite this improvement, however, the data65

is insufficient to recover sub-seasonal processes on a fine grid at high frequency. Mod-66

ern attempts to recover variables using a hybrid data collection of in-situ and satellite67

data typically use optimal interpolation (Roemmich & Gilson, 2009; Guinehut et al., 2012).68

Our aim in this paper is to demonstrate the utility of informing MLD estimation using69

satellite surface data through a machine learning framework.70

The application of machine learning to the geosciences is a rapidly growing field71

((Monteleoni et al., 2013; Reichstein et al., 2019; Weyn et al., 2019; Lary et al., 2016;72

Irrgang et al., 2020). The machine learning approach offers a flexible, data-driven route73

to regression and classification tasks that has been used for parameterizations (Bolton74

& Zanna, 2019; Gagne et al., 2020; Rasp et al., 2018; O’Gorman & Dwyer, 2018; Gen-75

tine et al., 2018; Jiang et al., 2018; Brenowitz & Bretherton, 2018), forecasting (Pathak76

et al., 2018; McGovern et al., 2017; Ukkonen & Mäkelä, 2019; Irrgang et al., 2020; Weyn77

et al., 2019; Hsieh & Tang, 1998), data assimilation (R. Cintra et al., 2016; Wahle et al.,78

2015; R. S. Cintra & Velho, 2018), and remote sensing (Lary et al., 2016; Ouali et al.,79

2017). The commonality to many of these approaches and the motivation for use in this80

study is not only the lack of a deterministic model between the sea surface variables and81

the mixed layer depth, but also the possibility of an empirical model being learned from82

the existing data. Unfortunately, many successes in machine learning research are also83

in over-determined regimes, in which the amount of data is large in comparison to the84

number of independent parameters. Extrapolation regimes, where data are sparse in one85

or more dimensions, are known to be problematic because the prediction depends more86

heavily on the underlying assumptions of the model. This is particularly problematic in87

oceanography, where many unknown quantities are 2 or 3 dimensional, and data avail-88

ability is still relatively sparse.89

While the study of machine learning can trace its history to Rosenblatt’s percep-90

tron (Rosenblatt, 1958), the implementation of early machine learning methods and ar-91

chitectures in a data-driven way was considered computationally infeasible for moder-92

ate to large applications until the late 1980s with the development of the back-propagation93

algorithm (Rumelhart et al., 1986), which enabled training of multi-layered neural net-94

works. Despite advances through the nineties and early twenty-first century, the deep95

learning revolution did not occur until 2006 (Goodfellow et al., 2016) when an explosion96

of reliable training data, computing power, neural network layers, and regularization tech-97

niques have dramatically increased neural network accuracy. As demonstrated in Guo98

et al. (2017), this improvement in accuracy has also hindered the capacity of neural net-99

works to be well-calibrated, i.e. when forecast probabilities match the system’s true prob-100

abilities, and hence offer accurate representations of the underlying probability distri-101

butions. The ability for a neural network to be well-calibrated is of critical importance.102

Data Assimilation research has repeatedly shown that proper estimation of the background103

error covariance can improve reconstruction estimates (Valler et al., 2019). In the esti-104

mation of sea surface temperature or sea level anomaly, mis-quantification of atmospheric105

uncertainties has also been shown to cause significant and non-local errors in reanaly-106

sis estimates(Chaudhuri et al., 2016). Parallel developments have led to the field of prob-107

abilistic neural networks to address this calibration problem in machine learning.108

The ultimate goal of probabilistic neural networks is to be able to accurately and109

precisely define the posterior probability distribution conditioned on the data. Using a110

Bayesian framework allows us to easily account for sources of error and randomness in111

the data, weights, or model. The gold standard for this task is often sampling from the112

posterior distribution using a Markov Chain Monte Carlo (MCMC) scheme (Brooks, 2011;113

Gelman et al., 2013), but this approach is still computationally infeasible for modern neu-114

ral networks. There have been several approximations and techniques developed for pro-115

ducing estimates of the posterior probability including the development of Bayesian Neu-116

ral Networks, with weight uncertainty (Neal, 1996; Blundell et al., 2015), Stochastic Gra-117

dient Langevin Dynamics (Welling & Teh, 2011), Variational Inference (Paisley et al.,118
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2012; Hoffman & Blei, 2015; Kingma et al., 2015), Probabilistic Backpropagation (Rezende119

et al., 2014; Hernández-Lobato & Adams, 2015), Dropout (Hinton et al., 2012; Ba & Frey,120

2013; Maeda, 2014; Gal & Ghahramani, 2016; Gal et al., 2017), Variational Autoencoders121

(Kingma & Welling, 2014), and Deep Ensembles (Lakshminarayanan et al., 2017).122

Despite the numerous techniques to inject uncertainty estimates into machine learn-123

ing, the performance of any approach is still underwhelming. Recent arguments have been124

made that ensembles of techniques outperform any one approach (Lakshminarayanan125

et al., 2017; Kuleshov et al., 2018; Guo et al., 2017; Nixon et al., 2019; Dormann, 2020).126

Due to the complex nature of the analytical posterior distributions, lack of complete data,127

prohibitive cost of training, and sensitivity to the nature of the application, an under-128

standing of which methodology is appropriate is still in its infancy. Recently there has129

been some research comparing popular uncertainty quantification techniques in Deep Learn-130

ing (Ashukha et al., 2020; Caldeira & Nord, 2020; Labach et al., 2019; Lakshminarayanan131

et al., 2017). Unfortunately, there is not much research about how these methods per-132

form in the geosciences, where probabilities are often non-Gaussian, non-trivial, non-stationary,133

and high-dimensional. This paper serves as a step into answering this question by test-134

ing various probabilistic machine learning methods used for high-dimensional data with135

both Gaussian and non-Gaussian distributions on MLD estimation, which serves as an136

example problem in this respect.137

Our goal for this manuscript is two-fold. First, we investigate to what extent the138

aseasonal variability in sea surface salinity, temperature, and height are related to, and139

hence useful for estimating, the aseasonal variability of the MLD. In particular, we study140

two geographic regions, (1) the eastern equatorial Pacific Ocean from 10S-10N and 150W-141

120W and (2) the southern Indian Ocean from 45S-35S from 60E-120E, over the 2011-142

2015 time period. As detailed in section 2, these regions are useful test cases because both143

are characterized by at least modest subseasonal MLD variability (> 10 m subseasonal144

standard deviations), but the magnitudes of subseasonal variability, the climatological145

annual cycle, and interannual variability all differ substantially (D. B. Whitt et al., 2019).146

Thus, the two regions reflect useful and distinct test cases for evaluating machine learn-147

ing model performance. We perform this analysis by training a series of neural network148

architectures to produce gridded MLD estimates using surface variables as inputs and149

evaluate model performance using the Argo profiles. We compare the machine learning150

approaches, which only use surface values as inputs, to the traditional optimal-interpolation151

technique that estimates using the actual MLD values from the in-situ Argo profiles. The152

differences in performance between the machine learning methods and optimal-interpolation153

schemes will reveal the extent to which the sea surface variables are useful in predict-154

ing the MLD.155

Second, we focus on understanding the probability distribution of the MLD that156

is learned by the neural network. As a first step, we evaluate how well calibrated the neu-157

ral network estimates are and what spatial and temporal patterns are revealed through158

sampling these distributions. We choose three probabilistic machine learning methods159

that cover two distinct types of uncertainty quantification: parameterization- and sampling-160

based methods. By evaluating these methods, we aim to understand the appropriate-161

ness of a Gaussian distribution to the data and the ability for sampling machine learn-162

ing methods in exploring the posterior distribution. Finally, we compare the machine163

learning uncertainty quantification against uncertainty estimates from the optimal-interpolation164

approach. As before, this last comparison will reveal the extent to which the sea surface165

variables inform us about the uncertainty in the MLD.166

These methods are certainly not exhaustive and so this paper is a first step to a167

better understanding of the aseasonal MLD variability and how machine learning can168

be used as a tool in this investigation. The outline of the body of the paper is as follows:169

first, in section 2 we detail the data and describe the data processing and methodology;170

second, in section 3 we describe the mathematical framework and relevant machine learn-171
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ing architectures that we implement; lastly, in section 4 we explain and detail the ex-172

periments and results.173

2 Data174

2.1 Salinity175

Sea surface salinity data is the optimally-interpolated analysis of Melnichenko et176

al. (2016), which is an optimal interpolation of observations from the Aquarius satellite177

and uses corrections to minimize bias relative to in-situ data. The data exists on a 1
2 de-178

gree, weekly grid spanning roughly 2011-2015 (200 weeks). A random 150 week sample179

constitutes the training data, with the remaining being used for testing and validation.180

This grid is the coarsest of all the variables and thus will form the basis that we inter-181

polate and re-sample the other data onto. To calculate an estimate of the climatology,182

we calculate monthly means using only the training data, taking a 4 week boxcar mov-183

ing average, binning data into months and averaging over the bins.184

2.2 Temperature185

Sea surface temperature data comes from the GHRSST Level 4 Global Foundation186

Sea Surface Temperature analysis dataset (Remote Sensing Systems, 2017). This dataset187

uses Optimal Interpolation (OI) from several microwave sensors. The data exists on a188

1
4 degree, daily grid spanning roughly 2001-2018. To calculate an estimate of the clima-189

tology, we set aside the years 2011-2015 and calculate a 4 week boxcar moving average190

on the remaining data. From the smoothed data, we take bins according to each month191

and average over the bins, resulting in an approximate monthly climatology. To calcu-192

late anomalies, we bin the 2011-2015 data into months and subtract the monthly clima-193

tology. Then, to be able to compare to the salinity dataset, we up-sample from the daily194

values to weekly data and optimally interpolate onto a 1
2 degree grid.195

2.3 Height Anomaly196

Sea surface height anomaly data comes from the MEaSUREs Gridded Sea Surface197

Height Anomalies dataset (Zlotnicki et al., 2019). The data exists on a 1
6 degree, 5-day198

grid spanning roughly 1992-2019. We do not calculate and remove climatologies from199

this data set. To be able to compare to the salinity dataset, we up-sample from the 5-200

day values to weekly data and optimally interpolate onto a 1
2 degree grid.201

2.4 Mixed Layer Depth202

Argo data is available through Cabanes et al. (2013). The MLD is defined for about203

1.5 million profiles of temperature and salinity that pass quality controls in the time span204

from 2000-2017 (D. B. Whitt et al., 2019; D. Whitt et al., 2020).205

To calculate an estimate of the climatology from the individual MLD measurements,206

we take the years 2002-2010, and 2016-2017, bin the data into 2◦ latitude and 4◦ lon-207

gitude bins, re-sample onto a daily grid and take four week moving averages in each bin.208

This smoothed data is then grouped into months. Both an average and standard devi-209

ation are calculated in order to compute the mean and standard deviation of the monthly210

climatology in each bin.1 Anomalies are created by taking each profile from the with-211

held 2011-2015 Argo data and subtracting the climatology according to the profile’s bin212

1 For the regions included in our studies, all bins have enough data to calculate the monthly climatol-

ogy. There are many regions, such as some seas surrounding Indonesia, for instance, that do not have

sufficient data.
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Figure 1. Several time series of the average MLD in each region at weekly resolution in the

equatorial Pacific (top) and southern Indian Ocean (bottom), including the ensemble average of

the MLD profiles over the domain (red), the ensemble average of the corresponding standard-

ized MLD anomalies (green), and the area-average of the gridded monthly MLD climatology

(blue). The blue shading represents the area-average of the gridded monthly standard deviations,

and the green shading represents the ensemble standard deviation of the profile-wise standard

anomalies. (Top) equatorial Pacific region (120W, 10S) - (150W, 10N). (Bottom) southern Indian

Ocean (45S, 60E) - (35S, 120E).
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Figure 2. A schematic of the modeling procedure. Satellite sea surface data is fed into the

machine learning model to produce a gridded MLD estimate (with some form of an uncertainty

estimate if the machine learning model is probabilistic). To compare with the observations and

optimize parameters, these gridded estimates are fed into a Gaussian process regression model

(with its own hyper-parameters that are optimized) to produce MLD estimates interpolated to

the locations where the Argo observations exist. These interpolated estimates are automati-

cally associated with uncertainty estimates that derived from either just the Gaussian process

interpolation uncertainty (if the model is deterministic) or a combination of the Gaussian pro-

cess uncertainty with ML model uncertainty (if the ML model has uncertainty estimates). The

interpolated estimates are then compared with the observations to estimate various errors.

and date. In addition, for each profile, we divide by the bin’s corresponding monthly stan-213

dard deviations to create standardized anomalies. Fig. 1 shows the time series of the raw214

MLD data, including the ensemble average of the individual profiles in each region, the215

ensemble average of the standardized anomalies at each profile, and the area-average of216

the gridded climatology, in two spatial regions under study (120W, 10S) - (150W, 10N)217

and (45S, 60E) - (35S, 120E). The character of the anomalies and standardized anoma-218

lies are not dissimilar, but the standardized anomalies have a more appropriate scale for219

machine learning purposes (see the Acknowledgements for data availability).220

2.5 Evaluation Regions221

In order to evaluate the behavior of the machine learning models in two different222

oceanic regimes, we choose to investigate two geographic regions with very different MLD223

variability on timescales from subseasonal to interannual but significant subseasonal MLD224

variability to learn in both cases. First, we choose the equatorial Pacific Ocean (10◦S225

- 10◦N and 150◦W - 120◦W), which has modest subseasonal MLD standard deviations226

(∼ 15 m), a small climatological annual cycle (∼ 20 m), and substantial interannual227

variability (see Fig. 1 and (D. B. Whitt et al., 2019)). Second, we choose to study the228

southern Indian Ocean (45◦S - 35◦S and 60◦E - 120◦E), which features larger subsea-229
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sonal standard deviations (∼ 50 m), a much larger climatological annual cycle (∼ 300230

m), but relatively weak interannual variability.231

Hence, both regions contain substantial subseasonal MLD variability to learn, but232

the absolute magnitudes of the subseasonal variability as well as the relative magnitudes233

of subseasonal, seasonal, and inter-annual variability differ dramatically.234

In order to test our framework for estimating MLD using sea surface information235

we perform the following experiment on each region of interest. On the 150 (out of 200236

total) weeks of training data, we apply the training procedure summarized in Fig. 2 and237

described in more detail in section 3 (see the Acknowledgements for a link to the soft-238

ware).239

On the remaining 50 weeks of testing and validation data the model predicts a dense240

grid of MLD estimates based solely on the sea surface information as input. From this241

dense grid, we interpolate the estimates onto the locations where in-situ Argo profile ob-242

servations of the MLD exist and compute error statistics between the interpolated es-243

timates and the observations. The interpolation is done using a Gaussian process (see244

section 3.1) regardless of the machine learning method. We denote this testing proce-245

dure as measuring the out-of-sample performance of the method.246

3 Methods247

We consider a simple but general model for the relationship between the surface248

variables, salinity (S), temperature (T ), and height (H), and mixed layer depth model249

output (d),250

d = f(S, T,H; θ) + σ, σ ∼ N (0,Σ). (1)251

where θ refers to the collection of function parameters. The surface variables ex-252

ist on a pre-specified grid, x, of total size M and the function f may generally couple253

surface variables from across this grid to produce d at a particular grid point. The dif-254

ference between the mixed layer and the output of f , σ, is assumed to be a normally dis-255

tributed random variable according to the covariance Σ that expresses the spatial un-256

certainties in this functional relationship. The exact structures and parameterizations257

of f that we use in this paper are described in section 3.2 while the methods we use to258

specify Σ are presented in section 3.3.259

Both the functional relationship f and the covariance matrix Σ are data-driven (i.e.,260

agnostic to the underlying physics) and informed via observations do that exist at ar-261

bitrary (ungridded) locations, xo where freely-drifting Argo floats collect a profile. In262

order to couple the gridded variables with the ungridded observations, we define the re-263

lationship between our model and the observations to be a Gaussian process,264

do = Ld+ ν, ν ∼ N (0, V ), (2)265

which will be further defined in section 3.1. Importantly, L and V , the spatial pro-266

jection and covariance matrices, are independent of the observation values and only de-267

pend on the observation locations, model grid locations, and model uncertainties. The268

Gaussian process relationship, in our study, is entirely a spatial relationship that accounts269

for spatial covariance between observations of the MLD. This implicitly means, however,270

that L and V change depending on the particular week the data is from, but only be-271

cause the particular locations xo where estimation and validation occurs vary from week272

to week.273

A further consequence of the chosen relation between the observations and model274

(2) is that it defines the objective function, i.e. the conditional likelihood probability dis-275
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tribution, that will be maximized to fit the parameters of the nonlinear function f :276

ln p(do|d) = −1

2
(do − Ld)TV −1(do − Ld)− 1

2
ln |V | − M

2
ln 2π. (3)277

Details of this optimization procedure are given in section 3.2. Here, it is implic-278

itly understood that d, and hence p(do|d), is a function of the input variables S, T,H,279

the architecture of the function f , and the parameters of f , θ.280

The Gaussian assumptions made in Eq. 1 is primarily for notational convenience.281

The model definition (Eq. 1) can easily be modified to include non-Gaussian noise by282

including a stochastic component in f , f(S, T,H; θ, σ). This type of noise component283

is important if we expect the noise to be a nonlinear function of the surface variables.284

To account for this possibility, two of the probabilistic machine learning methods that285

we test in this paper, Dropout and Variational Auto-Encoders (see section 3.3) are for-286

mally of this type and require sampling to determine the covariance for use in the Gaus-287

sian process. The Gaussian assumption made in (Eq. 2) is a reflection of the belief that288

the interpolating operator between the gridded locations and Argo locations is appro-289

priately approximated by a linear function. We believe that this is not overly restrictive290

since most optimal interpolation techniques make similar assumptions.291

3.1 Gaussian Process Regression292

Gaussian Process Regression is closely related to the somewhat more general Op-293

timal Interpolation and Kriging frameworks. For a more detailed history and exposition,294

see Cressie (1993). A Gaussian process is any collection of random variables for which295

any finite number have a joint Gaussian distribution and, as a result, is completely de-296

termined by a mean and covariance function (Rasmussen & Williams, 2006). Given a297

set of (2-dimensional) observation locations x = (x1, . . . , xM )T , we define the mean func-298

tion m(x) and the covariance function k(x,x′) of the process d(x) as299

m(x) = E [d(x)] (4)300

k(x,x′) = E [(m(x)− d(x)) (m(x′)− d(x′))] (5)301

Typically the mean function is set to zero and covariance function is parameter-302

ized according to some kernel function. Various kernel functions impart different types303

of regularity (differentiability): the exponential kernel leads to non-differentiable out-304

puts, the Matern Class of kernels have a regularity parameter, and the squared expo-305

nential kernel leads to smooth outputs. In our study, the squared exponential kernel,306

k(x,x′) = αe−
1
2`‖x−x

′‖2 + β (6)307

where α and ` are hyperparameters that control the amplitude and length-scale of the308

corresponding covariance structure, was chosen because of its marginally better perfor-309

mance and efficiency compared to Matern class kernels. We train our Gaussian process310

hyperparameters by optimizing according to the Gaussian process prior probability dis-311

tribution over the training observation points x,312

ln p(α, `, β|d) = −1

2
dTK(x,x)−1d− 1

2
ln |K(x,x)| − M

2
ln 2π, (7)313

where the covariance matrix has entries Ki,j(x,x) = k(xi, xj). To regularize the op-314

timization process and ensure positivity of α, `, and β, priors are occasionally placed on315

the hyperparameters in a Bayesian fashion. In our study, this type of implementation316

had minimal impact on the optimized values. In circumstances where either computa-317

tional considerations are not a concern or available training data is limited, it is also pos-318

sible to optimize the hyperparameters by cross-validating and minimizing the conditional319
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likelihood distribution, for details see Rasmussen and Williams (2006). The variance hy-320

perparameter β can, in general, be made anisotropic at the expense of increasing the to-321

tal number of hyperparameters, but we do not consider such options in this study.322

During the training of the neural network, i.e. while optimizing the parameters in323

f via Eq. 3 using backpropagation on training data from a given week, the Gaussian pro-324

cess hyperparameters must be re-optimized according to Eq. 7 because the Gaussian pro-325

cess parameterization depends on the Argo profile locations (and model covariance Σ,326

if available) which generally vary from one training week to the next.327

Once the Gaussian process has been optimized using function values (x, d), we can328

perform inference at the Argo spatial locations xo to obtain estimates of do. The infer-329

ence procedure follows Eq. 2 with L and V given by the equations330

L = k(xo,x) (k(x,x) + Σ)
−1

(8)331

V = k(xo,xo)− k(xo,x)(k(x,x) + Σ)−1k(x,xo). (9)332

Thus, the trained kernel function is independent of time and depends only on distance333

‖x−x′‖ not location x or time, but L and V depend on location and time because Σ334

depends on location x and the particular points chosen for estimation xo (e.g., the Argo335

profiles locations) vary with time.336

3.2 Machine Learning337

The main objective of this paper is to learn a relationship between the sea surface338

variables (salinity, temperature, height) and mixed layer depth. Without an a priori physics-339

based model, one must choose a reasonably parameterized model to approximate this340

relationship. Traditionally this relationship is represented via some linear or simple non-341

linear parameterization where one hopes that the true relationship lies in, or is not too342

far from, the output space of the model. For example, a basic linear model that we test343

in this paper is of the form,344

d` =

 c1(x)
c2(x)
c3(x)

 ·
 S
T
H

+ b+ σ, σ ∼ N(0,Σ) (10)345

Such models, however, are typically not expressive enough to represent arbitrary346

relationships. The revolution of machine learning, and, in particular, deep learning, has347

been born out of the need to express arbitrary functional relationships amid a dearth348

of observational data. While there exists several popular machine learning architectures,349

we base our paper around modifications of the quintessential deep learning model, the350

feedforward neural network (FNN) (Goodfellow et al., 2016). FNNs are represented by351

composing together many different functions in series to form a chain,352

f(x) = f (n)(f (n−1)(· · · f (1)(x) · · · )), (11)353

f (i)(x) = a
(
xTWi + bi

)
, (12)354

where Wi is a matrix of weights, bi is a bias term, and a(·) is what is referred to355

as an ‘activation function’, that applies a simple non-linearity element-wise to the affine356

transformation of the input, x. Common examples of activation functions include the357

sigmoid, softplus, and rectified linear functions. Based on the experiments in Gal (2016),358

we implement the rectified linear unit as the activation function in all of our neural net-359

work layers, although it is possible that, among all of the available activation functions,360

another function would result in superior performance. We will denote the collection of361

neural network parameters as θ = {W1, . . . ,Wn, b1, . . . , bn}.362
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The training of a neural network entails obtaining an estimate of the parameters,363

θ̂, by approximately solving the optimization problem,364

θ̂ = arg maxθ ln p(do|d)365

= arg minθ

{
g(θ)−

∑ntrain

j=1 ln pj(do|d)

}
(13)366

where g(θ) is a regularization function that is applied to both constrain the pos-367

sible parameter values and stabilize the optimization procedure. As written, pj(do|d) refers368

to the joint probability distribution between the jth input and output data. The opti-369

mization procedure includes all training data but, in practice, subsetting is common (as370

in batch gradient descent (Ruder, 2016)). We only seek an approximate solution to Eq.371

13 for two reasons: first, the optimization problem is highly-non trivial, non-convex, and372

high-dimensional with many local minima and obtaining a global minimum is infeasi-373

ble; second, the ultimate goal is for the parameters to lead to a function f that gener-374

alizes well to data not in the training set and over-training might ultimately hinder this375

goal (Caruana et al., 2001). The problem of over-fitting and poor generalization is one376

of the largest obstacles to good machine learning performance, particularly in applica-377

tions where prediction involves extrapolation beyond whatever data was in the training378

set. All of the neural networks implemented for this paper are done using the Tensor-379

Flow and TensorFlow Probability frameworks (Abadi et al., 2016; Dillon et al., 2017).380

Because our study is limited to only 150 training weeks, we implement a non-standard381

training strategy to help reduce overfitting. For each epoch (a single run through the en-382

tire training data) we divide the 150 training weeks randomly into 6 batches of 25 weeks.383

The first batch is held out and the current loss on that batch is saved. For each subse-384

quent batch, the loss for that batch is used to update the model parameters. To update385

the parameters, we use the Adam optimizer with initial learning parameter set to 1e−386

3 (Kingma & Ba, 2015). With the updated model parameters, we calculate a new loss387

on the first, held-out batch. If that new loss is less than the saved loss, then the updated388

parameters are accepted and the new loss is saved. If the new loss is larger than the saved389

loss then the parameters are only accepted with390

probability of acceptance = exp (saved loss− final loss).391

This training strategy reduces the amount of overfitting because it forces updates to be392

generalizable to the held out batch, which acts as a ’testing batch’.393

FNNs with enough hidden layers have been proven to serve as a universal approx-394

imator (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993). This means that, at395

least theoretically, there exists a FNN that can represent whatever functional relation-396

ship exists between the sea surface variables and MLD. Unfortunately, there is no guar-397

anteed way to find this optimal relationship. While the optimization problem (Eq. 13)398

has a natural inherited probabilistic framework, even an exact solution has no guaran-399

tee of agreeing with the ‘true’ relationship. The construction of these optimization frame-400

works and the regularization functions is often done by trial and error since there is, as401

of yet, no clear casual relationship between tuning the architecture settings and the re-402

sulting uncertainty estimate - even if the model can be viewed through a (Bayesian) prob-403

abilistic framework.404

Finally, since the (approximate) solution to Eq. 13 is not accompanied with nat-405

ural uncertainty estimates for the parameters, it can be difficult to obtain calibrated prob-406

abilistic estimates of d̂. To truly obtain samples from the posterior p(d|do, S, T,H, θ), we407

would need to incorporate any and all uncertainties that exist in the inputs, observations,408

model parameters, and model framework and be able to sample from them effectively.409

Due to the high-dimensionality of the problem, this is computationally infeasible and there-410

fore we must rely on adequate approximations. In the next section, we outline the ap-411

proximations that we test in this manuscript.412
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3.3 Probabilistic Machine Learning Models413

The simplest technique to introduce uncertainty estimates into a neural network414

is to implement Dropout (Hinton et al., 2012; Srivastava et al., 2014). Acting as a layer415

of the network, Dropout randomly sets inputs to zero at a particular rate and scales the416

rest of the inputs by 1/(1− rate). Mathematically,417

f (i)(x) =
1

1− p
M � a(xTWi + bi), Mj ∼ Bernoulli(p), (14)418

where � means element-wise multiplication. Each run of the model then has a differ-419

ent combination of weights that are set to zero. While originally this technique was used420

to reduce overfitting, it can also be viewed through a Bayesian probabilistic lens (Maeda,421

2014). Running the model multiple times creates an ensemble that can be used to cal-422

culate moments of the output distribution, and, in particular, Σ and µ. It has been shown423

that the expected distribution from a neural network utilizing Dropout forms a Gaus-424

sian mixture distribution (Gal & Ghahramani, 2016). Therefore, there is some reason425

to believe that the regularity of the data distribution dictates how useful Dropout can426

be in uncertainty quantification.427

The next simplest probabilistic technique, what we call the Variational Artificial428

Neural Network (VANN), also known as a heteroscedastic network, is to parameterize429

the output of the neural network according to some distribution. For a Gaussian distri-430

bution, for example, the output of f is a stacked vector of the mean and covariance es-431

timates,432

f(S, T,H; θ) = [µ; vec(Σ)], (15)433

where vec(Σ) is the flattened covariance matrix, such that d ∼ N(µ,Σ). This technique434

is relatively easy to implement with care needed to ensure that constraints on the pa-435

rameters are enforced. Typically, a Bayesian framework would then impose prior prob-436

ability distributions onto µ and Σ. In particular, in addition to the Gaussian likelihood,437

it is common to impose a Gamma or LKJ - uniform over the space of covariance matri-438

ces - prior on the covariance to prevent unnecessary shrinkage. In a feedforward neural439

network, this parameterization increases the number of outputs and hence the overall440

total number of parameters. If the number of grid points of d(x) is M then a full covari-441

ance matrix would require M(M +1)/2 parameters and the corresponding number of442

parameters required in the neural network makes it computationally prohibitive as k grows443

large. To limit the computational cost, we make a diagonal assumption about the co-444

variance to reduce the number of parameters at the expense of losing covariance infor-445

mation between MLD values at different grid points. Parameterization of the data dis-446

tribution is not always possible if a good approximation or transformation to an appro-447

priate probability distribution is not known and the effectiveness of this technique is re-448

flection of the quality of that assumption.449

The final method that we test is the variational auto-encoder (VAE) (Kingma &450

Welling, 2014). A typical VAE consists of two dense networks: an encoder that projects451

the inputs into a lower-dimensional latent space, parameterized by a probability distri-452

bution, and a decoder that inverts this projection and produces the original input. The453

loss between the decoder’s output and the original system drives the learning process.454

A VAE supposes a prior distribution over the latent variable z, p(z), that, along with455

the decoder network that induces a conditional likelihood distribution p(S, T,H|z; θ), forms456

a posterior distribution,457

p(z|S, T,H; θ) ∝ p(z)p(S, T,H|z; θ)458

This posterior distribution is typically intractable and thus replaced by a variational459

approximation q(z|S, T,H; θ). This approximation includes a parameterization of the prior460

and likelihood distributions, typically Gaussian distributions with parameters that are461
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Figure 3. A schematic of the modified VAE. Training is informed by the decoder and esti-

mator networks losses. For a full description of the training procedure for a typical VAE, see

Kingma and Welling (2014).

learned in the encoder network. In our design we also use a Gaussian distribution in the462

latent space, and, as demonstrated in Figure 3, we couple this network with a third dense463

network, which we call the estimator, that transforms the latent space into an estimate464

of the MLD associated with the surface salinity, temperature, and sea height anomaly465

encoder inputs.466

While the prior and likelihood distributions in a VAE are specified as Gaussian,467

the distribution of the output of the estimator network, that is, the MLD outputs, is not468

parameterized. While the difference between the MLD estimates and the MLD obser-469

vations is modelled as a Gaussian process regardless of neural network architecture, the470

possible benefit of our chosen VAE approach is that it can produce theoretically arbi-471

trary probability distribution p(d|S, T,H; θ). Another theoretical benefit to this approach472

is that, since the neural network can learn an efficient lower-dimensional representation473

of the inputs that capture dominant patterns, the estimator might be better able to gen-474

eralize and less sensitive to small perturbations and noise in the inputs.475

We summarize the ways in which the MLD uncertainty, represented as Σ, is esti-476

mated. For the non probabilistic methods (linear model, artificial neural network), there477

is no associated Σ. For the Variational Artificial Neural Network (VANN), Σ is a direct478

output of the neural network and the weights that produce this Σ are trained as in Eq.479

13. For the Dropout network, each output of the network is a draw from a random dis-480

tribution. Σ is the sample covariance matrix of 100 random samples from this distribu-481

tion. Similarly, for the variational auto-encoder (VAE), Σ is the sample covariance ma-482

trix from 100 random outputs of the VAE network.483

4 Experimental Results484

We test 6 different methods on each experiment, five of which we consider as part485

of the machine learning framework: the linear model (Eq. 10), the feedforward artificial486

neural network (Eq. 11), feedforward neural network with parameterized distributional487

output (Eq. 15) feedforward neural network with Dropout (Eq. 14), and a variational488

auto-encoder. We collectively shorthand these to be ’Linear’, ’ANN’, ’VANN’, ’Dropout’,489

and ’VAE’. While the models presented in this study are based on the basic feedforward490

neural network architecture, we also tested (with poor performance) convolutional neu-491

ral networks with a multitude of architectures and hyperparameters. Finally, in order492

to compare these methods to a traditional interpolation only approach, we implement493

an Ordinary Kriging scheme, which we call ’OI’ for optimal interpolation, with a (spa-494

tial) spherical kernel chosen via cross-validation and parameters optimized via maximum495
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likelihood. The OI approach only uses the in-situ MLD standard anomaly observations,496

with no sea surface information, to make gridded estimates. Therefore, even during the497

out-of-sample prediction experiments, the OI’s error statistics for a given week are cal-498

culated using only that week’s data. In particular, we use a cross-validation approach499

using a 75-25% train-test split to estimate these error statistics.500

We use 3 metrics in our testing: root mean squared error (RMSE), Pearson cor-501

relation coefficient, and probabilistic calibration. These metrics are applied to modeled502

standardized MLD anomalies at the validating Argo profile locations (see section 2 for503

details). We use the typical definition of root mean squared error,504

RMSE =

√√√√ 1

n

n∑
i=1

∣∣(do)i − L(d)i
∣∣2. (16)505

RMSE is a convenient metric in that it captures the mean prediction error, but it506

doesn’t necessarily tell us much about the relationship between the predictions and ob-507

servations and it also fails to capture meaningful information about the uncertainty of508

the predictions. To compensate for the first deficiency, we rely on the Pearson correla-509

tion coefficient (correlation) to provide insight into the existence of (linear) relationships510

between predictions and the Argo MLD data. For reference, correlation is defined as511

Correlation =

n∑
i=1

(
L(d)i − L(d)

)(
(do)i − do

)
√√√√ n∑

i=1

(
L(d)i − L(d)

)√√√√ n∑
i=1

(
(do)i − do

) (17)512

Common metrics that capture probabilistic calibration include skill scores such as the513

Brier score or the Kolmogorov–Smirnov statistic. Here, for simplicity, convenience, and514

data-limitation reasons, we use the following measure for probabilistic calibration,515

Calibration =
1

n

n∑
i=1

1

[
|(do)i − L(d)i| <

√
Vii

]
, (18)516

where Vii is the ith diagonal entry of the covariance matrix of the Gaussian pro-517

cess regressor (Eq. 8) and 1 is 1 if the argument is true and 0 otherwise. Calibration is518

then a number between 0 and 1. It is important to remember that V also includes the519

covariance estimate from the probabilistic machine learning models, Σ. For non-probabilistic520

machine learning model, V does not include any model uncertainty beyond the learned521

hyperparameter β in Eq. 6. For a Gaussian statistic, the Calibration is theoretically ≈522

0.68, the optimal score for this metric. If a model scores lower than that theoretical thresh-523

old, it is underestimating the amount of uncertainty in the data. Conversely, a higher524

Calibration than the theoretical threshold represents an overestimation of the uncertainty.525

We aim to give an overview of the main results from our studies. We focus on the526

aforementioned metrics as we compare model performance overall, and broken down by527

groups representing different levels of standard deviation in the observations. These met-528

rics indicate 3 conclusions: 1) Model performance is superior in the equatorial Pacific529

Ocean than the southern Indian Ocean, 2) the probabilistic machine learning methods530

outperform traditional OI, particularly in terms of correlation and calibration, and, there-531

fore, 3) the relative performance of machine learning algorithms indicate that surface vari-532

ables can provide meaningful information about the mixed layer depth and produce es-533

timates that are as good or better than OI methods that directly use MLD data. Finally,534

we visually compare the model outputs in two case studies that represent the best and535

worst model performance. To provide context and further applications, we also include536
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Figure 4. Root Mean Squared Errors (RMSE) on temporal out-of-sample prediction (in me-

ters). Errors are calculated on 50 withheld validation weeks. Boxes capture 25-75% of the weekly

errors with the middle line representing the median error. Dots are considered outliers - values

which are 1.5× lower/upper quantile. (Left) The equatorial Pacific region (120W, 10S) - (150W,

10N). (Right) The southern Indian Ocean region (45S, 60E) - (35S, 120E). Note the difference in

scales between the two regions. OI errors are calculated using cross-validation within each week

(see text for details).

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Equatorial Pacific Ocean Southern Indian Ocean

OI Linear ANN VANN Dropout VAE OI Linear ANN VANN Dropout VAE

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

C
or

re
la

ti
on

Figure 5. Correlation on temporal out-of-sample prediction (in meters) as in Fig. 6. Cor-

relations are calculated on 50 withheld validation weeks. Boxes capture 25-75% of the weekly

correlation with the middle line representing the median correlation. Dots are considered outliers

- values which are 1.5× lower/upper quantile. (Left) The equatorial Pacific region (120W, 10S) -

(150W, 10N). (Right) The southern Indian Ocean region (45S, 60E) - (35S, 120E). OI values are

calculated using cross-validation within each week (see text for details).
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Figure 6. Measure of probabilistic calibration on temporal out-of-sample prediction as in

Fig. 6. Calibrations are calculated on 50 withheld validation weeks. For each week, we find the

percent observations that fall within 1 standard deviation of forecast ensembles. For a Gaussian

distribution, this probability should be approximately 0.68, with greater relative values rep-

resenting under-confident and lesser relative values representing overconfident predictions. OI

calibrations are calculated using cross-validation within each week. (Left) The equatorial Pacific

region (120W, 10S) - (150W, 10N). (Right) The southern Indian Ocean region (45S, 60E) - (35S,

120E).
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model outputs from the HYCOM + NCODA Global 1/12◦ Analysis (Fox et al., 2002;537

Cummings, 2006; Cummings & Smedstad, 2013) for a visual comparison with our purely538

data-driven approaches.539

Considering first the RMSE, model performance is superior in the equatorial Pa-540

cific Ocean compared to the southern Indian Ocean, and the various models differ only541

modestly within each region. Fig. 4 (note the difference in scales of the vertical axis) shows542

the RMSE results over the two regions. The machine learning methods seemingly per-543

form well against OI, particularly in the equatorial Pacific as the Dropout and VAE meth-544

ods have the lowest median RMSE and 25% - 75% range. In the southern Indian Ocean,545

the Linear method performs well, initially suggesting that the mean dynamics can be546

well approximated by a linear combination of the surface variables. The number and range547

of OI outliers, in comparison to machine learning approaches, demonstrates that the ma-548

chine learning approaches offer more stable predictions.549

The correlation analysis underscores and further confirms the result (derived from550

RMSE above) that the overall model performance is better in the eastern equatorial Pa-551

cific Ocean compared to the southern Indian Ocean (Fig. 5). However, the correlations552

also reveal more substantial differences between the models in each region. In the equa-553

torial Pacific, it is clear that the machine learning methods perform better than tradi-554

tional OI, with the VAE performing the best. In the southern Indian Ocean, however,555

there is little separating the performance between OI and probabilistic machine learn-556

ing methods, although the VAE is marginally the best performing model in this region557

as well. A key difference between the RMSE results in Fig. 4 and the correlations in Fig.558

5 is that the linear method, while having a small predictive RMSE, has poor correlation559

with the observations. From other testing, we believe that the linear model has both small560

RMSE and correlation because the outputs of the linear method are generally smaller561

values.562

The calibration results in Fig. 6 demonstrate that the probabilistic machine learn-563

ing approaches using surface data are significantly better at estimating the posterior un-564

certainty than OI and MLD data alone. Furthermore, model performance is again su-565

perior (albeit modestly so) in equatorial Pacific Ocean compared to the southern Indian566

Ocean. The linear model performs very poorly in comparison to the other machine learn-567

ing methods. The traditional OI approach also has poorer performance compared to the568

machine learning models. In addition, all probabilistic techniques appear to perform slightly569

better than the non-probabilistic ANN (in terms of both calibration and RMSE). How-570

ever, the smallness of the differences between ANN and the other ML models suggests571

that much of the uncertainty manifest in all the ML model calibrations is due to the Gaus-572

sian Process regression, since the ANN does not have inherent MLD uncertainty esti-573

mates. Among the three probabilistic machine learning models, VANN, Dropout, and574

VAE, the VANN has dramatically better calibration than the other two methods. This575

discrepancy shows that, in these particular case studies, explicitly parameterizing the576

noise better captures the underlying uncertainty than the sampling-based approaches.577

The conclusion from the calibration metric are mirrored in Fig. 7, where the em-578

pirical cumulative distribution of the models is plotted against the distribution of the579

observations. The diagram represents the Lines closer to the optimal red line in that fig-580

ure represents better model calibration. It is clear from this plot that the VANN and VAE581

have superior performance in estimating the tails of the distribution when compared to582

other methods and the OI. It is true, however, that overall performance is lacking. The583

behavior of each line indicates that the tails of the model distribution are shorter than584

the observational distribution - another indication that extreme MLD values remain dif-585

ficult for the models to predict.586

The difference between performance in VANN vs. Dropout and VAE could plau-587

sibly explained by suggesting that the posterior probability distribution of the MLD given588
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Figure 7. Probability plot comparing the empirical cumulative distributions of the model

outputs against the data. The dotted red line would represent perfect agreement between models

and observations. A value above and to the left of the red line indicates a part of the distribution

that is over-represented, whereas a value below and to the right of the red line indicates a part of

the distribution that is underrepresented.

satellite data is closely approximates a Gaussian distribution and hence well estimated589

by the VANN. Alternatively, the available data may not be sufficient to allow the sampling-590

based methods (Dropout and VAE) to learn the posterior distribution.591

To reveal how the model performance depends on the MLD variability, we group592

the observed MLDs at the Argo profile locations by the (ensemble) standard deviation593

of all observed standardized MLD anomalies (defined in section 2.4) in the same week594

and region using K-Means clustering. We find that model performance generally degrades595

in terms of RMSE (Fig. 8) but improves in terms of correlation (Fig. 9) in weeks with596

higher standard deviations. But, model calibration (not shown) is relatively insensitive597

to the weekly variability of MLD anomalies. With regard to RMSEs in Fig. 8, we find598

that the increases in RMSE with standard deviation are fairly consistent across the mod-599

els, and the slope RMSE-over-standard-deviation is roughly 1 in both regions. In addi-600

tion, the probabilistic machine learning models have about equal or smaller RMSE than601

the OI at all levels of variance. Finally, it is notable that for the weeks with the largest602

observation standard deviations, the OI has particularly large RMSEs in the southern603

Indian Ocean, whereas the linear method has particularly large RMSEs in the equato-604

rial Pacific.605

With regard to the correlations in Fig. 9, we find that the increasing standard de-606

viation of the observations in the equatorial Pacific Ocean improves model performance607

to a much greater degree than in the southern Indian Ocean. Interestingly, the compar-608

isons between the models within each standard deviation cluster qualitatively mirror those609

of the whole dataset (c.f., Figs. 9 and 5): machine learning models generally produce higher610

correlation than OI, particularly in the equatorial Pacific Ocean. The only notable ex-611

ception is the bin with high standard deviation in the Southern Indian Ocean, where the612

VANN, Dropout and VAE models have notably higher correlation than the other meth-613

ods, while OI performs particularly poorly. Finally, the relatively high correlations at614

large standard deviation in the equatorial Pacific suggest, potentially, that the dynam-615

ics that cause large mixed layer depth anomalies also strongly couple with the surface616

variables in this region.617
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EPO 1 24 0.38 0.66
EPO 2 23 0.68 1.02
EPO 3 3 1.22 1.51

Cluster # of
Weeks

Min
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Max
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SIO 1 36 0.49 1.46
SIO 2 12 1.64 2.77
SIO 3 2 3.66 4.65

Figure 8. RMSEs divided by region and clustered by the standard deviations of the en-

sembles of MLD standard anomalies in a given week in (Left) the equatorial Pacific Ocean and

(Right) the southern Indian Ocean. (Bottom) Table showing the number of weeks in each cluster,

the minimum standard deviation in each cluster, and the maximum standard deviation in each

cluster. (Top) The distribution of the RMSE for each method, corresponding to 40 samples from

the posterior distribution for each week, separated by cluster. The boxplots are colored as in Fig.

4. Note the difference in scales between the two regions.
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Figure 9. As in Fig. 8, but correlations instead of RMSE.

Taken together, the results indicate that, in the equatorial Pacific Ocean and to618

a lesser extent in the southern Indian Ocean, the surface information provides just as,619

if not more so, valuable information in estimating the MLD as the existing Argo obser-620

vations of the MLD.621

To give a visual and spatial sense of the range of model estimates, we demonstrate622

two extreme ends of the prediction spectrum, the worst and best predictive weeks for623

our models. Full model output for all available weeks are available online (Foster et al.,624

2020) at https://www.doi.org/10.5281/zenodo.4421752. The week corresponding to625

the worst RMSE performance is the week of 11-23-2012 in the southern Indian Ocean.626

If you compare this with Fig. 1, this corresponds to a period of particularly large anoma-627

lies. The average RMSEs for this particular week corresponding to the OI and VAE mod-628

els are approximately 6.14 and 4.16. Similarly, the week of the relative best performance629

(now in terms of correlation coefficient) is 05-09-2014 in the equatorial Pacific Ocean.630

The corresponding average correlations (and RMSEs) for the OI and VAE methods are631

0.68 (1.09) and 0.83 (0.99). Figs. 10 and 11 show A. the data with overlaid sea level height632

contours, B. smooth gridded climatology, C. standard anomaly OI model output, D. VAE633

model output, E. reanalysis of VAE model output and observations, and F. HYCOM+NCODA634

Global 1/12◦ Analysis for these two weeks. MLD values are derived from the HYCOM+NCODA635

reanalysis by applying the MLD definition in D. B. Whitt et al. (2019) and averaging636

over the appropriate week (the raw southern ocean HYCOM data is 3-hourly and the637

equatorial Pacific data is daily). Each of the machine learning and OI model outputs are638

computed as MLD standard anomalies and are transformed back to MLD estimates for639

plotting. Because the output of the VAE model does not use observations at prediction640

time, we can perform our own reanalysis by finding the minimum of the associated pos-641

terior distribution,642

d̂ = arg min
d

− ln p(d|do, dm),

= arg min
d

(d− dm)TΣ−1(d− dm) + (Ld− do)TV −1(Ld− do).
(19)643
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Figure 10. MLD estimates, estimated on standard anomalies with climatologies added back

in, corresponding to the date of worst RMSE, achieved by VAE approach in the southern Indian

Ocean, 11-23-2012. Methods from top left to bottom right: A. Argo float observations with sea

level height contours of 0.5 meters are overlaid (blue is lower height), B. smooth gridded clima-

tology, C. optimally interpolated standard anomalies with climatologies, D. VAE model with

climatologies, E. Reanalysis of VAE and observations, and F. HYCOM+NCODA ocean model -

see text for more details.
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Figure 11. MLD estimates, estimated on standard anomalies with climatologies added back

in, corresponding to the date of best average correlation, achieved by VAE approach in the equa-

torial Pacific Ocean, 05-9-2014. Methods from top left to bottom right as in Fig. 10

In Fig. 10, the week representing the collectively worst model performance, is an644

example of an extremely large MLD standard anomalies that can occur in late spring645

due to a delay in the springtime transition from deep winter to shallow summertime MLDs,646

as seen in Fig. 1. In this week, there is a narrow cluster of abnormally large MLD val-647

ues that are visible in panels A, C, D and E. The OI model outputs are visually smooth,648

as a result of the spherical kernel used to do the interpolation, but underestimate the649

magnitude of the data. The VAE model output, as a result of being a function of the650

sea surface data, contains many small scale features that create a visually noisy gridded651

estimate. In addition, there are clusters of large anomalies where the data does not sug-652

gest any (near 115◦E and 43◦S for example). The reanalysis, as a result of being a variance-653

weighted average between the VAE and the observations, more closely resembles the OI654

estimate but still contains much more small scale variability. In the HYCOM + NCODA655

Global reanalysis, the model does not seem to capture the large MLD values that are656

seen in the Argo data, which might be due to the relative uncertainties in the HYCOM657

+ NCODA Data Assimilation procedure. Direct comparisons between the VAE reanal-658

ysis and HYCOM+NCODA model should not be over-exaggerated because the differ-659

ences in variance specification.660

Similar to the worst case, the best case (achieved by the VAE model) occurs in a661

week of large standard anomalies in the equatorial Pacific (Fig. 1). As opposed to the662

worst case study, in this case study (Fig. 11) the climatology offers a lot of structure that663

is manifested in the MLD that week. The OI model output presents a very spatially co-664

herent MLD estimate. The machine learning models, as a result of being functions of665

the sea surface inputs, have smaller scale features that modify the overall structure of666

the gridded MLD. The VAE model output, while having better performance in estimat-667

ing the MLD standard anomalies than the OI at the observation locations, appears to668

have a greater stratified estimate. That is, the VAE model seems to overestimate the mag-669
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nitude of standard anomalies. The reanalysis of the VAE model output and observations670

retains a mixture of the smaller scale feature from the VAE model and the coherent struc-671

ture apparent in the OI output. The HYCOM + NCODA reanalysis closely captures the672

scale of the Argo MLD values, but the overall structure does not visually seem to match673

the observations. Again, the comparison with the HYCOM + NCODA reanalysis should674

be taken with appropriate qualification.675

5 Conclusion and Discussion676

The ocean mixed layer interacts with the atmosphere and deep ocean on a mul-677

titude of spatial and temporal scales. Heat exchange between these bodies has signifi-678

cant impact on subseasonal and interannual (aseasonal) timescales and can influence the679

behavior of dominant modes of variability (i.e. ENSO, MJO, tropical cyclones). Prolif-680

eration of Argo floats have dramatically increased the number of observations of the ocean681

over the preceding decades but are still too sparse to resolve fine spatio-temporal fea-682

tures of the MLD. Satellite data, however, is able to provide fine resolution gridded maps683

of sea surface variables, but cannot provide subsurface information.684

The first goal of this work was to analyze the extent to which satellite data of sea685

surface variables can provide information useful for estimating the MLD. We built sev-686

eral machine learning models to learn such a relationship based on available data. We687

found that in terms of both root mean squared error, correlation, and probabilistic cal-688

ibration, the machine learning model results suggest that the satellite data is equally if689

not more useful in estimating MLD values and uncertainties than MLD observations alone,690

given that sufficient MLD observations are available for out of sample training (Figs. 4691

& 6). The exact relative performance between these methods can depend on the loca-692

tion of interest and the aseasonal variance, but we believe that the machine learning method-693

ology can be widely applicable and competitive with optimal interpolation approaches694

globally. In particular, the Argo mixed layer depth samples with increased variance in695

the equatorial Pacific Ocean, whose subannual variability includes a relatively strong asea-696

sonal component, seem to be more strongly connected with the surface dynamics. There-697

fore, including surface information together with in-situ MLD estimates may be useful698

for generating improved reanalyses of the upper ocean under these circumstances. The699

second goal of this work was to use sophisticated probabilistic learning approaches to700

better understand the probability distribution of the MLD. The probabilistic approaches701

capture uncertainty to a greater extent than the optimal interpolation approach, but it702

is clear that, whether because of data or model limitations, more work is needed to ob-703

tain truly calibrated posterior probabilities. While initial results suggest that a Gaus-704

sian approximation of the conditional posterior distribution is appropriate, insufficient705

data might also explain the relative under-performance of the sampling-based probabilis-706

tic machine learning methods that we tested.707

This work is an initial step into machine learning modeling of the MLD and there708

are several avenues for continued methodological and oceanographic research. First, the709

results in this study are regional test cases chosen to reveal how the variability of the710

MLD impacts the ability of the machine learning methods to learn a functional relation-711

ship between the surface variables and the MLD. Future work will expand this regional712

approach to a global scale. Second, while the probabilistic calibration results suggest that713

machine learning methods can better estimate the posterior distribution compared to714

the optimal interpolation approach, the overall calibration is underwhelming. Further715

research is needed to derive better architectures to better estimate this conditional pos-716

terior probability distribution. This research could include weight uncertainty, more so-717

phisticated sampling strategies, covariance regularization, or other neural network ar-718

chitectures. Finally, the research presented in this paper ignored temporal dynamics. We719

believe that incorporation of the temporal dynamics could help regularize the estima-720

tion procedure by coupling observations across time while simultaneously providing use-721
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ful scientific information about the temporal dynamics of the MLD in relation to the sur-722

face variables. In addition to the continued methodological research that follows from723

this paper, we believe that this methodology can be used to answer scientific oceanographic724

research questions that require fine resolution gridded MLD estimates.725
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