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Abstract

Iron is a key micronutrient controlling phytoplankton growth in vast regions of the global ocean. Despite its importance,

uncertainties remain high regarding external iron source fluxes and internal cycling on a global scale. In this study, we used a

global dissolved iron dataset, including GEOTRACES measurements, to constrain source and scavenging fluxes in the marine

iron component of a global ocean biogeochemical model. Our model simulations tested three key uncertainties: source inputs

of atmospheric soluble iron deposition (varying from 1.4 - 3.4 Gmol/yr), reductive sedimentary iron release (14 - 117 Gmol/yr),

and compare a variable ligand parameterization to a constant distribution. In each simulation, scavenging rates were adjusted to

reproduce the observed global mean iron inventory for consistency. The apparent oxygen utilization term in the variable ligand

parameterization significantly improved the model-data misfit, suggesting that heterotrophic bacteria are an important source

of ligands to the ocean. Model simulations containing high source fluxes of atmospheric soluble iron deposition (3.4 Gmol/yr)

and reductive sedimentary iron release (114 Gmol/yr) further improved the model, which then required high scavenging rates

to maintain the observed iron inventory in these high source scenarios. Our model-data analysis suggests that the global marine

iron cycle operates with high source fluxes and high scavenging rates, resulting in relatively short surface and global ocean

mean residence times of 0.83 and 7.5 years, respectively, which are on the low-end of previous model estimates. Model biases

and uncertainties remain high and are discussed to help improve global marine iron cycle models.
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Abstract 19 

Iron is a key micronutrient controlling phytoplankton growth in vast regions of the global ocean. 20 

Despite its importance, uncertainties remain high regarding external iron source fluxes and 21 

internal cycling on a global scale. In this study, we used a global dissolved iron dataset, 22 

including GEOTRACES measurements, to constrain source and scavenging fluxes in the marine 23 

iron component of a global ocean biogeochemical model. Our model simulations tested three key 24 

uncertainties: source inputs of atmospheric soluble iron deposition (varying from 1.4–3.4 25 

Gmol/yr), reductive sedimentary iron release (14–117 Gmol/yr), and compared a variable ligand 26 

parameterization to a constant distribution. In each simulation, scavenging rates were tuned to 27 

reproduce the observed global mean iron inventory for consistency. The variable ligand 28 

parameterization improved the global model-data misfit the most, suggesting that heterotrophic 29 

bacteria are an important source of ligands to the ocean. Model simulations containing high 30 

source fluxes of atmospheric soluble iron deposition (3.4 Gmol/yr) and reductive sedimentary 31 

iron release (114 Gmol/yr) further improved the model most notably in the surface ocean. High 32 

scavenging rates were then required to maintain the iron inventory resulting in relatively short 33 

surface and global ocean residence times of 0.83 and 7.5 years, respectively. The model 34 

simulates a tight spatial coupling between source inputs and scavenging rates, which may be too 35 

strong due to underrepresented ligands near source inputs, contributing to large uncertainties 36 

when constraining individual fluxes with dissolved iron concentrations. Model biases remain 37 

high and are discussed to help improve global marine iron cycle models. 38 

1 Introduction 39 

Iron is a critical micronutrient limiting primary productivity in vast ocean regions (Boyd 40 

and Ellwood, 2010; Tagliabue et al., 2017). Iron limitation is responsible for the development of 41 

so-called High Nitrate Low Chlorophyll (HNLC) regions of the Southern Ocean, Subarctic North 42 

Pacific, Subarctic North Atlantic, and Eastern Equatorial Pacific (Moore et al., 2013). Since 43 

dissolved iron (DFe) in the ocean exists in the picomolar (pM) to nanomolar (nM) concentration 44 

range, historical measurements with higher detection limits and contamination issues have 45 

hindered a robust global understanding of the marine iron cycle compared to macronutrients 46 

(Bruland et al., 2014). However, over the past two decades, in large part due to the 47 

GEOTRACES program, considerable progress has been made and reliable intercomparable iron 48 
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measurements have become available that permit a more synoptic view of the marine iron cycle 49 

(Schlitzer et al., 2018). 50 

The increasing number of robust iron measurements has sparked recent modeling efforts. 51 

However, few observational constraints are provided on a global scale, and the degree of 52 

complexity and assumptions on the mechanistic processes implemented in global marine iron 53 

models have varied dramatically (e.g., Tagliabue et al. (2016)). For example, there is no 54 

consensus on the rates of key source fluxes to the ocean, particularly from atmospheric 55 

deposition (Anderson et al., 2016) and sedimentary release (e.g., Elrod et al. (2004); Dale et al. 56 

(2015)) that vary between 1.4–30 Gmol yr
-1 

and
 
0–194 Gmol yr

-1
, respectively, in state-of-the-art 57 

marine iron models (Tagliabue et al., 2016)
 
. Since uncertainties associated with scavenging and 58 

removal of DFe are also high, global marine iron models can tune scavenging rates to reproduce 59 

the global iron inventory with large ranges of sources fluxes (Frants et al., 2016; Pasquier and 60 

Holzer, 2017). 61 

Another key aspect of marine iron models is the representation of ligands which 62 

organically bind DFe and thereby prevent it from being scavenged to sinking particulates. Some 63 

models still prescribe a globally constant ligand concentration typically at 1 nM, while others 64 

account for ligand distributions via a parameterization or directly simulating ligands as a 65 

prognostic tracer. Ligands are thought to be produced by microbes as a by-product during the 66 

production of organic matter (Gledhill and Buck, 2012), including by heterotrophic siderophores 67 

that flourish when systems become iron stressed (Bundy et al., 2018). This has led modelers to 68 

predict ligand concentrations by assuming they are produced during the production of organic 69 

matter (e.g. Völker & Tagliabue (2015)) or by prescribing a relationship to other organic tracers 70 

such as dissolved organic matter and apparent oxygen utilization (e.g., Tagliabue & Völker 71 

(2011); Misumi et al. (2013); Pham and Ito (2018)).  72 

The uncertainties associated with external source fluxes and scavenging represent key 73 

gaps in understanding the global marine iron cycle. This hampers accurate estimates of the DFe 74 

budget, residence time and, consequently, its sensitivity to environmental perturbations and 75 

climate change. While the rapidly increasing amount of DFe measurements is improving our 76 

knowledge of the distribution and inventory of dissolved iron in the ocean, constraining external 77 

fluxes has proved to be more difficult. As a result, the range of residence times estimated by the 78 
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current global marine iron cycle models ranges from less than a decade to multiple centuries 79 

(Tagliabue et al., 2016), which limits our ability to confidently predict the impact of changes to 80 

the marine iron cycle on productivity in a future ocean. Observational estimates fall within a 81 

similar range (Johnson et al., 1997), noting that more recent studies estimate much shorter 82 

residence times in the upper ocean (~10 days–4 years) (Croot et al., 2004; Sarthou et al., 2003) 83 

depending on the local dynamics, iron pools considered, and source inputs in different regions 84 

(Black et al., 2020). 85 

In this study, we use a global marine DFe dataset to constrain the iron cycle fluxes in a 86 

global marine biogeochemical model. We analyze model sensitivity simulations that focus on 87 

three key uncertainties: varying source fluxes of (1) atmospheric soluble iron deposition and (2) 88 

reductive sedimentary iron release, as well as the role of a (3) variable ligand distribution on DFe 89 

distribution and scavenging rates. The resulting DFe concentrations in each model simulation are 90 

evaluated against observations to determine the most realistic marine iron cycle fluxes among the 91 

model scenarios.  92 

2 Model Description 93 

We used the UVic Earth System Climate Model (Weaver et al., 2001) version 2.9 (Eby et 94 

al., 2009). In the following section, we provide a general overview of the model components 95 

then focus on improvements made to the marine iron cycle in this study, whereas other 96 

modifications applied to all model simulations are described in the supplementary information. 97 

2.1 Physical Model 98 

The physical ocean-atmosphere-sea ice model includes a three-dimensional (1.8°×3.6°, 99 

19 vertical levels) general circulation model of the ocean (Modular Ocean Model 2) with 100 

parameterizations such as diffusive mixing along and across isopycnals and eddy-induced tracer 101 

advection
 
(Gent and Mcwilliams, 1990). The physical configuration is based on Somes et al. 102 

(2017) and includes parameterizations such as computation of tidally-induced diapycnal mixing 103 

over rough topography
 
on the sub-grid scale (Schmittner and Egbert, 2014), anisotropic viscosity

 
104 

(Large et al., 2001; Somes et al., 2010), and enhanced zonal isopycnal mixing schemes in the 105 

tropics to better represent zonal equatorial undercurrents (Getzlaff and Dietze, 2013). A two-106 

dimensional, single level energy-moisture balance atmosphere and a dynamic-thermodynamic 107 
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sea ice model are used, forced with prescribed monthly climatological winds
 
(Kalnay et al., 108 

1996) and constant ice sheets (Peltier, 2004). 109 

2.2 Marine Biogeochemical Model 110 

The updated marine ecosystem-biogeochemical model coupled within the ocean 111 

circulation model is based on the Model of Ocean Biogeochemistry and Isotopes (MOBI), 112 

version 2.0. Briefly, MOBI includes three prognostic inorganic nutrient tracers (nitrate (NO3), 113 

phosphate (PO4), iron (DFe)) and two organic phases (dissolved organic nitrogen (DON) and 114 

dissolved organic phosphorus (DOP)), three phytoplankton (ordinary, N2-fixing diazotrophs, 115 

calcifying coccolithophores), one zooplankton, sinking detritus (i.e. dead particulate organic 116 

matter (POM)), as well as dissolved oxygen (O2), dissolved inorganic carbon, alkalinity, and 117 

Δ
14

C (Figure S1). It combines latest features from previous studies focusing on the nitrogen 118 

cycle (Somes and Oschlies, 2015), iron cycle (Muglia et al., 2017), and carbon chemistry (Kvale 119 

et al., 2015), and is also constrained by isotope systems of 
13

C and 
15

N (Schmittner and Somes, 120 

2016) (not shown here). Our model experiments were simulated for over 5,000 years under pre-121 

industrial boundary conditions as they approached their quasi steady-state. 122 

2.3 Marine Iron Cycle Model 123 

2.3.1 Base Configuration 124 

The marine iron model configuration is based on the previous UVic Kiel Marine 125 

Biogeochemistry Model (KMBM) (Nickelsen et al., 2015), including improvements 126 

implemented in Muglia et al. (2017) (Figure 1). The marine iron model includes explicit tracers 127 

for DFe and particulate iron (PFe). All phytoplankton grow with a constant elemental 128 

stoichiometry ratio of iron relative to nitrogen. The sources of DFe to the ocean are atmospheric 129 

soluble deposition (Luo et al., 2008), reductive dissolution and release from sediments (Elrod et 130 

al., 2004; Moore and Braucher, 2008), and hydrothermal fluxes (Tagliabue et al., 2010) (Table 2, 131 

Figure 2). The ligand concentration determines the fraction of DFe that is organically complexed 132 

and thus unavailable for scavenging, whereas the remaining free DFe (DFe’) pool can be 133 

scavenged to PFe, which then sinks and remineralizes at the same rate as POM (Table S1). In the 134 

base simulation #1, ligands are prescribed to be globally constant at 1 nM as in previous 135 

iterations of the model. This simulation is given the name SrcLow_LigCon to reflect its 136 
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differences (i.e., low source inputs of atmospheric soluble deposition and reductive sedimentary 137 

iron release, and constant ligand distribution) from further changes made to the marine iron 138 

model in this study (see subsections below and Tables 1 and 2). 139 

2.3.2 Scavenging 140 

The formulation for scavenging and partitioning of free and organically-complexed DFe 141 

is based on from previous model parameterizations (Nickelsen et al., 2015; Galbraith et al., 142 

2010) . Scavenging of DFe’ to PFe occurs via two mechanisms in the model: (1) absorption onto 143 

particulate organic matter following (Honeyman et al., 1988; Parekh et al., 2004) 144 

 145 

( 1)     𝐹𝑒𝑂𝑟𝑔𝑆𝑐 = 𝑘𝐹𝑒𝑜𝑟𝑔𝐷𝐹𝑒′𝑃𝑂𝐶0.58, 146 

 147 

which is a function of particulate organic carbon (POC), free DFe (DFe’), and the particle 148 

scavenging rate constant (kFeorg); and (2) inorganic scavenging 149 

 150 

( 2)     𝐹𝑒𝐼𝑛𝑆𝑐 = 𝑘𝐹𝑒𝑝𝑟𝑝𝐷𝐹𝑒′2, 151 

 152 

which depends only on DFe’ and the inorganic scavenging rate constant (kFeprp) following the 153 

scheme of Galbraith et al. (2010). This inorganic scavenging term primarily represents colloidal 154 

aggregation into larger, sinking particles as well as lithogenic scavenging not explicitly 155 

accounted for in our model. Here we use a non-linear formulation for inorganic scavenging 156 

following Galbraith et al. (2010) which was designed to account for high lithogenic scavenging 157 

rates to better reproduce DFe where atmospheric deposition is high (e.g., tropical and subtropical 158 

North Atlantic) (Pham and Ito, 2019; Ye and Völker, 2017). Note that we included a slightly 159 

higher non-linear exponent (2.) compared to Galbraith et al., 2010 (1.5) that better reproduced 160 

DFe in high atmospheric deposition areas in our model. This difference may be related to the fact 161 

that Galbraith et al., 2010 model included higher phytoplankton iron quotas when DFe is high 162 

which further reduces DFe in that model, whereas our model formulation assumes constant iron 163 

stoichiometry due to high uncertainties associated with this process. Thus, our model performed 164 
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better with higher scavenging rates to reduce the overestimation of DFe in these high deposition 165 

areas. 166 

In each model simulation, the scavenging rate constants (kFeorg, kFeprp) were manually 167 

tuned so that each simulation contains a nearly identical global iron inventory with an average 168 

global DFe concentration of 0.7±0.03 nM (Table 2). The inorganic scavenging rate constant was 169 

adjusted until the model reproduced the mean observed DFe concentration in the ocean interior 170 

since it is the dominant form of scavenging there, whereas the POM scavenging rate constant 171 

was adjusted to reproduce declining DFe concentrations towards the surface ocean (Figure 4). 172 

The globally integrated rates of the different scavenging processes are shown in Table 2, 173 

vertically-integrated rates from high and low source input simulations in Figure 2, and total 174 

basin-scale averages in Figure 4. 175 

2.3.3 Ligand Parameterization 176 

In the base model configuration, a constant ligand concentration of 1 nM is applied 177 

globally, and thus has LigCon in its model name (see Table 1). However, the distribution of 178 

ligands in the real ocean is variable (e.g. Völker and Tagliabue (2015)). Since iron-binding 179 

ligands are thought to be produced during the production of organic matter (Gledhill and Buck, 180 

2012), which might explain why dissolved organic matter (DOM) and apparent oxygen 181 

utilization (AOU) may qualitatively reflect some observed ligand concentration patterns (Misumi 182 

et al., 2013; Pham and Ito, 2018; Tagliabue and Völker, 2011). However, a first global model-183 

data comparison with ligands simulated as prognostic tracers found ligand distributions difficult 184 

to constrain with available observations and is further complicated by large variations in binding 185 

strength of different types of ligands (Völker and Tagliabue, 2015). Therefore, to maintain 186 

computational efficiency, we pragmatically chose to implement ligand concentrations as a 187 

function of existing tracers rather than include additional prognostic tracers. 188 

We implemented a variable ligand parameterization to estimate ligand concentrations 189 

based on a function of dissolved organic nitrogen (DON) and apparent oxygen utilization 190 

(AOU):  191 

 192 

( 3)     𝐿𝑖𝑔 =  𝛼𝐴𝑂𝑈0.8 + 𝛽𝐷𝑂𝑁0.8
 ,193 
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  194 

where  (0.015 nmol ligand/(mmol O2 m
−3

)
0.8

) and (0.21 nmol ligand/(mmol DON m
−3

)
0.8

) are 195 

generic parameters that determine ligand concentration associated with the tracers AOU and 196 

DON, respectively. The parameters  and  were chosen so that the global ligand mean 197 

concentration remained at 1 nM, consistent with simulation #1 with constand ligands, but now 198 

reflects changes in their spatial distribution (Figure 3). Model simulations with this variable 199 

ligand parameterization (simulations #2-5, see Table 1) have LigVar in their respective model 200 

simulation name.  201 

Although we follow previous studies for the variable ligand parameterization (Misumi et 202 

al., 2013; Pham and Ito, 2018; Tagliabue and Völker, 2011), a few notable changes have been 203 

made in our version. Since AOU can be negative in the surface ocean due to dissolved oxygen 204 

supersaturation, we applied a minimum ligand concentration of 0.5 nM. Previous ligand 205 

parameterizations have also applied minimum ligand concentrations to account for ligands 206 

associated with more refractory forms of DOM not explicitly included in our model (Aumont et 207 

al., 2015; Tagliabue and Völker, 2011). We also applied an exponential parameter (0.8) to the 208 

AOU and DON terms, which reduces ligands associated to these tracers particularly when their 209 

concentrations are high. This helped the model from overestimating DFe concentrations when 210 

AOU and DON concentrations are at their highest concentrations in the model.  211 

2.3.4 Reductive Sedimentary Iron Release Parameterization 212 

The base model version uses reductive sedimentary iron release based on the Moore and 213 

Braucher (2008) implementation of Elrod et al. (2004),  214 

 215 

( 4)     𝐹𝑒𝑠𝑒𝑑 =  𝛾𝐹𝑒𝑆𝑒𝑑𝐶𝑜𝑥  ,216 

  217 

where the Fe flux from the sediments (Fesed) is determined by the sedimentary iron release rate 218 

(�FeSed = 0.27 μmol Fe/mmol Cox m
−2

 d
−1

), and organic carbon oxidation (Cox) in the sediments. 219 

The base model version uses the DFe flux rate from Nickelsen et al. (2015) that is lower than 220 

suggested by Elrod et al. (2004) (0.72 μmol Fe mmol Cox
−1

 m
−2

 d
−1

). Since this formulation 221 
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yields lower global rates of this source input in the model compared with other implemented 222 

sedimentary functions included in this study (described below), model simulations with this 223 

sedimentary iron release implementation (#1-2) contain the name SrcLow, noting they also 224 

includes a low source input of atmospheric soluble iron deposition (see section 2.3.5 below). 225 

We also implemented the sedimentary iron release function proposed by Dale et al. 226 

(2015), who compiled a global dataset of sedimentary DFe fluxes to constrain their model 227 

estimate. While it has a strong dependence on the flux of particulate organic matter to the 228 

seafloor, similar to Elrod et al. (2004), the dataset in Dale et al. (2015) also revealed a strong 229 

dependence on bottom water oxygen concentration. Dale et al. (2015) thus parameterized 230 

sedimentary DFe release as  231 

 232 

( 5)    𝐹𝑒𝑠𝑒𝑑 =  𝛾𝐹𝑒𝑆𝑒𝑑𝑀𝑎𝑥𝑡𝑎𝑛ℎ (𝐶𝑜𝑥: 𝑏𝑤𝑂2), 233 

  234 

where FeSedMax is the maximum flux under steady-state conditions, and bwO2 is dissolved oxygen 235 

concentration in bottom waters interacting with the sediments.  236 

We test two scenarios with the Dale et al. (2015) parameterization by altering the 237 

maximum flux constant (FeSedMax). The SedHigh simulations apply the value suggested by Dale 238 

et al. (2015) (FeSedMax = 170 μmol m
−2

 d
−1

), whereas the SedMid simulation reduces the 239 

maximum flux value to 100 μmol m
-2

 d
-1

 to test more a intermediate level of sedimentary DFe 240 

release (see Tables 1 and 2). This reduced value was chosen to test a global sedimentary DFe 241 

flux approximately halfway in between SedHigh and SedLow since their fluxes differ by a large 242 

amount. Note that the SedMid simulation does not produce a significantly different spatial 243 

distribution compared to SedHigh.   244 

2.3.5 Atmospheric Soluble Iron Deposition  245 

We applied the atmospheric soluble iron deposition mask from Luo et al. (2008) in model 246 

simulations #1–4. This atmospheric soluble iron deposition estimate delivers 1.4 Gmol yr
−1

 of 247 

soluble iron to the global ocean, which is on the low-end (AtmLow; see Figure 2) compared to 248 

other estimates applied in the marine iron model intercomparison study (Tagliabue et al., 2016). 249 
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This estimate from Luo et al. (2008) is one of the first deposition models that explicitly accounts 250 

for the soluble iron deposition rather than assuming a constant solubility from total deposition. 251 

Another estimate we test in this study applies the average flux from four recent 252 

atmospheric soluble iron deposition models (Myriokefalitakis et al., 2018). The intermodel 253 

average global soluble deposition rate is 3.4 Gmol yr
−1

 with similar patterns to Luo et al. (2008) 254 

but higher rates most notably in the North Atlantic. This simulation with high atmospheric 255 

soluble iron deposition (AtmHigh; Figure 2) is applied to the simulation with high sedimentary 256 

release and variable ligands and is therefore named Atm+SedHigh_LigVar. 257 

3 Model Results and Data Comparison 258 

3.1 Global Dissolved Iron Dataset 259 

The DFe database used in this study is a collection of observations from both 260 

GEOTRACES Intermediate Data Product 2017 (7520 points; Schlitzer et al. (2018)) and prior 261 

observations compiled by Tagliabue et al. (2012) (12371 points). Note that we excluded 37 262 

measurements (19 from GEOTRACES, 18 from prior) with high DFe concentrations between 10 263 

nM to 216 nM mainly from locations with high hydrothermal activities, but also some near-shore 264 

settings (e.g. Laptev Sea, Bristol Bay, Peruvian coastal waters near urban area of Trujillo) and 265 

around small islands not resolved in the model (e.g., Kerguelen, Indonesian and Coronation), and 266 

thus the dataset used here contains concentrations up to 10 nM. We then interpolated the data 267 

onto the UVic model grid using the PyFerret SCAT2GRIDGAUSS function developed by 268 

NOAA’s Pacific Marine Environmental Laboratory, which is a Gaussian interpolation function 269 

based on Kessler and McCreary (1993). This gridded data was used for the model-data 270 

comparison (Figures 3–7) and to calculate model-data statistical metrics (i.e. correlation 271 

coefficient, (uncorrected) standard deviation, and root-mean-squared error) (Figure 8). It covers 272 

5917 grid points since many observations overlap and thus are averaged on corresponding grid 273 

points. Since we compare to annual model results, we interpolated all observations onto the grid 274 

and thus temporal aspects and variability of the data is not taken into account or investigated in 275 

this study. 276 

Model-data misfit statistical metrics are sensitive to unresolved outlier concentrations and 277 

spatial extent of the data interpolation onto the model grid. However, these aspects do not affect 278 
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which simulations best reproduce the global dataset according to statistical metrics. This is 279 

illustrated by comparing metrics calculated from all observations (triangles) to only 280 

GEOTRACES (circles) in Figure 8. The statistical metrics slightly improve when comparing 281 

against only GEOTRACES observations, with the only exception being root-mean-squared error 282 

for model simulation #1 in the surface ocean, but the relative improvements in the model 283 

simulations are nearly identical. The arbitrary exclusion concentration threshold of 10 nM was 284 

chosen as a balance between including as many observations as possible while still being able to 285 

calculate useful statistical metrics that are not dominated by these outlier concentrations. 286 

3.2 Variable Ligand Distribution 287 

The simulation with constant ligands does not reproduce the major basin-scale features of 288 

the observed DFe distribution, despite that its globally averaged depth profile is generally 289 

consistent with observations (Figure 4c). Most notably, simulations with constant ligands 290 

significantly overestimate the DFe in the interior Southern Ocean (Figure 4o), a critical ocean 291 

basin for Fe-limited phytoplankton growth. LigCon thus overestimates supply of DFe via 292 

upwelling, and underestimates Fe limitation of phytoplankton growth, which is a key deficiency 293 

in the base configuration and previous model versions (e.g. Muglia et al. (2017)). They also 294 

underestimate DFe in intermediate waters in the Indian and Pacific Ocean (Figures 4k, 5b), 295 

which we have averaged together since they have similar deep ocean biogeochemical tracer 296 

profiles relative to the global average (Figure S1).  297 

The simulations with variable ligand concentrations (#2-5; LigVar) better reproduce the 298 

ocean interior distribution of DFe (Figure 5). This is primarily due to the AOU dependence of 299 

the variable ligand parameterization which mainly determines ligand concentrations in the deep 300 

ocean since semi-refractory DOM concentrations are low there in the model. This is most 301 

obvious when comparing intermediate depths of the Southern and Indian-Pacific Oceans, which 302 

contain relatively low and high values of AOU and thus ligand concentrations, respectively, 303 

according to our parameterization (see Figures 3, S1). Lower ligand concentrations in the 304 

Southern Ocean enhances scavenging causing lower DFe concentrations, with the opposite effect 305 

occurring in the Indian-Pacific Ocean, and better reproduces observations in both basins. 306 

Therefore, the interior DFe distribution with the variable ligand parameterization is better 307 

partitioned with respect to observations (Figures 4,5) and improves the global model-data misfit 308 
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by 9.2% when averaging across our three metrics (i.e. correlation coefficient (R), normalized 309 

standard deviation (nSTD), and normalized root-mean-squared error (nRMS); 310 

(∆R+∆nSTD+∆nRMS･-1)/3×100%) against all observations (Figure 8), which represents the 311 

largest improvement from any individual simulation in this study. 312 

The concentration of semi-refractory DON largely determines ligand concentrations in 313 

the surface ocean (Figure 3a). DON concentrations are higher around the high productivity 314 

regimes in the low latitudes with generally decreasing values towards higher latitudes (Somes 315 

and Oschlies, 2015) (Figure S2). This pattern is reflected in the surface DFe distribution that 316 

shows the same latitudinal trend in the variable ligand model (Figure 6c-d). While this 317 

meridional DFe pattern better reproduces low DFe concentrations in the open Southern Ocean, it 318 

creates larger model-data biases on high latitude continental shelves in the Bering Sea, Weddell 319 

Sea, and European shelf seas (Figures 6a-d, 7c,e). This shows that while the overall variable 320 

ligand effect significantly improves the global DFe distribution (Figure 7), model-data biases in 321 

some regions (e.g. high latitude continental shelf seas) still increase, which contributes to a 322 

smaller average metric improvement (3.9%) in the surface layer compared to the global ocean. 323 

3.3 Sedimentary Iron Release 324 

The simulations with low sedimentary source inputs (#1-2 SrcLow) provide a relatively 325 

poor fit to observed DFe concentrations according to the statistical metrics (Figure 8). They fail 326 

to reproduce the high DFe concentrations near continental margins (Figures 6, 7), suggesting 327 

higher sedimentary release rates are necessary to explain these features. The simulated DFe 328 

distribution also lacks the strong spatial gradient towards depleted concentrations in many open 329 

ocean regions in the observations. These overly smooth gradients in SrcLow are the result of low 330 

sedimentary release rates and subsequent low scavenging rates that are then required to 331 

reproduce the global mean DFe inventory, resulting in a relatively long global mean residence 332 

time of 35 years among our simulations (Table 2).  333 

The simulations with higher sedimentary release rates (Figure 2e) produce higher DFe 334 

concentrations in continental shelf seas (Figures 6,7), particularly where bottom water oxygen is 335 

low in the low latitudes. The simulations applying high-end sedimentary Fe release rates 336 

(SedHigh) modestly outperformed simulations assuming lower rates across all calculated 337 
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statistical metrics Figure 8)) on average by 3.3% in the global ocean and slightly higher by 3.8% 338 

in the surface layer, with the intermediate release rate scenario SedMid performed between 339 

SedLow and SedHigh. Therefore, our model-data analysis suggests that high-end estimates for 340 

global reductive sedimentary iron release rates are the most realistic.  341 

One region that was notably improved by high sedimentary release rates was the low 342 

latitude margins near oxygen deficient zones (ODZs) (Figures 6, 7). Observations there in both 343 

the eastern tropical South Pacific off Peru (Figure 7a), eastern tropical South Atlantic off 344 

Namibia (Figure 7d), and northern Indian Ocean show high DFe concentrations that are best 345 

reproduced in SedHigh scenarios. Since SedHigh simulations also contain high scavenging rates, 346 

they better reproduce the lowest DFe concentrations in the offshore open ocean locations as well. 347 

The high DFe concentrations on high latitude continental shelf systems (Figures 6, 7c,e) 348 

are not improved in SedHigh_LigVar due to the interactions with ligands and scavenging. 349 

Decreasing surface ligand concentrations towards high latitude systems (Figure 3) allow 350 

scavenging to compensate the additional sediment-derived DFe more efficiently, in contrast to 351 

low latitude systems near ODZs (e.g. Tropical Pacific) that contain higher ligands allowing DFe 352 

to be retained in the water column. This causes the simulation with constant ligands to retain 353 

slightly higher DFe compared to simulations with variable ligands in high latitude continental 354 

shelf systems (e.g., Bering Sea (Figure 7c) and European Shelf Seas (Figure 7e)), despite that 355 

these simulations with variable ligands include much higher sedimentary release rates there (e.g. 356 

SedHigh_LigVar, Figure 2). This demonstrates that more efficient scavenging rates associated 357 

with low ligands can overcompensate the high sedimentary release rates in determining DFe 358 

concentrations in the model. 359 

3.4 Atmospheric Soluble Deposition 360 

The two soluble atmospheric deposition scenarios tested here predict similar spatial 361 

depositional patterns (Figure 2), with the more recent GESAMP intermodel average 362 

(Myriokefalitakis et al., 2018) providing a significantly higher global deposition rate (3.4 Gmol 363 

yr
-1

) relative to the low estimate from Luo et al. (2008) (1.4 Gmol yr
-1

). These enhanced rates 364 

cause higher DFe concentrations mainly from the Saharan dust plume in subtropical North 365 

Atlantic, but also to a lesser degree in the Arabian Sea and North Pacific (Figure 6g,h, Figure 366 

7c,f). The impact of including higher soluble deposition only slightly improves the global model-367 
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data statistical metrics by 0.7% globally and 1.5% in the surface layer, making it difficult to 368 

determine the most realistic rates based on our model-data DFe comparison alone. 369 

3.5 High Scavenging Effect 370 

In model simulations with high source fluxes (e.g. #5 Atm+SedHigh_LigVar), higher 371 

scavenging rates are necessary to maintain a realistic global DFe inventory (Tables 1 and 2, 372 

Figures 2h-i, 3). Scavenging is thus more efficient at reducing DFe concentrations in the high 373 

source flux simulations. In regions far away from the source fluxes, particularly in the deep 374 

ocean and open Southern Ocean (e.g. see Figure 6), the model simulations with higher source 375 

fluxes actually contain lower DFe because the enhanced scavenging outweighs the source fluxes 376 

in these areas (Figure 4). Lower DFe concentrations in these deep and open ocean regions better 377 

reproduce observations further improving the model-data misfit metrics (Figure 8). The 378 

combined effects of high atmospheric and sedimentary source inputs, which also includes 379 

highest scavenging rates, contributed to the largest improvement in the surface ocean across our 380 

metrics (5.5% improvement relative to SrcLow_LigVar). 381 

4 Discussion 382 

4.1 Model-Data Constraints and Uncertainties 383 

The variable ligand parameterization improved the model’s ability to reproduce the 384 

global distribution of DFe observations the most. This is most evident in the interior ocean due to 385 

AOU dependency of this parameterization. Since ligands are produced when dissolved oxygen is 386 

consumed during the respiration of POM via heterotrophic microbes in the variable ligand 387 

parameterization, their concentrations reach maximum values in old Pacific intermediate waters 388 

(Figure 3). High ligands reduce scavenging that causes the model to better reproduce high 389 

observed DFe concentrations there (Figures 4k, 5c), a feature that has also been demonstrated in 390 

other models (e.g. see also  (Misumi et al., 2013; Pham and Ito, 2018; Frants et al., 2016)). This 391 

model improvement suggests that ligand production by heterotrophic bacteria is a key 392 

mechanism maintaining the global marine iron cycle. 393 

The model simulations that include higher source inputs and scavenging rates show a 394 

subtle but continuous improvement in the model-data misfit metrics particularly in the surface 395 

ocean (Figure 8). This is in contrast to the model comparison study of Tagliabue et al. (2016), 396 
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which showed no clear relationship between model performance and source inputs, as well as an 397 

inverse modeling study of Pasquier and Holzer (2017), which could not find an optimal solution 398 

among their large set of model simulations varying source inputs. However, Pasquier and Holzer 399 

(2017) only tested relatively low sedimentary release rates (up to 22 Gmol/yr compared to 117 400 

Gmol/yr in this study) and also did not include an oxygen dependency that has a strong influence 401 

in our parameterization. Our analysis emphasizes that future modeling studies should test these 402 

important factors associated with reductive sedimentary DFe release that contributed to the 403 

model improvements in this study. 404 

The ligand and high sedimentary DFe release effects have similar impacts on DFe spatial 405 

distributions making it difficult to constrain their individual impacts with DFe concentrations 406 

alone. This spatial overlap is most pronounced above ODZs in the eastern tropical Pacific, 407 

eastern tropical Atlantic, and Northern Indian Ocean (Figure 6). This spatial covariance occurs 408 

because when AOU is high, bottom water oxygen is typically low. Therefore, DFe 409 

concentrations are enhanced both by reduced scavenging due to high ligands where AOU is high, 410 

as well as by higher sedimentary DFe release rates where bottom water oxygen is low. Future 411 

studies should examine the integrative DFe cycling in these systems (e.g. sedimentary release 412 

and scavenging rates, ligand concentrations) to give additional insights on individual processes 413 

contributions to total DFe. 414 

Despite high sedimentary release rates, the SedHigh model simulations still 415 

underestimate DFe on most continental shelf systems (Figure 7). The poorly resolved coastal 416 

dynamics in our coarse resolution circulation model is likely a key model deficiency preventing 417 

the model from representing many coastal dynamics where sedimentary DFe fluxes are high. 418 

Coarse resolution models underestimate coastal upwelling and the nutrient input on narrow shelf 419 

systems that drive productivity. This bias causes underestimated particulate organic matter 420 

production as well as overestimated dissolved bottom water oxygen concentrations, both of 421 

which would contribute to underestimating reductive sedimentary DFe release rates and from 422 

coastal shelf systems.  423 

Further complicating matters are interactions between sedimentary DFe release rates, 424 

ligands, and scavenging. For example, our SedHigh_LigVar model simulation releases 425 

significantly higher DFe on high latitude shelves (Figure 2e-f). However, only a small part of 426 
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this DFe remains in the dissolved pool since scavenging efficiently converts it to particulate iron 427 

that eventually sinks back to the sediments (Figure 2h-i). Therefore, our model underestimation 428 

of DFe concentrations remains despite high DFe release rates. This strong spatial coupling 429 

between source and scavenging fluxes has also been demonstrated in other modeling studies 430 

(Frants et al., 2016; Pasquier and Holzer, 2017), which also found that this tight spatial coupling 431 

significantly contributes to the difficulty in constraining source inputs. The exclusion of riverine 432 

inputs that may also directly include ligands could also contribute to overly efficient scavenging 433 

resulting in underestimated DFe. If our ligand parameterization predicted higher concentrations 434 

on these high latitude shelf systems, which has been indicated by ligand observations (Völker 435 

and Tagliabue, 2015), this would prevent rapid scavenging of DFe released from sediments and 436 

better reproduce observations.  437 

Sedimentary DFe release rates may still be underestimated even in our high release 438 

scenario. Note that our highest tested global sedimentary release rate (117 Gmol yr
-1

) was not the 439 

highest from the marine iron model intercomparison (up to 194 Gmol yr
-1

) (Tagliabue et al., 440 

2016), and every model scenario tested here with increased source fluxes improved the model-441 

data misfit metrics (Figure 8). Potentially important sedimentary processes not included in the 442 

model are non-reductive dissolution and release from reactive sediments in tectonically active or 443 

volcanic regions (Conway and John, 2014; Homoky et al., 2013) and sedimentary colloidal 444 

production/release (Homoky et al., 2021), which could further contribute to higher total 445 

sedimentary DFe release rates that may improve the model-data misfit. 446 

An important limitation of applying these empirical functions of reductive sedimentary 447 

DFe release (e.g. (Dale et al., 2015; Elrod et al., 2004)) in global models is that total iron balance 448 

within the sediments is not explicitly accounted for. Thus, these parameterizations can 449 

potentially represent an unlimited long-term supply of DFe to the ocean which is unrealistic. 450 

This simplification can be justified because many important sources of particulate Fe to the 451 

sediment are not yet included in the model, e.g. atmospheric and riverine input of lithogenic 452 

material and in situ production at volcanic islands or active margins, which provide DFe for 453 

release. Also note that the Dale et al. (2015) parameterization applied in the SedHigh simulations 454 

sets a maximum rate determined under steady-state conditions which caps potentially unrealistic 455 

high release rates. While this simplification is likely not a significant deficiency in steady-state 456 
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model simulations presented here, this should be considered in transient simulations with 457 

substantial enhancement of sedimentary DFe fluxes.  458 

Atmospheric deposition often occurs at high rates over continental shelves (e.g. North 459 

Pacific, Patagonia) and ODZs (e.g. Arabian Sea), again making it difficult to constrain individual 460 

processes driving DFe concentrations when multiple processes act together in close spatial 461 

proximity. For example, our high atmospheric soluble deposition scenario helps reproduce high 462 

DFe concentrations in the Arabian Sea (Figure 7f). However, our model underestimates the 463 

extent of the Arabian Sea ODZ which could be the real cause driving high DFe concentrations 464 

there via high sedimentary DFe release, reduced scavenging, and/or enhanced redox cycling 465 

(Moffett et al., 2007). Instead the model ODZ is mostly misplaced to the Bay of Bengal, where 466 

higher simulated DFe there in the model better matches observations within the real ODZ in the 467 

Arabian Sea (see star symbols in Figure 7f). 468 

The model simulations do not resolve the high variance of the observations which is 469 

reflected in the underestimated standard deviation (Figures 4,8). This occurs everywhere in the 470 

ocean and is most pronounced in the Southern Ocean due to it containing very low DFe in the 471 

open ocean but also high concentrations near islands, continental margins, and hydrothermal 472 

vents (Figures 4–6). Although not a focus of this study, the model was not able to reproduce the 473 

full spatial extent of high DFe concentrations near hydrothermal vents at mid-ocean depths 474 

(Figures 4,5), despite that this source is included (Table 2). Previous modeling studies were only 475 

able to reproduce this high DFe extent when assuming that the hydrothermal vents were also a 476 

significant source of ligands (Frants et al., 2016; Resing et al., 2015) or included stabilization via 477 

reversible scavenging (Roshan et al., 2020), both of which we have not accounted for in our 478 

model. This emphasizes that future model versions should include all important ligands and 479 

scavenging dynamics to better represent their importance in marine iron models, but that a more 480 

robust global database of ligand concentrations including their binding strength would be 481 

required (Völker and Tagliabue, 2015). 482 

High variance in the global dataset may not reflect mean climatological conditions 483 

simulated by the preindustrial steady-state model results given the highly dynamic nature of DFe 484 

cycling particularly in the surface ocean with short residence times (Black et al., 2020). The 485 

spatial and temporal sparsity of the dataset likely contribute to high variance as well. But note 486 
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that the standard deviation was significantly improved in our best model simulation with variable 487 

ligands and high source/scavenging fluxes (Atm+SedHigh_LigVar; see Figure 4, 8b,e) 488 

suggesting that a model with low residence times can better reproduce the high variance and 489 

strong gradients in the DFe observations. Since most DFe observations have been collected in 490 

recent decades, there could already be a significant anthropogenic impact (e.g. enhanced 491 

deoxygenation, atmospheric/riverine pollutants) on the global marine iron cycle not included in 492 

these model simulations, especially if the marine DFe residence time operates on decadal 493 

timescales or less. Future additions and expansion to the global DFe dataset as well as 494 

comparison with transient model simulations at the same period of data collection will improve 495 

uncertainties in future model-data analyses. 496 

4.2 A global marine iron cycle with a residence time under a decade? 497 

Our model simulations testing various external source fluxes in the global marine iron 498 

cycle result in global average residence times ranging from 7.5 to 36 years. The simulation that 499 

best reproduces the observations (Atm+SedHigh_LigVar) has the lowest residence time (global: 500 

7.5 years; surface ocean: 0.83 years) among our model experiments. This low-end residence time 501 

is caused in large part due to the high source fluxes, with the reductive sedimentary release being 502 

the most important with the highest global rate in our simulations. These high source fluxes need 503 

to be compensated by efficient scavenging and subsequent removal via burial in the sediments to 504 

reproduce the distribution and global mean inventory in DFe observations, a model feature that 505 

was also found in other modeling studies (e.g. see Frants et al. (2016); Pasquier and Holzer 506 

(2017)). 507 

This is in general agreement with observational studies focusing on the surface layer 508 

(Black et al., 2020; Sarthou et al., 2003). For example, Black et al. (2020) estimated similar 509 

residence times throughout the global surface ocean (0-250 meters) for DFe ranging from 510 

approximately 1 month to 4 years depending on the region and specific iron pools considered, 511 

although noting that the uncertainties remain large (i.e. equal or greater than the absolute value 512 

of the estimate in each region). These generally low surface residence times are captured in our 513 

model simulations that range from 0.83 to 3.12 years (Table 2). However, residence times of 514 

individual molecules and regions can further vary depending on the local coupling of source 515 

inputs, scavenging efficiency, and regeneration (e.g. Holzer et al. (2016; 2018); Tagliabue et al. 516 
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(2019)). For instance, DFe in the ocean interior is more stable and controlled by the amount of 517 

ligands that reduces scavenging and removal to the sediments via sinking particulates, 518 

contributing to the longer global residence times. 519 

4.3 Marine iron flux impacts on global ocean biogeochemistry 520 

An interesting feature of the model simulations is that there is surprisingly little change to 521 

globally averaged marine productivity and export production (Table 3). This occurs in large part 522 

in the model because scavenging was also increased in high sedimentary iron release scenarios, 523 

and thus much of the additional DFe fluxes from the sediments is efficiently scavenged to 524 

particulate iron that sinks back to the sediments before it can be transported to the surface ocean 525 

where it may stimulate additional productivity. This general impact was also found in a model 526 

study using a previous iteration of the model version used here but comparing different 527 

complexities of the marine iron configurations (Yao et al., 2019) as well as other inverse 528 

modeling studies (Pasquier and Holzer, 2017, 2018). However, it must be noted that all of these 529 

model studies, including this study, only evaluated steady-state simulations in which uncertain 530 

parameters were manually tuned or optimized to best reproduce observations. Therefore, they are 531 

not necessarily indicative to how the iron dynamics in the model may respond to and impact 532 

marine productivity in externally-forced transient scenarios. 533 

There is a notable decrease in marine productivity and export production in the Southern 534 

Ocean among our model simulations with better representations of the global iron distribution 535 

(Table 3). The variable ligand parameterization predicts less ligands in the Southern Ocean 536 

(Figure 3), which allows higher scavenging to reduce DFe that better reproduces observations. 537 

Furthermore, since external iron sources in the Southern Ocean are small (Figure 2,4m), the 538 

enhanced scavenging in the high source flux simulations removes more DFe than source fluxes 539 

add to the Southern Ocean. Therefore, DFe levels further decrease in the Southern Ocean 540 

(Figures 4o, 6) in the high source flux scenarios. The high scavenging in our best model 541 

simulation with variable ligands and high source fluxes (Atm+SedHigh_LigVar) reduces DFe, 542 

marine productivity and resulting oxygen consumption during remineralization of particulate 543 

organic matter, thereby increasing dissolved oxygen concentrations at depth. This effect is 544 

significant enough to increase average global dissolved oxygen concentrations by 8% in the 545 

model because water masses formed in the Southern Ocean contribute to much of the global 546 
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deep ocean (Table 3). This emphasizes the importance of simulating a robust global marine iron 547 

cycle most importantly in the Southern Ocean. 548 

5 Conclusions 549 

In this study we tested various rates of atmospheric soluble deposition, reductive 550 

sedimentary release, and variable ligand distributions within a marine iron component in a global 551 

ocean biogeochemical model. The simulations that best reproduce the global DFe observations 552 

include highest tested source fluxes and a variable ligand parameterization. The most striking 553 

feature in the global DFe observations that supports this hypothesis is the strong gradients that 554 

often occur with high concentrations near source fluxes and low concentrations in adjacent open 555 

ocean regions. This high source flux/scavenging iron cycling regime causes a relatively short 556 

residence times of less than a decade in the global oceans and less than a year in the surface 557 

ocean. The short residence time implies that the global marine iron cycle is highly sensitive to 558 

environmental perturbations in the Anthropocene and geological past. Uncertainties remain high 559 

due to model parameterizations of complex, poorly understood, and often intertwined processes 560 

(e.g. ligand production and subsequent control on scavenging near source inputs) and the sparsity 561 

of DFe and ligand measurements throughout the global ocean. Nevertheless, our model-data 562 

analysis suggests the marine iron cycle operates with high global source inputs and scavenging 563 

rates and low residence times compare to most previous estimates. 564 
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Table 1. Marine Iron Model Configurations 584 

 #  Simulation Name Atmospheric 

soluble 

 deposition

Reductive 

sedimentary 

 release

Ligand 

 distribution

Inorganic 

Scavenging 

(kFeprp
a
) 

Particle 

Scavenging 

(kFeorg
b

 )

1  SrcLow_LigCon  Low
c

 Low
d

 Constant
e

 0.0069  1.2

2  SrcLow_LigVar  Low  Low  Variable
f

 0.0052  1.5

3  SedMid_LigVar  Low  Mid
g

 Variable  0.0069  2.2

4  SedHigh_LigVar  Low  High
h

 Variable  0.0081  2.9

5  Atm+SedHigh_LigVar  High
i

 High  Variable  0.0098  2.9

 585 

a Inorganic scavenging parameter has units of (mmol Fe/m
3
)
−2

d
−1

 586 

b Particle scavenging parameter has units of (gC/m
3
)

 −0.58 
d
−1 

587 

c
  
(Luo et al., 2008) 588 

d (Elrod et al., 2004) parameterization with low flux rate (see section 2.3.4) 589 

e Constant concentration of 1 nM everywhere in the ocean 590 

f Variable ligand parameterization (see section 2.3.3) 591 

g Dale et al. (2015) parameterization with intermediate maximum flux rate 100 μmol Fe m
-2

 d
-1

 592 

h Dale et al. (2015) parameterization with suggested maximum flux rate 170 μmol Fe m
-2

 d
-1

 593 

i (Myriokefalitakis et al., 2018)  594 
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Table 2. Global Marine Iron Cycle Results 595 

 #  Simulation Name Atmospheric 

soluble 

deposition 

 (Gmol yr
-1

)

Reductive 

Sedimentary 

release 

 (Gmol yr
-1

)

Hydro- 

thermal 

 (Gmol yr
-1

)

Inorganic 

Scavenging 

 (Gmol yr
-1

)

Particle 

Scavenging 

 (Gmol yr
-1

)

Dissolved 

 Iron (nM)

Global 

Residence 

time
a 
(yr)

 

Surface 

Residence 

time
b
 (yr) 

1  SrcLow_LigCon  1.4  15.1  11.4  34.3  22.5  0.68 33.3  3.12

2  SrcLow_LigVar  1.4  14.6  11.4  30.9  29.3  0.73 35.9  2.56

3  SedMid_LigVar  1.4  68.6  11.4  99.3  55.9  0.73 12.2  1.35

4  SedHigh_LigVar  1.4  117  11.4  159  83.9  0.73 7.66  0.87

5  Atm+SedHigh_LigVar  3.4  114  11.4  162  81.5  0.71 7.49  0.83

 596 

a
Since our iron model simulates active (re)cycling between particulates and dissolved forms and thus scavenging does not permanently 597 

remove bioavailable iron from the system, we calculate residence time based on global external fluxes and bulk inventory, i.e. global 598 

Fe inventory/∑Source Inputs. 599 

b
For surface residence time, we follow Black et al. (2020) by including the upper 250 meters and account for sinking particulate iron 600 

out of this layer as the sink flux. Since our particulate iron pool includes both biogenic (i.e. produced during primary production) and 601 

authigenic (i.e. produced by scavenging) iron in the model, this model residence time is comparable to their mean dissolved, 602 

biogenic+authigenic estimate, which ranges from 0.1 to 4 years depending on location.  603 
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Table 3. Global Marine Biogeochemistry Results 604 

 #  Simulation Name Net Primary 

Production
 

(Gt C yr
-1

) 

Export 

Production
 

(Gt C yr
-1

) 

dissolved O2 

 (mmol m
-3

)

  Global Southern Global Southern  Global Southern 

1  SrcLow_LigCon  47.0

 

 8.11  8.1

 

 2.12 167 206 

2  SrcLow_LigVar 47.4 7.09 7.9 1.86 175 216 

3  SedMid_LigVar 47.7 6.72 7.9 1.75 178 221 

4  SedHigh_LigVar 48.0 6.67 7.9 1.74 179 222 

5  Atm+SedHigh_LigVar 47.9 6.42 7.8 1.68 181 224 

  605 
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Figure 1. Schematic of the marine iron (Fe) model. See section 2.3 for a full description. 606 

 607 

Figure 2. Vertically-integrated fluxes of atmospheric soluble iron deposition (top row)  608 

prescribed on model simulations #1-4 from Luo et al. (2008) (AtmLow) (a), high scenario 609 

(AtmHigh) from the GESAMP intermodel average (Myriokefalitakis et al., 2018) (b), and their 610 

difference (c).  Center row: Vertically-integrated sedimentary iron release using 611 

parameterizations based on Elrod et al. (2004) (SedLow from simulation #2) (d) and Dale et al. 612 

(2015) (SedHigh from simulation #4) (e), and their difference (f). Bottom row: Vertically-613 

integrated total scavenging rates from simulation #2 with low source input and scavenging rates 614 

(SrcLow) (g) and simulation #5 with highest rates (Atm+SedHigh) (h), and their difference (i). 615 

 616 

Figure 3. Distribution of variable ligand concentrations in the surface (0-250 meters) ocean (a), 617 

and basin-scale averages in the Atlantic (b), Indian (c), Pacific (d), and Southern (e). Note that 618 

the Southern Ocean region (>40°S) from within the other basins (b-d) is excluded there since it is 619 

shown in (e). 620 

 621 

Figure 4. Annually averaged depth profiles of marine iron source inputs (left column),  622 

scavenging rates (center-left column), dissolved iron concentrations (center-right column), and 623 

dissolved iron (DFe) standard deviation (Std Dev) (right column) in the Global, Atlantic, Indian-624 

Pacific, and Southern Ocean for model simulations (colored symbols) and dissolved iron 625 

observations (black circles). Source inputs (left column) are atmospheric soluble deposition as 626 

large filled symbols in the low scenario (AtmLow, green down-pointing triangle) and high 627 

(AtmHigh; red diamonds) scenarios, sedimentary iron release in the low (SedLow; blue 628 

hexagons) and high scenarios (SedHigh; purple triangles), and hydrothermal flux (green square, 629 

applied to all simulations). For dissolved iron concentrations (center-right column), lines show 630 

model averages in the entire selected domain, while symbols include model results only where 631 

dissolved iron observations exist. Note that the Southern Ocean region (>40°S) from within the 632 

Atlantic and Indian-Pacific basins is excluded there since it is shown in the Southern Ocean 633 

panels. 634 

 635 
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Figure 5. Annual, zonally averaged dissolved iron concentrations in the Indian-Pacific and 636 

Atlantic basins in observations (a), SrcLow_LigCon (b), SrcLow_LigVar (c), SedHigh_LigVar 637 

(e), and Atm+SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron 638 

concentrations by showing model differences from variable ligands (i.e. SrcLow_LigVar − 639 

SrcLow_LigCon) (d), high sedimentary iron release (i.e. SedHigh_LigVar − SrcLow_LigVar) (f), 640 

and high atmospheric soluble deposition (i.e. Atm+SedHigh_LigVar − SedHigh_LigVar) (h). In 641 

locations where no observations exist (black region in a), zonal model averages are shown 642 

(b,c,e,g). 643 

 644 

Figure 6. Annually averaged dissolved iron concentrations in the upper 250 meters in 645 

observations (a), SrcLow_LigCon (b), SrcLow_LigVar (c), SedHigh_LigVar (e), and 646 

Atm+SedHigh_LigVar (g). Right column highlights individual effects on dissolved iron 647 

concentrations by showing model differences from variable ligands (i.e. SrcLow_LigVar − 648 

SrcLow_LigCon) (d), high sedimentary iron release (i.e. SedHigh_LigVar − SrcLow_LigVar) (f), 649 

and high atmospheric soluble deposition (i.e. Atm+SedHigh_LigVar − SedHigh_LigVar) (h). 650 

 651 

Figure 7. Comparison of dissolved iron measurements from GEOTRACES (black circles) and 652 

others (black down-pointing triangles) in the upper 250 meters with model simulations 653 

SrcLow_LigCon (green squares), SrcLow_LigVar (blue hexagons), SedHigh_LigVar (purple 654 

triangles), Atm+SedHigh_LigVar (red diamonds) across ocean the western equatorial Pacific ( 655 

10°S–10°N) (a); eastern tropical South Pacific (5°S–15°S) (b); and eastern North Atlantic 656 

(30°W–0°) (c); eastern tropical South Atlantic ( 35°W–15°)(d); central North Pacific (175°–657 

150°W); Indian (zonal averaged from 20°–100°E) (c). The intersecting continental margin or 658 

shelf sea at the end of the transect is given in parenthesis. Model results are included only at 659 

locations where observations exist. Since the core of oxygen deficient zones in the model does 660 

not directly overlap with the real ocean where high dissolved iron concentrations exist in the 661 

eastern tropical South Pacific (b) and northern Indian Ocean (f), we added dissolved iron 662 

concentrations directly above the core of the oxygen deficient zones (O2 < 5 mmol m
-3

) in the 663 

model as star symbols.  664 

 665 
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Figure 8. Model-data statistical misfit metrics calculated using all observations (triangles) and 666 

using only GEOTRACES observations (circles). Correlation coefficient (left column), standard 667 

deviation (center column), root-mean-squared error (right column) are calculated for the global 668 

ocean (top rows) and upper 250 meters of the water column (bottom rows). Standard deviation 669 

(b,e) and root-mean-squared error (c,f) are normalized by the standard deviation of observations. 670 

The root-mean-squared error vertical axis has been inverted so the upwards direction represents a 671 

better model misfit in all panels. Note a perfect representation of observations would yield the 672 

value 1 for correlation coefficient, 1 from normalized standard deviation, and 0 for normalized 673 

root-mean-squared error.   674 
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Introduction  20 

This section documents minor changes made from previously published versions 21 

(Somes et al., 2017;Muglia et al., 2017) that were applied to all model simulations in this 22 

study. The core model code is based on the Model of Ocean Biogeochemistry and 23 



Isotopes (MOBI), version 2.0 (https://github.com/OSU-CEOAS-Schmittner/UVic2.9), 24 

which is based on the University of Victoria (UVic) Earth System Model of intermediate 25 

complexity (Eby et al., 2013;Weaver et al., 2001). 26 

Text S1. Physical Model 27 

We applied the background vertical mixing setup from Somes et al. (2017) to the 28 

default MOBI 2.0 version. This setup applies background vertical mixing of 0.15 cm
2
 s

-
29 

1 
in the ocean interior consistent with open ocean microstructure observations (Fischer et 30 

al., 2013), which caused a reduction in the large-scale overturning and an 31 

underestimation of ∆
14

C values. In order to reinvigorate the large-scale circulation, 32 

we increased the tidal mixing efficiency parameter to 0.28 (from 0.2), applied a 33 

background horizontal diffusivity of 20 m
2
 s

-1
, and increased the atmospheric moisture 34 

diffusivity in the Southern Ocean by 20% (e.g. Muglia & Schmittner (2015)), all of 35 

which contributed to an improved representation of ∆
14

C (Figure S1).  36 

Text S2. Marine Biogeochemical Model 37 

Since MOBI version 2.0 integrated the latest improvements to the nitrogen 38 

(Somes and Oschlies, 2015), carbon chemistry (Kvale et al., 2015), and iron (Muglia et 39 

al., 2017), minor parameter changes were made to achieve a best fit to nutrient 40 

distribution (Figure S1, Table S1). Other structural changes are documented below. 41 

The production of semi-refractory dissolved organic matter (DOM) has been 42 

modified to now include an additional source term from the remineralization of 43 

particulate organic matter (POM), along with phytoplankton mortality that previous 44 

versions Somes & Oschlies (2015) used. This new term represents DOM production by 45 

heterotrophic bacteria as they respire POM. The two DOM production factors have 46 

similar spatial patterns, but with the bacterial term based on POM remineralization 47 

extending to greater depths. The production fraction parameters (see Table S1) were 48 

chosen so they represent roughly equivalent total DOM production rate when integrated 49 

over the global ocean, and that they produce surface DON concentrations that are 50 

consistent with observations (Figure S2).  51 



We have modified the low oxygen threshold including the reduction of dissolved 52 

iron (DFe) scavenging in the model. This parameterization was implemented to account 53 

for elevated DFe concentrations that exist in low oxygen waters associated with redox 54 

cycling including high nitrite concentrations, although it remains unclear exactly what 55 

processes contribute to these elevated low oxygen DFe concentrations (Moffett et al., 56 

2015). Previous model versions applied a sharp threshold gradient at the dissolved O2 57 

concentration 5 mmol m
-3 

(Figure S3). However, elevated DFe typically exists in lower 58 

dissolved O2 concentrations <~2 mmol m
-3

, so in this study we apply a function that has a 59 

sharper gradient at lower dissolved O2 concentrations (red line in Figure S3) using the 60 

equation tanh(𝜅･O2) where 𝜅=0.25.  61 

Sedimentary carbon oxidation (Cox) has been modified in all simulations 62 

following the Niemeyer et al. (2017) implementation of Flögel et al. (2011). This scheme 63 

estimates carbon oxidation from the difference between sinking particulate flux entering 64 

the sediment and burial. It has been constructed using a global compilation of 65 

sedimentary data that shows higher carbon burial efficiency, and thus lower carbon 66 

oxidation in continental margins (Burial=0.14·RRPOC
1.11

) compared to the deep-sea 67 

(Burial=0.014·RRPOC
1.05

) sediments. Instead of applying an abrupt transition at 1000 68 

meters depth as in Niemeyer et al. (2017) between these surface and deep sea systems, 69 

we applied a linear transition to the numerator and exponent coefficients from 500 meters 70 

to 1500 meters. Note that previous model marine iron versions (e.g. Nickelsen et al. 71 

(2015); Muglia et al. (2017)) applied the temperature-dependent water column 72 

remineralization rate to organic matter sinking into sediments to estimate carbon 73 

oxidation in the sediments which does not capture the sedimentary carbon dynamics 74 

shown in Flögel et al. (2011).  75 



Table S1. Marine Ecosystem-Biogeochemistry Parameters 76 

Parameter Symbol Value Units 

Phytoplankton  

Initial slope of P-I curve α 0.1 (W m
-2

)
-1

 d
-1

 

Photosynthetically active radiation PAR 0.43 - 

Light attenuation in water kw 0.04 m
-1

 

Light attenuation through phytoplankton kc 0.03 m
-1

(mmol m
-3

)
-1

 

Light attenuation through sea ice ki 5 m
-1

 

NO3 uptake half-saturation   kNO3 0.7 mmol m
-3

 

PO4 uptake half-saturation kPO4 0.044 mmol m
-3

 

DOP assimilation handicap hDOP 0.5  

minimum Fe uptake half-saturation kFemin 0.05 nmol m
-3

 

maximum Fe uptake half-saturation kFemax 0.5 nmol m
-3

 

Maximum growth rate (at 0°C) a0 0.6 d
-1

 

Phytoplankton fast-recycling rate (at 0°C) 𝜇𝑃𝑂0 0.001 d
-1

 

Phytoplankton specific mortality rate 𝜐𝑃𝑂 0.03 d
-1

 

Calcifying Phytoplankton (PC) 

Maximum growth rate (at 0°C) a0 0.3 d
-1

 

CaCO3:POC production ratio RCaCO3:POC 0.065 0.065 

NO3 uptake half-saturation   kNO3 0.35 mmol m
-3

 

PO4 uptake half-saturation kPO4 0.022 mmol m
-3

 

minimum Fe uptake half-saturation kFemin 0.025 nmol m
-3

 

maximum Fe uptake half-saturation kFemax 0.25 nmol m
-3

 

Diazotrophic Phytoplankton (PD) 



Parameter Symbol Value Units 

Diazotroph growth handicap ℎ𝑃𝐷 0.07 - 

Fe uptake half-saturation kFe 0.16 nmol m
-3

 

Diazotroph fast-recycling rate (at 0°C) 𝜇𝑃𝐷0 0.004 d
-1

 

Diazotroph specialist grazing rate 𝜐𝑃𝐷 0.7 d
-1

 

Diazotroph NO3 uptake threshold UNO3 5 mmol m
-3

 

Zooplankton (Z)  

Assimilation efficiency  γ 0.7  

Maximum grazing rate (at 0°C) 
gZ

 
 0.5 d

-1
 

Growth efficiency ϖ 0.6  

Mortality 
mz

  
0.02 d

-1
 

Grazing preference PO 𝛹𝑃𝑂 0.26  

Grazing preference PD 𝛹𝑃𝐷 0.04  

Grazing preference PC 
 

0.26  

Grazing preference Z 𝛹𝑍 0.18  

Grazing preference D 𝛹𝐷 0.26  

Grazing half-saturation kgraz 0.15 mmol N m
-3

 

Detritus (D)  

Remineralization rate μD0 0.07 d
-1

 

Sinking speed at surface wD0 20 m d
-1

 

Increase of sinking speed with depth  mw 0.05 d
-1

 



Parameter Symbol Value Units 

E-folding temperature of biological rates Tb 15.65 ºC 

Dissovled Organic Matter 

phytoplankton DOM production factor σPDOM 0.08  

bacterial DOM production factor σDDOM 0.02  

DON remineralization rate (at 0°C) λDON0 9.4E−6 d
-1

 

DOP remineralization rate (at 0°C) λDOP0 1.9E−5 d
-1

 

Elemental Ratios 

Molar Oxygen:Nitrogen RO:N 11  

Molar Carbon:Nitrogen RC:N 7  

 Molar Iron:Nitrogen RFe:N  38.5  μmol Fe / mol N

Phytoplankton Nitrogen:Phosphorus 𝑅𝑁:𝑃𝑃𝑂
 16  

Diazotroph Nitrogen:Phosphorus 𝑅𝑁:𝑃𝑃𝐷
 28  

Detritus Nitrogen:Phosphorus 𝑅𝑁:𝑃𝐷 16  

Zooplankton Nitrogen:Phosphorus 𝑅𝑁:𝑃𝑍 16  

 77 

 78 

  79 



 80 



Figure S1. Model-data comparison of basin scale average of radiocarbon (∆14
C ) with 81 

GLODAP observations (Key et al., 2004) (left column), and dissolved oxygen (O2), 82 

apparent oxygen utilization (AOU, center column), and phosphate (PO4, right column) 83 

with World Ocean Atlas observations (Garcia et al., 2010a;Garcia et al., 2010b) (black 84 

circles) and the model simulation #5 Atm+SedHigh_LigVar (red lines).    85 



 86 
Figure S2. Surface (0-50 meters) dissolved organic nitrogen (DON) concentrations in the 87 

model simulation #5 Atm+SedHigh_LigVar and observations (Somes and Oschlies, 88 

2015;Letscher et al., 2013). Note that the model only includes semi-refractory DON, 89 

whereas the observations include total DON.  90 



 91 
Figure S3. Modified function that reduces scavenging in oxygen deficient zones.  92 
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