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Abstract

The present paper demonstrates the first observations by the Magnetospheric Multiscale (MMS) mission of the counter-streaming

energetic electrons and trapped energetic protons, localized in the magnetic field depressions between the mirror mode peaks, in

the Earth’s dusk sector high-latitude magnetosphere. This region is characterized by high plasma beta, strong ion temperature

anisotropy and intermediate plasma density between magnetospheric and magnetosheath plasma. We show that these plasma

conditions are unstable for the drift mirror instability. The counter-streaming electron feature resembles those of the previously

reported energetic electron microinjections, but without the energy-time dispersion signature. This suggests that MMS is

passing through one of the potential microinjection source regions. The energetic ion data in the present study is mainly used

to estimate the scale size of the mirror mode structures.
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Abstract18

The present paper demonstrates the first observations by the Magnetospheric Multiscale19

(MMS) mission of the counter-streaming energetic electrons and trapped energetic pro-20

tons, localized in the magnetic field depressions between the mirror mode peaks, in the21

Earth’s dusk sector high-latitude magnetosphere. This region is characterized by high22

plasma beta, strong ion temperature anisotropy and intermediate plasma density between23

magnetospheric and magnetosheath plasma. We show that these plasma conditions are24

unstable for the drift mirror instability. The counter-streaming electron feature resembles25

those of the previously reported energetic electron microinjections, but without the energy-26

time dispersion signature. This suggests that MMS is passing through one of the potential27

microinjection source regions. The energetic ion data in the present study is mainly used28

to estimate the scale size of the mirror mode structures.29

Plain Language Summary30

Understanding the physical mechanisms that result in energetic electron accelera-31

tion and loss within the Van Allen radiation belts has been an active area of research for32

decades, and due to advances made possible by the Van Allen probe mission are now rel-33

atively well understood. However, the origin of the several 10s to 100s of keV seed popu-34

lation that can be accelerated to relativistic energies has remained more elusive. It is well35

known that magnetic reconnection and related secondary processes in the Earth’s magne-36

totail during substorms can accelerate particles and inject them inward toward the radia-37

tion belts. In this paper we show the first observations of a possible source region of 10s38

to 100s of keV electrons and protons at the dayside of the Earth’s high-latitude magneto-39

sphere. Four MMS spacecraft periodically encountered high fluxes of energetic electrons40

at wide energy range which were streaming both parallel and anti-parallel to the magnetic41

field. Enhanced fluxes of counter-streaming energetic electrons and trapped protons were42

observed between magnetic field peaks of the ULF waves identified as mirror mode peaks.43

The source region of these electrons and protons are likely the large diamagnetic cavities44

created by magnetic reconnection.45

1 Introduction46

Understanding the origin and formation of the relativistic electrons trapped in the47

Earth’s belts had been under debate for decades [Reeves et al., 2013]. The Van Allen Probe48

spacecraft was the first to distinguish between the two major candidate processes, i) local49

acceleration, and ii) remote acceleration of the source population outside of the radiation50

belts. It was found that the observed radial profiles of phase space densities were consis-51

tent with local acceleration "in the heart of the radiation belts" and are inconsistent with52

a predominantly radial acceleration process [Reeves et al., 2013; Boyd et al., 2018]. How-53

ever, both of these mechanisms require a seed population. Both case studies [Jaynes et al.,54

2015] and analysis of the statistical properties [Boyd et al., 2016] of the radiation belt seed55

particles are supporting a scenario of a stepwise acceleration process, where tens to hun-56

dreds of keV seed population is first accelerated via inward radial transport into the heart57

of the outer belt (4 . L . 6) and then subsequently accelerated up to multi-MeV ener-58

gies via local acceleration and further inward radial transport. One candidate mechanism59

to generate this seed population is the substorm activity [Turner et al., 2017] where mag-60

netic reconnection in the magnetotail at substorm onset, and subsequent field dipolariza-61

tion fronts result in rapid Earthward transport of 10s to 100s of keV electrons and ions, a62

process called "injections" [Gabrielse et al., 2014]. Depending when the particles at dif-63

ferent energies arrive at the observing spacecraft, the energy-time "injection" signature can64

be dispersionless, dispersed or inversely dispersed (see Gabrielse et al. [2014] and refer-65

ences therein).66
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More localized in scale-size than the traditional injections, the energetic electron67

"microinjections", have been observed in the morning sector of the inner plasma sheet by68

Interball Spacecraft [Sarafopoulos, 2002] during the growth phase of a magnetospheric69

substorm. The Magnetosphere Multiscale (MMS) mission detected dispersive microin-70

jections in the dusk to midnight region [Fennell et al., 2016]. The observed timing of the71

flux enhancements in different energy ranges was not the same but higher energies were72

observed first, followed by the lower energy particles. This energy dispersion signature73

of the 50-400 keV electrons is consistent with the source region being at earlier magnetic74

local times (MLT) [Fennell et al., 2016] alongside the duskside magnetopause. Gradient-75

curvature drift is energy-dependent with higher energies drifting faster which creates an76

energy-dispersed signature at locations outside the source region. MHD simulations with77

solar wind and IMF conditions taken during a dispersive microinjection event, combined78

with test particle tracing suggest that the microinjections in the dusk to pre-midnight sec-79

tor, can be mapped to the magnetopause boundary with observed microburst periodicity80

timescales consistent with Kelvin-Helmholtz wave and flux transfer event activity [Kavosi81

et al., 2018]. However, the direct observations of the source of microinjections have re-82

mained elusive.83

In the present paper we show MMS observations of the dispersionless microinjec-84

tions of the 29-149 keV electrons in the pre-dusk sector of the high-latitude magneto-85

sphere during several hours of relatively steady southward, duskward IMF. The microin-86

jections coincide with the magnetic field depressions of the Pc5 range Ultra Low Fre-87

quency (ULF) range fluctuations, identified here as mirror-mode waves. Mirror-mode88

waves are typically observed in the magnetosheath [Soucek et al., 2008; Dimmock et al.,89

2015] downstream of the quasi-perpendicular shock driven by the ion temperature anisotropy90

(T⊥/T‖ > 1) in a high beta plasma. These are the first observations of the locally gener-91

ated mirror mode waves in this region of geospace and provide new insight into the for-92

mation of the energetic electron microinjections.93

2 Data94

All magnetospheric data are the level 2 data from NASA’s MMS satellites [Burch95

et al., 2016]. We use Fast Plasma Investigation (FPI) [Pollock et al., 2016] for the lower96

energy ion and electron energy spectra and moments; Flux Gate Magnetometers (FGM)97

[Russell et al., 2016; Torbert et al., 2016] for the magnetic field. Energetic electron and98

ion distribution and pitch angle (PA) data comes from the Fly’s Eye Energetic Particle99

Spectrometer (FEEPS) [Blake et al., 2016] instrument. Energetic proton (electron) and PA100

data comes also from the Energetic Ion Spectrometer (EIS) [Mauk et al., 2016]. The elec-101

tric field is from Spin-Plane and Axial Double Probes (EDP) [Lindqvist et al., 2016; Er-102

gun et al., 2016; Torbert et al., 2016]. The versions of the data files used are v4.18.0.cdf,103

v3.3.0.cdf, v6.1.2.cdf, v6.0.1.cdf, v3.0.1.cdf, v2.1.0.cdf for FGM (survey mode), FPI (fast104

mode), FEEPS (survey mode), EIS (survey mode), and EDP (fast mode), respectively. So-105

lar wind conditions are taken from the OMNI (http://omniweb.gsfc.nasa.gov/) database106

[King and Papitashvili, 2005].107

3 MMS Observations108

On 2nd of October 2015 the four MMS spacecraft moved from the high-latitude109

dayside boundary layer (from rGSM ≈ [8, 6, -4]) at 8:30 UT into the pre-dusk sector mag-110

netosphere (rGSM ≈ [5.4, 9,-4.9]) at 16:00 UT where they encountered quasi-periodic111

ULF waves with counter-streaming energetic electrons between magnetic field peaks of the112

ULF depressions for ≈3 hrs. Figure 1 shows the overview plot (using data from MMS1)113

between 8:30 and 19:10 UT of low energy electron energy spectra (a), magnetic field114

strength (b), PA distribution (PAD) of 90-149 keV electrons (c), plasma density and tem-115

perature (d), as well as IMF observations from OMNI (e) propagated to bow-shock nose116
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(see Figure caption for more details). Because spacecraft separations are small, all MMS117

spacecraft detect the same large scale plasma and field structures. While the IMF Bz shows118

three oscillations during ≈ 10 hrs, it mostly remains negative and has a strong and steady119

duskward component. The interval from 8:40-10:20 UT shows magnetic field depressions120

(b) with high fluxes of trapped energetic electrons (c). It has been shown that these dia-121

magnetic cavities (DMCs) were formed by low-latitude reconnection [Nykyri et al., 2019]122

about 10 RE from the MMS location. The IMF Bz and dynamic pressure (not shown)123

variations result in the motion of the magnetopause relative to MMS, such that MMS124

moves from DMC-region into low temperature, high density magnetosheath (≈10:30 UT),125

then to magnetospheric boundary layer (BL) at ≈ 11:30, followed by transition back to126

magnetosheath (≈ 11:50). After 13:30 UT MMS mostly remains at the BL characterized127

by high temperature and lower density. At 16:20-19:10 UT significant fluxes (compara-128

ble to fluxes of trapped electrons at 8:30-10:10) of the 90-149 keV electrons (from EIS)129

show counter-streaming feature (c) and are associated with magnetic field depressions.130

Panels f, g and h show MMS trajectory in GSM coordinates projected on different -planes131

at 9:00 - 19:00 UT, depicted by the T96 magnetic field model [Tsyganenko, 1996]. Be-132

cause spacecraft separations are small (≤ 30 km), we checked that all MMS spacecraft133

detect the same large plasma and field structures. Based on the T96 model, MMS is about134

2 RE from the magnetopause in the high-latitude southern magnetosphere at 17:28 UT135

(see caption for more details).136

Figure 2 presents high and low energy plasma and field observations during 16:00137

-19:10 UT (see caption for more details on panels). During this interval the fluxes of the138

energetic ions (a) gradually decrease from 16:00 to 19:10 UT, while the low energy ion139

component (b) shows periodic flux enhancements. Energetic electrons (c) show periodic140

oscillations, matching the ion temperature enhancements (e) and magnetic field depres-141

sions (k). Plasma number density is typically below 1/cc (e), and plasma velocity (f) and142

magnetic field (h) show strong fluctuations. The low energy plasma and magnetic field143

pressure are anti-correlated (g) and roughly satisfy a local pressure balance while the total144

pressure gradually increases from 1 nPa at the beginning of the interval to 1.5 nPa ob-145

served at the end. The energetic (70-600 keV) ions (i) are mostly trapped, while the en-146

ergetic electrons (j), observed on magnetic field depressions are mostly in the local loss147

cone and are counter-streaming. We refer to these periodic, enhanced fluxes of counter-148

streaming electrons as microinjections. By examining them at different energy ranges can149

reveal whether they are locally or remotely generated.150

Figure 3 shows the EIS combined product of the energetic electron (b-d) and pro-151

ton (e-j) PADs at different energy channels (see caption). Magnetic field strength (a) from152

MMS1 is shown for reference indicating that the enhanced counter-streaming electron and153

trapped proton fluxes are localized within magnetic field peaks (highlighted with verti-154

cal lines). The FEEPS combined electron product (k-n) from four MMS spacecraft shows155

electron PADs at different combined energy channels. Note that the FEEPS and EIS en-156

ergy channels are at slightly different energy ranges. The 29-53 keV (b) and 40-70 keV157

(k) electrons have higher fluxes and typically (except for the first two enhancements at158

≈16:14-16:26 UT) have more isotropic PADs than the higher energy electrons (c-d) and159

(l-n), which show more counter-streaming nature. Unlike the energy dispersed microin-160

jections observed by Fennell et al. [2016], here the electron flux enhancements at different161

energy channels occur simultaneously (dispersionless), which suggest that spacecraft must162

be close to the source region of the electron microinjections. The bi-directional nature of163

these energetic electron PADs suggest that these are different than the "Energetic Elec-164

tron Layer", which was first discovered at the high latitudes and reported to have more165

isotropic PADs by Meng and Anderson [1970].166

The 101-232 keV protons (h-j), on the other hand, show two dispersed ion flux en-167

hancements at ≈16:05 and ≈16:12 UT and nearly isotropic PADs while the 20-95 keV168

proton fluxes (e-h) show enhancements closer to 90 degrees, and are periodically modu-169
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lated by the ULF waves throughout the interval. After 17:20 the 68 keV-232 keV protons170

(h-j) become increasingly more 90 degrees in PAD and appear to be localized in magnetic171

field depressions of the ULF waves at 17:00-18:25 UT. Please note that the 70-600 keV172

FEEPS ion PADs (shown in Figure 2) correspond well to the EIS 68-95 keV energy PAD173

(the lowest energies ≈ 70 keV have the highest intensities in the 70-600 keV combined174

product). After 17:20 UT the proton fluxes become increasingly weaker at higher energies175

(i and j). These observations support the interpretation of a localized source of protons176

with wide energy range (20 keV to 232 keV) at ≈ 16-16:25 UT and a constant source of177

20-95 keV protons that exist throughout the interval at 16:00-17:10 UT. The ULF wave178

modulation of the proton fluxes at energies of 20-139 keV and absence at higher energies179

is indicative of a "leaky wave trap" which could be explained by a gyro-radius effect: if180

the ULF wave has smaller scale size than the ion gyro-radius, the protons do not remain181

trapped within the wave but are effectively gradient and curvature drifting away from the182

source region. During this interval the magnetic field varies from 12 nT to 49 nT so the183

gyro-radius of the protons close to 90 degree PA varies from 460 km to 1870 km, from184

830 km to 1700 km, and from 1020 km to 2080 km for the 24 keV, 80 keV and 119 keV185

protons (midpoint energies of the energy channels shown in panels e, h and j), respec-186

tively. The proton fluxes at these energies drop at higher magnetic field value suggest-187

ing that the minimum perpendicular wave length, λ⊥ of the ULF waves is of the order of188

1000 km, thus much larger than the ≈ 30 km separation of the MMS spacecraft.189

The local linear theory instability condition for the Drift Mirror (DM) instability190

can be derived assuming the low frequency (ω � ωi) and long wave length limits, and a191

bi-Maxwellian distribution for the ions (cold electrons) as follows [Hasegawa, 1969; Soto-192

Chavez et al., 2019]193

β⊥(p⊥/p‖ − 1) > 1, (1)194

where ωi is ion angular frequency, p⊥ (p‖) is the perpendicular (parallel) plasma pressure,195

and β⊥ = p⊥/pB is the perpendicular plasma beta. Figure 4 shows plasma parameters (a-196

g) together with drift mirror instability (DMI) criteria from Equation 1 (h) (see caption).197

The plasma and magnetic pressure are periodically anti-correlated which is a typical sig-198

nature of the mirror mode waves. Here the mirror wave period is about 5 min. However,199

here the density is low and nearly constant (see Figure 2e), so the variations in the plasma200

pressure is dominated by the variations in ion temperature. The yellow columns highlight201

the intervals where DM instability criteria is well above unity. This occurs in the mag-202

netic field depressions in the region of high plasma beta and enhanced perpendicular ion203

temperature. The mirror-modes exhibit themselves in two distinct modes: peaks and dips.204

The peaks, such as observed here, are typically observed in an unstable plasma, while mir-205

ror structures within the stable region appear almost exclusively as dips [Joy et al., 2006;206

Soucek et al., 2008].207

The electron (i) and ion (j) temperature anisotropy vs parallel plasma beta scatter208

plots (color coded by electron and ion specific entropies) reveal that electron plasma is209

stable to electron firehose (EF) instability [Gary and Nishimura, 2003] and only few points210

are close to whistler (W) instability [Gary et al., 2012] (i). However, the fitting parameters211

vary with the assumed maximum growth rate, which depends on the electron velocity dis-212

tribution functions that for the present event appear to be more complex than the typically213

assumed bi-Maxwellians. Here the electrons can be partly isotropic as well as counter-214

streaming at the higher energy ranges of 29-1232 keV (a), and counter-streaming at low215

energies (< 30 keV) (b). The threshold criteria for mirror mode, proton cyclotron, fluid216

fire hose, parallel firehose and oblique fire hose instabilities are plotted after equations and217

fitting parameters from Hellinger et al. [2006] (j).218

The plots show that the mirror mode growth rate is relatively large. It is likely the219

case that the plasma anisotropy suddenly increased and there was not time to establish a220

steady state. Rapid compression (faster than the mirror mode growth time) could be re-221

sponsible for development of anisotropy beyond the DMI criteria. Development of the in-222
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stability is not necessarily quasilinear. Gyrokinetic simulations have shown development of223

mirror mode peaks which can lead to particle trapping [Porazik and Johnson, 2013], where224

the peaks narrowed and grew in conjunction with Fermi acceleration of resonant (slow225

moving) particles. Note that here the instability threshold is not satisfied everywhere (only226

near the throughs) which means that just plotting all data may lead to a mixture of ap-227

parently stable and unstable regions within a growing mirror mode structure. The trough228

regions where electrons are trapped likely remain above the threshold, but may saturate229

due to ion trapping.230

Figure 5 represents the PADs of 90-149 keV electrons (a), magnetic field (b), band-231

pass filtered electric (c) and magnetic (e) field at 0.03125-8.0 Hz. The unfiltered parallel232

electric field is shown in panel e. The counter-streaming energetic electron fluxes are lo-233

calized in field depressions between mirror mode peaks. It can be seen that the electric234

field fluctuations (c) are strongest where the counter-streaming electron fluxes are at the235

minimum. Typically the enhanced electric field fluctuation amplitudes coincide with the236

enhanced magnetic field fluctuation amplitudes, except for the interval at 17:28 -17:30 UT237

where the magnetic field fluctuations are strong between the mirror mode peaks. While238

the exact high-frequency wave mode identification is beyond the scope of this letter, these239

observations bear similarity with the hybrid-kinetic simulations that revealed particle scat-240

tering off the sharp edges of the mirror structures driven by kinetic-Alfvén-wave turbu-241

lence [Kunz et al., 2014].242

4 Conclusions and Discussions283

The present observations suggest a new source for the energetic electron microin-284

jections. We show that the ion temperature anisotropy in the high-latitude magnetosphere,285

characterized by high plasma beta, creates fruitful conditions for the drift mirror instabil-286

ity. The mirror mode waves are observed in their peak mode. They have a ≈ 5 minute287

periodicity and thus correspond to Pc5 band of the ULF frequency range. Here the mir-288

ror mode waves and microinjections are observed within the boundary layer as the plasma289

density remains relatively steady and does not reach magnetosheath values with the mirror290

mode periodicity. The mirror mode waves modulate the electron and proton fluxes with291

the same periodicity such that the highest counter-streaming electron fluxes and trapped292

protons are observed between magnetic field peaks. The counter-streaming electron sig-293

nature could be related to the Fermi-acceleration [Wu et al., 2006; Porazik and Johnson,294

2013]. The smallest electron fluxes are observed during the strong, high frequency elec-295

tric field fluctuations which could be a consequence of wave scattering and merits further296

investigation.297

As the mirror mode waves are typically observed in the magnetosheath, downstream298

of the quasi-perpendicular shock driven by the ion temperature anisotropy (T⊥/T‖ > 1),299

an urgent question is to understand what generates the strong ion temperature asymmetry300

and high plasma beta at the high-latitude magnetosphere? The mirror modes and microin-301

jections are observed after earlier diamagnetic cavity encounters [Nykyri et al., 2019] that302

show presence of trapped energetic electrons (and ions) with the same fluxes and energy303

ranges. The characteristic feature of the particle acceleration in the diamagnetic cavities304

is that particles gain tens of keV in energy perpendicular to magnetic field in few min-305

utes, thus resulting in temperature anisotropy [Nykyri et al., 2012; Burkholder et al., 2020].306

The diamagnetic cavity scale sizes can be on the order of few RE [Nykyri et al., 2011;307

Burkholder et al., 2020], thus they can act as a large volume reservoir for the energetic308

particles. During this event the diamagnetic cavities were observed only ≈ 4 RE away309

from the microinjection site (see red ovals in Figure 1), therefore it is possible MMS is310

relatively close to the cavity boundary. Considering the relatively steady southward and311

duskward IMF for several hours, the low latitude reconnection, which created the cavi-312

ties at southern hemisphere [Nykyri et al., 2019], could have operated relatively steadily313

providing continuous source for cavity (and temperature anisotropy) generation in this314
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Figure 2. Overview plot of the MMS 1 data on 2nd of October, 2015 at 16:00 - 19:10 UT. The panels from
top to bottom present the omni-directional 70-600 keV (a) and 100 eV-30 keV (b) ion spectrograms; same
for electrons are shown in panels c and d; plasma density (green) and temperature (black) (e); ion velocity
(f), pressures (g), magnetic field (h), PADs of 70-600 keV ions (i) and electrons (j), and the magnetic field
strength (k). The local trapping angle, α = arctan( 1√

BM /B−1
), is shown as black envelopes in panels (i and

j) and is computed in same way as in [Nykyri et al., 2012; Breuillard et al., 2018; Ahmadi et al., 2018; Nykyri
et al., 2019], where a constant magnetic field value, BM = 49 nT at the mirror point is used (which is also the
maximum magnetic field observed by MMS during this interval) and B is the local magnetic field magnitude
observed at each given point between 16:00-19:10 UT.
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location. Alternatively, these high-energy electrons could also potentially leak from the315

diamagnetic cavity formed during the prevailing IMF orientation ( Bz < 0 and By > 0)316

at the sunward-dusk sector of the northern cusp [Nykyri et al., 2011; Nykyri et al., 2019]317

due to possible reconnection as predicted by T96 model (see yellow star in Figure 11f), be318

reflected at southern hemisphere and captured at field depressions between mirror mode319

peaks.320

While this is the first observation of the mirror mode waves and microinjections ob-321

served in this region of geospace, we expect this to frequently occur in this location for322

similar solar wind and IMF conditions. The temperature anisotropy is likely to form any-323

where in the high-latitude magnetosphere where the diamagnetic cavities can form and324

stay stable sufficiently long for the particle acceleration to occur. Since the cavity forma-325

tion happens somewhere in the vicinity of the northern or southern cusps for any IMF326

orientation [Nykyri et al., 2011; Burkholder et al., 2020], this mechanism could be a po-327

tential source for microinjections and help partly explain the radiation belt electron seed328

population. MHD simulations with test particles have revealed how a new outer radiation329

belt can be created during a handful of discrete, injections by the gradient trapping and330

transport [Sorathia et al., 2018].331

Furthermore, this high-latitude boundary layer can also be unstable to the KHI [Nykyri332

et al., 2020; Hwang et al., 2012] which can also generate temperature anisotropy [Ma333

et al., 2019]. Global 3-D simulations addressing both the KHI and mirror-mode genera-334

tion remain to be developed to fully understand the coupling of these processes.335
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