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Abstract

Natural and non-natural factors have combined effects on the trajectory of COVID-19 pandemic, but it is difficult to make

them separate. To address this problem, a two-stepped methodology is proposed. First, a compound natural factor (CNF)

model is developed via assigning weight to each of seven investigated natural factors, i.e., temperature, humidity, visibility,

wind speed, barometric pressure, aerosol and vegetation in order to show their coupling relationship with the COVID-19

trajectory. Onward, the empirical distribution based framework (EDBF) is employed to iteratively optimize the coupling

relationship between trajectory and CNF to express the real interaction. In addition, the collected data is considered from the

backdate, i.e., about 23 days—which contains 14-days incubation period and 9-days invalid human response time—due to the

non-availability of prior information about the natural spreading of virus without any human intervention(s), and also lag effects

of the weather change and social interventions on the observed trajectory due to the COVID-19 incubation period; Second,

the optimized CNF-plus-polynomial model is used to predict the future trajectory of COVID-19.Results revealed that aerosol

and visibility show the higher contribution to transmission, wind speed to death, and humidity followed by barometric pressure

dominate the recovery rates, respectively. Consequently, the average effect of environmental change to COVID-19 trajectory

in China is minor in all variables, i.e., about -0.3%, +0.3% and +0.1%, respectively. In this research, the response analysis of

COVID-19 trajectory to the compound natural interactions presents a new prospect on the part of global pandemic trajectory

to environmental changes.
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• Reduction in CNF value (outcome of the weather change) could help delay the spread of 13 

virus, but increase the death and decrease the recovery.  14 
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Abstract 16 

Natural and non-natural factors have combined effects on the trajectory of COVID-19 pandemic, 17 

but it is difficult to make them separate. To address this problem, a two-stepped methodology is 18 

proposed. First, a compound natural factor (CNF) model is developed via assigning weight to 19 

each of seven investigated natural factors, i.e., temperature, humidity, visibility, wind speed, 20 

barometric pressure, aerosol optical depth (AOD) and fractional vegetation coverage (FVC) in 21 

order to show their coupling relationship with the COVID-19 trajectory. Onward, the empirical 22 

distribution based framework (EDBF) is employed to iteratively optimize the coupling 23 

relationship between trajectory and CNF to express the real interaction. In addition, the collected 24 

data is considered from the backdate, i.e., about 23 days—which contains 14-days incubation 25 

period and 9-days invalid human response time—due to the non-availability of prior information 26 

about the natural spreading of virus without any human intervention(s), and also lag effects of 27 

the weather change and social interventions on the observed trajectory due to the COVID-19 28 

incubation period; Second, the optimized CNF-plus-polynomial model is used to predict the 29 

future trajectory of COVID-19.Results revealed that aerosol and visibility show the higher 30 

contribution to transmission, wind speed to death, and humidity followed by barometric pressure 31 

dominate the recovery rates, respectively. Consequently, the average effect of environmental 32 

change to COVID-19 trajectory in China is minor in all variables, i.e., about -0.3%, +0.3% and 33 

+0.1%, respectively. In this research, the response analysis of COVID-19 trajectory to the 34 

compound natural interactions presents a new prospect on the part of global pandemic trajectory 35 

to environmental changes. 36 

Plain Language Summary 37 

The World Health Organization declared COVID-19 a pandemic on March 11, 2020. NATURE 38 

and SCIENCE published articles affirming the positive effect of non-natural interventions on 39 

mitigating the pandemic in China but still the possibility cannot be ruled out that the decrease is 40 

partially attributable to other unknown climatic factors. Our work separated the response of 41 

COVID-19 trajectory to natural and non-natural factors. First, the response of COVID-19 42 

trajectory to the 7 single natural factors (SNFs), i.e., temperature, humidity, wind speed, aerosol, 43 

visibility, barometric pressure and vegetation are investigated, respectively. Onward, a 44 

compound natural factor (CNF) is proposed to draw the combined effect with virus spread. 45 

Through assigning optimal weight values to SNFs, a coupling relationship is expressed for the 46 

interaction between compound natural factor and COVID-19 pandemic. As a result, CNF 47 

exhibites the sensitive response to COVID-19 trajectory. With a simple computer code to predict 48 

future COVID-19 trajectory purely driven though natural factors, it is confirmed that reduction in 49 

CNF value (outcome of the weather change) could help delay the spread of virus, but increase 50 

the death and decrease the recovery. On the contrary, increased CNF value could to some extent 51 

deacrease the death and increase the recovery, but accelerate the virus spread simultaneously. 52 

Modeling results suggest that during the valid human response time, combined with the 53 

accessorial natural interaction, the non-natural factors basically dominated the COVID-19 54 

pandemic trajectory. However, when the COVID-19 trajectory entered the retreated phase (e.g., 55 

in China and Australia, etc.), the effect of natural interaction to subsequent trajectory became 56 

important. 57 

 58 
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1 Introduction 59 

On March 11, 2020, the World Health Organization declared COVID-19 a pandemic. 60 

Non-pharmaceutical interventions (NPIs) helped China decrease a 67-fold COVID-19 cases (Lai, 61 

et al., 2020), but still the possibility cannot be ruled out that the decrease is partially attributable 62 

to other unknown climatic factors, e.g. temperature and absolute humidity. Many countries hope 63 

that the spread of COVID-19 is likely constrained by climate, as the SARS in 2003. Some 64 

studies show temperature could have significant relationship to COVID-19 transmission, and 65 

there might be an optimal temperature for the viral transmission (Wang and Jiang, et al., 2020; 66 

Wang and Tang, et al., 2020), and solar radiation threats the virus survival (Ahmadi, et al., 67 

2020). However, some studies do not support the hypothesis that high temperature and UV 68 

radiation can be conductive in the reduction of COVID-19 transmissibility. It might be premature 69 

to count on warmer weather to control COVID-19 (Zhu, et al., 2020; Yao, et al., 2020). Other 70 

climatic factors are also researched, such as humidity (Luo, et al., 2020; Ma, et al., 2020), aerosol 71 

(Wang and Du, 2020; Sima, et al., 2020), wind speed (Ahmadi, et al., 2020; Islam, et al., 2020). 72 

Previous studies supported an epidemiological hypothesis that dry environments facilitate the 73 

survival and spread of droplet-mediated viral diseases, and humid environments see attenuated 74 

viral transmission (Barreca and Shimshack, 2012; Shaman, et al., 2011). Next, reference 75 

(Ahmadi, et al., 2020; Wang and Tang, et al., 2020) show high humidity reduces the 76 

transmission of COVID-19. However, reference (Luo, et al., 2020) concludes that the role of 77 

absolute humidity in transmission of COVID-19 has not yet been established. In addition, 78 

COVID-19 may transmit through aerosol (Liu, et al., 2020; Wang and Du, 2020), whereas there 79 

are also important reasons to suspect it plays a role in the high transmissibility of virus (Sima, et 80 

al., 2020). Further, a study shows that an outbreak at low wind speed is remarkable (Islam, et al., 81 

2020), but this result is nullified by another study (Oliveiros, et al., 2020). 82 

Why these studies show diverged results? It is still not clear that how climate play its part 83 

in the transmissibility of COVID-19. The spreading mechanism of virus is very complex, 84 

coupling certain factors. NATURE and SCIENCE published articles affirming the positive effect 85 

of pre-emptive implementation of NPIs on mitigating the pandemic (Lai, et al., 2020; Tian, et al., 86 

2020). Considering the impact of natural factors on virus transmission along and excluding the 87 

NPIs, it is still insignificant method to do independent analysis on the part of considering single 88 

natural factors (SNFs) and to ignore their coupling relationship (CR). However, the CR received 89 

less attention in the COVID-19 modeling communities. One of the potential solutions is 90 

weighted ensemble method, which is popular in Meteorology (Yoo, et al., 2020), 91 

Socioeconomics (Boyce, et al., 2020), and Climatology (Strobach, et al., 2020). Therefore, the 92 

primary objective of this study was to quantify the influence of compound natural factor (CNF) 93 

on COVID-19 trajectory, and to quantify the contributions of their potential driving factors, 94 

including temperature, humidity, visibility, barometric pressure, wind speed, aerosol, and 95 

vegetation. We used the mean monthly case growth rate (Tellis, et al., 2020), death growth rate 96 

(Ma, et al., 2020), and recovery growth rate during three months (January, February, March) in 97 

31 Chinese cities as proxies for COVID-19 trajectory. Seven mean monthly natural factors 98 

during the same timestamp were used to quantify the environmental changes in 31 Chinese 99 

cities. We also analyzed the relative contribution of each natural factor to COVID-19 trajectory 100 

from January 22 to February 12, 2020. To analyze the observed changes in trajectory during 101 

March, we designed three CNF models (M1: infection; M2: death; M3: recovery) to predict the 102 

contemporaneous trajectory driven by environmental changes. For comparison to the traditional 103 

single natural factor analysis method, we used an empirical distribution based framework 104 
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(EDBF) (Zuo, et al., 2020) to minimize model uncertainties by optimizing the integration of 105 

model simulations. Onward, the influence of natural and non-natural factors is potentially 106 

separated through the deviation of predicted trajectory from observed trajectory. 107 

2 Materials and Methods 108 

2.1 Data collection 109 

In this study, for experimental purpose 31 Chinese cities, i.e., 27 provincial capitals and 4 110 

metropolitan cities (Beijing, Shanghai, Tianjin, and Chongqing) are considered, wherein 111 

6 city-wise pandemic parameters data and 7 single natural factors (SNFs) data from 112 

January 22nd to March 18st, 2020 are collected. Moreover, the city-wise pandemic data 113 

including new / cumulative cases per day, new / cumulative deaths per day, and new / 114 

cumulative recoveries per day is collected from the Pandemic Real-time Reports on the 115 

website of 31 Provincial Health Commission of People’s Republic of China (Tab.S1). In 116 

addition, SNFs include meteorological data, i.e., temperature, humidity, visibility, wind 117 

speed, and barometric pressure, which is collected from the weather data repository 118 

(https://weatherspark.com/). Besides, the aerosol optical depth (AOD) data, and fractional 119 

vegetation coverage (FVC) data are collected from the National Aeronautics and Space 120 

Administration (NASA) (https://giovanni.gsfc.nasa.gov/giovanni) and National Earth 121 

System Science Data Center (http://www.geodata.cn/index.html), respectively. Finally, 122 

all data for this study are available in the CNF-Model data repository 123 

(https://github.com/ZhengkangZUO-2020/CNF-Model). 124 

2.2 Pandemic Metric 125 

Daily growth rate is one of the simple, intuitive, and generalizable metrics to interpret the 126 

spread of COVID-19 pandemic (Tellis, et al., 2020). Daily growth rate is the percentage 127 

increase in cumulative cases, deaths, and recoveries, which is not dependent on calendar 128 

time, country, or type of disease. Therefore, this feature enables comparison across time 129 

and country. For example, when Wuhan reported 356 new cases on January 29th on a 130 

base of 1905 total cases on January 28th, its case growth rate (CGR) was 19%. At that 131 

rate, the number of victims would have grown to about 4,546 in five days. Had Governor 132 

not intervened and allowed the disease to spread uncontrolled, the disease would have 133 

infected 498,000 victims as of February 29th. Similarly, death growth rate (DGR) and 134 

recovery growth rate (RGR) can be also calculated as Tellis mentioned. Using this 135 

metric, Tellis also defined three measurable benchmarks for analysts and public managers 136 

to target: when case growth rate stays below 10%, 1%, and 0.1%, the pandemic is defined 137 

as moderation, control, and containment, respectively. 138 

2.3 EDBF Optimizer 139 

The Compound Natural Factor (CNF) model applied in this study is mainly based on our 140 

previous work presented in (Zuo, et al., 2020; Ullah, et al., 2020), where the basis 141 

function, i.e., Eq. [1] is selected at an optimum weight and by interpolating the 142 

correlation between weighted natural factors and pandemic variables. After successfully 143 

applying the proposed methodology, the Empirical Distribution based Framework 144 

https://weatherspark.com/
https://giovanni.gsfc.nasa.gov/giovanni
http://www.geodata.cn/index.html
https://github.com/ZhengkangZUO-2020/CNF-Model
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(EDBF) (Zuo, et al., 2020) was employed in optimizing the CNF model. From the EDBF 145 

algorithm perspective, it is a general framework rather than a specific algorithm, which is 146 

easy to implement and can easily accommodate any existing multi-parent crossover 147 

algorithms (MCAs). Moreover, the existing MCA-based coefficients (Eiben and Back, 148 

1997; Herrera, et al., 1998; Goldberg, 1991) follow a uniform distribution, which also 149 

violates constraints, thus propagate error. Errors cascade exponentially, with even a slight 150 

increase in the hybrid scale, which leads to the increase in time consumption. To address 151 

such problem, EDBF is the best solution which takes multiple MCAs as its constituent 152 

members. In addition, the number of iterations during the execution of EDBF algorithm 153 

was set to 50,000 with the reason that a possible number of iterations be available for the 154 

stabilization of convergence before the ending of simulation process. Though the 155 

convergence stabilized before a 50,000 number of iterations, still a slight improvement 156 

could be observed, and further improvement in the regression value(s) could be expected. 157 

Instead, by terminating simulation during the execution, we let simulation process to be 158 

completed until the last iteration. Moreover, the parameters setting in EDBF algorithm to 159 

optimize CNF model is 200-sized population pool, 15 parent chromosomes with 5 elitists, 160 

and each chromosome incorporates 7 genes (weight of each SNFs). 161 

2.4 CNF Model 162 

COVID-19 trajectories are the result of the combined actions of multiple natural factors, 163 

and each factor has different influence. In this regard, separate weight value should be 164 

assigned to the single natural factors (SNFs) on the basis of its influence. Based on 165 

weighted SNFs outputs, the most influencing nature predictor that predicts the impending 166 

COVID-19 trajectory is considered for further evaluation through EDBF algorithm. In 167 

this research, the developed methodology is based on the earlier work of (Zuo, et al., 168 

2020; Ullah, et al., 2020). The framework of CNF model is shown in Fig.S1. Based on 169 

calculated r values, the process starts through randomly generating initial weight vector 170 

W, which by substituting into Eq. [2] obtains CNF:  171 

T H V B W FA
CNF w w w w w w wT H V B W A F= ´ + ´ + ´ + ´ + ´ + ´ + ´                         (1) 172 

where CNF is the weighted natural factor, T H V B W FA
= {w ,w ,w ,w ,w ,w ,w }W  corresponds to the 173 

weight values (Eq. [2]), and vector T, H, V, B, W, A and F corresponds to each of the 174 

seven natural factors, i.e., temperature, humidity, visibility, barometric pressure, wind 175 

speed, aerosol and vegetation, respectively.  176 

T H V B W FA
w w w w w w w 1+ + + + + + =                                   (2) 177 

Subsequently, the correlation coefficient RCNF-C, RCNF-D and RCNF-R between CNF and 178 

each pandemic variable is calculated, respectively. In addition, EDBF algorithm is run to 179 

iteratively optimize W to obtain and accurate weight vector Wt, where t represents the 180 

number of iterations. Moreover, relationships between CNF and pandemic predictors are 181 

evaluated, respectively. Hereafter, the optimal weight vector of CNF model is used in the 182 

prediction of COVID-19 trajectory. Finally, the observed trajectory in March is compared 183 

with the predicted one to measure the model accuracy. 184 
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2.5 Model Evaluation Metric 185 

Taylor diagram is useful in evaluating multiple aspects of models (Taylor, 2001), which 186 

characterizes the statistical relationship between two fields, a “test” field (often 187 

representing a field simulated by a model) and a “reference” field (usually representing 188 

“truth”, based on observation). The similarity between two fields is quantified in terms of 189 

their correlation, their centered root-mean-square difference and their standard deviation. 190 

The reason that each point in the two-dimensional space of the Taylor diagram can 191 

represent three different statistics simultaneously is that these statistics are related by the 192 

follow formula: 193 

2 2 2' + 2f r f rE R   = −
                                      (3) 194 

where R is the correlation coefficient between the test and reference field, E’ is the 195 

centered RMS difference between the fields, and 
2

f
  and 2

r are the variances of the 196 

test and reference fields, respectively. 197 

2.6 Lag Effect Compensation 198 

The obstacles of revealing the more real interaction between the COVID-19 trajectory 199 

and compound natural factor are: 1) no official epidemiological data where the virus 200 

naturally spread without any human interventions; 2) lag effects of weather change and 201 

social intervention on the observed trajectory of COVID-19 due to the incubation period 202 

of COVID-19. In Fig.1, the COVID-19 virus exhibited 23-days exponential growth 203 

(between Jan-22 and Feb-23) and 33-days slow growth (between Feb-24 and Mar-18). It 204 

is noteworthy to mention that the turning point of COVID-19 trajectory emerged on Feb-205 

23. Therefore, there are certainly invalid time for human response to the overwhelming 206 

attack from the virus, especially at the beginning of the outbreak. We assumed 9 days as 207 

the average invalid human response time, which would cause 9-days lag effect to the 208 

COVID-19 trajectory. Combined with 14-days incubation period of COVID-19 (Lauer, et 209 

al., 2020), there are 23-days lag effect requisite to be compensated. 210 

To handle these two problems, the reported data was considered from the backdate, i.e., 211 

about 23 days earlier which contains 14-days COVID-19 incubation period and average 212 

9-days invalid human response time. Based on this assumption, the reported data—213 

between January 22nd and February 12nd, 2020—approximately reveals the non-reported 214 

COVID-19 trajectory from the backdate—between December 31st, 2019 and January 21st, 215 

2020—during which the virus naturally spread (Fig.1). 216 
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 217 

Figure 1. The characteristic of COVID-19 pandemic trajectory between Dec-31, 2019 and Mar-18, 2020 in 218 

China. Respiratory disease due to novel coronavirus detected in Wuhan city on Dec-31, 2019, Ministry of 219 

Transport launches Level 2 emergency on Jan-21, 2020, Health Commission of People’s Republic of China 220 

(HCPRC) reported the first epidemiological data on Jan-22, Residuential districts in Hubei province put under 221 

closed management on Feb-10, the first turning point emerged on Feb-13, and the COVID-19 pandemic began 222 

retreat back on Mar-18. The virus spread naturally without any human interventions between Dec-31, 2019 and 223 

Jan-21, 2020. Onward, the virus went on spreading under the control of human response between Jan-22 and 224 

Mar-18. Specifically, the COVID-19 pandemic exhibited the exponential growth between Jan-22 and Feb-13, 225 

while had the slow growth between Feb-14 and Mar-18.  226 

3 Results 227 

3.1 Single natural factors acting on COVID-19 trajectory 228 

The execution of proposed CNF model was first formulated through evaluating the 229 

COVID-19 trajectory response, e.g., each pandemic variable with respect to the seven 230 

single natural factors (SNFs). Additionally, each investigated pandemic variable, e.g., 231 

growth rate in terms of case, death and recovery was plotted against each SNFs. 232 

Demonstration through scatter diagrams and polynomial regression (Fig.S3) described 233 

the relationship between pandemic variable and SNFs, i.e., temperature, humidity, 234 
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visibility, barometric pressure, wind speed, aerosol and vegetation, respectively. 235 

Moreover, the influence of natural factors on COVID-19 trajectory is illustrated in Fig.2 236 

through r and p values (Tab.S2). It was observed that only two SNFs, i.e., aerosol and 237 

visibility have a statistically significant response to the case growth rate at the 0.01 and 238 

0.05 significance level, showing a moderate negative response (r=-0.457, p<0.01) and 239 

low negative response (r=-0.399, p<0.05), respectively. In addition, the unique 240 

significant relationship between SNFs and the death growth rate was observed at wind 241 

speed, showing a low negative response (r=-0.365, p<0.05). Furthermore, another three 242 

SNFs, i.e., humidity, barometric pressure and temperature have a significant response to 243 

the recovery growth rate, showing a high positive response (r=0.724, p<0.01), moderate 244 

positive response (r=0.671, p<0.01) and low positive response (r=0.414, p<0.05), 245 

respectively. It was mentioned that only vegetation has no significant response to all three 246 

pandemic variables. On the contrary, compound natural factor (CNF) had significant 247 

response to all pandemic variables, showing a stronger response than all SNFs. Notably, 248 

the details of CNF results could be found in the Section 3.2. 249 

a b  250 

Figure 2. Correlation and significance of natural factors acting on COVID-19 trajectory. The left 251 

diagram represents the correlation matrix between SNFs and pandemic variables, where red colors and 252 

blue colors indicate the positive and negative influence, respectively. Correlation coefficients whose 253 

magnitude are between 0.7 and 0.9 indicate variables which can be considered highly correlated, while 254 

moderate correlation exists between 0.5 and 0.7, low correlation (0.3-0.5) and little correlation (0-0.3), 255 

respectively. The right diagram represents the corresponding p value matrix, where black colors and 256 

grey colors individually indicate the statistically significant (p<0.05) and insignificant (p>0.05) 257 

correlation between natural factors and pandemic variables. 258 

3.2 Coupling relationship in weighted natural factor 259 

In the EDBF algorithm, initial weight values were randomly assigned to each single 260 

natural factor, respectively (Fig.S2). Onward, the optimal weight values were evaluated 261 

through EDBF algorithm, and the number of iterations was set to 50,000. Fig.3 262 

demonstrates the iteration wise statistics at each pandemic variable, in which figures at 263 

the location of top, right and bottom show weight values and the figure at the location of 264 

middle shows r values, which were iteratively generated by the algorithm itself. To 265 

investigate weight values, it was observed that lots of discrepancies exist in the 266 

convergence of investigated variables, and the convergence showed stabilization onward 267 

40,000 iterations at case growth rate (Fig.3-top), 35,000 iterations at death growth rate 268 

(Fig.3-right) and 15,000 iterations at recovery growth rate (Fig.3-down). In Fig.3-top, the 269 
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aerosol; Fig.3-right, wind speed and vegetation; Fig.3-down, barometric pressure and 270 

aerosol, respectively, showed higher weight value from the beginning until the last 271 

iteration. As for r values are concerned, uncertainty in initial iterations was observed as 272 

shown in Fig.3-middle, and the convergence showed stabilization onward 15,000 273 

iterations. Likewise, it was also observed that the absolute r values drastically increased 274 

before the stabilization of convergence. 275 

Furthermore, the optimal weight values in CNF model at each pandemic variable were 276 

shown in Fig.S2, wherein it showed that the aerosol (54.8%) followed by the visibility 277 

(42.9%) and the temperature (2.3%) are the most influencing SNFs on the coupling 278 

relationship in the CNF model which is constructed on the data with respect to COVID-279 

19 case growth rate. However, the humidity, the barometric pressure, the wind speed and 280 

the vegetation do not contribute to the CNF model. As far the CNF model—constructed 281 

on the death growth rate—are concerned, the wind speed (66.8%) followed by the 282 

vegetation (16.9%) and the visibility (16.4%) had higher impacts. Onward, in the CNF 283 

model about recovery growth rate, the weight of humidity is 47.2%, barometric pressure 284 

(34.2%), aerosol (11.8%), temperature (6.6%), vegetation (0.1%), wind speed and 285 

visibility have no contribution. In addition, the weighted r value predicted by EDBF 286 

algorithm was higher as compared to the calculated r value for each single natural factors 287 

at each pandemic variable, as shown in Fig.3. The highest weighted r was predicted at 288 

recovery growth rate (0.765) followed by case growth rate (-0.556) and death growth rate 289 

(-0.392), respectively. 290 

 291 

Figure 3. The optimization process of weights in CNF model at each pandemic variables, such as 292 

growth rate in terms of case, death and recovery. The middle diagram represents the evolutionary r 293 

values between CNF model outputs and pandemic variables. The left-top, the right and the left-down 294 
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diagrams illustrate the weight assigned to each SNFs was optimizing with the increase of EDBF 295 

iterations for improving r values between CNF model outputs and growth rate in terms of case, death 296 

and recovery, respectively. 297 

3.3 CNF-model evaluation 298 

We evaluated the performance of the CNF model in simulating COVID-19 trajectory in 299 

China using the Taylor diagram (Fig.4). Trajectory simulated by CNF model and seven 300 

SNF models were compared to observed trajectory. The performance of the modeled 301 

trajectory was quantified by correlation coefficients (R) between the modeled and 302 

observed trajectory, standard deviation (SD) of the variation in the spatial trajectory, and 303 

the root mean square difference (RMSD) between the modeled and observed trajectory. 304 

For the study area, absolute correlation coefficients between model-simulated trajectory 305 

and observed trajectory ranged from 0.392   CNF
0.002 temperature

0.186 ，
，

( max
min

mean ) for Death, to 306 

0.556    CNF
0.015 wind speed

0.285 ，
，

for Case, to 0.765    CNF
0.041 aerosol

0.422 ，
，

for Recovery. SD and RMSD values 307 

between the modeled and observed trajectory also suggest overall acceptable 308 

performance by the CNF models in reproducing observed spatial trajectory variation (SD 309 

ranging from 5.336   vegetation
3.253 CNF

3.909 ，
，  for Recovery, to 7.026   vegetation

3.339 CNF
5.029 ，

， for Case, to 310 

8.814   vegetation
4.563 CNF

6.355 ，
， for Death, and RMSD ranging from 0.093   vegetation

0.024 CNF
0.051 ，

，  for Recovery, to 311 

0.105   vegetation
0.033 CNF

0.057 ，
，  for Death, to 0.099   vegetation

0.033 CNF
0.057 ，

，  for Case). Onward, it is mentioned in 312 

the Eq. [3] that
'E will be less with larger R and less difference of

f
  from r . Thus, less313 

'E  reveals higher accuracy of simulated model because of the closer distance from the 314 

observed. In this regard, CNF model illustrated the highest accuracy than SNF models at 315 

each pandemic variable (Fig.S4). 316 

 317 

Figure 4. Taylor diagram (Taylor, 2001) displaying a statistical comparison with observations of 318 

seven SNFs and CNF model estimates of the COVID-19 pandemic trajectories, wherein 24 models are 319 

divided into three groups based on the pandemic variables, and each group has eight models which is 320 

separated by natural factors. It is mentioned that the blue, the red and the green markers represent the 321 

case growth rate, the death growth rate and the recovery growth rate, respectively. Onward, in each 322 

group, the pentagram, the upper triangle, the cross, the asterisk, the square, the circle, the plus, the 323 

rhombic and lower triangle marks represent the temperature, the humidity, the visibility, the 324 

barometric pressure, the wind speed, the aerosol, the vegetation, the compound natural factor and the 325 

observed data, respectively. The standard deviation shows the variability of the observed and the 326 

modeled COVID-19 trajectory. The distance of points to the matched lower triangle on the x-axis 327 

identified as “Ref” show centered root mean square difference (RMSD) between model simulations 328 
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and observation. 329 

3.4 CNF-based prediction of COVID-19 transmission 330 

The polynomial model developed with case growth rate (CGR) and compound natural 331 

factor (CNF) during the invalid human response time (COVID-19 virus spread naturally, 332 

which will be discussed in Section 4.2) is shown in Eq. [4]. Due to the hypothesis that the 333 

delayed response of COVID-19 trajectory to human intervention, 22-days (1-22 to 2-12) 334 

of reported trajectory essentially revealed preexistent trajectory 22 days ago, i.e., during 335 

31 December, 2019 and 21 January, 2020. That is to say, reported trajectory always exists 336 

the hysteretic nature (i.e., assumed 22 days based on simple analysis in Section 4.2) 337 

especially at the beginning of the COVID-19 outbreak. We have to employ existing 338 

reported data to approximately simulate the natural spread of COVID-19 virus because 339 

there are no reported data available before 22 January, 2020 (the first human response 340 

time, before which virus spread naturally). In this regard, Eq. [4] in conjunction with Eq. 341 

[1] revealed the interaction between natural COVID-19 transmission and compound 342 

natural factor which is weighed by temperature, humidity, visibility, wind speed, 343 

barometric pressure, aerosol and vegetation.  344 

3 2
CGR(CNF) -1.79CNF +2.172CNF 0.8749CNF+0.2309= −                   (4) 345 

Onward, demonstration through scatter diagrams and polynomial regression of Eq. [4] is 346 

shown in Fig.S3-I-h. Furthermore, 7 single natural factors during valid human response 347 

time (2-13 to 3-18) is substituted into Eq. [1], as the recombine of the contemporaneous 348 

compound natural factor. It is worthy to mention in Eq. [1] that the weight assigned to 349 

each single natural factor is the equivalent of individual responsive strength to COVID-350 

19 trajectory. Subsequently, recombined compound natural factor is substituted into Eq. 351 

[4], the output of which revealed the natural transmission of COVID-19 virus and 352 

interacted mechanism of 7 investigated natural factors. The predicted trajectory is shown 353 

in Fig.5. The spatial COVID-19 pattern of 31 cities in China during invalid human 354 

response time is quite dispersive (Fig.5-top), wherein Harbin has 23.5% of average daily 355 

growth rate in case, followed by Nanning (18.3%), Nanchang (15.9%), Changchun 356 

(15.9%), Zhengzhou (14.7%), Guiyang (14.5%), Wuhan (14.5%), etc. There are 18 357 

investigated cities (over 58%) stayed upper 10% of case growth rate. Based on Section 358 

2.2, case growth rate staying below 10%, 1%, and 0.1%, the pandemic is defined as 359 

moderation, control, and containment, respectively. Thus during the virus natural 360 

transmission period, pandemic in 12 investigated cities (38.7%) was defined as 361 

moderation, only Lhasa was the containment, while 18 cities were out of control. 362 

However, supposing that the virus spread naturally in subsequent 47 days (2-13 to 3-18), 363 

the predicted COVID-19 transmission is shown in Fig.5-down. Obviously, the spatial 364 

COVID-19 pattern became uniform with the interaction of compound natural factor. 365 

Specifically, the variety of predicted case growth rate in Harbin seems outlier (23.5% to -366 

14.6%), that is because the shift of compound natural factor in Harbin is enormous (5.4% 367 

to 93.1%) (Fig.S5-a). It is noteworthy that there is similarly uniform spatial COVID-19 368 

pattern between the observed pattern (Fig.5-right) and the contemporaneous predicted 369 

pattern. This phenomenon and its further separation of influence between natural and 370 
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non-natural factors to COVID-19 trajectory will be discussed in Section 4.3. 371 

 372 

Figure 5. CNF-based prediction of case growth rate during valid human response time to COVID-19. 373 

The middle diagram represents the observed monthly shift of COVID-19 transmission from February 374 

(red line) to March (green line), and the deviation between the predicted (blue line) and observed 375 

transmission. The left-top, the right and the left-down diagrams illustrate the spatial distribution of 376 

COVID-19 related case during February, March and predicted March, respectively. 377 

3.5 CNF-based prediction of COVID-19 related death 378 

The polynomial model developed with death growth rate (DGR) and compound natural 379 

factor (CNF) during the invalid human response time (COVID-19 virus spread naturally) 380 

is shown in Eq. [5] and Fig.S3-II-h. 381 

3 2
DGR(CNF) -1.019CNF +1.625CNF 0.8444CNF+0.1534= −                 (5) 382 

As the similar process in Section 3.3, during the valid human response time (Tab.S3), the 383 

contemporaneous recombined compound natural factor is simulated through the 384 

substitution of 7 single natural factors into the Eq. [1]. Subsequently, recombined 385 

compound natural factor is substituted into Eq. [5], the output of which revealed the 386 

natural COVID-19 trajectory concerning death and interacted mechanism of 7 387 

investigated natural factors. The predicted trajectory is shown in Fig.6. During the invalid 388 

human response time to COVID-19 trajectory, 9 cities (29%) exhibited the notable 389 

average daily death growth rate (over 10%), wherein Wuhan (13.5%), followed by 390 

Chengdu (12.3%), Beijing (6.9%), Chongqing (6.2%), Harbin (6.1%) and Shanghai 391 

(3.9%), etc. However, daily death growth rate in other 22 cities (71%) is at the very low 392 
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level (Fig.6-top). Onward, during the valid human response time, except for Xian, 30 393 

cities exhibited the decrease in death growth rate (Fig.6-right). However, supposing that 394 

there is no valid human response to COVID-19, the predicted trajectory concerning death 395 

is shown in Fig.6-down. Onward, the simulated COVID-19 trajectory concerning death 396 

was region specific due to the environmental change variety, wherein only 7 cities 397 

exhibited the decrease trend, while 24 cities showed the increase trend. It is mentioned 398 

that Wuhan decreased 8.6%, followed by Beijing (-5.9%), Chengdu (-5.5%), Harbin (-399 

5%), Shanghai (-3%), Tianjin (-2.9%), and Changsha (-1.7%). On the contrary, Nanchang 400 

increased prominently (+5.2%), followed by Yinchuan (+5.1%), and Urumqi (+4.4%), 401 

etc. 402 

 403 

Figure 6. CNF-based prediction of death growth rate during valid human response time to COVID-404 

19. The middle diagram represents the observed monthly shift of COVID-19 related death from 405 

February (red line) to March (green line), and the deviation between the predicted (blue line) and 406 

observed transmission. The left-top, the right and the left-down diagrams illustrate the spatial 407 

distribution of COVID-19 related death during February, March and predicted March, respectively. 408 

3.6 CNF-based prediction of COVID-19 related recovery 409 

The polynomial model developed with recovery growth rate (RGR) and compound 410 

natural factor (CNF) during the invalid human response time (COVID-19 virus spread 411 

naturally) is shown in Eq. [6] and Fig.S3-III-h. 412 

RGR(CNF) 0.235CNF-0.02306=                                     (6) 413 

As previous mention in Section 3.3, the COVID-19 virus spread naturally during the 414 

invalid human response time (Tab.S3). Similarly, supposing that the natural response still 415 
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dominates the virus spread during the valid human response time (Tab.S3), COVID-19 416 

trajectory concerning recovery (Fig.7-down) is predicted through Eq. [1] and Eq. [6]. It is 417 

mentioned in Fig.7-top that, during the invalid human response time, 5 cities exhibited 418 

over 20% of average daily recovery growth rate, while 18 cities over 10% and 7 cities 419 

under 10%. Specifically, in the notable daily recovery growth rate, Guangdong exhibited 420 

24.2%, followed by Shanghai (22.3%), Chongqing (21.8%), Zhengzhou (21%), and 421 

Guiyang (20.6%). Besides, for the growth rate at the moderate level, Nanchang exhibited 422 

19.9%, followed by Wuhan (19.1%), Changchun (18.9%) and Beijing (18.9%), etc. 423 

Furthermore, Lhasa exhibited the lowest daily recovery growth rate (0%), followed by 424 

Hohhot (2.6%), Xining (5.1%) and Urumqi (7.3%), etc. 425 

Subsequently, the human combined with natural response dominated the COVID-19 426 

trajectory concerning recovery after 13 February, 2020. The observed trajectory during 427 

the valid human response time is shown in Fig.7-right, wherein except for Hohhot 428 

exhibited the increase (+0.8%) in daily recovery growth rate and Lhasa exhibited the 429 

steady (0%), other 29 cities exhibited the decrease. However, supposing only the natural 430 

response dominates the virus spread during the valid human response time, the predicted 431 

contemporaneous trajectory is shown in Fig.7-down, wherein 10 cities exhibited the 432 

increase in daily recovery growth rate, while 21 cities showed the decrease. Specifically, 433 

Harbin increased 56.7%, followed by Fuzhou (+6.8%), Nanning (+6.1%) and Hohhot 434 

(+4.6%), etc. On the contrary, Zhengzhou decreased 8.8%, followed by Yinchuan (-435 

8.3%), Beijing (-8.2%) and Changchun (-7.3%), etc. 436 

 437 

Figure 7. CNF-based prediction of recovery growth rate during valid human response time to 438 

COVID-19. The middle diagram represents the observed monthly shift of COVID-19 related recovery 439 

from February (red line) to March (green line), and the deviation between the predicted (blue line) and 440 
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observed transmission. The left-top, the right and the left-down diagrams illustrate the spatial 441 

distribution of COVID-19 related recovery during February, March and predicted March, respectively. 442 

4 Discussion 443 

4.1 Natural attribution of COVID-19 trajectory 444 

In this study, we synthesized the 7 SNF models based on the EDBF strategy, which 445 

explicitly evaluated the performance of individual models in simulating observed 446 

COVID-19 trajectory, assigned weights for the models accordingly, and then attributed 447 

the contributions of the potential driving factors to spatial COVID-19 trajectory based on 448 

the optimized integration of the 7 SNF models. During COVID-19 transmission, aerosol 449 

was assigned the maximum EDBF weight (54.8%), followed by visibility (42.9%), which 450 

uncovers the airborne feature of COVID-19 spread (Wang and Du, 2020; Sima, et al., 451 

2020), to some extent. It is mentioned that aerosol and visibility individually have a 452 

significantly (p<.05) negative act on the virus spread. Onward, mean visibility decreased 453 

significantly, while mean aerosol increased significantly (p<.01) during March in 31 454 

cities of China (Fig.S5-I). During the complex response to COVID-19 transmission, the 455 

shift of aerosol hinders the virus spread further, whereas visibility promotes it. It is 456 

certain that many other natural factors neglected in our work also response to the 457 

COVID-19 trajectory, thus it is essential to consider the interactions between different 458 

SNFs response.  459 

Onward, wind speed was the dominant natural factor over 66.8% for COVID-19 related 460 

death, followed by vegetation (16.9%) and visibility (16.4%). Furthermore, the separate 461 

response of wind speed to death is significantly (p<.05) negative. Although vegetation 462 

and visibility exhibited 33.3% of EDBF weight, their separate response to death is yet 463 

insignificant (p>.05). Thus, a well ventilated environment in hospital ward could benefit 464 

the decrease of COVID-19 related death. Nevertheless, Fig.S5-II-f displayed little 465 

discrepancy in wind speed between February and March in 31 cities of China. During the 466 

complex natural response to COVID-19 related death in March, wind speed essentially 467 

contributes less due to its minor shift. Despite visibility varies greatly, it is little sensitive 468 

to this type of death. In this regard, investigated natural attribution of increased growth 469 

(Fig.6) in COVID-19 related death during March is uncertain. 470 

Furthermore, our study revealed that the variety of humidity and barometric pressure 471 

dominate COVID-19 related recovery. Humidity contributed 47.2% of the interaction 472 

among compound natural factor to the COVID-19 response, followed by barometric 473 

pressure (34.2%). Moreover, the separate response of humidity and barometric pressure 474 

to recovery are both significantly positive (p<.01). However, the compound response of 475 

investigated natural factors resulted in the slight increase in recovery during March 476 

(Fig.7), which is the only response of just weather change, and the reason will be 477 

discussed in Section 4.2. Although separate humidity during February was well matched 478 

with COVID-19 related recovery (r=0.724), its decrease trend (Fig.S5-III-g) in March 479 

was unlikely to determine the coextensive decrease in recovery. In this regard, the well 480 

correlated natural factors with COVID-19 trajectory reported in previous studies (Sima, 481 

et al., 2020; Yoo, et al., 2020) is uncertain to predict the future trajectory due to the 482 
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complex interaction among natural factors. 483 

4.2 Hypothesis of separation model 484 

Due to the average 14 days of COVID-19 incubation period, both natural and non-natural 485 

factors will certainly have lag effects on the observed COVID-19 trajectory concerning 486 

infection, death, and recovery. To handle this problem, the hypothesis was proposed that 487 

there is delayed response of trajectory to non-natural factors during January 22nd to 488 

February 12nd, 2020, i.e., pharmaceutical (PIs) and non-pharmaceutical interventions 489 

(NPIs). Apart from the COVID-19 incubation period, the second delayed effect is the 490 

weak non-natural interventions at the beginning of the outbreak. During this period, the 491 

human response to the overwhelming COVID-19 transmission is invalid (Fig.8). In this 492 

regard, the COVID-19 trajectory at the initial time of human response was primarily 493 

driven naturally. Therefore, we advanced the reported data ahead for about 23 days to 494 

compensate the lag effects discussed above, containing 14 days of COVID-19 incubation 495 

period and 9 days of invalid human response time. However, although Tian investigated 496 

the role of human response in curbing the outbreak across China in SCIENCE (Tian, et 497 

al., 2020), we do not know the exact time when the human response took effect. It is 498 

worthy to mention the Fig.1 in the reference (Tian, et al., 2020) which provides the dates 499 

of discovery of COVID-19 and of the human response from 31 December 2019. The 500 

novel coronavirus was detected in Wuhan city on 31 December, 2019, but the earliest 501 

human response was on 21 January, 2020. Thus the virus spread naturally for at least 22 502 

days. Moreover, up to 10 February, 2020, the closed management was just put in the 503 

residential districts in Hubei province. Based on the delayed effect, 7-14 days were 504 

invalid response time during the 22 days of human response. In addition, human response 505 

has little validity to symptomless cases and cases under the incubation period (14 days). 506 

Also, due to the limitation of detection policy and capacity, lots of infected cases cannot 507 

be reflected in the reported data. Based on this assumption, the reported data during 508 

January 22nd to February 12nd, 2020 approximately uncovers the unreported COVID-19 509 

trajectory 23 days ago (from December 31st, 2019 to January 21st, 2020), during which 510 

the virus spread naturally (Table S3). We defined this timestamp as invalid human 511 

response time. After 13 February, 2020, we thought the human response to COVID-19 512 

trajectory becomes increasingly valid, during which the virus spread under the control of 513 

human response. Therefore, the model developed between compound natural factor and 514 

COVID-19 trajectory during the invalid human response time could predict the future 515 

trajectory driven by only natural factors. Onward, the model is capable to separate the 516 

acting of natural and non-natural factors on COVID-19 transmission, which will be 517 

discussed in Section 4.3. 518 
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 519 

Figure 8. The delayed effect of the human intervention to the COVID-19 transmission. The blue line 520 

and red line represent the human response effect and the COVID-19 growth curve, respectively. 521 

Moreover, the first solid blue line means that it is invalid for curbing the COVID-19 transmission 522 

during the corresponding range of human response time due to the overwhelming COVID-19 pressure 523 

at the beginning of the human response (exponential COVID-19 growth). As the response time 524 

increases, the validity of human response effect to the COVID-19 trajectory also increases. Thus, the 525 

dotted blue line means the increasing valid time of the human response, during which the COVID-19 526 

has a steady growth (red dotted line). 527 

4.3 Effect separation of natural and non-natural factors to COVID-19 trajectory 528 

Section 4.2 combined with Section 3.3-3.5 supported that the response of COVID-19 529 

trajectory to natural factors and non-natural factors is capable to be approximately 530 

separated. During the invalid human response time, the average daily case growth rate 531 

among 31 cities of China was 10.9 % (Fig.9-a). Subsequently, after the response of 532 

COVID-19 transmission to human and natural interactions, the observed recovery growth 533 

rate decreased about 10.8% (to 0.08%). However, supposing COVID-19 went on 534 

spreading naturally during the valid human response time (Tab.S3), the growth rate was 535 

predicted to decrease only 0.3% (to 10.6%). In this regard, the average decrease of 0.3% 536 

in COVID-19 transmission revealed the interaction outcome of compound natural factor 537 

to COVID-19 trajectory concerning infection. Also, the average decrease of 10.8% 538 

illustrated the interaction outcome of both human and natural factors to trajectory. 539 

Subsequently, the effect of human (non-natural) intervention to COVID-19 transmission 540 

is separated, contributing the decrease of 10.5%. It is noteworthy to mention that the 541 

effect of non-natural response to the COVID-19 virus spread is significant (p<.01), 542 

contributing the decrease of daily case growth rate in all investigated cities of China 543 

(mean = -10.9%). In contrast, the effect of natural interaction to the virus spread is 544 

insignificant (p>.05) and region specific, wherein the daily case growth rate in 13 cities 545 

(Harbin-excluded) decreased slightly (mean = -2.6%) while other 16 cities (Lhasa-546 

excluded) increased (mean = +3.2%) (Fig.5). Specifically, Harbin exhibited the 547 

significant decrease (-38%) in daily case growth rate (Fig.S7-a), while Lhasa increased 548 

about 11%, because the compound natural factor shifted obviously in Harbin (+87.8%) 549 

and Lhasa (-17.5%) during the period (Fig.S6-a). However, in 31 investigated cities, the 550 

average shift of compound natural factor is slight (-4.5%). Thus, the effect of decreased 551 

natural interaction outcome to subsequent COVID-19 transmission is positive. 552 

Human response time 

Human response 

effect 

0 

overwhelming 

COVID-19 

Transmission 

invalid valid increase stead valid 

steady increase 



manuscript submitted to Earth’s Future 

 

Prior to the valid human response to COVID-19 transmission, the virus spread naturally 553 

and the average daily death growth rate in 31 investigated cities of China was 1.9% 554 

(Fig.9-b). Onward, the human response to COVID-19 became valid, the virus went on 555 

spreading under the control of human intervention. During the valid human response 556 

time, the average daily death growth rate decreased about 1.6% (to 0.3%), which revealed 557 

the interaction outcome of both human and natural factors to COVID-19 trajectory 558 

concerning death. Specifically, except for the increased daily death growth rate in Xian 559 

(+8.3%), 9 cities decreased, while other 21 cities constant (Fig.S7-b). For example, 560 

Harbin exhibited the decrease of 12.8%, followed by Nanning (-12.3%), Nanchang (-561 

6.9%), Changchun (-6.2%), Zhengzhou (-6.1%) and Wuhan (-3.9%), etc. Comparably, 562 

supposing that the contemporaneous non-natural intervention to COVID-19 retained 563 

invalid and virus went on spreading naturally, the average daily death growth rate in 31 564 

investigated cities was predicted as 2.2%. In this regard, the response of COVID-19 death 565 

to compound natural factor exhibited the average increase of 0.3%, wherein only 7 cities 566 

decreased while other 24 cities increased. For instance, Wuhan decreased the most (-567 

8.6%), followed by Beijing (-5.9%), Chengdu (-5.5%) and Harbin (-5%), etc. On the 568 

contrary, Nanchang exhibited the increase of 5.2%, followed by Yinchuan (+5.1%), 569 

Urumqi (+4.4%) and Zhengzhou (+2.4%), etc. Onward, the effect of non-natural 570 

intervention to COVID-19 trajectory concerning death is separated, contributing the 571 

decrease of 1.9% by subtracting +0.3% effect of natural factors (2.2% - 1.9%) from -572 

1.6% of compound factors (0.3% - 1.9%). Subsequently, the average shift of compound 573 

natural factor in 31 investigated cities is slight (-1.6%). Thus, the effect of decreased 574 

natural interaction outcome to subsequent COVID-19 death is negative. 575 

a b c  576 

Figure 9. Effect separation (a) Effects of natural factors (-0.3%) and non-natural factors (-10.5%) to 577 

average case growth rate (b) Effects of natural factors (+0.3%) and non-natural factors (-1.9%) to 578 

average death growth rate (c) Effects of natural factors (+0.1%) and non-natural factors (-13.3%) to 579 

average recovery growth rate. Assume compound acting contains natural and non-natural factors. 580 

Additionally, the average daily recovery growth rate in 31 investigated cities of China 581 

was 14.4% (Fig.9-c) prior to the valid human response to COVID-19 transmission. 582 

Onward, the compound effect of natural and non-natural factors contributed the average 583 

decrease of 13.2% in recovery (to 1.2%). Except for Hohhot (+0.8%) and Lhasa (0%), 584 

other 29 cities all exhibited the decrease (Fig.S7-c), wherein Guangzhou decreased the 585 

most (-22.8%), followed by Shanghai (-21.6%), Chongqing (-20.3%) and Zhengzhou (-586 

20.3%), etc. Based on the separation model, the interaction outcome of natural factors 587 

contributed the average increase of 0.1% in daily recovery growth rate (to 14.5%), while 588 

non-natural factors promoted the average decrease of 13.3% (to 1.2%). Concerning the 589 

response to natural factors, daily recovery growth rate increased in 10 cities while 590 
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decreased in other 21 cities. Specifically, Harbin exhibited 56.7% of increase, followed 591 

by Fuzhou (+6.7%) and Nanning (+6.1%), etc. On the contrary, Zhengzhou decreased the 592 

most (-8.8%), followed by Yinchuan (-8.3%) and Beijing (-8.2%), etc. Furthermore, 593 

concerning the response of daily recovery growth rate to non-natural factors, all 594 

investigated cities exhibited the decrease in recovery, wherein Harbin decreased by 595 

68.4%, followed by Nanning (-19%) and Haikou (-18%), etc. Also, the average 596 

compound natural factor in 31 investigated cities exhibited a slight increase (+1.5%), 597 

thus, the effect of increased natural interaction outcome to subsequent daily recovery 598 

growth rate is promotional. 599 

Comparably, the increased natural interaction (outcome of CNF model) potentially 600 

reduced the death growth rate and increased the recovery growth rate, but speeded up the 601 

virus spread. Contradictorily, to some extent, the decreased natural interaction curbed the 602 

virus spread, but increased the death and decreased the recovery. Besides, due to the 603 

response of COVID-19 trajectory to the shift of some natural factors is insensitive, or the 604 

variety of natural factors during the certain period is insignificant, the role of natural 605 

factors during the pandemic is region and time specific. Onward, combined with the 606 

accessorial natural interaction, the non-natural factors basically dominated the COVID-19 607 

pandemic trajectory during the valid human response time. However, when the COVID-608 

19 trajectory entered the retreated phase (e.g., in China and Australia, etc.), the effect of 609 

natural interaction to subsequent trajectory became important, which is consistent with 610 

the CCTV (china central television) news reported on 21 December, 2020 (Liu and Liu, 611 

2020). 612 

5 Conclusions 613 

Both natural and non-natural factors have effect on the COVID-19 trajectory, and 614 

separating these two effects is important for the effective response to the pandemic at 615 

different phases. Concerning the difficulty of the study that the observed COVID-19 616 

trajectory is the outcome of complex interaction among potential driving factors, the 617 

separation model is developed based on the hypothesis that there is delayed response of 618 

trajectory to non-natural factors during 22 January to 12 February, 2020. Thus, the 619 

COVID-19 virus spread naturally during the invalid human response time (phase-1). 620 

During phase-2, the virus went on spreading under the control of the valid human 621 

response. Hereafter, the virus begins to retreat naturally again (phase-3). In the phase-1, 622 

the CNF model is developed to reveal the response of COVID-19 trajectory to compound 623 

natural factor, and the weight of each single natural factor expresses their coupling 624 

relationship. Subsequently, the coupling relationship is iteratively optimized by empirical 625 

distribution based framework (EDBF) to be closer to the real response of COVID-19 626 

trajectory to the interaction among natural factors. Onward the phase-2, supposing the 627 

virus went on spreading naturally, the subsequent COVID-19 trajectory is predicted 628 

through the variety of natural factors shift in the CNF model. However, the observed 629 

trajectory exhibits the outcome of compound interaction among both natural and non-630 

natural factors. In this regard, subtracting the contemporaneous observed trajectory from 631 

the predicted trajectory in phase-2 approximately reveals the separated effect of non-632 

natural factors to the pandemic. On the contrary, subtracting the observed trajectory in 633 

phase-1 from the predicted trajectory in phase-2 approximately reveals the separated 634 
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effect of natural factors to the pandemic. The outcome of separation model exhibits the 635 

principal response of COVID-19 trajectory to non-natural factors, and subordinate 636 

response to natural factors. In this work, the response analysis of COVID-19 trajectory to 637 

the compound natural interactions offers a new perspective on the response of global 638 

pandemic trajectory to environmental changes. 639 

However, the study also has two limitations. First, the number of seven natural factors 640 

investigated in CNF model is insufficient to reveal the real response of COVID-19 641 

trajectory to natural complex interaction. In general, the combination of more natural 642 

factors certainly output more precise coupling relationship in CNF model. Second, the 643 

hypothesis of separation model bring some uncertainty to the separation outcome 644 

between natural and non-natural factors on the COVID-19 trajectory. 645 
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Figure S1. CNF model. 
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Figure S2. The initial weight values and the optimal weight values in CNF model at each 
pandemic variable, wherein initial-c and optimal-c correspond to case growth rate, initial-d and 
optimal-d (death growth rate), initial-r and optimal-r (recovery growth rate). 
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a  b  

c  d  

e  f  

g  h  
(III) 

Figure S3. The relationship between COVID-19 pandemic variables (i.e., daily growth rate in I: 
case, II: death and III: recovery) and natural factors, i.e., temperature, humidity, visibility, 
barometric pressure, wind speed, aerosol, vegetation and compound natural factor (CNF). 
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a  b  c  

Figure S4. The centre root-mean-square difference between natural factors and COVID-19 
trajectory (a) Transmission (b) Death (c) Recovery. 
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a  b  

c  d  

e  f  

g  h  

Figure S5. The shift of dominate natural factors which are respond to COVID-19 trajectory 
during February to March in 31 cities of China. (a, e) Visibility (b, f) Wind speed (c, g) Humidity 
(d, h) Barometric pressure. The blue line and red line represent city-wise natural factors in 
February and March, respectively. 
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a  b  

c  d  

e  f  

Figure S6. The shift of CNF during February to March in 31 cities of China. (a, d) Case related 
CNF (b, e) Death related CNF (c, f) Recovery related CNF. The blue line and red line represent 
city-wise CNF in February and March, respectively. 
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a  

b  



 

 

11 

 

c  

Figure S7. Effect of driving factors to COVID-19 trajectory concerning (a) infection (b) death (c) 
recovery. The first three columns of each figure exhibited the compound effect of natural and 
non-natural factors, the separated effect of natural factors, and the separated effect of non-
natural (human) factors to the COVID-19 trajectory, respectively. It is noteworthy to mention 
that labels with positive and negative values respectively reveal the positive and negative 
effects of driving factors to the trajectory. 
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City name Data source 

Lhasa 
Hohhot 

Harbin 

Urumqi 
Yinchuan 

Lanzhou 

Xining 
Kunming 

Nanning 

Changchun 
Guiyang 

Taiyuan 

Shenyang 
Haikou 

Shijiazhuang 

Fuzhou 
Hangzhou 

Jinan 

Changsha 
Hefei 

Nanchang 

Xian 
Chengdu 

Tianjin 

Beijing 
Nanjing 

Wuhan 
Zhengzhou 

Guangzhou 

Shanghai 
Chongqing 

http://wjw.xizang.gov.cn/ 
http://wjw.nmg.gov.cn/ 

http://wsjkw.hlj.gov.cn/ 

http://wjw.xinjiang.gov.cn/ 
http://wsjkw.nx.gov.cn/ 

http://wsjk.gansu.gov.cn/ 

https://wsjkw.qinghai.gov.cn/ 
http://ynswsjkw.yn.gov.cn/ 

http://wsjkw.gxzf.gov.cn/ 

http://wsjkw.jl.gov.cn/ 
http://www.gzhfpc.gov.cn/ 

http://wjw.shanxi.gov.cn/ 

http://wsjk.ln.gov.cn/ 
http://wst.hainan.gov.cn/swjw/index.html 

http://www.hebwst.gov.cn/ 

http://wjw.fujian.gov.cn/ 
https://wsjkw.zj.gov.cn/ 

http://wsjkw.shandong.gov.cn/ 

http://wjw.hunan.gov.cn/ 
http://wjw.ah.gov.cn/ 

http://hc.jiangxi.gov.cn/ 

http://sxwjw.shaanxi.gov.cn/ 
http://wsjkw.sc.gov.cn/ 

http://wsjk.tj.gov.cn/ 

http://wjw.beijing.gov.cn/ 
http://wjw.jiangsu.gov.cn/ 

http://wjw.hubei.gov.cn/ 
http://wsjkw.henan.gov.cn/ 

http://wsjkw.gd.gov.cn/ 

http://wsjkw.sh.gov.cn/ 
http://wsjkw.cq.gov.cn/ 

Table S1. City-wise collected data source. 

  



 

 

13 

 

SNF 
r-value  p-value 

Case Death Recovery Case Death Recovery 

Temperature -0.018 -0.002 0.414 0.923 0.993 0.021 

Humidity 0.339 0.238 0.724 0.062 0.198 0.000 

Visibility -0.399 -0.188 -0.204 0.026 0.311 0.270 

Barometric pressure 0.341 0.205 0.671 0.060 0.270 0.000 

Wind speed -0.015 -0.365 -0.245 0.937 0.043 0.185 

Aerosol -0.457 -0.020 -0.041 0.010 0.917 0.828 

Vegetation 0.155 -0.080 0.313 0.406 0.670 0.086 

Table S2. Correlation and significance between pandemic variables and single natural factors. 
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Reported data Unreported data 

Invalid 

human 

response 

time 

1-22-2020 

COVID-19 

virus spread 

naturally 

12-31-2019 

1-23 1-1-2020 

1-24 1-2 

1-25 1-3 

1-26 1-4 

1-27 1-5 

1-28 1-6 

1-29 1-7 

1-30 

1-31 

2-1 
2-2 

2-3 

1-8 

1-9 

1-10 
1-11 

1-12 

2-4 1-13 
2-5 1-14 

2-6 1-15 

2-7 1-16 
2-8 1-17 

2-9 1-18 

2-10 1-19 
2-11 1-20 

2-12 1-21 

Increasing 

valid human 

response 

time 

2-13 

COVID-19 

virus spread 

under the 

control of 

human response 

 

2-14 

2-15 

2-16 
2-17 

2-18 

2-19 
2-20 

2-21 

2-22 
2-23 

2-24 

2-25 
2-26 

2-27 

2-28 
2-29 

Steady 

human 

response 

time 

3-1 

3-2 
3-3 

3-4 

3-5 
3-6 

3-7 

3-8 
3-9 

3-10 

3-11 
3-12 

3-13 

3-14 
3-15 

3-16 

3-17 
3-18 

Table S3. The delayed effect of the human intervention to the COVID-19 transmission. 
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