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Abstract

Publicly accessible data has been used to construct a county-scale supply chain model of United States gasoline consumption and

quantify the scope 3 CO2; emissions from gasoline consumption. Our model tracks the movement of refined fuels from county

of refinement to county of blending and eventually to county of consumption via multiple infrastructure networks – pipelines,

tankers, trains, and trucks. Where quantities of the fuel moved across different linkages and different transportation modes are

known, they are used as is. However, for the vast majority of the country, the exact quantities of fuel moved between county

of refining and county of blending or county of blending and county of consumption, as well as the mode of transportation,

is not known with certainty. Linear optimization is used to model those links with constraints related to total supply and

demand at lower spatial resolutions (State-level and Petroleum Administration for Defense (PAD) Districts). This is the first

real attempt at a spatially-resolved scope 3 style CO2 emissions data product specific to United States gasoline consumption.

This model can improve understanding of the complex liquid fuel supply chain, and has significant implications for local policy.

With a complete model of scope 3 CO2 emissions, it is also possible to analyze how the differences between scope 1 and scope

3 emissions vary across the country. Finally, this model lays the foundation to model the evolution of the U.S. gasoline supply

chain – its dependencies, critical linkages, and pinch points – and the evolution of scope 1 and scope 3 CO2 emissions using the

full extent of available public data.
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INTRODUCTION
The gasoline supply chain across the United States is a complex, multi-tier system. Most of the gasoline produced at
refineries across the country is unfinished gasoline. This unfinished gasoline is blended with ethanol and other blendstocks
at petroleum terminals known as blenders, to produce finished motor gasoline (EIA, 2020b). 

Figure 1. The two stage gasoline supply chain

The supply chain for gasoline can be simplified to a two-stage process as described in Figure 1. The first stage starts from
the refinement of crude oil at the refinery to produced the unfinished gasoline. The Energy Information Administration
(EIA) calls this Motor Gasoline Blending Components (MGBC). These blending components are moved from refineries to
blenders, mostly via a network of pipelines across the country. A significant amount of MGBC also moves on barges via
inland or coastal waterways. Some volume of MBGC also moves from refineries to blenders on tanker trucks. The
blenders, through a separate stream, also receive fuel ethanol and other blending components that vary, among factors, by
geographic location, season, and pollution control programs (EIA, 2020b). 

The second stage of the supply chain starts from the blender and end at the point of consumption. MGBC is blended with
fuel ethanol (and other additives/blendstocks) to make Finished Motor Gasoline (FMG). The ratio of ethanol to MGBC
varies across the country based on factors such as season, and local regulations. The bulk of the MGBC is blended with
ethanol and other blending components at the blenders while it is being filled into tanker trucks before delivery to retail
fueling stations. Prior to blending, unblended gasoline is moved via pipelines or waterborne tankers/barges to other
blenders. No ethanol blended gasoline is moved on the pipeline system or river/coastal waterways.

This work models the gasoline flow across the United States to estimate the scope 3 emissions of gasoline at a county-
scale for the year 2012. The Energy Information Administration has annual time series data of MGBC and FMG
production along with volumes of these products types moved by pipeline and waterborne tankers/barges at a “refining
district” or Petroleum Administration for Defense (PAD) District spatial level (EIA, 2020a). The MGBC production
volume serves as the upstream refinery output for the first stage of the supply chain and the FMG production volume
serves as the blender output for the second stage of the supply chain. Downstream consumption of gasoline for the model
is taken from the Vulcan Project Version 3.0 which quantifies fossil fuel carbon dioxide emissions at a 1 km x 1 km spatial
resolution and time period from 2010-2015 (Gurney et al., 2020). The distribution of MGBC and FMG from refineries to
blenders to counties of consumption across pipeline, waterborne barges, and tanker trucks is done using linear
optimization for each county to county link. Finally, the output from the optimization model is converted to kg CO2 to
estimate the embodied emissions from gasoline for each county in the United States. 

 



DATA SOURCES & VOLUME ALLOCATION

Figure 2. Data sources for each part of the supply chain and their associated spatial resolution. 

The EIA compiles petroleum products production data aggregated by PADD and refining district (EIA, 2020a). This
presents a challenge in the model as petroleum product production of each PADD/refining district must be divided and
allocated to each refinery/blender county in the PADD/refining district. This allocation is done based on the ratio of
gasoline (FMG) consumption of the refinery/blender county and the total consumption of all refinery/blender counties in
that refining district. This ratio is then multiplied with the petroleum product production of that refining district to allocate
an approximate volume of production to each refinery county. The same method is used to allocate MGBC to refinery
counties and FMG to blender counties. This method of approximating refinery output is consistent with what is
anecdotally known about the oil refinery output in the United States. Refineries in and around Los Angeles county with a
high refining capacity, for example, do supply a bulk of the fuel to California and Arizona. Similarly, Jefferson county,
Texas, home to Beaumont and Port Arthur have high volume of refining activity and thus the refining capacities at these
locations is also high.

Example for MGBC allocation:

 

LA County Production =

                     ×  PADD 5 Total Production

LA County Consumption

PADD 5 Refinery Counties Total Consumption



LINEAR OPTIMIZATION
Linear optimization is a method to achieve the best outcome in a mathematical model with requirements represented by
linear relationships.

Two identical models are set up to break the supply chain
1. Refinery to Blender Model (MGBC)

2. Blender to Consumption County Model (FMG)

Objective is to minimize the distance transported between demand and supply nodes times the cost of transporting
between demand and supply nodes (Eq 1).

Constraints:
1. Conservation of mass - ensures that outflows from a county are less than equal to supply available at that county and inflows to a

county are greater than equal to the demand at that county (Eq 2)

2. Constraint to enforce or restrict PADD to PADD flow for pipeline, waterborne, and truck movements (Eq 3) with 10% tolerance to
account for data reporting and rounding errors.

Objective: 
 

Subject to: 

Where, 

Assumptions: 
Each county with production first meets its own consumption demand, only excess volume is moved out.

  
The cost associated with each mode of transport has been assigned a fixed value across the country. Pipeline is the
cheapest, followed by waterborne tankers, and tanker trucks are the most expensive mode. Water movements are 4 times
as expensive as pipeline movements and truck movements are 6 times as expensive as pipeline movements. This forces the
model to use truck movements as only a last-mile delivery resort.

Min ∑ijk CijkTijXijk                         (1)

Si + ∑
j
Xijk  ≥  Di + ∑

i
Xijk 

⋯  ∀i, j ∈ I, J                                      (2)

0.9 × Mvwk  ≤ ∑ijXijk  ≤  1.1 × Mvwk 

⋯  ∀v,w, k  ∈  V ,W ,K                     (3)

Xijk  ≥  0                                             (4)

I  =  set of supply counties

J = set of demand counties

K = mode of transportation

Xijk = volume of product in gallons moved 

            from county i to county j 

            via transport mode k

Cijk = cost of transporting from county i 

            to county j via transport mode k

Tij = distance in miles between county i 

          and county j

Si = production of product in gallons at 

         county i

Di = consumption of product in gallons 

          at county i

V = origin PADD for intra − PADD movement

W = destination PADD 
         for intra − PADD movement

Mvwk = volume of gasoline in gallons moved 

              from PADD v to PADD w via 

              transport mode k



SCOPE 3 EMISSIONS
The final scope 3 emissions are the sum of the direct emissions from combustion of gasoline in the county (scope 1), the
embodied emissions of moving the MGBC and FMG along the supply chain to the specific county and the refinery
emissions per gallon combusted in a county (EPA, 2014; Pierru, 2007).

Embodied emissions are calculated as follows:

Embodied Emissions

Where,

EEi = ∑
nk
EEnik × ( )

EEijk = Tij.EFk.Xijk +

              × (∑nkEEnik −  EEi)

Net Demandi

∑nk  Xnik

Vijk

∑
nk

 Xink

EEijk = Embodied emissions associated with 

               volume on link ijk

EEi = Embodied emissions associated with 

             volume consumed at county i

Net Demandi = Consumption  −  production in 

                              county i.  

(Negative values are taken as zero)

i = origin county

j = destination county

k = mode of transportation

n  =  other counties

Xijk = volume of product in gallons moved 

            from county i to county j via transport 

            mode k
Tij = distance in miles between county i 

          and county j

EFk = emissions factor of transport mode k



RESULTS
Initial results show a drastic increase in emissions when Scope 3 emissions are accounted for. However, due to the top 10
counties in the country by gasoline demand having demand far above the mean demand in the country, the same counties
appear in the top 10 list for both scope 1 and scope 3 emissions, in the same order. Within the top 10 counties of highest
gasoline demand, only two counties have refining capability (Los Angeles, CA and Harris, TX). Other counties in the top
10 are serviced by refineries which are located in neighboring counties; Cook county, Illinois is serviced by a refinery in
its neighboring county, San Diego, Orange, and San Bernardino counties in California are serviced by Los Angeles county
and Kern county refineries. In contrast, Maricopa county, Arizona and Miami-Dade and Broward, Florida are serviced by
out of state refineries. This increases the distance traveled and subsequently the embodied emissions in these counties’
scope 3 emissions. Hence, the higher percentage differences in these counties scope 1 and scope 3 emissions.

Scope 3 emissions increases the emissions for these top 10 counties by 32-68%.

Table 1. Scope 1 & scope 3 emissions of top
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