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Abstract

LST is routinely retrieved from the GOES-R Advanced Baseline Imager (ABI) long wave spectral channels. Since the product

is available only under clear sky conditions, large gaps exist in the data stream which correspond to contamination by clouds.

However, continuous estimates of LST data are still vitally needed for several applications such as drought monitoring ,vegetation

growth, and crop yield estimation etc. Studies have shown that LST tracks with corresponding changes in incident solar radiation

or more specifically changes in surface absorbed solar radiation with good correlation irrespective of sky conditions (clear or

cloudy). In the present study, a scheme is developed to fill in the large spatio-temporal gaps in the LST time series using surface

solar absorption parameter (SSA) retrieved in near real time from other satellites. Validation of retrieved LST values over all

of the SURFRAD stations reveal RMS errors of less than 1 K.
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LST is routinely retrieved from the GOES-R Advanced Baseline Imager (ABI) long wave spectral 9 

channels. Since the product is available only under clear sky conditions, large gaps exist in the 10 

data stream which correspond to contamination by clouds. However, continuous estimates of 11 

LST data are still vitally needed for several applications such as drought monitoring ,vegetation 12 

growth,  and crop yield estimation etc. Studies have shown that LST tracks with corresponding 13 

changes in incident solar radiation or more specifically changes in surface absorbed solar 14 

radiation with good correlation irrespective of sky conditions (clear or cloudy). In the present 15 

study, a scheme is developed to fill in the large spatio-temporal gaps in the LST time series 16 

using surface solar absorption parameter (SSA) retrieved in near real time from other satellites. 17 

Validation of retrieved LST values over all of the SURFRAD stations reveal RMS errors of less 18 

than 1 K.  19 

 20 

 21 

1. Introduction 22 
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Land surface temperature (LST) has been recognized as an essential climate variable (ECV) 23 

by  the Global Climate Observing System (GCOS) due to its importance in hydrology, 24 

meteorology and climatology. LST and its diurnal variability are key to understanding of 25 

land-atmosphere interactions, including the exchange of water and energy at the surface 26 

(Mannstein, 1987), climate change (Hansen et al. 1995), and hydrological processes. As a 27 

result, LST has been used in numerous applications (Kerr, 2000) from modeling and land 28 

cover change studies to applications in geology and epidemiology. However, many of these 29 

studies are reliant upon satellite measurements due to limited spatial coverage of in situ 30 

networks (Li et al., 2013). 31 

 32 

Satellite retrievals of LST are available from a variety of polar orbiting and geostationary 33 

sensors. Bulk of the methods are based on a combination of thermal infrared channels and 34 

other ancillary parameters like water vapor. The new generation of advanced geostationary 35 

satellites such as GOES-R, GOES-S (US), HIMAWARI series (Japan) are providing reasonable 36 

estimates of global LST under clear sky conditions. However the presence of clouds limit the 37 

quantity and quality of remotely sensed LST measurements. To date, there have been very 38 

few studies on the retrieval of LST under cloudy skies. Jin (2000) proposed a spatial 39 

neighboring pixel approach to estimate LST under cloudy skies from polar-orbiting satellites. 40 

A drawback of this approach was sacrificing the homogeneity in the surrounding pixels. Lu 41 

et al (2011) employed a temporal neighboring pixel approach by taking advantage of the 42 

expanded temporal domain offered by geostationary satellites. However, these studies 43 

were based on a surface energy balance approach that require parameterization of surface 44 
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fluxes, which are not readily available. While microwave sensors can measure LST under 45 

clouds, their spatial resolution is too course and overly sensitive to surface roughness and 46 

moisture and thus have limited applicability. Zhang et al (2015) developed a method to 47 

obtain LST under clouds based on a one-dimensional diffusion equation that estimates the 48 

temporal evolution of surface temperature using net surface solar radiation. This method 49 

based on estimation of thermal inertia worked best over homogeneous bare soils. Recently 50 

Wang et al (2019) developed a technique employing solar-cloud-satellite geometry and 51 

applied it to MODIS and Landsat-8 data to derive LST under clouds obtaining an rms 52 

accuracy of 4.9 K.  In the present study, we attempt to extend the analysis of surface energy 53 

balance approach (Zhang et al 2015) to heterogenous land-cover by incorporating time 54 

series of LST retrieved under clear skies, and the diurnal cycle of surface solar absorption 55 

(SSA) observed from Geostationary Satellites (Inamdar & Guillevic 2015 – hereafter refered 56 

to as IG15) under all sky conditions. 57 

 58 

2. Input Data 59 

Satellite 60 

1) GOES-R Visible channel scaled radiance counts from Level 1B data. 61 

2) CERES: TOA broadband SW flux from the Flashflux Single Scanner Footprint (SSF) 62 

data (https://ceres-tool.larc.nasa.gov/ord-63 

tool/products?CERESProducts=FLASH_SSF) 64 

Ancillary 65 
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1) MODIS precipitable water from the 5-min 5 km swath data (MOD05/MYD05) 66 

2) MODIS Aerosol Optical Depths (MOD08/MYD08) 67 

Table 1. List of in situ stations used in this study. 68 

Station ID Name State Network Latitude Longitude 

SGP Southern Great Plains OK SURFRAD 36.60 - 97.48 

DRA Desert Rock NV SURFRAD 36.62 - 116.01 

BOS Table Mountain CO SURFRAD 40.12 -105.23 

BON Bondville IL SURFRAD 40.05 -88.37 

FPK Fort Peck MT SURFRAD 48.30 -105.10 

SXF Sioux Falls SD SURFRAD 43.73 -96.62 

GCR Goodwin Creek MS SURFRAD 34.25 -89.87 

PSU Penn. State PA SURFRAD 40.72 -77.93 

 

      

      

      

      

3. Methodology 69 

Methodology consists of mainly three primary steps: (1) the estimation of TOA 70 

broadband SW radiation through matching up GOES-R pixels with CERES footprint in 71 

near real-time, (2) the computation of surface net SW radiation or SSA from TOA SW 72 
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flux through  applying the CERES TOA-to-surface algorithms (IG15 study), and (3) 73 

employing the strong correlation between the SSA and LST to fill in LST values for 74 

missing or cloud-contaminated scenes. Details are provided below: 75 

3.1   TOA Broadband SW Flux 76 

GOES-R data files provide scaled radiance counts (not raw counts) at half km resolution 77 

from which channel 2 radiance can be derived using a scaling factor and offset provided 78 

in the nectddf file. But we will not need them here, since we will directly match up the 79 

CERES broadband SW flux with the scaled radiance counts. The broadband SW flux 80 

from GOES-R can be evaluated from the linear regression between scaled radiance 81 

counts and CERES broadband flux. The collocation criteria for the matching are similar 82 

to the ones used earlier for the IG15 study, albeit slightly tighter: 83 

‒  The time difference between observation times for CERES and GOES is less than 10 84 

minutes;  85 

‒  The difference in viewing zenith angles between the two instruments is less than 10 86 

degrees to reduce directional effects;  87 

‒  The standard deviation of the radiances of GOES pixels within the bounding CERES 88 

coarser pixel is less than 10% of the domain mean value;  89 

‒  The difference between the maximum and the minimum count values in the GOES 90 

domain is less than 20% of the domain mean value to avoid mixed pixels and undetected 91 

clouds.  92 
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 The detailed arguments provided in the earlier study (IG15) against using the angular 93 

directional model (ADM) for radiance to flux conversion still hold for the present study. 94 

And regression is performed directly between the broadband flux and GOES-R scaled 95 

radiance counts. The key difference from the prior study is doing away with dependance 96 

on the nature of surface property as represented by the use of the Normalized Difference 97 

Vegetation Index (NDVI). In a future version of this study, it is planned to use 98 

dependency on surface reflectance in the red, blue and green band, as reported in (Wu et 99 

al 2019) to improve the accuracy. 100 

3.2 TOA to Surface Algorithm 101 

We employ the same model described before (IG15), namely “SW Model A” in the 102 

CERES processing chain to estimate the fraction of absorbed solar radiation. The model 103 

is based on detailed radiative transfer calculations (Li et al 1993) and requires additional 104 

ancillary inputs of column precipitable water, aerosol optical depth and cosine of solar 105 

zenith angle. Precipitable water has been retrieved by combining data from both Terra 106 

(MOD05) and Aqua (MYD05) platforms and interpolated to produce 0.05 deg lat/lon 107 

grid at GOES-R observational times. For aerosol optical we used the monthly average 108 

deep blue aerosol optical depth for land at 0.55 micron from both Terra and Aqua and 109 

used an average value.  110 

3.3 Filling in Missing LST Values 111 

Diurnal evolution of LST is driven by the changes in the incoming solar radiation or SSA 112 

parameter triggered by changes in insolation due to clouds (Zhang et al 2015). Studies 113 
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have revealed (see figures in section 4.2) that changes in LST are linearly correlated with 114 

changes in the SSA parameter irrespective of sky conditions. We split the diurnal range 115 

of variations into an ascending leg (sunrise to time of maximum LST) and a descending 116 

leg (time of peak LST to near sunset). 117 

4. Results and Discussion 118 

 119 

     4.1 TOA Outgoing Shortwave Radiation from GOES-R  120 

 121 

The relationship between the outgoing CERES-measured SW radiation and aggregated 122 

GOES-R visible channel scaled radiance counts has been calibrated using matched 123 

observations as described in the previous section under all-sky conditions. The 124 

relationship between the two variables is very strongly correlated. Throughout the present 125 

study, the strength of correlation between a pair of variables is represented by the 126 

Pearson’s correlation coefficient (R) expressed as the covariance between the two 127 

variables divided by the product of their standard deviations. Higher value closer to 1 128 

represents a strong positive correlation and a value closer to -1 represents a strong 129 

negative correlation. Correlation between the GOES-R visible channel scaled radiance 130 

counts and the collocated CERES SW radiation over the CONUS domain (not shown) is 131 

characterized by a very high R value close to 1. 132 

    4.2  Validation of SSA 133 
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SSA values have been retrieved from TOA broadband SW flux as outlined before. The 134 

accuracy of the SSA parameter retrieved has been evaluated (fig. 1 – 2 and table 2) 135 

against surface measurements from radiometers at all eight SURFRAD sites for Nov 136 

2019. Figs 1  and 2 show the time series of SSA on the top panel for a ten-day period 137 

during the month for Bondville (IL) and Goodwyn Creek (MS) sites. The continuous dark 138 

lines represent the in situ measurements while the magenta-colored diamond symbols 139 

refer to the values calculated from the model. The bottom panels depict scatter plots of 140 

pairs of values shown in the top panel, but for all the days during the month. The mean 141 

RMS error for all sites is less than 50 W m
-2

. The error statistics are comparable or 142 

sometimes even better than those of IG15 study for all sites, in spite of the simplified 143 

treatment to derive the TOA SW radiation. 144 



 9 

 145 

 146 

Fig 1.  Top: Time series of in situ measured SSA (Wm
-2

) (solid dark line) and modeled 147 

(predicted) SSA (magenta diamond symbols) for Bondville site (IL) for part of Nov 2019. 148 
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Abscissa units are day of year in UTC format. Bottom: Scatter plot of measured versus predicted 149 

SSA (W m
-2

) utilizing data for all days of the month.   150 

 151 

 152 

GCR Nov 2019
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Fig 2. Same as Fig 2, but for the Goodwyn Creek (MS) site 153 

 154 

 155 

Table 2. Summary of mean error statistics for SSA (mean bias and RMS) for the month of Nov 156 

2019 for all SURFRAD sites 157 

Station ID Mean Bias (Predicted-

Measured W m
-2

 ) 

RMS (W m
-2

)  

SGP -3.7 46 

DRA -5.6 46.6 

BOS 1.6 51.2 

BON -0.6 44.5 

SXF -4.5 47.8 

FPK -16.4 44.2 

GCR 13.3 47.2 

PSU 20.4 41.4 

 158 

 159 

 160 

4.3 SSA – LST Correlation 161 
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A sampling of 4 sites (SGP, BOS, SXF and FPK) with day-time variations in LST for specific 162 

days of the month have been chosen to demonstrate the strong coupling between SSA and LST 163 

changes. There are 2 panels for each site and the top panel of each marked (a,b,c,d) shows the 164 

time series of in-situ measurements of LST. The bottom panels show the correlations between 165 

the in-situ LST and corresponding modeled SSA values split into the ascending (black symbols) 166 

and descending (magenta symbols) domains. The corresponding solid lines for each are the mean 167 

regression fit lines which will be used to fill in the missing LST slots. The two pairs of inset 168 

numbers in the each bottom panel represent the mean Pearson’s correlation coefficient (R) as 169 

described in section 4.1, and the rms error for the filled LST series. Specifically, days with 170 

challenging situations characterized by diurnal LST variability due to presence of clouds as 171 

shown by the time series of in situ LST have been chosen for demonstration. However, 172 

correlation has been performed for all days in the month and the mean R and rms error have been  173 

tabulated in table 3 for each of the 8 SURFRAD sites.  It is observed that the correlations are in 174 

the high range above 0.8 for most stations for both ascending and descending branch and the 175 

mean rms errors are also below about 1 K.  176 
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 179 

Fig 3. Top panel of each figure (a,b,c,d) shows in situ LST (K) for the specified site and day 180 

marked at the top. Bottom panels of each (a,b,c,d) shows correlation between SSA and LST for 181 

each of the ascending (sunrise to peak LST of day in dark line) and descending (time of peak 182 

LST to near sunset hour in magenta line). The symbols are the in situ measurements and 183 

continuous lines represent mean linear regression fits. Pairs of numbers inset refer to the 184 

Pearson’s correlation coefficient and RMS error for each of the ascending and descending legs. 185 

 186 
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 190 

 191 

 192 

Table 3. Mean Pearson’s correlation coefficient between modeled SSA and LST  for ascending 193 

(ASC)  and descending (DSC) legs using data for all days in the month. The corresponding mean 194 

error statistics (RMS) of regression fits are also shown in the last 2 columns.  195 

Station ID R (ASC) R(DSC) RMS (ASC) (K) RMS (DSC) (K) 

SGP 0.94 0.96 0.67 0.49 

DRA 0.99 0.97 0.72 0.53 

BOS 0.79 0.86 1.04 1.35 

BON 0.89 0.88 1.06 0.77 

SXF 0.91 0.84 0.8 0.58 

FPK 0.83 0.9 0.84 0.41 

GCR 0.94 0.91 0.72 0.83 

PSU 0.9 0.89 0.77 0.56 

5. Conclusions 196 

In the present study we have developed a possible strategy to enhance the operational 197 

GOES-R LST product including the all-weather conditions. The strategy relies on the 198 

strong coupling between the surface absorbed solar radiation and changes in LST. The 199 
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study makes use of  an algorithm (IG15) designed and developed earlier to retrieve SSA 200 

from the single narrowband visible channel of GOES-8 and GOES-10 satellites and 201 

extends the approach to the current GOES-R. Since GOES-R has many additional 202 

channels than its predecessor, it is possible to further improve the accuracy of LSTs 203 

through adding other channels. Further research will also explore to enhance the accuracy 204 

of the TOA broadband flux from geostationary platforms through including surface 205 

reflectance from MODIS channels. This approach can be extended to all of the current 206 

generation of geostationary satellites such as the HIMWARI and METEOSAT third 207 

generation (MTG) series satellites.  208 
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