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Abstract

The use of the parameters associated with the “best-fit” criterion to represent a calibrated hydrological model is inadequate.

Furthermore, assessing the goodness of model calibration or validation based on performance criteria, such as NSE, R2, or

PBIAS, is misleading because they only compare two signals, i.e., measurement and the best-fit simulation (i.e., simulation

with the best objective function value). The reason is that the calibrated model’s best objective function value is usually not

significantly different from the next best value or the value after that. This non-uniqueness of the objective function causes

a problem because the best solution’s parameters are always significantly different from the next best parameters. Therefore,

only using the best simulation parameters as the calibrated model’s sole parameters to interpret the watershed processes or

perform further model analyses could lead to erroneous results. Furthermore, most watersheds are increasingly changing due

to human activities. The lack of pristine watersheds makes the task of watershed-scale calibration increasingly challenging.

Subjective thresholds of acceptable performance criteria suggested by some researchers to rate the goodness of calibration are

based on the comparison of the two signals, and in most cases, the thresholds are not achievable. Hence, to obtain a satisfactory

fit, researchers and practitioners are forced to massage and manipulate the input or simulated data, compromising the science

behind their work. This article discusses the fallacy in using the “best-fit” solution in hydrologic modeling. It introduces a

two-factor statistics to assess the goodness of calibration/validation while taking model output uncertainty into account.
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 25 

Abstract 26 

The use of the parameters associated with the “best-fit” criterion to represent a 27 

calibrated hydrological model is inadequate. Furthermore, assessing the goodness 28 

of model calibration or validation based on performance criteria, such as NSE, R
2
, 29 

or PBIAS, is misleading because they only compare two signals, i.e., 30 

measurement and the best-fit simulation (i.e., simulation with the best objective 31 

function value). The reason is that the calibrated model’s best objective function 32 

value is usually not significantly different from the next best value or the value 33 

after that. This non-uniqueness of the objective function causes a problem because 34 

the best solution’s parameters are always significantly different from the next best 35 

parameters. Therefore, only using the best simulation parameters as the calibrated 36 

model’s sole parameters to interpret the watershed processes or perform further 37 

model analyses could lead to erroneous results. Furthermore, most watersheds are 38 

increasingly changing due to human activities. The lack of pristine watersheds 39 

makes the task of watershed-scale calibration increasingly challenging. Subjective 40 

thresholds of acceptable performance criteria suggested by some researchers to 41 

rate the goodness of calibration are based on the comparison of the two signals, 42 

and in most cases, the thresholds are not achievable. Hence, to obtain a 43 

satisfactory fit, researchers and practitioners are forced to massage and manipulate 44 

the input or simulated data, compromising the science behind their work. This 45 

article discusses the fallacy in using the “best-fit” solution in hydrologic 46 
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modeling. It introduces a two-factor statistics to assess the goodness of 47 

calibration/validation while taking model output uncertainty into account.  48 

  49 

 50 

Distributed watershed models are input-intensive, requiring inherently uncertain data. These 51 

data include soil and landuse maps and databases, climate data, water use, watershed 52 

management data, and at the minimum, river discharge data for model calibration. Watershed 53 

data could include information about everything in a watershed affecting water regime and its 54 

quality; for example, agricultural activity, point sources, dam operation, river controls, road 55 

building, and water transfers. Given the highly uncertain input data, a watershed model’s 56 

calibration must be stochastic. However, deterministic approaches, which use a single set of 57 

parameters associated with the best-fit, are widely used. In a stochastic solution, parameters 58 

are treated as random variables, with distributions representing all the solutions that fall 59 

within a behavioral threshold or within statistically similar objective function values.   60 

The problem with the deterministic solution is not with the best-fit, but rather with taking the 61 

best fit’s parameter set as the actual parameters of that watershed and using it for subsequent 62 

analysis and interpretation of the watershed hydrology. Subjective Criteria rating the 63 

goodness of calibration or validation often include statements such as: (Very good: 0.75 < 64 

NSE < 1.00), (good: 0.65 < NSE < 0.75), (satisfactory: 0.5 < NSE < 0.65), or (Unsatisfactory: 65 

NSE < 0.50) (e.g., Moriasi et al., 2007). These criteria are misleading on many levels. A 66 

SWAT (Soil and Water Assessment Tool) (Arnold et al., 2012) model example from a 67 

watershed in the Danube basin is used to illustrate some points. 68 

First, NSE or similar model performance criteria (MPC) only compare two signals, mainly 69 

observed versus the best-fit simulation (Fig. 1). The implicit assumption here is that the best-70 
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fit solution (Table 1, first row) represents the calibrated watershed model. Parameters 71 

associated with this solution are then used in subsequent analyses, such as calculating water 72 

resources, crop yield, and climate change impacts. This assumption is not correct as many 73 

significantly different parameter sets can produce statistically similar objective function 74 

values (Table 1, all ten rows). Taking only one of them, albeit the best one, to represent the 75 

watershed could lead to entirely erroneous and misleading results. For example, calculating 76 

the watershed’s blue water resources represented by the top ten parameter sets in Table 1 77 

leads to significantly different numbers ranging from 543 to 1575 mm.  78 

Second, MPCs, by their deterministic nature, ignore model uncertainty. Therefore, the 79 

deterministic subjective criteria cited above are not adequate for hydrologic models 80 

considering model uncertainties.  81 

Third, as watersheds are being increasingly disturbed with dams, reservoirs, water transfers, 82 

and accelerated landuse changes; hence, matching the output of a deterministic model with 83 

observation is becoming difficult. Hence, it is necessary to compare an observation signal 84 

with uncertain model outputs.    85 

Facing the difficulty of satisfying the subjective criteria for “very good,” “good,” or 86 

“satisfactory” calibration results leaves researchers in a predicament. On the one hand, they 87 

need to maintain their work’s scientific integrity by reporting the actual calibration results. On 88 

the other hand, they need to produce an “acceptable” calibration result to publish their work. 89 

Unfortunately, it is always the former that is sacrificed. Therefore, it is prudent to use 90 

schemes that compare a measured signal (or a distribution if considering measurement errors) 91 

with a model output distribution. A procedure is summarized here and detailed in the 92 

references provided. 93 
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Calibration begins with a set of optimizing parameters chosen based on the initial model 94 

result before calibration. The parameters are initially quantified by uncertainty ranges 95 

(uniform distributions) based on prior experience and knowledge of the physical parameter 96 

values. Following a calibration protocol (Abbaspour et al., 2015), it will take a few iterations 97 

of around 500 simulations each for a model to be calibrated. The result is a smaller parameter 98 

ranges centered on the best model performance in each iteration. At each iteration, the 95% 99 

prediction uncertainty (95PPU) is calculated at the 2.5% and 97.5% levels of the cumulative 100 

distribution of output variables obtained through the Latin hypercube sampling scheme (Fig. 101 

2). Two statistics, referred to as P-factor and R-factor, are used to quantify the calibration 102 

performance or the goodness of fit. P-factor represents model accuracy and ranges from 0 to 103 

1. It is the percentage of measured points that fall inside the 95PPU band; in other words, 104 

these points are “correctly” simulated by the model. R-factor depicts model uncertainty and 105 

can range from 0 to a very large value. It is the average thickness of the 95PPU divided by the 106 

standard deviation of the measured data. A value of around 1 for the R-factor is in the range 107 

of standard observation deviation and is desirable. These two factors fully describe the 108 

strength of the calibrated model. The closer the P-factor is to 1, and the R-factor is to 0, the 109 

better the calibrated model represents the measurements. Based on experience and only as a 110 

reference, for river discharge, we should want to bracket about 70% of the measured data in 111 

the 95PPU band (P-factor >0.7, R-factor <1.5 ). Due to larger uncertainties in the measured 112 

data and modeling errors, for sediment load, we recommend P-factor >0.5, and for nitrate and 113 

phosphate loads, P-factor >0.4 with an R-factor around 1.5 to 2.5.  114 

The example in Figure 1 shows a determinist case with an NSE of 0.47, an unsatisfactory 115 

model based on the subjective thresholds mentioned above. While taking model uncertainties 116 
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into account, the calibrated model has acceptable results with P-factor = 0.73 and R-factor = 117 

1.1, assuming a 10% error in the flow measurement. 118 

In the above example, the subjective criteria for a calibrated model being good, very good, or 119 

unsatisfactory are irrelevant if model uncertainty is not quantified. A model with a best-fit 120 

NSE of 0.9 with considerable prediction uncertainty could also be unsatisfactory. Based on 121 

the existing evidence, it is time to abandon using the “best-fit” as a criterion for assessing 122 

model calibration results and adopt an uncertainty-based approach as described above.   123 

 124 
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 141 

 142 

Figure 1. Deterministic model results comparing the best-fit signal with observed data. 143 

NSE=0.47. 144 
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 151 

 152 

 153 

Figure 2. Stochastic model results comparing the 95% prediction uncertainty (95PPU) with 154 

observed data. P-factor=0.73, R-factor=1.1. 155 
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 161 

Table 1. Model parameters and their associated objective function values (NSE) showing 162 

similar objective functions obtained with significantly different parameters.   163 

 164 

 165 

 166 

r__ represents a relative change, v__ represents a value change (see Abbaspour et al., 2007 for 167 

details). 168 

r__CN2 v__ESCO v__GWQMN v__GW_DELAY r__SOL_K r__SOL_BD others NSE

0.03 0.72 557.98 77.44 0.14 0.82 . 0.470

-0.08 0.85 779.12 53.24 -0.12 0.76 . 0.466

-0.07 0.87 543.71 60.59 0.32 0.69 . 0.460

0.13 0.80 322.57 64.26 -0.15 0.01 . 0.460

0.11 0.70 1249.94 73.77 0.05 0.55 . 0.460

-0.02 0.87 1232.11 40.70 0.00 0.05 . 0.445

-0.08 0.78 889.69 75.92 -0.42 0.31 . 0.445

0.22 0.72 1214.27 77.31 0.17 0.81 . 0.445

0.11 0.73 336.84 52.36 -0.50 0.53 . 0.445

0.28 0.71 811.22 48.81 0.09 0.39 . 0.445


