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Abstract

Firstly, we re-tune an algorithm based on empirical orthogonal functions (EOF) for globally retrieving the chlorophyll a concen-

tration (Chl-a) of phytoplankton functional types (PFTs) from multi-sensor merged ocean color (OC) products. The re-tuned

algorithm, namely EOF-SST hybrid algorithm, is improved by: (i) using 30% more matchups between the updated global

in situ pigment database and satellite remote sensing reflectance (Rrs) products, and (ii) including sea surface temperature

(SST) as an additional input parameter. In addition to the Chl-a of the six PFTs (diatoms, haptophytes, dinoflagellates, green

algae, prokaryotes and Prochlorococcus), the fractions of prokaryotes and Prochlorococcus Chl-a to total Chl-a (TChl-a), are

also retrieved by the EOF-SST hybrid algorithm. Matchup data are further separated for low and high temperature regimes

based on different PFT dependences on SST, to establish the SST-separated hybrid algorithms which further shows improved

performance as compared to the EOF-SST hybrid algorithm. The per-pixel uncertainty of the retrieved TChl-a and PFT

products is estimated by taking into account the uncertainties from both input data and model parameters through Monte

Carlo simulations and analytical error propagation. The uncertainty assessment provided within this study sets the ground to

extend the long-term continuous satellite observations of global PFT products by transferring the algorithm and its method to

determine uncertainties to similar OC products until today. Satellite PFT uncertainty is also essential to evaluate and improve

coupled ecosystem-ocean models which simulate PFTs, and furthermore can be used to directly improve these models via data

assimilation.
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Abstract:  13 

Firstly, we re-tune an algorithm based on empirical orthogonal functions (EOF) for globally 14 

retrieving the chlorophyll a concentration (Chl-a) of phytoplankton functional types (PFTs) 15 

from multi-sensor merged ocean color (OC) products. The re-tuned algorithm, namely EOF-16 

SST hybrid algorithm, is improved by: (i) using 30% more matchups between the updated 17 

global in situ pigment database and satellite remote sensing reflectance (Rrs) products, and (ii) 18 

including sea surface temperature (SST) as an additional input parameter. In addition to the 19 

Chl-a of the six PFTs (diatoms, haptophytes, dinoflagellates, green algae, prokaryotes and 20 

Prochlorococcus), the fractions of prokaryotes and Prochlorococcus Chl-a to total Chl-a 21 

(TChl-a), are also retrieved by the EOF-SST hybrid algorithm. Matchup data are further 22 

separated for low and high temperature regimes based on different PFT dependences on SST, 23 

to establish the SST-separated hybrid algorithms which further shows improved performance 24 

as compared to the EOF-SST hybrid algorithm. The per-pixel uncertainty of the retrieved 25 

TChl-a and PFT products is estimated by taking into account the uncertainties from both input 26 

data and model parameters through Monte Carlo simulations and analytical error propagation. 27 

The uncertainty assessment provided within this study sets the ground to extend the long-term 28 

continuous satellite observations of global PFT products by transferring the algorithm and its 29 

method to determine uncertainties to similar OC products until today. Satellite PFT 30 

uncertainty is also essential to evaluate and improve coupled ecosystem-ocean models which 31 
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simulate PFTs, and furthermore can be used to directly improve these models via data 32 

assimilation. 33 

Plain Language Summary: 34 

Phytoplankton in the sunlit layer of the ocean contribute approximately 50% to global 35 

primary production. They act as the base of the marine food web fueling fisheries, and also 36 

regulate key biogeochemical processes such as exporting carbon to the deep ocean. 37 

Phytoplankton contain various taxonomic groups that function differently in the marine 38 

ecosystem. The global phytoplankton can be observed from space by analyzing the signal 39 

leaving from the water surface recorded by the ocean color sensors onboard the satellites. 40 

Based on an updated large global data set, satellite data from different ocean color sensors and 41 

sea surface temperature data, we adapted our previous approach to better quantify the biomass 42 

of the main six phytoplankton groups on the global scale. The uncertainty of the satellite 43 

products of the phytoplankton groups are calculated by considering the errors propagated 44 

from the satellite data and the model parameters. This approach for quantifying different 45 

phytoplankton groups, together with the uncertainty assessment, can be extended to other 46 

similar ocean color satellite data which cover different time periods, to ultimately generate 47 

long term global distribution maps of multiple phytoplankton groups. This information will 48 

help the modelers to better predict the phytoplankton changes in the future. 49 

Keywords: Algorithm; empirical orthogonal functions; remote sensing reflectance; HPLC 50 

pigments; merged products 51 

1 Introduction 52 

Playing a fundamental role in the marine food web and biogeochemical cycling, 53 

phytoplankton community structure and taxonomic composition has been widely investigated 54 

in the past decades, through various observations methods and ecological modelling (e.g., 55 

Falkowski et al., 2003; Le Quéré et al. 2005; IOCCG, 2014). With a vast amount of quality-56 

controlled ocean color remote sensing (OC) data, observations of the composition of 57 

phytoplankton assemblages have provided various phytoplankton information including 58 

dominance of phytoplankton groups, size classes (PSCs) and phytoplankton functional types 59 

(PFTs) on a large scale both in space and time. The retrieval algorithms for phytoplankton 60 

composition were generally developed based on both in situ measurements and satellite 61 

products, in which the former provides the ground truth information at specific time and 62 

location, but with the latter the continuous spatiotemporal observations can be achieved.  63 
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Signals leaving the ocean surface (radiance or reflectance data) recorded by the satellites 64 

inherit phytoplankton pigment information that relates to phytoplankton community structure 65 

and size classes (Bracher et al., 2017; Mouw et al., 2017). Therefore, they are often used to 66 

establish spectral-based approaches to retrieve the concentrations of phytoplankton 67 

chlorophyll, pigments and multiple PFTs from space (e.g., Alvain et al., 2005, 2008; Bracher 68 

et al., 2009; Werdell et al., 2014; Correa-Ramirez et al., 2018; Xi et al., 2020; Lange et al., 69 

2020). One of the efficient approaches is based on the empirical orthogonal function (EOF) 70 

analysis on the spectral Rrs or water leaving radiance. By reducing the high dimensionality of 71 

the spectral data, the dominant signals that best describe the variance of the structures lying in 72 

the spectra can be assessed to establish the statistical models for predicting ocean color 73 

metrics and various phytoplankton pigment and PFT chlorophyll a concentrations (Chl-a) 74 

(e.g., Lubac and Loisel, 2007; Craig et al., 2012; Taylor et al., 2013; Bracher et al., 2015; 75 

Soja-Woźniak et al., 2017; Xi et al., 2020; Lange et al., 2020). Approaches based on EOF 76 

analysis also exhibited equivalent skill with little downgrading of the performance when 77 

applied to reduced spectral resolution (Bracher et al., 2015), enabling its wide applicability to 78 

previous (e.g., SeaWiFS and MODIS) and current (e.g., MODIS, VIIRS and OLCI) 79 

multispectral OC sensors and their merged products). In addition, as these approaches are 80 

usually trained to retrieve ocean color metrics and PFT information directly from the satellite 81 

spectral data, in its application no prior knowledge on the phytoplankton biomass or inherent 82 

optical properties (IOPs) is required. This makes the implementation of such approaches 83 

straightforward and practical for satellite OC products. 84 

The EOF-based approach proposed by Xi et al. (2020) has justified to provide reliable Chl-a 85 

retrievals of multiple PFTs on the global scale, through inter-comparisons with other satellite 86 

derived PFT and PSC products. However, PFT retrievals by Xi et al. (2020) showed rather 87 

low performance for prokaryotic phytoplankton. Incorporating additionally environmental 88 

parameters, which are globally available from satellite measurements, such as optical depth, 89 

sea surface temperature, wind stress, and light availability, have shown improvements to 90 

several ocean colour PSC retrievals. For instance, Brewin et al. (2015) investigated the 91 

influence of light in the mixed layer on the parameters of the three-component PSC model 92 

(abundance-based model) of Brewin et al. (2010), and modified the model to better describe 93 

the relationship between phytoplankton size structure and total chlorophyll with varying light 94 

conditions. Ward (2015) and Brewin, Ciavatta, et al. (2017) both incorporated temperature 95 

dependence into the three-component model and improved the model’s ability in representing 96 
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Chl-a concentrations in all three PSCs using satellite estimates of SST and total Chl-a 97 

concentration.  98 

There has been the emerging trend of the combined use of in situ data, satellite observations, 99 

ecosystem modelling (Losa et al. 2019), as well as PFT or PSC data assimilation (Xiao and 100 

Friedrichs, 2014; Pradhan et al., 2020), to allow comprehensive monitoring and predictions 101 

of phytoplankton community structure. Satellite derived phytoplankton group-specific 102 

products are also expected to be useful for validation of ecosystem model results (e.g., Ward 103 

et al., 2012; Hirata et al., 2013; Holt et al., 2014; de Mora et al., 2016; Dutkiewicz et al. 2015; 104 

Pradhan et al. 2019). One of the challenges to fulfill these tasks is associating the uncertainty 105 

to the satellite derived PFT products (Bracher et al., 2017). Uncertainty estimates have been 106 

well formulated and generated for other common OC algorithms that use satellite radiance 107 

and reflectance data to derive OC products such as marine Chl-a concentration, diffuse 108 

attenuation coefficient, and inherent optical properties (Werdell et al., 2018, McKinna et al., 109 

2019). Though various approaches have been proposed to derive globally satellite 110 

phytoplankton group products (Mouw et al. 2017), only the study by Brewin, Ciavatta, et al. 111 

(2017a) has provided estimates of uncertainty on a per-pixel basis for the North Atlantic 112 

Ocean. Uncertainty assessment can be carried out via two methods: validation through 113 

comparison of the satellite retrievals with in situ data (e.g., Antoine et al. 2008; 114 

Sathyendranath et al., 2019), or error propagation by accounting for the uncertainties in the 115 

inputs and model parameters. Due to sparse distribution of the in situ measurements that 116 

restrict the validation for the uncertainty estimation (Mélin and Franz, 2014), the error 117 

propagation analysis has now been widely used to understand the sensitivity of the model 118 

inputs and parameters to the outputs, and produce pixel-by-pixel uncertainty (e.g., Maritorena 119 

et al., 2010; Lee et al., 2010; Kostadinov et al., 2016; Qi et al., 2017; Brewin, Tilstone, et al., 120 

2017). 121 

In this work, we improve the previously developed EOF-based algorithm of Xi et al. (2020) 122 

for global retrievals of multiple PFT quantities by 1) including more matchup data between 123 

the in situ pigment data set and satellite Rrs data from merged OC products,  2) accounting 124 

for the sea surface temperature (SST) in the retrieval scheme, and 3) investigating the 125 

influence of SST on the model parameters and the retrieved PFTs with the goal of 126 

establishing a set of EOF-SST hybrid algorithms and improving the retrievals of TChl-a, Chl-127 

a of six PFTs and the fractions of two prokaryotic phytoplankton. By applying the hybrid 128 

algorithms to the merged OC products, we present the global distribution maps of the 129 
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retrieved PFT quantities, and present a method to derive the per-pixel uncertainty propagated 130 

from both the inputs and retrieval model for each satellite retrieved PFT quantity by 131 

combining Monte Carlo (MC) simulations and an analytical approach. 132 

2 Data and Methods 133 

2.1 Data sets  134 

2.1.1 In situ data set of phytoplankton pigments 135 

We updated the large global and open ocean (> 200 m) phytoplankton pigment data set 136 

(spanning 2002-2012) from Losa et al. (2017) used in Xi et al. (2020) analyzed by High 137 

Performance Liquid Chromatography (HPLC), by adding recently published HPLC pigment 138 

data (by February 2020) from SeaBASS, PANGAEA, British Oceanographic Data Centre 139 

(BODC), and Open Access to Ocean Data (AODN) from Australia. All collected data were 140 

quality controlled following the method by Aiken et al. (2009). A total of 9,595 sets of 141 

pigment data were obtained as shown in Figure 1 with the distribution of total chlorophyll a 142 

concentration (TChl-a). In the database all required pigments for the PFT Chl-a calculation 143 

were included (fucoxanthin, peridinin, 19’hexanoyloxy-fucoxanthin, 19’butanoyloxy-144 

fucoxanthin, alloxanthin, total chlorophyll b, zeaxanthin and divinyl chlorophyll a). 145 

 146 

Figure 1. Distribution of TChl-a (the sum of monovinyl chlorophyll a, divinyl chlorophyll a, 147 

chlorophyll a allomers, chlorophyll a epimers, and chlorophyllide a) from the quality 148 

controlled in situ pigment database (2002 – 2012) used in this study. 149 
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2.1.2 Satellite data 150 

2.1.2.1 Satellite ocean color products 151 

GlobColour data archive (http://www.globcolour.info/) has provided various OC products 152 

from different sensors, including SeaWiFS, MODIS/AQUA, MERIS, VIIRS onboard Suomi-153 

NPP and Sentinel-3A OLCI. In this study, we used the SeaWiFS-MODIS-MERIS merged 154 

normalized remote sensing reflectance (Rrs) Level-3 (L3) product (hereafter referred to as 155 

merged product) which covers the period from July 2002 to April 2012 from the GlobColour 156 

data archive (http://www.globcolour.info/; more details in ACRI-ST GlobColour Team et al., 157 

2017). As in Xi et al. (2020), the daily merged product with 4-km resolution was used for 158 

matchup extraction and monthly merged product with 25-km resolution was used for 159 

algorithm application. Since this study focuses mainly on oceanic waters, shelf and coastal 160 

waters (< 200 m) were masked out in the OC products using the ETOPO1 bathymetry 161 

(Amante and Eakins, 2009). 162 

2.1.2.2 Sea surface temperature (SST) data 163 

The SST product used in this study was CMEMS OSTIA (Operational SST and Ice Analysis) 164 

reprocessed analysis product, which is available on the CMEMS (Copernicus Marine 165 

Environment Monitoring Service, https://marine.copernicus.eu/) platform, referenced as 166 

SST_GLO_SST_L4_REP_OBSERVATIONS_010_011. The CMEMS OSTIA reprocessed 167 

analysis product is an interpolated product based on in situ measurements and satellite 168 

observations from both infra-red and micro-wave data on a global regular grid at 0.05° 169 

resolution (Donlon et al., 2012; Worsfold et al., 2020). The SST daily product from July 2002 170 

to April 2012 was acquired and gridded to 4-km resolution. As for Rrs, monthly mean SST 171 

product from 2002 to 2012 with 25-km resolution were also processed as input for deriving 172 

global satellite PFT products. 173 

2.1.3 Input data for PFT retrieval algorithm 174 

2.1.3.1 In situ PFT Chl-a concentration and fraction derived from diagnostic pigment analysis 175 

(DPA) 176 

As described in Xi et al. (2020), Chl-a of PFTs were derived using an updated DPA method 177 

(Soppa et al., 2014; Losa et al., 2017), that was originally developed by Vidussi et al., 2001, 178 

adapted in Uitz et al. (2006) and further refined by Hirata et al. (2011) and Brewin et al. 179 

(2015). We used pigment concentrations from the in situ data base mentioned in Section 2.1.1 180 

to derive the Chl-a of six PFTs – diatoms, dinoflagellates, haptophytes, green algae, 181 

http://www.globcolour.info/
http://www.globcolour.info/
https://marine.copernicus.eu/


 7 

prokaryotes, and Prochlorococcus. The partial coefficients of the diagnostic pigments used in 182 

the DPA were the updated ones using a large global pigment data set as detailed in Table S1 183 

in Losa et al. (2017), which were proved to be in good agreement with previous studies. Due 184 

to the weak retrieval performance of prokaryotes and Prochlorococcus Chl-a in Xi et al. 185 

(2020), in this study we included the fractions of prokaryotes (f-prokaryotes) and 186 

Prochlorococcus (f-Prochlorococcus) to TChl-a, attempting to get improved retrievals of 187 

these two PFTs. PFT Chl-a lower than 0.005 mg m
-3

 were excluded due to high uncertainty 188 

(Xi et al., 2020) and the corresponding fractions of prokaryotes and Prochlorococcus were 189 

also excluded. 190 

2.1.3.2 Matchups between satellite SST and in situ PFT data 191 

SST matchup data were extracted by matching spatially co-localized and temporally (on a 192 

daily basis) coincident with the in situ PFT measurements. A macro-pixel of 33 pixel 193 

centered on the in situ measurement was considered. If the standard deviation within this 194 

macro-pixel was lower than 25%, then the macro-pixel was considered suitable for the 195 

matchup. The median of the macro-pixel is defined as the SST value for the in situ site. 196 

Though the OSTIA SST product is quality controlled, abnormal values below -2 °C still 197 

existed, but were removed in the matchup data.  198 

2.1.3.3 Matchups of Rrs merged product to in situ PFT and satellite SST data 199 

Matchups of satellite Rrs to in situ PFT data (which were also matchups to SST) were 200 

extracted from global 4-km daily merged products. The same extraction and averaging 201 

protocol including quality control as in Xi et al. (2020) were used to derive the single pixel 202 

matchups. As justified in Xi et al. (2020), due to more matchup points and equivalent 203 

retrieval performance compared to 33 matchups, the single pixel matchup data set was taken 204 

as input data for the final retrieval approach (Figure 2). The Rrs matchup data with the nine 205 

bands of 412, 443, 490, 510, 531, 547, 555, 670 and 678 nm from the merged products were 206 

chosen as the algorithm input data (Table 1). A total of 508 sets of matchup data covering the 207 

global ocean were extracted (Figure 2). 208 
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 209 

Figure 2. Geographical locations of single pixel matchups of GlobColour merged Rrs at nine 210 

bands with in situ PFT and satellite SST data. 211 

Table 1. List of the nine bands from sensors SeaWiFS, MODIS, and MERIS used in the 212 

GlobColour merged products. 213 

Sensors 
Center Wavebands (nm) 

412 443 490 510 531 547 555 670 678 

SeaWiFS          

MODIS           
MERIS       *   

*
 There was no band at 555 nm for MERIS itself, but the GlobColour Team provided for MERIS the 555 214 

nm through an inter-spectral conversion made by using:  215 

Rrs(555) = Rrs(560) * (1.02542 - 0.03757 * y - 0.00171 * y
2
 + 0.0035 * y

3
 + 0.00057 * y

4
), where y = 216 

log10(CHL1) and CHL1 is the total Chl-a concentration estimated by OC4 (ACRI-ST GlobColour Team et 217 

al., 2017). With this conversion, Rrs at 555 nm for MERIS were also included in our study. 218 

2.2 Algorithm re-tuning 219 

The EOF-based PFT retrieval algorithm development and performance assessment were 220 

detailed in Xi et al. (2020). Using the updated matchup data base, Xi et al. (2020) algorithm 221 

was re-tuned and statistically assessed as detailed below. Figure 3 shows the scatterplots of 222 

the matchup data of SST to TChl-a, the six PFT Chl-a and the two PFT fractions. Generally, 223 

TChl-a, diatoms, haptophytes, dinoflagellates, and green algae show decreasing Chl-a with 224 

increasing SST. However, Prokaryotes and Prochlorococcus Chl-a and their fractions to 225 

TChl-a show positive correlation with SST. The statistically significant correlations indicate 226 

that introducing SST as an additional term into the Xi et al. (2020) algorithm (see Section 227 

2.2.1) might improve the algorithms’ performance. Besides, at SST of around 8 °C, with 228 
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applying a 10-point running mean to the matchup data, there is a clear shift in the trends of 229 

most PFT quantities as a function of SST. This further led us to establish for SST < 8 °C a 230 

different EOF-SST hybrid algorithm than for SST ≥ 8 °C (see Section 2.2.2). 231 

Prochlorococcus data, as an exception from other PFTs, are rarely recorded in high latitudes 232 

with low temperature (Flombaum et al., 2013). Our matchup data set contained few (n = 6) 233 

divinyl chlorophyll a (a marker pigment of Prochlorococcus) measurements with low 234 

concentrations when SST < 8 °C. To construct the prediction models for all the PFTs more 235 

easily, we excluded the regions where SST is below 8 °C for the Chl-a and fraction retrievals 236 

of Prochlorococcus. 237 

 238 

Figure 3. Scatterplots of in situ TChl-a, PFT Chl-a and fractions of prokaryotes and 239 

Prochlorococcus versus collocated satellite SST data. The correlation coefficient R was 240 

calculated based on the 10-point running mean (red curve). 241 

2.2.1 Adapted EOF-SST hybrid PFT algorithm based on the whole data set 242 

The input data set used in the EOF-SST hybrid algorithm was the matchup data set that 243 

included the collocated nine-band Rrs from the merged products, SST satellite data and in situ 244 

PFT data. Figure 4 depicts the flowchart of the EOF-SST hybrid algorithm, in which the EOF 245 
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analysis remained unchanged by still using singular value decomposition (SVD) to 246 

decompose the (standardized) Rrs spectra into the EOF scores (U), singular values (Λ) and 247 

EOF loadings (V) as in Xi et al. (2020). Now, when formulating the regression models of 248 

PFTs, we introduced SST as an additional term together with the column vectors u1,2,..,n in U. 249 

Similar to Xi et al. (2020), we applied a stepwise routine to obtain the smaller regression 250 

model by removing least significant variables in U through minimization of the Akaike 251 

information criterion (AIC). The adapted regression model is expressed as 252 

ln(𝐶p) = 𝑎0 + 𝑎1𝑢1 + 𝑎2𝑢2 + ⋯ 𝑎𝑛𝑢𝑛 + 𝑎𝑆𝑆𝑇𝑆𝑆𝑇,                                     (1) 253 

where a0 is the intercept, a1,2,…n, and aSST are the regression coefficients for the selected EOF 254 

scores and SST, respectively. With the adapted regression model, the same steps described as 255 

cross validation and model assessment of Xi et al. (2020) were carried out to test the 256 

robustness of the fitted model: the whole collocated data set was randomly split into two 257 

subsets – the first subset containing 80% of the data was used for model fitting/training and 258 

the rest 20% was used for prediction. The procedure was run for 500 permutations to 1) 259 

record down in each permutation the model parameters for further uncertainty assessment, 260 

and 2) generate a final statistical assessment based on the statistics of the model performance 261 

derived from each permutation.  262 

For the model assessment, we considered the slope (S), the intercept (a) of the GLM 263 

regression and coefficient of determination (R
2
), which were based on the log-scaled PFT 264 

predictions against the log-scaled in situ PFT data. We also included the root-mean-square 265 

difference (RMSD), the median percent difference (MDPD), and the bias that were based on 266 

the non-log-transformed concentration data. These metrics were expressed as 267 

RMSD = √
∑ (𝐶𝑝𝑖−𝐶𝑜𝑖)2𝑀

𝑖=1

𝑀
,                                                        (2) 268 

                                    MDPD = Median of [
|(𝐶𝑝𝑖−𝐶𝑜𝑖)|

𝐶𝑜𝑖
× 100], i = 1,…M,                             (3) 269 

bias =
100

𝑀
∑

(𝐶𝑝𝑖−𝐶𝑜𝑖)

𝐶𝑜𝑖

𝑀
𝑖=1 ,                                                         (4) 270 

where M is the number of observations of PFTs (Co) and the corresponding predictions (Cp). 271 

Meanwhile, the cross validation statistics (R
2
cv, RMSDcv and MDPDcv), which represent 272 

both the model robustness and compromise model performance, was also determined by 273 

taking the mean of the statistical parameters R
2
, RMSD and MDPD from all permutations, 274 

respectively. 275 
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2.2.2 SST-separated hybrid PFT algorithms  276 

Given the presented different SST-PFTs relationships for data set of SST < 8 °C and that of 277 

SST ≥ 8 °C (Figure 3), for all PFT quantities but Prochlorococcus Chl-a and fraction we 278 

separated the matchup data set based on 8 °C and established two specific EOF-SST hybrid 279 

algorithms using the two data sets (noted as SST-separated hybrid algorithms) following 280 

Section 2.2.1 (Figure 4). Note that the performance of the SST-separated hybrid algorithms 281 

was evaluated statistically based on all the predictions and in situ data to be consistent with 282 

that for the EOF-SST hybrid algorithm. 283 

2.2.3 Application of algorithms 284 

The established algorithms were applied to the satellite Rrs data from the merged products 285 

(Section 2.1.2) to retrieve PFTs globally (Figure 4). By projecting the Rrs data from the 286 

satellite onto the EOF loadings (V), a new set of EOF scores (U
sat

) was derived and was then 287 

used for the global PFT prediction together with the SST as an additional term in the fitted 288 

model in Eq. (1), where a0 and a1,2,…n were obtained in the step of model training. 289 

 290 

Figure 4. Flowchart illustrating the EOF-SST hybrid algorithm and the SST-separated hybrid 291 

algorithms for predicting TChl-a, Chl-a of six PFTs, and two fractions with GlobColour 292 



 12 

merged product. The red dashed-line box depicts the model training with the pigment-satellite 293 

matchup data; the green dashed-line box depicts the model application to satellite products 294 

and the blue dashed-line box shows the output, i.e., the predicted PFT quantities. 295 

2.3 Uncertainty assessment of PFT retrieval  296 

To quantify the uncertainty of the satellite PFT retrievals, we considered the uncertainties 297 

propagated from the input datasets satellite Rrs (Rrs) and SST (SST), and uncertainty of the 298 

model/algorithm parameters (a). Also other uncertainty sources exist, i.e., errors in the DPA 299 

derived PFT data which results from the incorrect assignment of PFTs from marker pigments 300 

and the in situ HPLC pigment measurement error. We were not able to obtain this information 301 

for our large global data set collected from various cruises in the last decades. Mostly no other 302 

descriptors of phytoplankton taxonomic composition had been measured and details on the 303 

HPLC measurement error (including all associated steps, e.g., filtration, extraction and HPLC 304 

analysis accuracy) are not available. According to IOCCG (2019), uncertainties of the HPLC-305 

based chlorophyll a is around 7% and can be higher for other pigments (Claustre et al., 2004).   306 

In the current study, we could not quantify the combined uncertainty from both, HPLC 307 

measurement and the DPA derived PFT, due to limited information therefore did not include 308 

this error source in the uncertainty assessment.  309 

All computations of the uncertainties in this study were based on the logarithmic transformed 310 

data following conventional practice in the field of ocean color (OCCCI Product User Guide, 311 

2020). However, we used natural logarithms instead of the common (base 10) logarithms, 312 

because our algorithm was developed based on the natural logarithms. The common 313 

logarithmic uncertainty can also be obtained by dividing our uncertainty by ln(10), i.e., 314 

approximately a factor of 2.3. Due to the length of the article only the uncertainty derived 315 

based on the whole EOF-SST hybrid algorithm is presented as a general approach to quantify 316 

and consolidate the PFT uncertainty from different error sources. 317 

2.3.1 Structure of the uncertainty propagation 318 

With the EOF-SST hybrid retrieval models expressed in Eq. (2), the retrieval model applied 319 

to the satellite data can be written in the following form: 320 

𝑦(𝒂, 𝒖(𝑅𝑟𝑠), 𝑆𝑆𝑇) = ln(𝐶𝑃
𝑠𝑎𝑡) = 𝑎𝑜 + 𝑎1𝑢1

𝑠𝑎𝑡 + 𝑎2𝑢2
𝑠𝑎𝑡 + ⋯ 𝑎𝑛𝑢𝑛

𝑠𝑎𝑡 + 𝑎𝑆𝑆𝑇𝑆𝑆𝑇              (5) 321 

where a represents all the model coefficients; u represents all the EOF score vectors derived 322 

from Rrs data therefore each can be expressed as: 323 
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𝑢𝑖
𝑠𝑎𝑡 = 𝑓(𝑅𝑟𝑠)                                                                 (6) 324 

  325 

To estimate the final uncertainty of the retrieved PFTs, 𝜎y, we assume that the uncertainties 326 

due to a, u, and SST in Eq. (5) are not correlated with each other. According to the Guide to 327 

Uncertainty in Measurement (JCGM, 2008), the combined uncertainty of different sources 328 

could be estimated based on the law of propagation of uncertainty. Using the partial 329 

differences, the uncertainty of the PFT retrievals is presented theoretically as: 330 

𝜎y = √𝜎𝑦(𝑅𝑟𝑠)
2 + 𝜎𝑦(𝑎)

2 + 𝜎𝑦(𝑆𝑆𝑇)
2 = √∑ (

𝜕𝑦

𝜕𝑅𝑟𝑠𝑖
)

2
𝜎𝑅𝑟𝑠𝑖

2 + ∑ (
𝜕𝑦

𝜕𝑎𝑖
)

2
𝜎𝑎𝑖

2𝑛
𝑖=0 + (

𝜕𝑦

𝜕𝑆𝑆𝑇
)

2
𝜎𝑆𝑆𝑇

2𝑁
𝑖=1  . 331 

(7) 332 

Since the uncertainties propagated from errors of model parameters (y(a)) and SST (y(SST)) 333 

are both linear, they can be analytically derived and expressed together as:  334 

𝜎𝑦(𝑎)
2 + 𝜎𝑦(𝑆𝑆𝑇)

2 = ∑ (𝑢𝑖
𝑠𝑎𝑡)2𝜎𝑎𝑖

2𝑁
𝑖=1 + 𝑆𝑆𝑇2𝜎𝑎𝑠𝑠𝑡

2 + (𝑎𝑠𝑠𝑡)2𝜎𝑆𝑆𝑇
2 .                   (8) 335 

Where 𝜎𝑆𝑆𝑇  = 0.46 °C (Worsfold et al., 2020 for the OSTIA SST product); 𝜎𝑎𝑖
 and  𝜎𝑎𝑆𝑆𝑇

 336 

were determined during the cross validation procedure as described in Section 2.2.1. To 337 

further understand how the 𝜎𝑎𝑖
 and 𝜎𝑎𝑆𝑆𝑇

 were determined, Figure 5 shows the distributions of 338 

the coefficients derived from all the permutations in the cross validation as an example for 339 

diatoms. In general, the coefficient distributions followed the normal distribution, the 340 

uncertainty of each coefficient was thus determined by calculating the corresponding standard 341 

deviation. The uncertainties of the model coefficients for all other PFT quantities were also 342 

determined in the same manner. 343 

Since the converted prokaryotes and Prochlorococcus Chl-a were calculated by multiplying 344 

their fractions and the TChl-a together, the corresponding uncertainties were determined by 345 

the uncertainties of TChl-a and that of f-Prokaryotes (f-Prochlorococcus). Using yproka_conv,  y1 346 

and y2 to denote the converted prokaryotes Chl-a, TChl-a and f-Prokaryotes, the uncertainty 347 

of the converted prokaryotes Chl-a, 𝜎𝑦𝑝𝑟𝑜𝑘𝑎_𝑐𝑜𝑛𝑣
, can be determined by the uncertainty of 348 

TChl-a and f-Prokaryotes, namely 𝜎𝑦1
 and 𝜎𝑦2

, through the following equation: 349 

𝜎𝑦𝑝𝑟𝑜𝑘𝑎_𝑐𝑜𝑛𝑣
= √𝜎𝑦1

2 + 𝜎𝑦2
2 + 2𝜎𝑦1

𝜎𝑦2
𝑟12,                                          (9) 350 

where 𝑟12 is the correlation coefficient between 𝜎𝑦1
 and 𝜎𝑦2

 (as both depend on SST-related 351 

uncertainties). Eq. (9) also applies for the uncertainty of converted Prochlorococcus Chl-a. 352 
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 353 

Figure 5. Histograms depicting the distributions of the model coefficients derived from 500 354 

permutations of the cross validation for diatoms. 𝜎𝑎𝑖
 (i.e., standard deviation, SD) of each 355 

coefficient was determined accordingly.  356 

Among all uncertainty components in Eq. (7), the uncertainty of the PFTs propagated from 357 

the errors of the satellite Rrs spectra, 𝜎𝑦(𝑅𝑟𝑠) , is the challenging part to quantify, as it is 358 

nonlinear and not as straightforward as the other two uncertainty sources, due to the EOF 359 

analysis performed with the spectra. We therefore used a MC simulation-based approach to 360 

estimate the 𝜎𝑦(𝑅𝑟𝑠) and detailed it in the following subsection 2.3.2. 361 

2.3.2 Rrs uncertainty propagation 362 

Based on the uncertainty of the water leaving radiance for SeaWiFS, MODIS-Aqua, and 363 

MERIS reported in Maritorena et al. (2010), Rrs absolute uncertainties for these sensors were 364 

derived and were used in GlobColour program. In our study, we took the root mean square 365 

(RMS) of the common bands from two or three sensors as the uncertainty of the merged 366 

products (Table 2). Using the matchup data for the merged products at nine bands, the 367 

following steps were carried out to fulfil the uncertainty propagation from Rrs to the PFTs. 368 

1. The 508 Rrs matchup spectra were randomly divided equally into two datasets - 50% 369 

as the training data set, and the other 50% as the testing data set (in a total of 254). 370 

Mean=-4.35
SD=0.30

Mean=-0.97
SD=0.11

Mean=1.49
SD=0.04

Mean=1.18
SD=0.10

Mean=-1.53
SD=0.14

Mean=1.36
SD=0.28

Mean=3.67
SD=0.68

Mean=2.84
SD=1.55

Mean=-0.07
SD=0.007
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The corresponding matchups of in situ PFT and retrieved PFT data were also divided 371 

accordingly.  372 

2. For the training data sets, we performed 10,000 MC simulations to randomly 373 

introduce for each band the Rrs uncertainty (Rrs) to each Rrs spectrum in the training 374 

data set (in a total of 2,540,000 simulated spectra). 375 

3. The MC simulated Rrs spectra were applied to the EOF-SST hybrid algorithm to 376 

estimate the PFTs with Rrs uncertainty taken into account. For each sample, 10,000 377 

estimates of the PFT were generated from the 10,000 MC simulated Rrs, so that the 378 

uncertainty (standard deviation, MC-PFT) of the PFTs were determined based on these 379 

10,000 estimates for each specific sample.     380 

4. When the MC for all samples in the training data set were determined through Step 3, 381 

a look-up table (LUT) was built for each PFT by fitting MC-PFT as a function of the 382 

retrieved PFT.  383 

5. The LUT for each PFT was applied to the testing data set for the uncertainty 384 

validation, and also to the satellite PFT products to derive per-pixel uncertainty of the 385 

satellite PFT due to Rrs, 𝜎𝑦(𝑅𝑟𝑠), which was combined with uncertainties from the 386 

other sources via Eq. (7) to derive the final uncertainty of PFT satellite retrievals.  387 

Table 2. Absolute uncertainties of Rrs (Rrs, Sr
-1

)) for different sensors in the merged products 388 

derived based on Maritorena et al. (2010). The root mean square (RMS) was taken as the 389 

uncertainty of the merged products. 390 

Wavebands (nm) 412 443 490 510 531 547 555 670 678 

MODIS Rrs 0.00071 0.00063 0.00049  - 0.00024  0.00019 - 0.000055 0.000030 

MERIS Rrs 0.00066 0.00059 0.00047 0.00033 - - 0.00023 0.00010 0.000098 

SeaWiFS Rrs 0.00072 0.00064 0.00050  0.00036 - - 0.00025 0.000075 - 

RMS Rrs 0.00070 0.00062 0.00049 0.00035 0.00024 0.00019 0.00024 0.000080 0.000072 

2.3.3 Assessment of the per-pixel PFT uncertainty  391 

With the steps in Section 2.3.2, the uncertainty propagated from the Rrs to the satellite 392 

retrieved PFTs was determined by applying the LUT to each pixel of the satellite derived PFT 393 

products, the term 𝜎𝑦(𝑅𝑟𝑠)
2  in Eq. (7) was thus derived. Together with the other two terms, 394 

𝜎𝑦(𝑎)
2  and 𝜎𝑦(𝑆𝑆𝑇)

2  that could be calculated analytically through Eq. (8), the combined PFT 395 

uncertainty 𝜎y of each pixel from different sources was ultimately obtained. 396 
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3 Results and discussion 397 

3.1 EOF-SST hybrid algorithms for PFT retrievals 398 

3.1.1 EOF-SST hybrid algorithm based on the whole matchup data set 399 

Before setting up the EOF-SST algorithm, we firstly used the updated input data set to update 400 

the original EOF-based algorithm proposed by Xi et al. (2020) where SST was not included, 401 

the performance of the updated algorithm showed nearly identical performance as compared 402 

to the original one presented in Xi et al. (2020) (details not shown). This indicates that the 403 

original algorithm can be hardly improved by purely enlarging the training data set. Within 404 

the frame of the EOF-SST hybrid algorithm in the current study, TChl-a, PFT Chl-a and the 405 

fractions of two PFTs were predicted based on the regression models built using the EOF 406 

scores derived from the nine-band Rrs data, SST and the in situ PFT data. As presented in 407 

Table 3 and Figure 6 (A-F, H), compared to the original algorithm in Xi et al. (2020), the 408 

EOF-SST hybrid algorithm shows significant improvements for all predicted quantities 409 

except for Prochlorococcus where weak performance still remains. For TChl-a, and Chl-a for 410 

diatoms, haptophytes, dinoflagellates and green algae, R
2
 and R

2
cv are increased to 0.59 – 411 

0.85 (compared to 0.51 – 0.76) and to 0.56 – 0.84 (compared to 0.47 – 0.75), respectively. 412 

MDPD and MDPDcv are remarkably reduced to 30% to 55% and 31% to 56%, respectively, 413 

for all quantities as compared to Xi et al. (2020) ranging 37%–74% and 37%–75%, 414 

respectively. RMSD and RMSDcv values are also decreased significantly in the EOF-SST 415 

hybrid algorithm compared to the previous results.  416 

To further improve the prediction of prokaryotes and Prochlorococcus Chl-a, the hybrid 417 

algorithm was also trained to retrieve the fractions of prokaryotes and Prochlorococcus to 418 

TChl-a. This was motivated because prokaryotes dominate the low TChl-a mid- to low 419 

latitude waters, so generally their Chl-a is low. By using their fraction instead of Chl-a a 420 

better spread of the data is achieved that enhances the signal to be retrieved which is 421 

beneficial for application in abundance-based PSC retrievals (e.g., Brewin et al., 2010). As 422 

expected, the prediction models for the two fractions performed well with R
2
 > 0.62 and 423 

MDPD within 42% (Table 3). Though the overall performance of the fraction retrieval for the 424 

two PFTs had been improved, the regressions between the predicted and observed fractions 425 

(Figure 6G and J) show that higher discrepancies exist in low fraction values, indicating that 426 

it is still difficult to deal with low Chl-a values. Using predicted TChl-a, the fractions were 427 

further converted to Chl-a for the two PFTs. Table 3 shows that the converted prokaryotes 428 
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Chl-a retrieval displays much improved performance compared to the directly retrieved 429 

prokaryotes (R
2
 of 0.34 vs. 0.27, MDPD of 39% vs. 44%, and RMSD of 0.08 vs. 0.09 mg m

-
430 

3
), but it is downgraded compared to the f-prokaryotes (Figure 6H). The fraction to Chl-a 431 

conversion scheme shows barely improvement in predicting Prochlorococcus Chl-a (Table 3 432 

and Figure 6K versus Figure 6I). Though f-Prochlorococcus is overall better predicted 433 

compared to the direct retrieval of Prochlorococcus Chl-a, by using the conversion, the low 434 

signal to noise ratio in the retrieved TChl-a and f-Prochlorococcus deteriorates for R
2
 and 435 

RMSD the final Prochlorococcus Chl-a estimation. The MDPD and bias are however slightly 436 

improved. Weak prediction performance of the converted Prochlorococcus Chl-a reveals that 437 

it is still challenging to enhance their retrieval accuracy to the same level as other PFTs due to 438 

the low concentrations and small variability (Xi et al., 2020).   439 
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Table 3. Statistics of regression models for TChl-a, six PFT Chl-a, fractions of prokaryotes 440 

and Prochlorococcus and the corresponding converted Chl-a using SST and EOF modes 441 

based on the nine-band Rrs matchups from merged OC products (upper panel). N is the 442 

number of valid matchups for each parameter. Note that cross validation was not applied for 443 

the converted prokaryotes and Prochlorococcus Chl-a because they are the results of the 444 

multiplication between their fractions and the TChl-a. As a comparison, the statistics of the 445 

previous EOF-based algorithm (without SST) by Xi et al. (2020) for the TChl-a and six PFT 446 

Chl-a are also presented (lower panel). Bold marks the improved (or same) statistics. 447 

 N 
MDPD 

(%) 

RMSD 

(mg m-3) 
R2 

MDPDcv

(%) 

RMSDcv 

(mg m-3) 
R2cv 

EOF-SST hybrid model        

TChl-a 412 30.02 0.85 0.85 30.60 0.88 0.84 

Diatoms 296 54.90 0.95 0.79 56.46 1.05 0.78 

Dinoflagellates 250 51.44 0.95 0.64 53.81 0.70 0.60 

Haptophytes 402 40.24 0.16 0.73 41.96 0.16 0.72 

Green algae 285 48.64 0.10 0.59 49.71 0.11 0.56 

Prokaryotes 395 44.37 0.09 0.27 44.79 0.09 0.22 

f-Prokaryotes 395 40.90 0.20 0.66 41.91 0.20 0.65 

Converted Prokaryotes 391 39.36 0.08 0.34 - - - 

Prochlorococcus 195 41.41 0.02 0.26 44.22 0.02 0.19 

f-Prochlorococcus 201 41.08 0.10 0.62 42.07 0.10 0.58 

Converted Prochlorococcus 190 39.74 0.02 0.21 - - - 

Original EOF based algorithm         

TChl-a 394 37.41 1.24 0.76 37.08 1.27 0.75 

Diatoms 306 73.70 1.21 0.65 74.74 1.29 0.63 

Dinoflagellates 272 55.32 0.93 0.62 57.29 0.72 0.59 

Haptophytes 387 47.16 0.22 0.64 48.62 0.24 0.61 

Green algae 262 55.81 0.11 0.51 56.26 0.11 0.48 

Prokaryotes 367 53.70 0.13 0.15 55.08 0.13 0.11 

Prochlorococcus 142 39.65 0.02 0.24 42.68 0.02 0.18 
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 448 

 449 

Figure 6. Regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) PFT 450 

quantities using EOF-SST hybrid algorithm: (A) TChl-a, (B) diatoms, (C) dinoflagellates, (D) 451 

haptophytes, (E) green algae, (F) prokaryotes, (G) f-prokaryotes, (H) converted prokaryotes 452 
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Chl-a from f-prokaryotes, (I) Prochlorococcus, (J) f-Prochlorococcus, and (K) converted 453 

Prochlorococcus Chl-a from f-Prochlorococcus. 454 

3.1.2 SST-separated hybrid algorithms for different SST regimes 455 

According to Section 2.2.2, SST-separated hybrid algorithms were performed to retrieve the 456 

PFT quantities respectively for the two temperature regimes. Tables 4 summarizes the 457 

coefficients fitted in the stepwise regression models based on the whole data set, data set with 458 

SST ≥ 8 °C, and data set with SST < 8 °C, respectively. EOF modes chosen for different 459 

PFTs vary with different data sets, and that SST, as an additional regression term, may not 460 

always been used in the final prediction models. The term had been identified as insignificant 461 

within the stepwise minimization method routine performed in the model regression 462 

procedure (Xi et al., 2020). Moreover, the weighting (coefficient) fitted on the SST term 463 

changed when different data sets were used. For instance, aSST fitted in the prediction models 464 

for prokaryotes using the whole data set was 0.065, and was enhanced to 0.177 for the data 465 

set with SST < 8 °C, but was not used in the prediction model for the data set with SST ≥ 8 466 

°C which is also consistent with the SST-PFT relationship (Figure 3). The 10-point running 467 

mean trend showed that SST had a distinct positive correlation with the prokaryotes Chl-a but 468 

the correlation turned insignificant when SST was higher than 8 °C.  469 

As shown in Table 5 and Figure 7, the improvement for TChl-a in the SST-separated 470 

algorithms is rather small, indicating that responses in the TChl-a concentration to different 471 

SST regimes is relatively stable. For predictions of Chl-a of all PFTs, but Prochlorococcus 472 

for which the separation of SST does not apply, the SST-separated algorithms perform much 473 

better, indicated by improved statistics in terms of R
2
, RMSD and MDPD (Table 5). 474 

Prokaryotes, both in quantities of Chl-a and fraction, show the most promising output 475 

compared to that from the previous settings. With good performances in retrieving the f-476 

prokaryotes and TChl-a, again, the prokaryotes Chl-a is also better derived through converting 477 

the fraction to concentrations (Figure 7H) compared to the directly retrieved prokaryotes Chl-478 

a (Figure 7F), with an increase of R
2
 from 0.34 to 0.43 and reduced MDPD from 39.36% to 479 

36.51%. Even though prokaryotes retrieval is still not as good as the other PFTs such as 480 

diatoms and haptophytes, this is already a significant improvement after a series of 481 

experiments by including SST in the retrieval model, establishing separated models based on 482 

SST regimes, and retrieving firstly the fraction and performing the conversion.  483 

  484 
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Table 4. Coefficients of the EOF-SST based regression models for the merged products used 485 

to predict TChl-a, PFT Chl-a and two PFT fractions using data sets with SST ≥ 8 °C only, 486 

SST < 8 °C only, and all SST, respectively. Note that TChl-a prediction models are based on 487 

the EOFs derived from original Rrs spectra but the others are based on the standardized Rrs 488 

spectra.  489 

 
 

N Intercept EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 EOF7 EOF8 SST 

TChl-a 

SST≥8°C 353 0.570 154.542 128.794 936.120 -668.923 -275.773 1014.797   -0.017 

SST<8°C 59 0.400 91.507 328.418 777.466 -1263.425   -1422.531   

all SST 412 0.518 143.568 155.376 913.763 -766.036 -225.255 859.576   -0.019 

Diatoms 

 

SST≥8°C 239 -5.823 -1.086 1.783 1.346 -1.362 1.713 3.978 2.992 
  

SST<8°C 57 -2.351 -0.724 0.922 0.387 -1.621 1.176 3.236 
  

-0.192 

all SST 296 -4.322 -0.961 1.487 1.184 -1.530 1.334 3.598 3.250 
 

-0.070 

Dinoflagellates 

SST≥8°C 200 -4.166 -0.561 1.055 0.518 -1.129 
    

-0.032 

SST<8°C 50 0.499 1.410 0.578 1.219 -1.834 
 

2.113 7.895 
 

0.085 

all SST 250 -4.753 -0.665 1.111 0.566 -1.206 0.921 
  

-5.563 
 

Haptophytes 

SST≥8°C 343 -4.171 -0.914 1.037  -0.591 -1.279    -0.056 

SST<8°C 59 -3.415 -0.564 0.286 0.522 -1.323 -1.783 -1.930 -3.888  0.049 

all SST 402 -4.983 -1.155 1.061 0.202 -0.714 -0.880  1.314 -2.285 -0.035 

Green algae 

SST≥8°C 244 -2.930 
 

0.706 0.285 -0.566 -1.858 -1.115 2.322 
 

-0.022 

SST<8°C 41 -3.412 
 

0.478 0.427 
 

-1.484 
   

0.128 

all SST 285 -3.166 
 

0.729 0.235 -0.472 -1.812 -1.631 2.339 
  

Prokaryotes 

SST≥8°C 343 -2.410  0.156 0.390  -2.138 -1.039 -1.969   

SST<8°C 52 -4.052  0.169 0.687 0.952 -1.561 -2.631 8.019  0.177 

all SST 395 -3.396  0.295 0.379 0.322 -2.090 -2.187 -2.072  0.065 

f-prokaryotes 

SST≥8°C 342 0.156 0.703 -0.903 -0.396 0.824 -2.081 -3.082 -4.976  0.032 

SST<8°C 53 -1.775 0.689 -0.360  2.061 -2.575 -5.499 8.041  0.124 

all SST 395 -0.945 0.658 -0.698 -0.285 1.034 -1.915 -3.621 -4.659  0.089 

Prochlorococcus SST≥8°C 195 -4.088  0.114   -3.043 -1.619 -3.848  0.028 

f-Prochlorococcus SST≥8°C 201 0.156 0.846 1.184 -0.654 0.564 -2.723 
 

5.067 
  

  490 
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Table 5. Combined statistics of the regression models from the SST-separated hybrid 491 

algorithms for matchup data set with SST ≥ 8 °C and that with SST < 8°C. Improved 492 

parameters are marked as bold, by comparing to those from the hybrid algorithm without 493 

separating SST (Table 3). 494 

  N R
2 RMSE MDPD (%) 

TChl-a 412 0.86 0.84 30.21 

Diatoms 296 0.82 0.93 49.89 

Dinoflagellates 250 0.66 0.73 50.23 

Haptophytes 402 0.76 0.15 39.53 

Green algae 285 0.61 0.10 44.37 

Prokaryotes 395 0.35 0.08 40.85 

f-Prokaryotes 395 0.72 0.17 33.60 

Converted prokaryotes 395 0.43 0.08 36.51 

 495 

  496 
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 497 

Figure 7. Combined regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) 498 

PFT quantities from two sets of EOF-SST hybrid algorithms based on different SST ranges: 499 

(A) TChl-a; Chl-a of (B) diatoms, (C) dinoflagellates, (D) haptophytes, (E) green algae, and 500 

(F) prokaryotes; (G) f-prokaryotes and (H) converted prokaryotes Chl-a from f-prokaryotes. 501 

The dotted black line shows the 1:1 line and the solid black line indicates the regression based 502 

on the whole data set.  503 

3.2 Global maps of PFT quantities from merged Rrs products 504 

The improved EOF-SST hybrid algorithms were applied to the merged Rrs and SST products 505 

to derive the global TChl-a, PFT Chl-a concentrations and the fractions (see Figure 4, part 506 

model application). To illustrate the global distribution of the PFTs, Figures 8-9 show as 507 

example the annual mean generated from the derived monthly PFT quantities (except 508 

Prochlorococcus) for the year of 2011 using the EOF-SST hybrid algorithm (established in 509 

Section 2.2.1) and the SST-separated algorithms (established in Section 2.2.2), respectively, 510 
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with the absolute difference between these two products. Since Prochlorococcus barely exist 511 

at cold temperatures (cf. Section 2.2), global maps of Prochlorococcus Chl-a and f-512 

Prochlorococcus are generated only for regions with SST ≥ 8 °C (Figure 10).  513 

In general, distribution patterns of the retrieved TChl-a and the four eukaryotic PFTs from the 514 

EOF-SST hybrid algorithm are consistent with that from the combination of the SST-515 

separated algorithms (Figure 8). However, distinct differences between the retrievals from the 516 

two approaches are found in the polar regions (Figure 8K-O). Compared to that from the 517 

EOF-SST hybrid algorithm, TChl-a concentrations derived from SST-separated algorithms 518 

are elevated in most regions of the Southern Ocean compared to that from EOF-SST hybrid 519 

algorithm, while slightly decreased in the Arctic except for the Greenland Sea and Barents 520 

Sea (Figure 8A versus 8F). Diatoms Chl-a from the SST-separated approach is enhanced in 521 

the high latitudes and waters near the coasts (Figure 8G versus Figure 8B). Haptophytes Chl-a 522 

is also found enhanced mostly in the moderately high latitudes (e.g., 50°S to 60°S near polar 523 

fronts) and decreased in very high latitudes and marginal seas using the SST-separated 524 

algorithms (Figure N). The Chl-a for dinoflagellates and green algae are generally slightly 525 

lower in most of the oceans except for the Southern Ocean near the polar fronts where higher 526 

concentrations are observed in the SST-separated algorithms (Figures M&O). Compared to 527 

the retrievals of Xi et al., (2020) with detailed inter-comparison among different PFT/PSC 528 

products, these satellite derived PFTs from the SST-separated algorithms are in better 529 

agreement with the equivalent products from other studies (e.g., Hirata et al., 2011; Losa et 530 

al., 2017; Brewin et al., 2015).  531 

The retrievals of prokaryotes Chl-a, f-prokaryotes and the converted prokaryotes Chl-a using 532 

SST-separated algorithms present generally lower Chl-a and fraction for prokaryotes globally 533 

except in the regions around 40 °S in the southern hemisphere, 40 °N in the north Pacific 534 

Ocean and between 45 °N and 65 °N in the north Atlantic Ocean (Figure 9G-I). The 535 

converted Chl-a from fraction shows more reasonable global distribution (Figure 9C and F) 536 

compared to the direct retrievals (Figure 9A and D), given the improved performance via 537 

fraction conversion for prokaryotes in Section 3.1. However, the EOF-SST hybrid algorithm 538 

derived f-prokaryotes is saturated (up to 1) in most mid- to low latitudes (Figure 9B). This 539 

saturation is remarkably reduced by the SST-separated algorithms (Figure 9E) thanks to the 540 

better description of the prokaryotes’ dependency on the temperature in the algorithm, 541 

resulting in that converted Chl-a from SST-separated algorithms (Figure 9F) has the most 542 

reliable retrieval quality among all prokaryotes Chl-a retrievals shown in Figure 9. Compared 543 
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to the prokaryotes retrieval in Xi et al. (2020), where the original EOF-based algorithm 544 

overestimates the prokaryotes Chl-a dramatically, the converted prokaryotes Chl-a in this 545 

study shows better agreements with previous retrievals (Hirata et al., 2011; Losa et al., 2017) 546 

but is lower in the polar regions. Validation with in situ data is necessary when more 547 

measurements are available in the future. 548 

Regarding Prochlorococcus, though the fraction converted Chl-a showed no distinct 549 

improvement in model performance compared to the direct Chl-a retrieval (Section 3.1.1), the 550 

global retrieval depicts the overall decrease in the converted Chl-a by f-Prochlorococcus 551 

(Figure 10C) compared to the direct retrieval (Figure 10A), which considerably agrees to 552 

what we expect from in-situ and other satellite retrievals (Hirata et al. 2011, Alvain et al. 553 

2008). The conversion to Chl-a is therefore also restricted by the high uncertainty at low 554 

TChl-a and also the low variability of Prochlorococcus Chl-a (Xi et al., 2020).  555 

In summary, we consider that the SST-separated algorithms perform better than the EOF-SST 556 

hybrid algorithm and the original EOF-based algorithm by Xi et al. (2020) for global PFT 557 

retrievals. Especially for the prokaryotic phytoplankton distributions show more contrasting 558 

patterns between gyre and non-gyre regions, and TChl-a and diatom Chl-a are higher in the 559 

Southern Ocean where often satellite-derived estimates have shown too low values (e.g., 560 

Johnson et al., 2013; Soppa et al., 2014).  561 
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 562 

Figure 8. Satellite derived estimates of annual (2011) mean surface TChl-a, Chl-a of diatoms, 563 

dinoflagellates, haptophytes, and green algae. Panels (A-E): EOF-SST hybrid algorithm with 564 

non-separated SST; Panels (F-J): Combined estimates from SST-separated hybrid algorithms 565 

for SST ≥ 8 °C and SST < 8 °C, respectively. The magenta curve indicates the isotherm of 8 566 

°C. Panels (K-O): Absolute difference between the combined estimates from SST-separated 567 

algorithms and that from EOF-SST hybrid algorithm, i.e. panel (F-J) minus panel (A-E). 568 
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 569 

Figure 9. Same as in Figure 8 but for mean surface Chl-a of prokaryotes, f-prokaryotes and 570 

the converted prokaryotes Chl-a.  571 

 572 

Figure 10. Satellite derived estimates of annual (2011) mean surface (A) Chl-a of 573 

Prochlorococcus, (B) f-Prochlorococcus, and (C) the converted Prochlorococcus Chl-a using 574 

the EOF-SST hybrid algorithm. 575 

3.3 PFT uncertainty 576 

3.3.1 Look-up table (LUT) for uncertainty due to Rrs 577 

Following the steps listed in Section. 2.3.2 to build the look-up table (LUT) for quantifying 578 

PFT uncertainty propagated from Rrs uncertainty, Figure 11 and Table 6 show the regressions 579 

and the statistical results of MC-PFT against the originally predicted PFT quantities. Higher R
2
 580 

and lower RMSD are achieved in general when higher degree of polynomial is used (Table 6). 581 

A B C
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However, the difference between different regressions is rather small except for diatoms and 582 

dinoflagellates, which are caused by their few data points at higher concentrations with 583 

corresponding lower MC derived uncertainties (Figures 11B-C). To be conservative, linear 584 

regressions were taken as the final LUT functions to determine 𝜎𝑦(𝑅𝑟𝑠). 585 

It is also noted that not for all predictions 𝜎𝑦(𝑅𝑟𝑠) can be well defined by fitting a (linear) 586 

function. For example, the uncertainty from MC simulation for TChl-a varies very little 587 

(0.515 – 0.54) (Figure 11A), indicating that the uncertainty is not dependent on the TChl-a 588 

concentrations and does not change very much with TChl-a conditions (R
2
 = 0). Uncertainties 589 

of prokaryotic phytoplankton (prokaryotes and Prochlorococcus) Chl-a are not well 590 

correlated to their retrievals either (R
2
 < 0.3); here the uncertainties of their fractions are 591 

highly dependent on the fraction retrievals with an inverse correlation (R
2
 > 0.77); thus the 592 

retrieval of higher fractions bears lower uncertainty. The derived regressions imply that the 593 

LUTs quantify well the PFT uncertainty propagated from Rrs uncertainty for the non-594 

prokaryotic phytoplankton PFTs Chl-a and the fractions of the prokaryotic phytoplankton but 595 

not for the prokaryotic Chl-a. TChl-a uncertainty is relatively stable and not related to the 596 

retrieved TChl-a.  597 

  598 
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 599 

Figure 11. Scatterplots of PFT based on the MC simulations versus originally retrieved 600 

(natural-logarithmic based) PFTs. Regression lines of linear (red), polynomials with degrees 601 

of 2 (green) and 3 (blue) fitting are also shown.  602 

Table 6. R
2
 and RMSD of the regression functions fitting the relationship between PFT and 603 

retrieved PFT quantities (using EOF-SST hybrid algorithm). 604 

 

Linear Polynomial 2 Polynomial 3 

 

R2 RMSD R2 RMSD R2 RMSD 

Diatom Chl-a 0.72 0.243 0.73 0.236 0.74 0.235 

Dinoflagellates Chl-a 0.71 0.240 0.77 0.213 0.77 0.212 

Green algae Chl-a 0.78 0.178 0.78 0.177 0.79 0.177 

Haptophytes Chl-a 0.66 0.192 0.66 0.192 0.66 0.191 

Prochlorococcus Chl-a 0.28 0.515 0.37 0.482 0.37 0.481 

Prokaryotes Chl-a 0.08 0.339 0.10 0.334 0.11 0.332 

TChl-a 0.00 0.004 0.01 0.004 0.03 0.004 

f-Prochlorococcus 0.84 0.146 0.84 0.146 0.84 0.146 

f-prokaryotes 0.77 0.196 0.77 0.196 0.78 0.195 
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3.3.2 Validation of PFT uncertainty  605 

The linear LUTs were applied to the retrieved PFT quantities in the testing data set to 606 

determine the corresponding 𝜎𝑦(𝑅𝑟𝑠). The final consolidated uncertainty of the retrieved PFTs 607 

from the testing data set, 𝜎y, were then estimated using Eq. (5). With matchup data of the 608 

testing data set (Step 1 of Section 2.3.2), it is possible to assess whether or not the estimated 609 

uncertainties for the PFT products are accurate by comparing them to the actual error, y, 610 

defined as y = ln(cp) – ln(co). If the uncertainty 𝜎y  is truly representative of its standard 611 

deviation and thus is reliable, the distribution of the actual errors normalized by the estimated 612 

errors y/y should, to some extent, follow a standard centered normal distribution 613 

(Maritorena et al., 2010). Therefore, to validate the estimated PFT uncertainty 𝜎y, the testing 614 

data set was compared to the corresponding y. Note that y and y are both natural-615 

logarithmic based. 616 

Figure 12 shows the histograms of y/y distribution derived from the testing data set for all 617 

PFT quantities. The corresponding normal distributions determined by the mean and SD are 618 

also displayed in comparison with the centered standard normal distribution. For the majority 619 

of PFT quantities, the y/y distribution coincides well with the standard normal distribution, 620 

with mean values close to zero and the SD varying from 0.82 to 1.12. Relatively lower SD (≤ 621 

0.70) are found for dinoflagellates Chl-a, Prochlorococcus Chl-a and fraction, and the 622 

fraction converted Chl-a both for prokaryotes and Prochlorococcus. Nevertheless, the fraction 623 

converted prokaryotes Chl-a presents higher modeled uncertainty (i.e., lower SD of PFT/PFT 624 

in Figure 12H) compared to the direct retrieval of prokaryotes Chl-a (Figure 12F), even 625 

though the former has better prediction performance (Table 3). This suggests possible 626 

underestimation of the actual errors in the direct retrieval for prokaryotes. Prochlorococcus 627 

Chl-a and fraction show overall higher modeled uncertainties compared to the actual error 628 

(SD ≤ 0.67, Figures 12I-K). However, a skewed distribution of y/y is found for the direct 629 

retrieval of Prochlorococcus Chl-a (Figure 12I) whereas the f-Prochlorococcus and converted 630 

Chl-a show little skewness in their y/y. This suggests the modeled uncertainty is better 631 

described for the fraction and the converted Prochlorococcus Chl-a than the direct retrievals. 632 

The validation of the PFT uncertainty indicates that our modeled uncertainty is in general 633 

close to or higher than the actual error (SD of y/y is either close to or lower than 1), 634 

implying that the uncertainty assessment we performed in this study is reliable and 635 

conservative.  636 
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 637 

Figure 12. Distributions of the actual error normalized by the modeled propagated error 638 

(PFT/PFT) for all the retrieved (using EOF-SST hybrid algorithm) PFT quantities from the 639 

testing data set: (A) TChl-a; Chl-a of (B) diatoms, (C) dinoflagellates, (D) haptophytes (E) 640 

green algae, and (F) prokaryotes; (G) f-prokaryotes, (H) fraction-converted prokaryotes Chl-a, 641 

(I) Prochlorococcus Chl-a, (J) f-Prochlorococcus, and (K) fraction-converted 642 

Prochlorococcus Chl-a. Red and green curves indicate the fitted normal distribution and the 643 

standard centered normal distribution, respectively. The red asterisk presents the mean point 644 

of the fitted distribution, and the green circle highlights the point of zero. Mean value and 645 

standard deviation (SD) of y/y are also shown.  646 
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3.3.3 Per-pixel PFT uncertainty 647 

Satellite PFT uncertainties were generated for each pixel by applying all uncertainty terms in 648 

Eq. (7) to the monthly retrieved PFT products. The annual mean uncertainty for the year of 649 

2011 was determined to be consistent with the global PFT maps in Figures 8-10. As a 650 

composite product, the annual mean uncertainty was obtained by computing the root mean 651 

square of the monthly uncertainty product, the same as for the composite uncertainty of other 652 

ocean color products, e.g., the ESA Ocean-Colour Climate Change Initiative (OC-CCI) TChl-653 

a product (Sathyendranath et al., 2019). It should be noted that in ideal case we should apply 654 

the uncertainty quantification scheme firstly to the PFT daily products, and then compute the 655 

monthly or yearly composite based on the multi-day uncertainties. However, detailed 656 

computations have shown that the monthly composites from the daily products have poorer 657 

spatial coverage compared to the directly derived monthly products. This is mainly due to less 658 

valid pixels for the nine-band Rrs spectra in the daily to monthly composites than that from 659 

the direct monthly products. In addition, the uncertainty derived directly from the monthly 660 

products is very comparable to the monthly composite generated based on daily uncertainty 661 

(e.g., for TChl-a uncertainty the R
2
 = 0.98 and slope = 1.00 between the two derivations, 662 

details not shown). Therefore, in the present study we applied the uncertainty quantification 663 

scheme directly to the monthly PFT products to 1) save computing time and 2) have better 664 

spatial coverage for the derived per-pixel uncertainties. 665 

Figure 13 demonstrates the annual composite of uncertainties for all the PFT quantities, 666 

including also the uncertainty for TChl-a derived from our EOF-SST hybrid algorithm in 667 

comparison to the uncertainty of the OC-CCI TChl-a product (Figure 13A versus 13D). 668 

Uncertainties for diatoms (Figure 13B), dinoflagellates (Figure 13C), haptophytes (Figure 669 

13E), and green algae (Figure 13F) display similar distribution pattern with their Chl-a 670 

concentration retrievals, with low uncertainties in the gyres, and high in the high latitudes and 671 

marginal seas. The overall lowest uncertainty is obtained for haptophytes Chl-a (the natural 672 

logarithmic uncertainty varied from 0.23 to 1.26). It is also low for green algae (0.40 – 1.33), 673 

whereas diatoms Chl-a show higher uncertainty (0.53-1.73) and dinoflagellates overall the 674 

highest (0.78 – 1.70). Regarding the two prokaryotic phytoplankton, the uncertainty for the 675 

direct retrieval of prokaryotes Chl-a shows lower uncertainty in the polar regions but higher in 676 

the low latitudes (Figure 13G); that for Prochlorococcus shows in general high uncertainty in 677 

latitudes higher than 40° both south and north and also the gyres (Figure 13J). The 678 

uncertainties for the fractions (Figures 13H and 13K) show reverse distributions to the 679 
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fraction retrievals with low uncertainty in mid- to low latitudes compared to that in the high 680 

latitudes; the uncertainty for f-prokaryotes is lower than f-Prochlorococcus uncertainty. 681 

Fraction converted prokaryotes and Prochlorococcus Chl-a uncertainties basically follow the 682 

patterns of their corresponding fraction uncertainties but are higher (Figures 13I and 13L), 683 

because they are derived by combining both the fraction and TChl-a uncertainties, while the 684 

latter show little spatial variations (Figure 13A).  685 

As the PFT prediction models are based on the multiple linear regressions, the uncertainty of 686 

the model coefficients and SST are propagated linearly to the PFT retrievals using Eq. (8). 687 

Their corresponding uncertainties are found to have much less spatial variability compared to 688 

y(Rrs), resulting in that the distribution patterns of the pixel-wise uncertainties generated for 689 

the PFT quantities are very much subject to y(Rrs) derived from the linear LUT functions. It 690 

should be noted that the LUTs built for prokaryotes and Prochlorococcus Chl-a can not 691 

represent their uncertainties sufficiently (Figures 11F and 11G), hence their uncertainty 692 

products (Figures 13G and 13J) should be used with caution. The uncertainties for the 693 

fractions and the converted prokaryotes and Prochlorococcus Chl-a, however, are reported 694 

with higher confidence as they are well described by the LUTs and the error propagation 695 

analysis. Uncertainties for the other PFT quantities are in general well and conservatively 696 

quantified, which are also justified by the uncertainty validation. Yet uncertainties for satellite 697 

derived PFTs have been rarely reported, except that Brewin, Ciavatta, et al. (2017) performed 698 

uncertainty evaluation on phytoplankton size classes and two phytoplankton groups (diatoms 699 

and dinoflagellates) retrieved by the re-tuned abundance/ecological based algorithm in the 700 

North Atlantic region. Though the exact values of the uncertainty estimates are not provided 701 

by Brewin, Ciavatta, et al. (2017), it is seen that their uncertainty maps for diatoms and 702 

dinoflagellates are within the same order of magnitudes (when converted from the base-10 703 

logarithm to the natural-logarithm) and show similar distribution patterns with our uncertainty 704 

products in the North Atlantic Ocean.  705 

Compared to the reported uncertainty for the TChla OC-CCI product, the uncertainty of 706 

TChl-a from our EOF-SST hybrid algorithm shows much lower uncertainty. Our TChl-a 707 

uncertainty varies from 0.53 to 0.58 (Figure 13A), presenting very little spatial variability 708 

with only slightly higher uncertainty in the gyres and some marginal seas. The OCCCI 709 

chlorophyll uncertainty ranged between 0.43 and 1.18 (Figure 13D), showing large spatial 710 

variability with much higher uncertainty in the marginal seas and high latitudes compared to 711 

our TChl-a uncertainty. Low uncertainty in and surrounding the gyres is comparable with our 712 
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uncertainty estimates. Remarkably reduced uncertainty of the TChl-a derived by our 713 

algorithm in high latitudes (> 40°) indicates that the EOF-SST hybrid algorithm has great 714 

potential in improving TChl-a estimation especially in polar regions where the standard OC 715 

algorithms always introduce high errors (IOCCG, 2015). The overall lower uncertainty in our 716 

TChl-a product also reveals at a certain scale that our estimates for most of the PFT quantities 717 

and the corresponding uncertainties are reliable. 718 

 719 

Figure 13. Per-pixel uncertainty (in natural logarithmic scale) of the annual mean of 2011 for 720 

the satellite derived PFT quantities from EOF-SST hybrid algorithm. The dashed-line box 721 

frames in particular (A) the uncertainty of TChl-a from the EOF-SST hybrid algorithm in 722 

comparison to (D) the OC-CCI TChl-a uncertainty. 723 

4 Summary 724 

This study improved the previously established EOF-based approach by Xi et al. (2020) for 725 

estimating globally the Chl-a of six PFTs using merged ocean color Rrs products. The 726 

modified retrieval scheme, named EOF-SST hybrid algorithm, was developed by using 727 

updated input data sets and accounting for the influence of SST on different PFT quantities. 728 
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Furthermore, fractions of prokaryotes and Prochlorococcus were also included as retrieved 729 

PFT quantities, which lead to more accurate retrievals compared to their Chl-a retrievals. The 730 

fraction retrievals were also used together with TChl-a retrievals to obtain a fraction-731 

converted Chl-a for the two PFTs. The latter shows prominent improvements for prokaryotes 732 

Chl-a, but not for Prochlorococcus Chl-a. By further splitting the input data set according to 733 

the PFT dependence on SST in different SST regimes, separated retrieval algorithms for low 734 

and high temperature waters were established, presenting even much more improved 735 

performance for all PFTs than the hybrid algorithm based on the whole data set. 736 

Improvements for PFT retrievals were mostly obtained in the high latitudes. Finally, the 737 

pixel-by-pixel uncertainty of the satellite PFT retrievals was assessed by accounting for the 738 

uncertainties from input data and model parameters via an error propagation method. These 739 

satellite PFT uncertainties, for the first time reported on global scale and for spectral-based 740 

PFT retrieval approaches, provide reliable error estimates for the PFT products which allow 741 

us to better understand the product quality both in time and space.  742 

This study uses the GlobColour merged OC products that span a period from 2002 to 2012 743 

only. However, our EOF-SST hybrid algorithm including pixelwise uncertainties can easily 744 

be expanded to other OC sensors, such as MODIS-VIIRS merged and OLCI products. 745 

Uncertainty assessment for the PFT estimates from different satellite products, is needed for 746 

consistent long-term PFT data set from multiple satellites with assured continuity. Such a data 747 

set is required to enable tracking the shifting in phytoplankton community structure under the 748 

changing climate for example. PFT products with uncertainty estimates are also beneficial to 749 

applications of ecosystem modelling by helping to simulate and/or evaluate the model outputs, 750 

as well as being assimilated within these models to further improve forecasting marine 751 

biogeochemistry, as used by many marine services. 752 
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