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Abstract

As soon as the outer plasmasphere gets eroded during geomagnetic storms, the greatly depleted plasmasphere is replenished

by cold, dense plasma from the ionosphere. A strong correlation has been revealed between plasmaspheric refilling rates and

ambient densities in the topside ionosphere and exosphere, particularly that of atomic hydrogen (H). Although measurements of

H airglow emission at plasmaspheric altitudes exhibit storm-time response, temporally static distributions have typically been

assumed in the H density in plasmasphere modeling. In this presentation, we evaluate the impact of a realistic distribution

of the dynamic H density on the plasmaspheric refilling rate during the geomagnetic storm on March 17, 2013. The temporal

and spatial evolution of the plasmaspheric density is calculated by using the Ionosphere-Plasmasphere Electrodynamics (IPE)

model, which is driven by a global, 3-D, and time-dependent H density distribution reconstructed from the exospheric remote

sensing measurements by NASA’s TWINS and TIMED missions. We quantify the spatial and temporal scales of the refilling

rate and its correlation with H densities.
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I. MOTIVATION AND RESEARCH GOAL
The interaction between the plasmasphere and the dynamic exosphere

 

◉ As soon as the outer plasmasphere gets eroded during geomagnetic storms, the greatly depleted plasmasphere is replenished
by cold, dense plasma from the ionosphere. A strong correlation has been revealed between plasmaspheric refilling rates and
ambient densities in the topside ionosphere and exosphere, particularly that of atomic hydrogen (H) [Krall et al., 2018
(http://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017SW001780)].

 

◉ A thorough investigation of the plasmaspheric refilling during storm-time is possible through “plasmaspheric modeling”
which incorporates fundamental physical processes such as charge-exchange, ion-ion collisions, and wave-particle interactions.
However, its accuracy depends critically on the specification of the exospheric H density distributions.

 

◉ The terrestrial exosphere is the uppermost layer of the atmosphere which extends from 500 km (exobase) up to ~30 R  (Earth
radii). The atomic hydrogen (H) is the main constituent.

 

◉ Remote sensing of solar Lyman-alpha photon scattered by exospheric H atoms (“Ly-α” @ 121.6nm) is the only means
available to estimate exospheric density distributions over such a vast region.

 

◉ Existing theoretical and data-based H density models have been generated specifically for quiet-time conditions whereby the
assumption of a static exosphere is likely valid.

 

◉ Recent observations of Ly-α emission scattered by exospheric H atoms unveiled the rapid fluctuations in their density
distributions during geomagnetic storms [Zoeenchen et al., 2017 (https://doi.org/10.5194/angeo-35-171-2017), Kuwabara et
al., 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023247)]. Such a dynamic behavior is yet to be
included in those H density models.

E

http://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017SW001780
https://doi.org/10.5194/angeo-35-171-2017
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023247
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Overarching question

What is the role of the storm-time terrestrial exosphere on the plasmaspheric refilling rate?

 

◉ To address this question, we estimate the 3-D, time-dependent hydrogen density distributions based on its Ly-α emission and a
tomographic approach during storm-time. We then include the retrieved H density profile into a plasmasphere model and assess
the refilling rate.
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II. DATA AND PLASMASPHERIC MODEL
Lyman-alpha emission data

 

◉  Estimation of 3-D, time-dependent H density distributions is based on data from NASA's Two Wide-angle Imaging Neutral-
atom Spectrometers (TWINS) mission [McComas et al., 2009 (http://doi.org/10.1007/s11214-008-9467-4)]:

TWINS mission is comprised of two satellites TWINS1/2.

Each satellite has two Lyman-alpha detectors (LAD1/2)

We utilize data for the storm that occurred on March 17, 2013 (DST peak = -132nT) 

Estimation range: [3,12] R  geocentric distance.

Left panel from [Bailey and Grutman, 2011 (https://doi.org/10.1029/2011JA016531)]

 

E

http://doi.org/10.1007/s11214-008-9467-4
https://doi.org/10.1029/2011JA016531
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◉ TWINS data availability is not continuous during the day.

 

◉ Additionally, we use data from the Global UltraViolet Imager (GUVI) on-board the Thermosphere Ionosphere Mesosphere
Energetics and Dynamics (TIMED) mission to estimate an averaged and spherically symmetric H density distribution during
solar-maximum conditions in the region [92, 500] km [Qin et al, 2017 (https://doi.org/10.1002/2017JA024489)]

 

◉ We connect both datasets (GUVI and TWINS) using a two-exponential function based on a similar procedure demonstrated
by [Østgaard et al., 2003 (https://doi.org/10.1029/2002JA009749)] using GEO/IMAGE data.

 

Plasmaspheric Model

◉ We use the Ionosphere-Plasmasphere Electrodynamics (IPE) model to simulate the plasmaspheric dynamics.

 

 

https://doi.org/10.1002/2017JA024489
https://doi.org/10.1029/2002JA009749
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III. TIME-DEPENDENT H DENSITY ESTIMATION
Remote sensing of scattered Ly-α photons by H atoms

 

◉  At geocentric distances beyond 3 R , exospheric H density is sufficiently low that solar photons scatter only once before
being detected. This condition results in a linear relationship between the measured emission radiance and the unknown H
density (n ) integrated along a viewing line-of-sight.

 

◉ Radiative transfer equation for the optically thin region:

g* ⇒ contains cross-section interaction and solar Ly-α flux.

n (l,t) ⇒ Hydrogen density in units of cm-3.

ψ(β)⇒ Phase function due to the anisotropy scattering.

I ⇒ Interplanetary background.

n  ⇒ LOS direction.

r ⇒ Tangential distance of a LOS.

 

◉ The tomographic approach states that the volume of interest should be divided into voxels with a constant H density number.
In this work, we adopt Δr = 0.3125 RE, Δθ = 15 deg and Δφ = 15 deg yielding 6912 spherical voxels.

E

H

I(r, n̂, t) = ∫
Lmax

0
nH(l, t)Ψ(β)dl + IIP (n̂, t)

g∗

106

H

IP

i
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◉ After the spatial discretization into spherical voxels is performed, the radiative transfer equation adopts the form:

where:

y ⇒ (known) the measurement vector generated by I-I

L ⇒ (known) the observation matrix generated with LOS direction, satellite position, voxel dimension and solar Ly-α
flux data.

x ⇒ (unknown) the vector that contains the H density number per voxel.

 

◉ Static tomographic reconstruction x  can be performed during quiet-time conditions using all available data and solving the
expression above. During storm-time, a time-dependent model should be used: y =L x such that the input data stream may
generate sequential reconstructions x  every time k.

 

◉ Kalman Filter has been used to estimate the 3-D, time-dependent H density distribution from Ly-α emission. We used a two-
hour period for reconstructions.

y = Lx

IP

s

k k k 
d
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◉ The initial estimate xs is obtained by performing a static tomographic reconstruction using TWINS data for October-
December 2012 during quiet-time conditions [Cucho-Padin & Waldrop, 2018 (https://doi.org/10.1029/2018JA025323)].

 

https://doi.org/10.1029/2018JA025323
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◉ Dynamic tomographic reconstruction during the storm occurred on March 17, 2013 [Cucho-Padin & Waldrop, 2019
(https://doi.org/10.1029/2019GL084327)].

 

◉ Temporal evolution of the H density for selected spatial locations.

https://doi.org/10.1029/2019GL084327
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Highlights

 

✓ The temporal evolution of the H density shows a ~23% increment (at the peak ~70h after March 15) with respect to quiet-
time.

 

✓ Analysis of H density at different altitudes shows an outward propagation of H atoms.

 

✓ A constant increment of H density starting at ~30h after March 15 reveals that even small geomagnetic variations (DST~
-30nT) can trigger an increased H escape.
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✓ The balance of injection and loss of H atoms in this region is affected by exosphere-plasmasphere interaction and
thermospheric variations [Kuwabara et al., 2017 (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023247)]

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023247
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IV. SIMULATIONS OF THE PLASMASPHERE DURING
STORM-TIME

Incorporating the dynamic H profile into the IPE model

 

◉  We analyze the plasmaspheric refilling rate using the H density profile obtained by NRL MSIS-00 and our dynamic H density
derived from Ly-α emission (TWINS/GUVI).

 

◉  IMF Bz, By, solar wind speed Vsw, and density  Nsw measured from the ACE satellite, and DST, SYM-H on 17-18 March
2013.
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◉  Refilling rate comparison for two different solar conditions.
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The left panel shows the refilling recovery using MSIS H density profile for simulated conditions with F107=200. The lines
show the temporal evolution of the electron density of a flux tube at L=3,4,5 in the American longitude sector.

 

◉  Comparison of ion profiles at L=4 and LT=12h with both MSIS and TW/GUVI H density profiles.

 

Highlights

 

✓ Refilling rates identified for default case are:

L=3 : 89.4 [cm .d ]

L=4 : 25.4 [cm .d- ]

L=5 : 12.2 [cm .d ]

 

✓ Refilling rates identified during March 17, 2013 storm:

MSISx2 : 99.0 [cm .d ]

MSIS : 53.3 [cm .d- ]

MSIS/2 : 27.2 [cm .d ]

TW/GUVI : 19.4 [cm .d ]

-3 -1

-3 1

-3 -1

-3 -1

-3 1

-3 -1

-3 -1
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V. REFILLING RATE COMPARISON
◉  Our refilling rates have good agreement with those reported in [Denton et al., 2012]

Median (thick solid curves) and third quartile (thin solid curves) for the refilling rate dn /dt during intervals corresponding to
solar maximum (red curves) and solar minimum (blue curves). The dotted curves are the corresponding quadratic fits described
in the text.

e,eq
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VI. CONCLUSIONS
Conclusions

 

✓ In this work, we have developed a technique to estimate time-dependent H density from its Ly-α emission. The H density
profile has been used to analyze the refilling rate in the plasmasphere during storm-time.

 

✓ These results emphasize the importance of an accurate estimation of exospheric H density and the need for satellite-based
missions to specifically measure the exosphere.  The Global Lyman-alpha Imagers for the Dynamic Exosphere (GLIDE) mission
led by Dr. Waldrop, has been accepted for launch in 2024. It will provide wide-field global images of the exosphere with a 30-
min temporal resolution.
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ABSTRACT
As soon as the outer plasmasphere gets eroded during geomagnetic storms, the greatly depleted plasmasphere is replenished
by cold, dense plasma from the ionosphere. A strong correlation has been revealed between plasmaspheric refilling rates and
ambient densities in the topside ionosphere and exosphere, particularly that of atomic hydrogen (H). Although measurements
of H airglow emission at plasmaspheric altitudes exhibit storm-time response, temporally static distributions have typically
been assumed in the H density in plasmasphere modeling. In this presentation, we evaluate the impact of a realistic
distribution of the dynamic H density on the plasmaspheric refilling rate during the geomagnetic storm on March 17, 2013.
The temporal and spatial evolution of the plasmaspheric density is calculated by using the Ionosphere-Plasmasphere
Electrodynamics (IPE) model, which is driven by a global, 3-D, and time-dependent H density distribution reconstructed
from the exospheric remote sensing measurements by NASA’s TWINS and TIMED missions. We quantify the spatial and
temporal scales of the refilling rate and its correlation with H densities.
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