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Abstract

The exploration of the surface geology of Venus has been hampered by its inhospitable conditions and thick and opaque atmo-

sphere. Fundamental properties, such as crustal composition and heterogeneity remain poorly constrained. Multiple analytical

techniques are required to better understand its geology. A spectroscopy-based study laboratory study of the emissivity proper-

ties of Venus-relevant igneous rocks, measured at 440 °C by Dyar et al. (2020b; https://doi.org/10.1029/2020GL090497) shows

that the use of multiple atmospheric windows in the 1-μm region can provide strong constraints on the FeO content of Venus-

relevant igneous rocks, and by extension, the type of igneous rock. These results will improve our ability to map the surface

geology of Venus remotely.
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Abstract 28 

The exploration of the surface geology of Venus has been hampered by its inhospitable 29 
conditions and thick and opaque atmosphere. Fundamental properties, such as crustal 30 
composition and heterogeneity remain poorly constrained. Multiple analytical techniques are 31 
required to better understand its geology. A spectroscopy-based study laboratory study of the 32 
emissivity properties of Venus-relevant igneous rocks, measured at 440 °C by Dyar et al. 33 
(2020b; https://doi.org/10.1029/2020GL090497) shows that the use of multiple atmospheric 34 
windows in the 1-µm region can provide strong constraints on the FeO content of Venus-relevant 35 
igneous rocks, and by extension, the type of igneous rock. These results will improve our ability 36 
to map the surface geology of Venus remotely. 37 

Plain Language Summary 38 

The extreme conditions of Venus’ atmosphere and surface make exploration by optical 39 
techniques difficult. A few successful landed missions and radar observations have helped to 40 
understand its surface, which appears to be volcanic in nature. In spite of Venus’ global shroud 41 
of clouds, some spectral “windows” exist, which are selected wavelengths where the atmosphere 42 
and clouds become more transparent. These windows allow us to measure radiation coming off 43 
the surface and differences in the intensity of this radiation can be related to variations in the iron 44 
(FeO) content of different rocks, which also correlated with different types of volcanic rocks.  45 

Introduction 46 

Venus, in spite of being Earth’s “twin” (closest planet in terms of size and distance from the 47 
Earth), is relatively unexplored as compared to the next-closest planet to Earth, Mars. This is 48 
largely due to its inhospitable nature – shrouding clouds that contain sulfuric acid (e.g., Hansen 49 
and Hovenier, 1974), a dense atmosphere with crushing surface pressure (~93 bars versus 1 bar 50 
on Earth), and a hot surface (~470 °C versus ~15 °C average on Earth).  51 

Knowledge of surface geology 52 

These factors have all impeded our exploration of Venus, and as a result, our knowledge of its 53 
surface is limited. Its topography and geomorphological features are known globally from orbital 54 
radar missions such as Magellan (Saunders et al., 1992) and Venera 15 and 16 (Barsukov et al., 55 
1986). These observations show that Venus has surface topography consistent with a once-active 56 
active interior (e.g., volcanoes) and a possible relatively recent crustal resurfacing (Strom et al., 57 
1994). There is also some evidence that volcanism may be ongoing (Esposito, 1984; Stofan et 58 
al., 2016). The surface of Venus includes highs and lows, and there is evidence of the operation 59 
of some tectonic processes (Solomon et al., 1992; Nimmo and McKenzie, 1998), but there is no 60 
strong evidence for the operation of global-scale Earth-like tectonic processes (Barsukov et al., 61 
1986), although this evidence may have been obliterated by the aforementioned crustal 62 
resurfacing. Radar-based analysis of Venus topography can provide clues to surface composition 63 
on the basis of properties such as surface topography, dielectric properties, and radar roughness 64 
and backscatter (e.g., Brossier et al., 2020).  65 

https://doi.org/10.1029/2020GL090497
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The surface composition of Venus is incompletely known and selective. To date, seven Russian 66 
landers have successfully landed and operated on the surface, in different types of terrains – 67 
mostly highlands and plains (Figure 1) -  for long enough to provide compositional data: major 68 
rock-forming elemental abundances at three locations determined using X-ray fluorescence  69 
(Venera 13 and 14: Surkov et al. (1984); Vega 2: Surkov et al. (1986); Table 1), and abundances 70 
of radioactive elements (Th, U, and K) determined by gamma-ray spectroscopy at five locations 71 
(Venera 8, 9, and 10, and Vega 1 and 2; Table 2). The three more comprehensive surface 72 
analyses (Table 1), have similarities with silica-poor terrestrial rocks such as basalts-73 
picrobasalts, and boninites/komatiites. However, the abundances of Th, U, and K indicate a more 74 
compositionally diverse crust (Table 2), with inferred compositions ranging from granitic to 75 
picritic (Table 2). In addition to these analytical data, atmospheric radiogenic Ar has been used 76 
to constrain global properties such as mantle/crust composition and geological history (Kaula, 77 
1999). 78 

The images of the surface taken by the Venus landers show thin strata that are consistent with 79 
low-viscosity (e.g., basaltic) lava flows (Surkov et al., 1984; Ksanfomality, 2015). Measurements 80 
of their physical and mechanical properties indicate that the strata have friable, weakly-cemented 81 
porous structures (Surkov et al., 1986). The images also show a mixture of bedrock, cobbles, and 82 
finer-grained materials (Surkov et al., 1984). 83 

Differences in surface conditions between Venus and Earth may affect surface properties such as 84 
weathering products (Gilmore et al., 2017). There are variations in radar backscatter properties 85 
with elevation that are consistent with differences in the composition and textures of erupted 86 
materials as well as altitude-dependent changes in weathering products (Garvin et al., 1985; 87 
Klose et al., 1992). 88 

Interest in Venus has recently increased due to the recent putative discovery of phosphine (PH3) 89 
in the Venusian atmosphere that is associated, on Earth, almost exclusively with biological 90 
processes (Greaves et al., 2020). This discovery coincides with, and may energize, new proposed 91 
missions to Venus including two NASA Discovery-class missions recently selected or more 92 
detailed study (https://www.nasa.gov/press-release/nasa-selects-four-possible-missions-to-study-93 
the-secrets-of-the-solar-system), and the Roscomos Venera-D orbiter plus lander (Ivanov et al., 94 
2017). 95 

Optical spectroscopy for Venus surface exploration 96 

In spite of Venus being a cloud-shrouded planet, there are a few narrow wavelength regions 97 
outside the visible range where it is possible to measure thermally-emitted radiation from lower 98 
altitudes (Allen and Crawford, 1984; Taylor et al., 1997). These include from the lower 99 
atmosphere near 1.74 and 2.34 µm (Crisp et al., 1989) and from the surface (around 1.02, 1.10, 100 
1.18, 1.27, and 1.31 µm: Helbert et al., 2008; Kappel et al., 2016; Gilmore et al., 2017).  A 101 
number of studies have found emissivity variations of up to 20% across the surface that are 102 
interpreted to be due to geological variations (e.g., Haus and Arnold, 2010; Gilmore et al., 2015; 103 
Mueller et al. 2020). Within these windows, it is also possible to determine whether any spectral 104 
structure, such as absorption bands, exist in VIRTIS data as each atmospheric window is covered 105 

https://www.nasa.gov/press-release/nasa-selects-four-possible-missions-to-study-the-secrets-of-the-solar-system
https://www.nasa.gov/press-release/nasa-selects-four-possible-missions-to-study-the-secrets-of-the-solar-system
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by multiple VIRTIS bands (e.g., Mueller et al., 2008). Measurements of emitted surface radiation 106 
are only possible at night, when reflected light from Venus’ clouds is not present.  107 

The limited number of spectral windows can lead to problems of non-unique interpretations of 108 
the spectra. Measured thermal emission spectra of the surface of Venus will be affected by 109 
multiple factors, including atmospheric scattering and absorption, surface temperature, 110 
emissivity, surface physical properties such as grain size, and composition (e.g., Adams and 111 
Filice, 1967; Dyar et al., 2020b). 112 

Combining spectroscopy with other information 113 

Previous studies of Venus that utilize thermal emissions in the 1-µm region have also included 114 
multiple types of observational data, laboratory spectra and modeling to try to constrain surface 115 
composition. For instance, in the study by Mueller et al. (2008), they used measured flux at the 116 
top of the atmosphere of Venus at 1.02, 1.10, and 1.18 µm, measured by the Venus Express 117 
Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) as one data source to determine 118 
surface composition. They discuss extensively the issues associated with deriving measurements 119 
of emitted thermal radiation from the surface. They found that, as expected and consistent with 120 
previous studies and expectations, the measured flux was positively correlated with surface 121 
temperature and surface emissivity and that surface temperature was mainly a function of 122 
elevation. After applying various corrections to account for viewing geometry, stray sunlight, 123 
cloud opacity and topography, emissivity contrasts remained that were ascribed to variations in 124 
surface emissivity (or unexpected temperature variations). Interpretation of the spectroscopic 125 
data is predicated on the fact that felsic minerals have low emissivity at 1 µm while mafic 126 
minerals tend toward higher emissivities. The emissivity variations were interpreted in the 127 
context of radar data (geomorphology, dielectric properties, surface roughness), plausible models 128 
of weathering, and to the landed missions compositional data (Kargel et al., 1993). These 129 
variations were then interpreted as being indicative of variations in surface rock chemistry, 130 
specifically differences in FeO content, which strongly affects emissivity (Hashimoto and Sugita, 131 
2003; Helbert et al., 2020; Dyar et al., 2020a). Dyar et al. (2020a) also argued that the range of 132 
emissivities seen on Venus was incompatible with a number of plausible basalt weathering 133 
scenarios, suggesting that these emissivity variations are due to bulk mineralogical differences 134 
across different terrains. Collectively, the observational data for Venus suggests rock types that 135 
range from felsic to ultramafic (e.g., Surkov, 1983; Mueller et al., 2008; Gilmore et al., 2017; 136 
Shellnutt, 2019). 137 

The study by Dyar et al. (2020b) provides an important advance in using measurements of 138 
emissivity from the surface of Venus to constrain surface composition. They examined six 139 
spectral windows in the Venus atmosphere (0.86, 0.91, 0.99, 1.02, 1.11, and 1.18 µm) in the 140 
context of a proposed Venus Emissivity Mapper that would image the surface in these band 141 
passes on a future orbital mission. To determine the geological information content inherent in 142 
six-band spectroscopy, they measured laboratory spectra of the saw-cut faces of slabs for a suite 143 
of 18 plausible Venus rock types at a single temperature (440 °C). Based on the relationship 144 
between FeO content, rock type, and emissivity (Helbert et al., 2020; Dyar et al., 2020b), they 145 
found that wt.% FeO could be determined to an accuracy of ±2.47 wt.% for the full sample suite, 146 
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and ±0.42 - ±0.50 for sub-alkaline and alkali rocks, respectively. This relied on the application of 147 
machine learning techniques, which also demonstrated that both long and short wavelength 148 
bands (particularly the 0.86 µm) band) improved the regression results. The results of this study 149 
translate into a high degree of confidence in being able to distinguish basalt from 150 
granitic/rhyolitic rocks. In the future, they plan to explore the effects of possible confounding 151 
factors, such as surface texture, alteration phases, porosity, and grain size. 152 

Summary and Future Prospects 153 

Optical remote sensing using Venus’s atmospheric windows provides perhaps the only means to 154 
determine surface composition (FeO content, rock type) remotely. It is complementary to other 155 
remote sensing techniques such as radar, which is sensitive to different surface properties, such 156 
as dielectric constants, and surface roughness. These two techniques also interrogate the surface 157 
at different spatial scales, and together can reinforce each other to provide more robust 158 
information about the surface of Venus. 159 

 160 

 161 
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Table 1. Composition of the Venus surface from previous Venus landers, versus selected terrestrial 301 
igneous rocks 302 

Element/oxide    Boninites/   303 
(wt.%) Venera-13 Venera-14 Vega-2 MORBc Komatiites Picrobasalt 304 
SiO2 45.1±3.0 48.7±3.6 45.6±3.2 49.21-50.93 47.2-55.9 38.69-50.63 305 
TiO2 1.59±0.45 1.25±0.41 0.2±0.1 1.19-1.77 0.20-0.52 0.79-2.99 306 
Al2O3 15.8±3.0 17.9±2.6 16.0±1.8 14.86-17.25 1.3-10.3 7.77-14.26 307 
FeO 9.3±2.2a 8.8±1.8a 7.74±1.1a 8.71-11.49a 4.9-10.0a 10.86-15.05b 308 
MnO 0.2±0.1  0.16±0.08 0.14±0.12 0.16-0.17 0.14-0.20 0.30-0.35 309 
MgO 11.4±6.2 8.1±3.3 11.5±3.7 7.10-8.53 4.6-13.0 13.22-18.90 310 
CaO 7.1±0.96 10.3±1.2 7.5±0.7 11.14-11.86 5.1-10.1 9.62-13.53 311 
K2O 4.0±0.63 0.2±0.07 0.1±0.08 0.14-0.26 0.01-1.1 0.20-1.60 312 
S 0.65±0.4 0.35±0.31 1.9±0.6 0.07-0.18 0.02-0.04 0-0.02 313 
Cl <0.3  <0.4  <0.3  0.002-0.21 0.04-0.12 0.02-0.03 314 
a All Fe reported as FeO. 315 
b Analyses include separate determination of Fe2O3. 316 
c MORB = mid-ocean ridge basalts. 317 
Sources: Venera-13 and Venera-14: Surkov et al. (1984); Vega-2: Surkov et al. (1986); MORB: Basaltic 318 
Volcanism Study Project (1981); Moore and Schilling (1973); Labidi et al. (2014); boninites/komatiites: 319 
Cameron et al. (1979); Li and Ripley (2009); Asafov et al. (2018); picrobasalts: Badredinov et al. (2018); 320 
Kohut et al. (2006). 321 
Additional comparative rock types can be found in Shellnutt (2019). 322 
 323 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 324 

Table 2. Potassium, uranium, and thorium concentrations measured on the surface of Venus 325 
 326 
Mission Potassium (%) Uranium (10-4%) Thorium (10-4%) Inferred rock type  327 
3Venera 8a 4.0±1.2 2.2±0.7 6.5±0.2 acid magmatic rocks; silicic 328 
4Venera 9b 0.47±0.08 0.60±0.16 3.65±0.42 tholeiitic/alkaline basalt 329 
4Venera 10b 0.30±0.16 0.46±0.26 0.70±0.34 tholeiitic/alkaline basalt 330 
1Venera 13c 4.0±0.6 K2O n.d. n.d. mafic, alkaline 331 
1Venera 14c 0.2±0.07 K2O n.d. n.d. MORB-like 332 
2Vega 1d 0.45±0.22 0.64±0.47 1.5±1.2 tholeiitic basalt/gabbro 333 
2Vega 2d 0.40±0.20 0.68±0.39 2.0±1.0 tholeiitic basalt/gabbro 334 
a Vinogradov et al. (1973) 335 
b Florensky et al. (1977) 336 
c Surkov et al. (1984) 337 
d Surkov et al. (1987) 338 
 339 
 340 
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 341 
 342 
Figure 1. Location of Venus landed missions 343 
(https://commons.wikimedia.org/w/index.php?curid=2051774).  344 
 345 

https://commons.wikimedia.org/w/index.php?curid=2051774

