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Abstract

It is known that representing wetland dynamics in land surface modeling improves models’ capacity to reproduce fluxes and

land surface boundary conditions for atmospheric modeling in general circulation models. This study presents the development

of the full coupling between the Noah-MP land surface model (LSM) and the HyMAP flood model in the NASA Land Infor-

mation System and its application over the Inner Niger Delta (IND), a well-known hot-spot of strong land surface-atmosphere

interactions in West Africa. Here, we define two experiments at 0.02º spatial resolution over the 2002-2018 period to quan-

tify the impacts of the proposed developments on IND dynamics. One represents the one-way approach for simulating land

surface and flooding processes (1-WAY), i.e., Noah-MP neglects surface water availability, and the proposed two-way coupling

(2-WAY), where Noah-MP takes surface water availability into account in the vertical water and energy balance. Results show

that accounting for two-way interactions between Noah-MP and HyMAP over IND improves all selected hydrological variables.

Compared to 1-WAY, evapotranspiration derived from 2-WAY over flooding zones doubles, increased by 0.8mm/day, resulting

in an additional water loss rate of ˜18,900km3/year, ˜40% drop of wetland extent during wet seasons and major improvement in

water level variability at multiple locations. Significant soil moisture increase and surface temperature drop were also observed.

Wetland outflows decreased by 35%, resulting in a substantial a Nash-Sutcliffe coefficient improvement, from -0.73 to 0.79. It is

anticipated that future developments in global water monitoring and water-related disaster warning systems will considerably

benefit from these findings.
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Abstract 10 

It is known that representing wetland dynamics in land surface modeling improves models’ 11 

capacity to reproduce fluxes and land surface boundary conditions for atmospheric modeling in 12 

general circulation models. This study presents the development of the full coupling between the 13 

Noah-MP land surface model (LSM) and the HyMAP flood model in the NASA Land Information 14 

System and its application over the Inner Niger Delta (IND), a well-known hot-spot of strong land 15 

surface-atmosphere interactions in West Africa. Here, we define two experiments at 0.02º spatial 16 

resolution over the 2002-2018 period to quantify the impacts of the proposed developments on 17 

IND dynamics. One represents the one-way approach for simulating land surface and flooding 18 

processes (1-WAY), i.e., Noah-MP neglects surface water availability, and the proposed two-way 19 

coupling (2-WAY), where Noah-MP takes surface water availability into account in the vertical 20 

water and energy balance. Results show that accounting for two-way interactions between Noah-21 

MP and HyMAP over IND improves all selected hydrological variables. Compared to 1-WAY, 22 

evapotranspiration derived from 2-WAY over flooding zones doubles, increased by 0.8mm/day, 23 

resulting in an additional water loss rate of ~18,900km3/year, ~40% drop of wetland extent during 24 

wet seasons and major improvement in water level variability at multiple locations. Significant 25 

soil moisture increase and surface temperature drop were also observed. Wetland outflows 26 

decreased by 35%, resulting in a substantial a Nash-Sutcliffe coefficient improvement, from -0.73 27 

to 0.79. It is anticipated that future developments in global water monitoring and water‐related 28 

disaster warning systems will considerably benefit from these findings. 29 
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Key Points 30 

1. The full coupling of land surface and flood models in NASA’s Land Information System 31 

is described and evaluated over the Inner Niger Delta 32 

2. Increased evapotranspiration resulted in an 18900km3/year water loss to the atmosphere, 33 

decreasing wetland outflows by 35% and extent by 40% 34 

3. Compared to an uncoupled system, the proposed implementation resulted in substantial 35 

improvements of all selected hydrological variables  36 
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1. Introduction 37 

In the past several years, the scientific community has witnessed an increasing availability of land 38 

data assimilation system (LDAS) products. Such systems are conceived to provide the community 39 

with spatially and temporally distributed water and energy states and fluxes at varying domains 40 

and scales. Some of them are the Global LDAS (GLDAS; Rodell et al., 2004), the North America 41 

LDAS (NLDAS; Xia et al., 2012), the Famine Early Warning System Network (FEWS NET) 42 

LDAS (FLDAS; (McNally et al., 2017) and the NASA Hydrological Forecast and Analysis System 43 

(NHyFAS; Arsenault et al., 2020). Many of them are built based on the NASA Land Information 44 

System (LIS) framework (Kumar et al., 2006) and take advantage of a wide range of models, 45 

datasets and assimilation schemes available in LIS. The suite of land surface models (LSMs) 46 

available in LIS compute the vertical water and energy balance and are coupled with the 47 

Hydrological Modeling and Analysis Platform (HyMAP) global scale river routing scheme 48 

(Getirana et al., 2012), which simulates the horizontal water dynamics on the land surface. The 49 

current modeling structure  is performed as a one-way coupled system, meaning that, at each 50 

modeling time step, HyMAP is informed with spatially distributed LSM-based surface runoff and 51 

baseflow, which are routed through a prescribed river network, but does not provide any feedback 52 

to the LSM. In other words, LSMs are not informed on the spatial and temporal surface water 53 

availability (e.g., rivers, floodplains, wetlands, lakes and reservoirs), which could impact the 54 

vertical water and energy balances. The numerical representation of such bidirectional interactions 55 

between the land surface and surface waters is called hereafter two-way coupled system. The 56 

misrepresentation or absence of such a physical process in LSMs ultimately impacts water content 57 

in the different soil layers and its availability for plant transpiration, as well as bare soil and open 58 

water evaporation. Such impacts on evapotranspiration (ET) may result in misrepresented 59 

atmospheric fluxes, in particular within coupled land-atmosphere coupled systems, as commonly 60 

found Earth system models.  61 

A few exceptions aside (e.g., Dadson et al., 2010; Decharme et al., 2012; Miguez-Macho et al., 62 

2007), large-scale river routing and flood modeling is usually one-way coupled and oftentimes 63 

performed as a land surface modeling post-processing step (e.g., Getirana et al., 2014; Lin et al., 64 

2019; Luo et al., 2017; Yamazaki et al., 2014). Miguez-Macho et al. (2007) introduced a 65 

continental-scale coupled groundwater-surface water model using the Land-Ecosystem-66 

Atmosphere Feedback (LEAF2) LSM (Walko et al., 2000) and applied it over the U.S. at 12.5-km 67 
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spatial resolution. Among their findings, the authors showed how shallow water tables control 68 

river flow in specific locations. However, neglecting floodplains and using a simple linear 69 

reservoir model to represent river flow were limiting assumptions in order to accurately 70 

demonstrate the impacts of surface waters on the water budget. These limitations were addressed 71 

in a subsequent study (Miguez-Macho and Fan, 2012a), where the authors proposed the integration 72 

of a floodplain module and the use of a local inertia formulation (Bates et al., 2010) to represent 73 

surface water dynamics over the Amazon basin at a 2-km spatial resolution. Their simulations 74 

show two-way exchanges between surface waters and groundwater as infiltration in the wet season 75 

and seepage in the dry season. Dadson et al. (2010) evaluated the impacts of two-way coupling the 76 

Joint UK Land‐Environment Simulator (JULES) LSM (Cox et al., 1999) with a linear reservoir 77 

model to represent rivers and floodplains within 0.5º grid cells over the upper Niger River, 78 

including its inner delta. A similar development was proposed by Decharme et al. (2012), where 79 

the Interaction Sol-Biosphere-Atmosphere (ISBA) LSM (Noilhan and Planton, 1989) is two-way 80 

coupled with a kinematic-wave-based river routing scheme that also represents floodplain water 81 

storage within grid cells. Kinematic wave is a simplified version of the one-dimensional Saint-82 

Venant equations that is better suited for steep bed slopes and shallow flow, since it neglects 83 

downstream boundary condition. The study by Decharme et al. (2012) focused on analyzing the 84 

sensitivity of river geometry and floodplain parameters on representing global streamflow, flooded 85 

areas and evapotranspiration at 1º spatial resolution. In a follow-up study at the global scale 86 

Decharme et al. (2019) described an improved modeling system at 0.5º spatial resolution and 87 

reported an expected overall drop in global flooded extents and increase in soil moisture due to 88 

increased evaporation from open waters. On the other hand, the authors highlight that the modeling 89 

system simulates inundations only in grid cells that correspond to major streams, while, in reality, 90 

inundations also occur in areas adjacent to major streams. Such a limitation may underestimate the 91 

actual surface water impacts on other hydrological processes, particularly over large and dynamic 92 

water bodies. This means that finer resolutions are more appropriate when implementing two-way 93 

coupled modeling systems. More recently, using the Organizing Carbon and Hydrology In 94 

Dynamic Ecosystems (ORCHIDEE) LSM (Krinner et al., 2005) at 0.5º, Schrapffer et al. (2020) 95 

articulate the importance of representing large tropical floodplains in Pantanal in two-way coupled 96 

model simulations to improve their capacity in reproducing fluxes and land surface conditions.  At 97 

a finer scale, Chaney et al. (2020) described a two-way coupling implementation at ~1km spatial 98 
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resolution, accounting for sub-grid information through hydrological response units. The vertical 99 

water and energy balances are computed using the Noah LSM with Multiparameterization options 100 

(Noah-MP; Niu et al., 2011) and the horizontal water redistribution through the kinematic wave 101 

equation. 102 

Based on these recent efforts on two-way coupling developments, one can conclude that an 103 

accurate representation of surface water dynamics, in particular wetlands and floodplains, is 104 

essential to reproduce the surface water impacts on the land surface and the atmosphere. At coarse 105 

spatial resolutions, some large water bodies can be represented by a single grid cell. However, as 106 

resolutions get finer with model developments, better interactions between grids are needed in 107 

order to represent wetlands and floodplains. Hence, the use of advanced river and floodplain 108 

dynamic formulations in large-scale river routing schemes are essential (Getirana et al., 2017a; 109 

Luo et al., 2017; Miguez-Macho and Fan, 2012a; Yamazaki et al., 2014). Taking advantage of a 110 

local inertia implementation combined with a reservoir operation scheme, Getirana et al. (2020b) 111 

demonstrated the potential of HyMAP in simulating reservoir operation impacts on Lake 112 

Victoria’s outflow and surface water extent, storage and elevation. The authors argue that, despite 113 

the overall good agreement with observations, the fact that HyMAP was one-way coupled with 114 

Noah-MP may have resulted in a misrepresentation of evapotranspiration and infiltration over the 115 

lake.  116 

Motivated by previously mentioned needs for an integrated modeling system to more accurately 117 

represent physical processes in land surface models, in particular over wetlands, this study presents 118 

the two-way coupling between HyMAP and Noah-MP models in LIS and quantify its impacts on 119 

key hydrological processes. As discussed above, the increasing need for multi-model LDAS 120 

frameworks require two-way coupled systems that can be flexible to implement with multiple 121 

models. On the other hand, current two-way coupled systems are typically composed of single 122 

pairs of LSMs and river routing schemes, tailored to specific Earth system models. A key 123 

contribution of this article, therefore, is the description of a generalized implementation of two-124 

way coupling using the range of LSMs integrated in LIS, paving the potential use within integrated 125 

Earth system models. 126 

The Inner Niger Delta (IND) region is selected as the study area for being a large wetland located 127 

in the West African semi-arid climate zone, where surface water feedback to the soil and the 128 
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atmosphere plays a major role in the vertical water and energy balances. The IND region is a key 129 

water tower in West Africa and is susceptible to the impacts of climate change. Rainfall and 130 

hydrological sinks such as evapotranspiration are crucial to changes in stored water, especially in 131 

IND where deforestation is high (James et al., 2007) and could impact on atmospheric moisture. 132 

While precipitation in the IND is an important driver of surface water hydrology and terrestrial 133 

stored water in general (Ndehedehe et al., 2016), its nature and characteristics could be complex. 134 

Changes in atmospheric circulation patterns induce variations in circulation between source and 135 

sink terms, thus redirecting moisture (Gimeno et al., 2010). This, in turn, leads to considerable 136 

changes in water stored in wetlands, reservoirs as well as floodplains in these areas (Ndehedehe et 137 

al., 2016). For this region, global reanalysis observations and land surface models that provide 138 

atmospheric fields, and water fluxes can therefore be improved by including their interactions with 139 

floodplains dynamics.  140 

The scientific goal of this study is to improve our current understanding of how two-way coupling 141 

LSMs and river routing schemes impacts the representation of hydrological processes over large 142 

wetlands, focusing on the IND domain. We attempt to use the most appropriately known 143 

meteorological forcings and parameters available for the region and assume that the resulting 144 

modeling system is the best possible representation of hydrological processes over the wetland. 145 

We understand and acknowledge all limitations intrinsic to numerically representing physical 146 

processes with the proposed models, which include assumptions, simplifications and inaccuracy 147 

in both parameterizations and boundary conditions (e.g., meteorological forcings). Such 148 

limitations are accounted for in our discussions, but their assessment (including sensitivity tests) 149 

is beyond the scope of this study. 150 

2. Datasets and methods 151 

2.1. Datasets  152 

Model experiments were evaluated with daily streamflow observations, satellite-based altimetry, 153 

water extent and evapotranspiration. Daily streamflow observations were made available at three 154 

gauging stations within or in the surroundings of the domain by the Comité permanent Inter état 155 

de Lutte contre la Sécheresse au Sahel (CILSS), as described in (Getirana et al., 2020a). Two of 156 

them are located upstream the wetland at Koulikoro and Pankourou, on the Niger and Bagoé 157 
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Rivers, respectively. These gauges are located around 330km and 400km upstream the wetland 158 

and drain areas of 120,000km2 and 35,080km2, respectively. Two other stations are located within 159 

the domain, one upstream the wetland at Ké Mecina, draining 137,150km2, and another 160 

downstream at Diré, draining 362,280km2. Table 1 provides additional information about these 161 

stations and Figure 1 shows locations of Ké Mecina and Diré gauging stations. These two gauging 162 

stations are ~470km apart from each other. Monthly streamflow climatologies at Ké Mecina and 163 

Diré (Figure 1) indicate a substantial diffusiveness caused by the wetland, resulting in a two-month 164 

lag and drop of flood peak magnitude. Koulikoro and Pankourou are used in our model to define 165 

upstream boundary conditions, as described below. Due to its proximity to the upstream limits and 166 

little influence by the wetland, Ké Mecina is only used here for illustrative purposes.  167 

Radar altimetry time series are those made available on the Hydrosat database (Tourian et al., 168 

2017). Hydrosat is composed of multi-satellite radar altimetry data following the approach 169 

described in Tourian et al. (2016) that produces ~3-day time step water level time series from the 170 

original sub-monthly or monthly datasets by hydraulically and statistically connecting nearby 171 

locations. Time series available over the Niger River are composed of measurements derived from 172 

the ENVISAT, Jason-2 and SARAL/AltiKa missions, with reported mean absolute errors over 173 

inland waters in the order of few decimeters, depending on the sensor, water body size and the 174 

crossing angle of the altimeter track (Calmant et al., 2013; O’Loughlin et al., 2016; Santos da Silva 175 

et al., 2010; Tourian et al., 2017; Yamazaki et al., 2017). Here, we used radar altimetry time series 176 

at four locations within the IND domain with data available from 2002 to 2015. Global lidar 177 

measurements derived from the Ice, Cloud, and land Elevation Satellite (ICESat) mission are 178 

available from 2003 to 2009 on the OpenAltimetry database (https://openaltimetry.org). Masks 179 

over eight ICESat track intersections with water bodies were manually defined and time series 180 

were automatically extracted from the database. An intersection is defined by all water body 181 

transects within a 2-km river reach. An average of four observations per water body transect were 182 

grouped based on the date of observation. This means that, at an intersection, the median of 183 

observations on the same day defines the water elevation at that date. As a result, time series at 184 

intersections are composed of 11-15 dates (or transects), varying as a function of the location. The 185 

mean absolute error of ICESat over inland waters is ~0.1m (O’Loughlin et al., 2016; Urban et al., 186 

2008). Figure 1 shows locations where radar and lidar altimetry time series are available within 187 
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the IND domain, where radar altimetry locations are numbered from H1 to H4 and laser altimetry 188 

locations from I1 to I8.  189 

Monthly water extent maps of the Niger basin were generated for the 2002-2018 period by a trained 190 

deep learning algorithm known as U-Net (Ronneberger et al., 2015). U-net is trained on 446 hand-191 

labeled chips with 250 meter resolution of eleven flood events across the globe as provided by 192 

Sen1Floods11 Dataset (Bonafilia et al., 2020). The Sen1Floods11 was originally intended for 193 

usage with Sentinel 1, but here, we resampled the hand-labeled water extent chips to a lower 194 

resolution to match MODIS data spatial resolution. Eight-day MODIS data composites for all the 195 

eleven flood events within a period of ten days of the flood event was downloaded for our task. U-196 

Net was trained with all the eight Terra MODIS bands as an input and the hand-labeled water 197 

extent maps as output. The algorithm was trained to decrease the binary classification error by 198 

incorporating F-Score as our loss function. F-score ranges from 1, indicating perfect overlap of 199 

water and land pixels between predicted and observed pixels, to 0, indicating no overlap. The 200 

algorithm achieved an average F-score of 0.9, 0.88 and 0.76 during the training phase, validating 201 

and testing phase, respectively. Our trained U-Net was used to generate water extent maps for the 202 

IND domain with eight-day MODIS imagery from 2002 to 2018. Maps were aggregated to the 203 

monthly time step. Figure 1 shows an occurrence map.  204 

The impact of the two-way coupling on modeled evapotranspiration fields was evaluated using 205 

three reference datasets. One is the 10-km, monthly FLUXCOM product (M. Jung et al., 2019), 206 

developed from merging energy flux measurements from eddy covariance towers with MODIS 207 

data, and available during 2001-2015. Another reference ET estimate is the 0.25°, daily Global 208 

Land Evaporation Amsterdam Model (GLEAM) version 3.3a (Martens et al., 2017) data, a 209 

primarily passive microwave remote sensing–based, Priestley Taylor evaporation model product 210 

available during 1980–2018. We also used the 4-km, daily Atmosphere–Land Exchange Inverse 211 

(ALEXI; Anderson et al., 2007), a MODIS-thermal-infrared based evapotranspiration product 212 

available during 2001–present (Hain and Anderson, 2017). Although all these products integrate 213 

various sources with different methodologies and have random and bias errors of their own, they 214 

all use MODIS data in their algorithms. In this sense, they will be referred hereafter as satellite-215 

based ET estimates. 216 

2.2.Modeling framework 217 
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HyMAP 218 

HyMAP is a state-of-the-art global scale hydrodynamic model capable of simulating surface water 219 

dynamics, including water storage, elevation and discharge in-stream, as well as in floodplains. 220 

HyMAP simulates water dynamics in rivers and floodplains using the local inertia formulation 221 

(Bates et al., 2010; De Almeida et al., 2012; Getirana et al., 2017b), solving the full momentum 222 

equation of open channel flow and accounting for a more stable and computationally efficient 223 

representation of river flow diffusiveness and inertia of large water mass of deep flow, which is 224 

essential for a physically-based representation of wetlands, floodplains, tidal effects and 225 

impoundments (Getirana et al., 2020b). The Courant–Freidrichs–Levy (CFL) condition is used to 226 

determine HyMAP’s optimal sub time steps for numerical stability. Rivers and floodplains interact 227 

laterally and have independent flow dynamics, with roughness and geometry derived from land 228 

cover characteristics, topography and river parameterization (Getirana et al., 2013, 2012). 229 

Hypsographic curves, i.e., the relationship between water elevation (H) and storage (S) are derived 230 

from high resolution topographic data. In addition to S, the flooded area (A) within a grid cell can 231 

also be determined through a relationship with H. As a result, floodplain water extent and storage 232 

can be derived from the floodplain water elevation with H×S×A relationships. If the water volume 233 

within a grid cell is above zero, the minimum A value corresponds to the river area (river length × 234 

river width) and it only increases once the river overflows to floodplains, with the grid area as the 235 

maximum value. The H×S×A relationship is derived for each grid cell from a pre-processing step 236 

where high resolution topography is upscaled to the model spatial resolution. Water overflows to 237 

floodplains when the river channel water height is higher than the bank height. This process is 238 

considered instantaneous at each time step. This means that water surface elevations of the river 239 

channel and the floodplain are the same. 240 

Digital elevation model (DEM) accuracy plays an essential role in representing river network and 241 

floodplain extent in flat areas (Getirana et al., 2009a, 2009b). In this study, HyMAP parameters 242 

were derived from the Multi-Error-Removed Improved-Terrain (MERIT; Yamazaki et al., 2017) 243 

DEM at 3-arcsec spatial resolution. Over the IND domain, MERIT DEM is based on the NASA 244 

Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) processed with successive correction 245 

of absolute bias, stripe noise, speckle noise, and tree height bias from using multiple satellite data 246 

sets and filtering techniques. As a result, MERIT DEM provides a more reliable representation of 247 

floodplains and wetlands than the original RSTM DEM.  248 
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River geometry is represented by rectangular cross sections and large width-to-depth ratio. Widths 249 

of major rivers were derived from the MERIT-Hydro dataset (Yamazaki et al., 2019). MERIT-250 

Hydro provides 90-m global river width estimates derived from Landsat data. River width of 251 

smaller tributaries not detected by the dataset were derived from the following empirical equation  252 

𝑤 = 𝑚𝑎𝑥&0.2, 20 × 𝑄!"#$.& -       (1) 253 

where w [m] is the average river width within a grid cell and Qmed [m3/s] the annual mean 254 

discharge estimated using the global runoff ensemble from Getirana et al. (2014).  255 

River width and bankfull height, h [m], was estimated using the following empirical equation: 256 

ℎ = 𝑚𝑎𝑥(0.35, 𝛼 × 𝑤)   𝛼 = 2.6 × 10'(    (2) 257 

Both equations (1) and (2) are derived from Getirana et al. (2012) and adapted for a finer spatial 258 

resolution. River channel roughness coefficients vary as a function of h, (for example, values are 259 

~0.03 and ~0.04 over the Niger and Benue Rivers, respectively; roughness increases to 0.07 over 260 

the smallest tributaries). The Manning coefficient for floodplains is spatially distributed as a 261 

function of vegetation types derived from a static map (Masson et al. 2003), where larger values 262 

correspond to dense vegetated areas and lower values to sparser vegetated regions. Floodplain 263 

roughness varies from 0.035 to 0.075 within the domain. More details on HyMAP 264 

parameterization can be found in Getirana et al. (2012). 265 

HyMAP resolves the local inertia formulation unidimensionally (i.e., an unique flow direction is 266 

attributed to each grid cell) and does not currently represent bifurcations, which is particularly 267 

important over deltas and flat areas (Yamazaki et al., 2014). However, its capability of simulating 268 

backwater effects combined and interactions between rivers and floodplains results in a pseudo 269 

two-dimensional representation of surface water dynamics. HyMAP has been extensively 270 

evaluated in the Amazon basin (Getirana et al., 2013; Getirana and Peters-Lidard, 2013) and 271 

adopted as a tool for regional (Getirana et al., 2014; Jung et al., 2017; Kumar et al., 2015a, 2016) 272 

and global (Getirana et al., 2017a) water cycle studies. 273 

Noah-MP  274 

The Noah with Multi-Parameterization (Noah-MP; Niu et al., 2011; Yang et al., 2011) LSM is 275 

used to simulate the vertical water and energy balances over the city. The Noah-MP LSM builds 276 

upon the well-known Noah LSM (Ek et al., 2003), which has been used in a variety of operational 277 
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models, applications and research studies. Noah-MP contains four soil layers totaling two meters 278 

down the land surface and different parameterization and physics options, which include different 279 

static vegetation and dynamic vegetation schemes, canopy resistance effects, radiation transfer 280 

(e.g., two-stream approximation), runoff and groundwater schemes, snow model options, and even 281 

crop and urban canopy schemes. We apply the prescribed vegetation scheme, based on monthly 282 

leaf area index climatology. The TOPMODEL simulated groundwater scheme (Niu et al., 2007) 283 

is selected, and the Noah-based lower boundary of soil temperature option is applied. Other 284 

climatology-based vegetation and albedo parameter maps include monthly greenness fraction 285 

(Csiszar and Gutman, 1999) and global (snow-free) albedo (Csiszar and Gutman, 1999). Table 2 286 

summarizes the main schemes used in Noah-MP. 287 

Model coupling  288 

As noted earlier, the interactions between the LSMs in LIS and HyMAP are enabled in a generic 289 

manner using the standardized software tools and paradigms enabled by the Earth System 290 

Modeling Framework (ESMF; Hill et al., 2004). ESMF is a framework for building coupled Earth 291 

system models in an interoperable manner. For enabling coupled interactions between 292 

components, ESMF provides generic data structures to store and represent data that are being 293 

exchanged. We employ these capabilities to develop a flexible interface between HyMAP and 294 

LSMs for both one and two-way coupling, as shown in Figure 2.  295 

In the one-way coupling mode, at the end of each LSM time step t, surface runoff and baseflow 296 

rates are transferred from the LSM to HyMAP. The LSM packages these fields as an ESMF object 297 

and “exports” them to HyMAP. Once these “import” states are received, HyMAP converts them 298 

into water volume as a function of HyMAP’s time step th and grid cell size. That water volume is 299 

then summed to the surface water storage SWS [mm] at the end of th and propagated through the 300 

river reach on the following time step th+1. There is no feedback from HyMAP to the LSMs. In 301 

the two-way coupling mode, SWS and surface water extent computed at t-1 is divided time step 302 

period dt are created as the export state from HyMAP to the LSM. The LSM then employs it to 303 

update the soil surface states and fluxes in the following time step t. Over a non-saturated soil, that 304 

additional water may infiltrate, increasing soil moisture and, subsequently, evapotranspiration. The 305 

increased water availability in the soil also impacts the energy balance, resulting in a drop in 306 
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surface temperature. The remaining water flux is converted back to water volume and routed by 307 

HyMAP through the river network in the following time step t+1.  308 

As the exchange states are defined using generic ESMF objects, this design allows the 309 

configuration of any LSM within LIS for use with HyMAP without significant model development 310 

efforts. The requirement for one-way coupling is that the LSM must define the surface runoff and 311 

baseflow fields. Similarly, if the LSM is to be used in a two-way coupled mode, the LSM must 312 

define the set of steps to update the soil states in response to the input surface water storage and 313 

extent information.  314 

Experimental design 315 

The modeling system was implemented for the domain defined by the coordinates 7.2°E – 2.2°E 316 

and 12.1°N – 17.1°N at a 0.02° spatial resolution. Two experiments were defined in order to 317 

quantify the impact of the proposed two-way coupling system on IND: one representing the 318 

traditional uncoupled approach for simulating land surface and flooding processes (called 1-WAY 319 

hereafter) and the proposed full land surface – flood coupling (called 2-WAY hereafter). Both 320 

modeling experiments were performed using upstream boundary conditions derived from a model 321 

run at 0.25° spatial resolution for the entire basin following the modeling protocol described in 322 

Getirana et al. (2020a) and in Appendix A.1. In order to optimize streamflow outputs from this 323 

coarser resolution run, available streamflow observations at Koulikoro and Pankourou gauging 324 

stations were directly inserted and propagated through the river network. Daily coarse resolution 325 

streamflow outputs were used as upstream boundary conditions in the proposed modeling 326 

experiments at two locations defined in Figure 1 as Niger inflow and Beni inflow. Constraining 327 

upstream boundary conditions is recommended in order to isolate errors in physical processes 328 

evaluated in this study.  329 

Models were driven with NASA’s Modern-Era Retrospective analysis for Research and 330 

Applications, version 2 (MERRA-2; Reichle et al., 2017) meteorological dataset, and precipitation 331 

from the Climate Hazards Group InfraRed Precipitation with Station data, version 2 (CHIRPS; 332 

Funk et al., 2015), which utilizes satellite-based estimates and station-based precipitation. CHIRPS 333 

station-based component contributes to a superior spatial and temporal precipitation distribution 334 

in the continent, as demonstrated by several studies (e.g., Bichet and Diedhiou, 2018; Dembélé 335 

and Zwart, 2016; Dinku et al., 2018; Poméon et al., 2017) and, as a result, it has been widely used 336 
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in monitoring water availability and forecast in Africa (Getirana et al., 2020a; Jung et al., 2017; 337 

McNally et al., 2019; Shukla et al., 2019). Model runs were first spun up for 60 years, allowing 338 

the models' water storage components to stabilize, followed by the 2002-2018 period experiments 339 

at a 15-minute time step. All model parameters, initial conditions and inputs were preprocessed 340 

using the Land surface Data Toolkit (LDT; Arsenault et al., 2018). 341 

Evaluation procedure 342 

The proposed wo-way coupled modeling system was quantitatively evaluated in terms of changes 343 

in key water flux (i.e., evapotranspiration and streamflow) and surface water storage proxy (i.e., 344 

water level and extent dynamics) variables over the IND wetland. Such changes were quantified 345 

through well-known metrics computed using in situ observations and satellite estimates described 346 

above as references. These metrics are the root mean square error (RMSE), Nash-Sutcliffe (NS) 347 

coefficient, bias, correlation (r) and variability ratio (γ) between simulation (s) and observation (o). 348 

RMSE, NS and γ are defined as follows: 349 

RMSE = :∑ (+!',!)"#!
!$%

./
;
0
12
       (3)  350 

𝑁𝑆 = 1 − ∑ (3&'4&)"'&
&$%
∑ (3&'35)"'&
&$%

        (4) 351 

𝛾 = 6(
6)

          (5) 352 

where t is the time step, nt the period length, 𝑜̅ the mean value of the observations and σ the 353 

standard deviation. RMSE ranges from zero to ¥, where zero is the optimal case. NS ranges from 354 

–¥ to 1, where 1 is the optimal case, while zero means that simulations represent observed signals 355 

as well as the average of observations. γ ranges from zero to ¥, where 1 means that simulated and 356 

observed time series have identical variabilities. r ranges from -1 to 1, where 1 is the optimal case.  357 

The timing of simulated streamflow peaks was evaluated using the delay index (DI). DI is 358 

computed using the cross-correlation function R=f(m) between simulated and observed time 359 

series, where DI equals the value of the time lag m when R is maximized (Paiva et al., 2013b). 360 

Following Kumar et al. (2014), we used selected evaluation metrics in the form of normalized 361 

information contribution (NIC) applied to the Nash-Sutcliffe (NS) coefficient, correlation (r), and 362 

the root mean square error (RMSE) between simulations (s) and observations (o). NIC applied to 363 
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these metrics is useful to determine the overall improvements resulting from 2-WAY compared to 364 

the 1-WAY run. Their respective NIC values are defined below: 365 

𝑁𝑆789 =
:7;"*+,'7;%*+,<

:0'7;%*+,<
       (6) 366 

𝑅𝑀𝑆𝐸789 =
:=>;?%*+,'=>;?"*+,<

=>;?%*+,
      (7) 367 

𝑟789 =
:@"*+,'@%*+,<
:0'@%*+,<

        (8) 368 

All three metrics range from –¥ to 1, where values above zero indicate improvement, below zero 369 

indicates degradation, and zero means no added skill. These three metrics were used in the 370 

evaluation of water level dynamics, in order to more easily summarize results at numerous 371 

locations.  372 

Monthly surface water extent simulations were evaluated in terms of bias, correlation and 373 

variability ratio γ. Daily water level simulations were compared against observations at twelve 374 

locations where radar and lidar altimetry data are available using NIC metrics. Monthly 375 

evapotranspiration simulations were evaluated in terms of bias, correlation, γ and NS. Daily 376 

streamflow simulations were evaluated at the Diré gauging station using bias, DI, γ and NS 377 

coefficients. In addition to the quantitative analysis, spatially distributed surface water extent  and 378 

evapotranspiration were qualitatively evaluated through visual inspection. 379 

3. Results 380 

3.1. Impacts on surface water dynamics 381 

MODIS-based water extent over 2002-2018 averages 4690km2, with peaks occurring between 382 

September and November and averaging ~11,150km2 (Figure 3a). The highest monthly averaged 383 

water extents detected by MODIS were above 17,500km2 and occurred in September 2010 and 384 

October 2018. The wetland generally dries out in April-June with an averaged water extent of 385 

390km2 (Figure 3d). By resolving surface water dynamics with the local inertia solution, diffusion 386 

and inertia in both rivers and floodplains are represented in model experiments. Simulations show 387 

the water redistribution over the wetland and nearby lakes. The 1-WAY experiment shows 388 

significantly overestimated water extent estimates, averaging 17,940km2 during wet seasons 389 
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(Figure 3b), or 61% above MODIS estimates. Water extent simulated with 1-WAY over the study 390 

period is 14,800km2,which represents a 215% overestimation compared to the MODIS estimates. 391 

Water extent is particularly highly overestimated during the dry seasons; 1-WAY averaged 392 

estimate in April-June is 11,460km2, which is 29 times the extent detected by MODIS (Figure 3d). 393 

Wetlands derived from 1-WAY are concentrated in the central portion of the study domain. 394 

However, one can observe that part of it is located downstream the MODIS-based wetland, over 395 

an area dominated by intermittent lakes. As a result, wetlands are underestimated in the central 396 

portion of the domain and overestimated toward the northeast (Figure 3e). These differences can 397 

be explained by the numerous bifurcations that occur along the Niger River over IND flat areas, 398 

resulting in the floodplain spread detected by MODIS. Although HyMAP can simulate interactions 399 

between upstream and downstream neighboring grid cells (this includes interactions between 400 

major streams and small tributaries) through the local inertia formulation, outflows are 401 

unidirectional; hence, it is not currently capable of representing such bifurcations. Consequently, 402 

more water is stored in the intermittent lakes in the northeastern area.  403 

As a result of intensified water loss through evapotranspiration in a two-way coupled system, one 404 

can observe a significant drop in water extent in 2-WAY outputs, with wet seasons averaging 405 

12,740km2 (Figure 3c), a 40% drop compared to 1-WAY, and 14% overestimation compared to 406 

MODIS, and dry seasons averaging 5750km2. Compared to 1-WAY, there is an average drop of 407 

5470km2 regionwide during the 2002-2018 period, in particular, over the central wetlands and over 408 

the intermittent lakes (Figure 3f). Monthly water extents derived from 2-WAY shows better 409 

correlation with MODIS (r=0.83), when compared to 1-WAY (r=0.74). However, 2-WAY shows 410 

a slight degradation in the variability ratio (γ=0.71, as opposed to 0.75 for 1-WAY). It is important 411 

to note that all HyMAP grid cells are composed of river reaches with varying geometry and, as 412 

long as there is any water flowing in those reaches, grid flooded areas will correspond to the river 413 

area that is covered with water. This explains the flood occurrence in all major rivers and numerous 414 

small tributaries over the domain in both experiments. MODIS, on the other hand, might miss 415 

smaller rivers and streams due to the spatial resolution, and limitations in the sensor and the 416 

classification algorithm. These limitations are particularly evident during the dry seasons, where 417 

most rivers remain undetected, resulting in low water extent estimates. Also, the spectral properties 418 

of mudflats and flood plains in wetlands are similar resulting in misclassification of MODIS flood 419 

water extent (Whyte et al., 2018). This means that MODIS estimates could be underestimated and 420 
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the actual water extent during dry seasons could be closer to the 2-WAY estimates. That could 421 

also result in lower amplitudes for MODIS estimates (i.e., lower standard deviation), leading to 422 

better variability ratios. 423 

As opposed to the slight drop in wetland extent previously reported in the literature (Bergé-Nguyen 424 

and Crétaux, 2015), our MODIS data classification shows a statistically significant positive trend 425 

of ~175km2/year over annual wet seasons of the study period, as shown in Figure 3g. This trend is 426 

in agreement with the previously reported increase in terrestrial water storage over West Africa, 427 

as a result of intensified precipitation in the region (Getirana et al., 2020a; Ndehedehe et al., 2016; 428 

Rodell et al., 2018). Annual wet-season water extent simulations also show positive trends of 429 

277km2/year with 1-WAY, and 220km2/year with 2-WAY, which is in a better agreement with 430 

MODIS estimates (Figure 3g). 431 

Impacts of the two-way coupling on surface water dynamics were also evaluated in terms of 432 

improvements in water elevation simulations at twelve locations over the Niger River (Figure 1). 433 

Biases exist between simulated water elevations and satellite altimetry and are also present 434 

between different satellite missions (Calmant et al., 2013; Getirana et al., 2013). In this sense, 435 

before comparison, water elevation time series were bias-corrected by removing the long-term 436 

mean. Three metrics defined by Equations 6-8 (NSNIC, rNIC and γNIC) were used to quantify 437 

improvements in simulated water level anomalies and results are shown in Figure 4. Most locations 438 

(nine or ten out of twelve, depending on the metric) showed improvements, and averaged metrics 439 

for all locations were considerably positive: NSNIC=0.58, rNIC=0.65 and γNIC=0.45. A more detailed 440 

interpretation of results at ICESat is limited due to the reduced number of transects (11-15 transects 441 

per location). However, the overall improvement suggest that the two-way coupled modeling 442 

system improves water level variability, in particular the seasonality. Except for H1, located in the 443 

central part of the wetland where the amplitude ratio was degraded, all other Hydrosat locations 444 

showed improvements in all metrics.  445 

3.2. Impacts on surface water fluxes 446 

Long-term ET estimates derived from ALEXI, GLEAM and FLUXCOM over flooding zones vary 447 

widely, averaging 2.5, 1 and 1.5 mm/day, respectively. Such an uncertainty has been previously 448 

described in the literature (H. C. Jung et al., 2019) and is visible in the maps illustrated in Figures 449 

5a-c. All three satellite-based ET estimates show a northward drop caused by a climate gradient as 450 
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a result of West African monsoons (Boone et al., 2009). Both ALEXI and FLUXCOM can detect 451 

higher ET rates over the wetland, although ALEXI gives significantly higher rates than 452 

FLUXCOM. Due to this high ET uncertainty over the region, we chose to evaluate model outputs 453 

against the mean of these three satellite-based estimates, which averages 1.69mm/day over 454 

flooding zones. 455 

Noah-MP is capable of representing the northward evapotranspiration gradient observed in the 456 

other products, but it underestimates ET rates over flooding zones, averaging 0.79mm/day (see 457 

Figure 5d). Recent studies show that Noah-MP generally underestimates ET over West Africa 458 

compared to other models and satellite-based estimates (H. C. Jung et al., 2019). The resulting ET 459 

derived from the 2-WAY experiment shows clear patterns of modeled rivers and flooded areas and 460 

significantly higher evapotranspiration rates, averaging 1.57mm/day over flooding zones. Figure 461 

6 shows the temporal variability of evapotranspiration over flooding zones derived from model 462 

experiments and estimate averages. Simulated ET estimates during wet seasons derived from the 463 

1-WAY experiment are generally well represented when compared to satellite-based estimates 464 

with slight underestimation. Its large bias is mostly caused by the substantial underestimation 465 

during dry seasons, with monthly average rates over flooding zones as low as 0.1 mm/day. As a 466 

result, ET derived from 1-WAY has a negative bias of -0.9mm/day, high variability ratio with 467 

γ=1.28 and low NS value of -0.89. Accounting for surface water availability in the vertical water 468 

balance considerably increases ET rates during dry seasons to values between 0.8 and 1.6mm/day, 469 

depending on the year, and slightly increases rates during wet seasons. These changes lead to an 470 

improved bias of 0.1mm/day, as well as variability ratio, with γ=0.9, and NS=0.86. Two-way 471 

coupling showed was virtually no impact on ET timing, with similar correlation values for both 472 

experiments (0.96 and 0.94 for 1-WAY and 2-WAY, respectively). 473 

Two-meter layer soil moisture significantly increases with higher surface water infiltration rates, 474 

in particular over flooding zones where top soil layers reach saturation during the wet seasons, as 475 

shown in Figures 7a-b. On average, soil moisture increases 50mm with largest differences during 476 

dry seasons. frequent rainfall during wet seasons results in smaller differences between soil 477 

moisture of both experiments. Wetter soils allow higher latent heat flux rates associated with 478 

evaporation, reducing surface temperatures over flooding zones by, on average, 1.2ºC (see Figures 479 

7c-d). However, permanently flooded areas show averaged surface temperature drops of 7ºC over 480 

the study period. The double peaked surface temperature cycle follows the regional air temperature 481 
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seasonality, with the highest peak occurring in May and second one in October. Largest differences 482 

in surface temperature occur during these peaks, and account for two-way coupling results a slight 483 

flattening of the second peak. Figures 7e-f shows spatial and temporal changes in surface water 484 

storage (SWS) when two-way coupling is accounted for. On average, SWS drops ~137mm over 485 

flooding zones, with minimum and maximum drops occurring in September (90mm) and January 486 

(175mm), respectively.  487 

As shown in Figure 8, Streamflow simulations from the 1-WAY experiment over 2002-2012 488 

overestimate observations by 77%, totaling 1648m3/s, and flood peaks are delayed, on average, by 489 

33 days (DI=-33). Such a bias and lag resulted in a low Nash-Sutcliffe of -0.78. The variability of 490 

streamflow observations and derived from the 1-WAY experiment are similar, indicated by the 491 

variability ratio g of 1.06. Streamflow simulations are substantially improved when surface water 492 

becomes available to the LSM vertical water balance in the 2-WAY experiment. Average river 493 

discharge derived from 2-WAY is 1048m3/s, indicating an average water loss rate of 600m3/s (or 494 

~18,900km3/year) from wetlands to the atmosphere, in addition to the evapotranspiration 495 

computed in the 1-WAY experiment. Bias and DI drop to 214m3/s (i.e., 20% overestimation 496 

compared to the observed average) and -16 days, respectively, resulting in a meaningful Nash-497 

Sutcliffe improvement to 0.79. The variability remained basically the same, with g=1.04. Based 498 

on these results, it is reasonable to assume that the lag and bias detected downstream the wetland 499 

is explained by misrepresented interactions of surface waters with land surface and atmosphere. 500 

Without a proper hydrological coupling between models, surface water storage is overestimated 501 

as a result of the neglection of its infiltration to the soil and evaporation to the atmosphere. The 502 

excess water is stored in floodplains, resulting in delayed flood peaks downstream the wetland.  503 

4. Summary 504 

This paper describes a new framework for the two-way coupling between LSMs and flood models 505 

in NASA’s Land Information System and evaluates its impacts on key hydrological variables in 506 

the Inner Niger Delta. Here, the surface water dynamics computed by HyMAP was accounted for 507 

in Noah-MP’s vertical water and energy balance and results were compared against an experiment 508 

where such processes are neglected. We found that the wetland has a major role in soil moisture 509 

and evapotranspiration rates that result in a major water loss rate from the surface to the 510 
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atmosphere. Such a water loss accounts for a substantial decline in both water extent and wetland 511 

outflow.  512 

For over ten years, different studies found in the literature describe the implementation and 513 

improvement of two-way coupling approaches and, undoubtedly, they all have paved the way for 514 

the current and future generations of Earth system models. The large majority, however, represents 515 

surface water dynamics through very simplified schemes and overcome the limited representation 516 

of floodplains by using coarse spatial resolutions from 0.125º to 1º. There is a consensus that better 517 

surface water parameterizations are needed for a more accurate representation of interactions 518 

between wetlands and the land surface (e.g., Chaney et al., 2020; Miguez-Macho and Fan, 2012b). 519 

Using the local inertia formulation in HyMAP allowed us to represent wetland dynamics at a 520 

significantly finer spatial resolution (i.e., 0.02º) and the spatially distributed impacts on the water 521 

and energy balances. It is important to note that this implementation can be expanded to the suite 522 

of LSMs available in LIS, as well as used in conjunction with its data assimilation schemes (e.g., 523 

Kumar et al., 2019, 2015b, 2020, 2016; Li et al., 2019). These advantages could be an asset to 524 

current LIS-based water monitoring systems (e.g., Arsenault et al., 2020; Getirana et al., 2020c; 525 

Kumar et al., 2019; McNally et al., 2019; Rodell et al., 2004). 526 

Beside these advantages, the proposed modeling system has a number of limitations. For example, 527 

the current HyMAP parameterization neglects bifurcation. Such a process has been shown to be 528 

essential in large-scale flood modeling for a more accurate representation of lateral water 529 

distribution over flat areas and deltas (Yamazaki et al., 2014). Although MERIT DEM, where 530 

some of the HyMAP parameters were derived from, shows improvement in representing global 531 

topography, it is still not free from errors that could result in the misrepresentation of parameters, 532 

such as flow directions, slope, river length, floodplain extent and water storage, in particular in flat 533 

areas such as IND. HyMAP river geometry is still heavily based on empirical equations, which is 534 

another possible source of errors that could impact the simulation of wetland dynamics. MERIT-535 

Hydro was used here as an attempt to minimize river geometry uncertainty, but river width 536 

estimates are only available for major rivers. Besides, MERIT-Hydro has its own uncertainties 537 

related to Landsat spatial resolution and the land cover classification algorithms. The 538 

misrepresentation of the aforementioned physical processes geomorphological characteristics may 539 

have a meaningful impact on the vertical water and energy balance computed by Noah-MP in a 540 

two-way coupled modeling system and might have contributed to the wetland extent mismatch 541 
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between MODIS estimates and model outputs. In this sense, it is strongly suggested that future 542 

work focus on the development of improved representation of surface water dynamics (e.g., Neal 543 

et al., 2012) that can be further used in two-way coupled modeling systems. Floodplain and 544 

wetland modeling can also be improved through satellite data assimilation. Recent work has shown 545 

that assimilating satellite-based water extent (Hostache et al., 2018), radar altimetry and 546 

streamflow observations (Paiva et al., 2013a) significantly improves surface water dynamic 547 

modeling. Solutions could envisage the simultaneous assimilation of these observations, also 548 

called multivariate data assimilation (Kumar et al., 2019), optimizing their synergetic impacts on 549 

the representation of multiple hydrological variables. Finally, while our broad conclusions about 550 

the impacts of two-way coupling on the water cycle modeling are likely to be true, as endorsed by 551 

similar studies, we caution that the precise quantities reported would likely change if the modeling 552 

configuration (LSM, routing scheme, and meteorological forcing data set) were different. 553 

However, further investigation considering different modeling approaches would provide 554 

additional insight. 555 
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Appendix 573 

A.1. Inflow at Niger and Beni Rivers 574 

The Niger inner delta model was constrained upstream the delta, over the Niger and Beni Rivers, 575 

streamflow simulations derived from an existing hydrological model for the whole Niger basin, as 576 

described in Getirana et al. (2020a). The model run is composed of HyMAP one-way coupled with 577 

the Catchment Land Surface Model (CLSM; Koster et al., 2000) at 0.25° spatial resolution and 578 

15-min time step. In order to minimize errors in the simulated streamflow used as boundary 579 

condition for the Niger inner delta model, daily streamflow observations at Koulikoro and 580 

Pankourou (see Table 1 for details) are directly inserted in the model and propagated through the 581 

river network. The time series is completed with bias-corrected simulations, using a polynomial 582 

regression equation defined for the period where observations are available. Streamflow 583 

simulations at locations defined in Figure 1 as Niger and Bani inflows are used as boundary 584 

conditions in the proposed Inner Niger Delta modeling.  585 
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Tables  586 

Table 1: List of gauging stations in the Niger River basin considered in this study. Drainage areas 587 

are derived from HyMAP parameters. Values provided by agencies, when available, are also listed. 588 

Average streamflow is provided for the study period (2002-2018), as a function of data availability. 589 

Gauging 
station River Basin Country Longitude  Latitude 

Drain. 
area 
[km2] 

Avg. 
streamflow 

[m3/s] 

Flood peak 
[months] 

Data 
availability 

[years] 
Diré Niger Niger Mali -3.9 16.3 362,280 845 10-12 1950-2012 

Ké Macina Niger Niger Mali -5.4 14 137,150 896 8-10 1953-2007 
Koulikoro Niger Niger Mali -7.6 12.9 120,000 1086 8-10 1950-2012 

Pankourou Bagoe Niger Mali -6.6 11.4 35,080 131 8-10 1956-2013 

  590 
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Table 2: Noah-MP options adopted in this study to represent physical processes. 591 

Physical process Noah-MP 4.0.1 options  References 

Vegetation Monthly climatology of leaf 
area index (LAI) and albedo 
used to represent vegetation 
dynamic (Option 4) 

Niu et al (2011) 

Stomatal resistance Ball-Berry (Option 1)  Ball et al (1987) 

Soil moisture factor for 
stomatal resistance 

Noah-type based on soil 
moisture (Option 1) 

 Chen et al (1996) 

Runoff & groundwater SIMGM: based on 
TOPMODEL (Option 1) 

Niu et al. (2007) 

Surface layer drag coefficient Monin-Obukhov (Option 1) Monin and Obukhov (1954) 

Radiation transfer Modified two-stream scheme 
(Option 1) 

Niu and Yang (2004) 

Note: Cold-season related processes and options (e.g., snow fall, accumulation and depth) are not included here. 592 
593 
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Figures 594 

 595 

Figure 1: Niger inner delta geographic location and data availability. Circles indicate locations 596 

where radar and laser altimeter orbits transect the Niger River (I1-I8 and H1-H4 stand for ICESat 597 

and Hydrosat datasets, respectively) and the red triangle shows the gauging station where daily 598 

streamflow data is available for evaluation. Black triangles indicate where daily inflows were used 599 

as boundary conditions for modeling experiments. The flood occurrence map is derived from 250-600 

meter MODIS observations over the 2002-2018 period. Monthly climatologies of streamflow 601 

observations at Ké Mecina and Diré stations are also illustrated.  602 
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 603 

Figure 2: NASA’s Land Information System (LIS) model coupling schematic. One and two-way 604 

coupling between HyMAP and LSMs use standardized software tools and paradigms enabled by 605 

the Earth System Modeling Framework.  606 
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 607 

Figure 3: Niger inner delta flooded fraction averaged over 2002-2018 wet seasons (April-June) 608 

(a) estimated from MODIS observations, derived from (b) one-way and (c) two-way coupled land 609 

surface-flood modeling experiments, (d) their monthly climatology. Panels (e) and (f) show 610 

differences between wet-season long-term averaged model simulations and satellite estimates, and 611 

(g) the annual wet-season water extent averages and trends. To facilitate the spatial comparison, 612 

the 250-meter MODIS data was upscaled to a 0.02º flooded fraction map. 613 
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 614 
Figure 4: Normalized improved coefficients (NIC) of (a) Nash-Sutcliffe, (b) correlation and (c) 615 

variability ratio for unbiased river water elevations derived from one-way and two-way coupled 616 

land surface-flood modeling experiments. Metrics are defined in Eqs. (6)-(8) and computed for 617 

variable time periods within 2002-2018, as a function of data availability at each location.  618 
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 619 

Figure 5: Spatially distributed evapotranspiration rates [mm/day] derived from (a) ALEXI, (b) 620 

GLEAM, (c) FLUXCOM, (d) one-way coupling experiment (1-WAY) and (e) two-way coupling 621 

experiment (2-WAY). Rates are averages over 2002-2015. 622 

  623 
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 624 

Figure 6: Modeled and satellite-based total evapotranspiration (ET) time series over flooding 625 

zones for the 2002-2015 period, where all datasets overlap. Simulations are derived from one-way 626 

and two-way coupled land surface-flood modeling experiments. Obs stands for the mean of 627 

ALEXI, GLEAMv3.3a and FLUXCOM satellite-based ET products. The following metrics are 628 

provided for each modeling experiment: bias, correlation (r), variability ratio (g) and Nash-629 

Sutcliffe (NS) coefficient.  630 
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 631 

Figure 7: Panels on the left show impacts of two-way coupling over the Niger inner delta on 632 

spatially distributed (a) soil moisture, (b) surface temperature and (c) surface water storage. 633 

Impacts are defined here as the long-term difference between two-way and one-way coupling 634 

experiments, i.e., 2-WAY - 1-WAY. Panels on the right show monthly climatologies of 635 

corresponding spatially-averaged variables over flooding zones.  636 

  637 
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 638 

Figure 8: Simulated and observed streamflow time series at Diré gauging station over the 2002-639 

2012 period. Simulations are derived from one-way and two-way coupled land surface-flood 640 

modeling experiments. Selected metrics are provided for each modeling experiment: bias, delay 641 

index (DI), variability ratio (g) and Nash-Sutcliffe (NS) coefficient.  642 
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