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Abstract

It remains difficult to disentangle the relative influences of aerosols and greenhouse gases on regional surface temperature trends

in the context of global climate change. To address this issue, we use a new collection of initial-condition large ensembles

from the Community Earth System Model version 1 that are prescribed with different combinations of industrial aerosol and

greenhouse gas forcing. To compare the climate response to these external forcings, we adopt an artificial neural network

(ANN) architecture from previous work that predicts the year by training on maps of near-surface temperature. We then

utilize layer-wise relevance propagation (LRP) to visualize the regional temperature signals that are important for the ANN’s

prediction in each climate model experiment. To mask noise when extracting only the most robust climate patterns from LRP,

we introduce a simple uncertainty metric that can be adopted to other explainable artificial intelligence (AI) problems. We

find that the North Atlantic, Southern Ocean, and Southeast Asia are key regions of importance for the neural network to

make its prediction, especially prior to the early-21st century. Notably, we also find that the ANN predictions based on maps

of observations correlate higher to the actual year after training on the large ensemble experiment with industrial aerosols

held fixed to 1920 levels. This work illustrates the sensitivity of regional temperature signals to changes in aerosol forcing in

historical simulations. By using explainable AI methods, we have the opportunity to improve our understanding of (non)linear

combinations of anthropogenic forcings in state-of-the-art global climate models.
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Key Points:5

• Using explainable AI methods with artificial neural networks (ANN) reveals cli-6

mate patterns in large ensemble simulations7

• Predictions from an ANN trained using a large ensemble without time-evolving8
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Abstract12

It remains difficult to disentangle the relative influences of aerosols and greenhouse gases13

on regional surface temperature trends in the context of global climate change. To ad-14

dress this issue, we use a new collection of initial-condition large ensembles from the Com-15

munity Earth System Model version 1 that are prescribed with different combinations16

of industrial aerosol and greenhouse gas forcing. To compare the climate response to these17

external forcings, we adopt an artificial neural network (ANN) architecture from previ-18

ous work that predicts the year by training on maps of near-surface temperature. We19

then utilize layer-wise relevance propagation (LRP) to visualize the regional tempera-20

ture signals that are important for the ANN’s prediction in each climate model exper-21

iment. To mask noise when extracting only the most robust climate patterns from LRP,22

we introduce a simple uncertainty metric that can be adopted to other explainable ar-23

tificial intelligence (AI) problems. We find that the North Atlantic, Southern Ocean, and24

Southeast Asia are key regions of importance for the neural network to make its predic-25

tion, especially prior to the early-21st century. Notably, we also find that the ANN pre-26

dictions based on maps of observations correlate higher to the actual year after train-27

ing on the large ensemble experiment with industrial aerosols held fixed to 1920 levels.28

This work illustrates the sensitivity of regional temperature signals to changes in aerosol29

forcing in historical simulations. By using explainable AI methods, we have the oppor-30

tunity to improve our understanding of (non)linear combinations of anthropogenic forc-31

ings in state-of-the-art global climate models.32

Plain Language Summary33

Using a machine learning method called artificial neural networks, we explore how34

human-caused climate drivers can affect regional patterns of surface temperature. Here35

we use a climate model with different combinations of greenhouse gases and industrial36

aerosols (particles in the atmosphere) to understand their influence on climate change37

and variability. By employing visualization tools to see how the artificial neural network38

makes its predictions, we can better recognize how these climate drivers influence global39

temperature in the past, present, and future. For instance, we find that aerosols emit-40

ted in the 20th century and early 21st century have influenced global warming temper-41

ature trends in some areas of the world, such as over the North Atlantic Ocean. Machine42

learning accompanied by new visualization methods have the potential to bring new in-43
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sights into understanding the effects of global climate change in observations and mod-44

els.45

1 Introductions46

Separating human-induced climate forcing from internal variability remains a key47

challenge for attributing and communicating the impacts of global climate change on re-48

gional scales. While state-of-the-art global climate models (GCMs) include anthropogenic49

(e.g., greenhouse gases and aerosols) and natural (e.g., volcanoes) radiative forcings, it50

remains difficult to understand their combined interactions and associated effects on cli-51

mate variability (Stocker et al., 2013). The chaotic noise of the atmosphere (internal vari-52

ability) also gives rise to additional uncertainties on seasonal to multi-decadal timescales53

(Deser et al., 2012; Kay et al., 2015). Moreover, it still is difficult to constrain and re-54

duce the uncertainty in Earth’s equilibrium climate sensitivity over the historical period55

(Sherwood et al., 2020). The complex interactions between internal and external climate56

forcings make it challenging to interpret the physical mechanisms driving regional and57

even global-scale temperature variability (Stott et al., 2006; Knutti et al., 2010; Maher58

et al., 2014; D. M. Smith et al., 2016; Medhaug et al., 2017; Haustein et al., 2019; Mankin59

et al., 2020).60

While greenhouse gas forcing dominates the overall climate change signal (net warm-61

ing), an abundance of anthropogenic aerosols can also influence Earth’s surface temper-62

ature (net cooling) by scattering or absorbing incoming solar radiation (Bellouin et al.,63

2020). Further, recent studies have found an influence of anthropogenic aerosols on tro-64

pospheric temperatures (e.g., Santer et al., 2019; Mitchell et al., 2020), oceanic internal65

variability (e.g., Haustein et al., 2019; Dagan et al., 2020; Meehl, Hu, et al., 2020; Qin66

et al., 2020), the hydrologic cycle (e.g., Marvel et al., 2019; Bonfils et al., 2020), and the67

large-scale atmospheric circulation (e.g., Allen & Sherwood, 2011; Wang et al., 2020).68

Meanwhile, less attention has been given to comparing regional climate trends to indi-69

vidual anthropogenic external forcings relative to the influence of internal variability (see70

examples by Polvani et al., 2011; Santer et al., 2019; Bonfils et al., 2020; Chemke et al.,71

2020; Deser, Phillips, et al., 2020). For instance, after using an initial-condition large en-72

semble, Oudar et al. (2018) found a larger role for internal variability than suggested by73

earlier Coupled Model Intercomparison Project Phase 5 (CMIP5) studies (e.g., D. M. Smith74
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et al., 2016) when attributing the impact of anthropogenic aerosols to the global mean75

surface temperature trend in the early 21st century.76

In addition to the influence of internal variability, the effective radiative forcing from77

anthropogenic aerosol emissions also remains uncertain over the historical period (Booth78

et al., 2018; Bellouin et al., 2020; Thorsen et al., 2020). In a novel experiment design,79

Dittus et al. (2020) assessed the sensitivity of a climate model to a plausible range of his-80

torical aerosol forcings. They found better agreement between the observed global mean81

surface temperature record and an experiment with smaller net aerosol forcing than the82

standard configuration of the GCM. Consequently, this suggests that temperature sig-83

nals may be highly sensitive to small changes in aerosols, even when the aerosol forcing84

in GCMs is constrained to fall within observational estimates (Dittus et al., 2020). This85

also could be one explanation for the higher climate sensitivities found in CMIP6 mod-86

els (Flynn & Mauritsen, 2020; Meehl, Senior, et al., 2020).87

Recent advances in computational power have led to the development of a grow-88

ing number of initial-condition large ensembles for assessing climate change and variabil-89

ity (Deser, Lehner, et al., 2020; Deser, 2020). Within a single large ensemble GCM sim-90

ulation, one can obtain the forced response (i.e., climate signal) by averaging across in-91

dividual ensemble members that differ by only a small random perturbation error. Thus,92

if the model is correct, observations of the real world should fall within the ensemble spread93

in order to reflect both a common forced signal (climate change) and the unpredictable94

noise of the atmosphere. In other words, the statistical characteristics of internal vari-95

ability should be similar between the real world and the individual model ensemble mem-96

bers. However, although numerous statistical methods have been proposed to further ex-97

tract the forced response from internal variability (e.g., Hegerl et al., 1996; Deser et al.,98

2016; Barnes et al., 2019; Santer et al., 2019; Sippel et al., 2019; Barnes et al., 2020; Sip-99

pel et al., 2020; Wills, Battisti, et al., 2020), the problem of climate pattern attribution100

still remains difficult (Wills, Sippel, & Barnes, 2020).101

To improve our understanding of the forced signals from individual anthropogenic102

climate drivers amidst the noise of internal variability, we implement a method of ex-103

plainable artificial intelligence (XAI) using data from a novel set of single-forcing large104

ensemble experiments. The adoption of machine learning applications for geoscience is-105

sues continues to rapidly grow (Ebert-Uphoff et al., 2019; McGovern et al., 2019; Rasu106
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et al., 2019; Boukabara et al., 2020; Toms et al., 2020; Watson-Parris, 2020), especially107

due to an increasing number of XAI methods (Samek et al., 2017; Montavon et al., 2018;108

Samek et al., 2020). Recently, machine learning models have been used for diverse ap-109

plications in mesoscale meteorology (e.g., Gagne et al., 2019; Lagerquist et al., 2020),110

numerical weather prediction (e.g., Rasp et al., 2020; Weyn et al., 2020), simulating cloud111

and radiation processes in GCMs (e.g., Rasp et al., 2018), turbulence and convection pa-112

rameterizations (e.g., Beucler et al., 2019; Zanna & Bolton, 2020), attribution of global113

climate change (e.g., Barnes et al., 2019; Mansfield et al., 2020; Sippel et al., 2020), and114

reconstructions of historical temperature trends (Kadow et al., 2020). To explore how115

machine learning models are making their predictions, we focus on using XAI techniques116

in order to gain new scientific insights for climate science.117

In this study, we use artificial neural networks (ANN) in association with an ex-118

plainability method called layer-wise relevance propagation (LRP) on data from climate119

model simulations. By comparing the LRP results between ANNs, we compare climate120

patterns that are related to different combinations of external forcings, namely, green-121

house gases and industrial aerosols. Finally, we assess the utility of the ANNs by eval-122

uating them on real world observations and introduce a metric to mask noise in assess-123

ing the LRP visualizations.124

2 Data and Methods125

2.1 Climate Model Simulations126

For all climate model data, we use large ensemble simulations performed by the Com-127

munity Earth System Model version 1 (CESM1; Hurrell et al., 2013) covering 1920 to128

2080. CESM1 is a fully coupled GCM and is run with 30 vertical levels and a horizon-129

tal resolution of 1◦. The atmospheric model is the Community Atmosphere Model ver-130

sion 5 (CAM5; Neale et al., 2012), which is coupled to interactive land, ocean, and sea131

ice components.132

Here, we first analyze the widely-used 40-member large ensemble as described in133

Kay et al. (2015), which we refer to as “ALL” (for all-forcing). The large number of en-134

semble members is useful for characterizing atmospheric internal variability (or noise)135

in the climate system (Maher et al., 2019; Deser, Lehner, et al., 2020). Each of the en-136

semble members have the same external forcing, but are generated from a small random137
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round-off difference in the atmospheric initial conditions. Historical forcing is imposed138

from 1920 to 2005, and thereafter Representative Concentration Pathway 8.5 (RCP8.5;139

Vuuren et al., 2011) is used to simulate a worst-case climate scenario through the end140

of the 21st century (Peters & Hausfather, 2020). Land use/land cover changes, biomass141

burning, and stratospheric ozone concentrations also evolve with time in the ALL sim-142

ulation. Although large uncertainties exist, CESM1’s total aerosol effective radiative forc-143

ing falls within one standard deviation of observational evidence (Zelinka et al., 2014;144

Bellouin et al., 2020; Deser, Phillips, et al., 2020). We will return to this last point later145

in the study.146

In addition, we also use a set of two new single-forcing simulations from CESM1147

that are both run with 20 ensemble members (Deser, Phillips, et al., 2020). These large148

ensembles have the same GCM, initialization protocol, and external forcing as ALL, but149

differ by one time-evolving forcing agent that is withheld per simulation. In particular,150

greenhouse gas concentrations are held fixed to 1920 levels in one experiment (AER+),151

and industrial aerosols are held fixed to 1920 levels in another (GHG+). While our no-152

tation in this study reflects the dominant external forcing agent per simulation (either153

greenhouse gases (GHG) or industrial aerosols (AER)), we do note that there are other154

important climate feedbacks and natural variability included in each experiment (hence,155

the “+” sign) that may contribute to our interpretation of the ANN results (e.g., Luys-156

saert et al., 2014; Hawkins et al., 2017; Deng et al., 2020; Lehner et al., 2020; Maher et157

al., 2020; Milinski et al., 2020). Since we only focus on one GCM (CESM1) with histor-158

ical and RCP8.5 forcing, differences between the simulations cannot be due to emission159

scenario uncertainties or model structural uncertainties that would arise from using, for160

instance, CMIP5/6 (Hawkins & Sutton, 2009; Knutti & Sedlacek, 2013; Lehner et al.,161

2020).162

After taking into account the smaller ensemble size of the single-forcing runs, we163

only consider the first 20 members of ALL. However, this does not affect the skill of the164

ANN for training and testing data (not shown). We apply a bilinear interpolation to the165

three sets of large ensembles so that they share a slightly coarser latitude by longitude166

global grid (1.9◦ x 2.5◦). We only consider fields of monthly near-surface air tempera-167

ture (TREFHT; ◦C) to calculate seasonal and annuals means from model output. An168

overview of the climate model simulations used in this study can be found in Table S1.169
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2.2 Observations170

To understand the effect of training on climate model simulations with different171

external forcing, we test the ANN on observations using the new National Oceanic and172

Atmospheric Administration/Cooperative Institute for Research in Environmental Sci-173

ences/Department of Energy (NOAA-CIRES-DOE) Twentieth Century Reanalysis (20CR)174

version 3 (20CRv3; also referred to here as ‘observations’) (Slivinski et al., 2019). Up-175

dates to 20CRv3 include an 80-member ensemble size for confidence estimation, a four-176

dimensional incremental analysis data assimilation scheme (4DIAU), and a higher res-177

olution (T254) core model (described in Slivinski et al., 2019). These improvements lead178

to a reduction in biases of near-surface temperature, sea surface temperature, and sea179

level pressure compared to older versions of 20CR, especially in the early to mid-20th180

century (Compo et al., 2011; Giese et al., 2016). Further, 20CRv3 was found to be in181

close agreement with other independently derived reanalysis data sets, including the Eu-182

ropean Centre for Medium-Range Weather Forecasts (ECMWF) ERA-20C and CERA-183

20C (Slivinski et al., 2019, 2020).184

We analyze monthly fields of 2-m air temperatures (◦C) from 20CRv3 after inter-185

polating (bilinear) onto a common grid of 1.9◦ latitude by 2.5◦ longitude for consistency186

with the climate model simulations. 20CRv3 was selected for our analysis due to its tem-187

porally and spatially complete fields of 2-m temperature that are available globally from188

1920 to 2015. Similar results were also obtained from the ANN after evaluating on the189

ECMWF ERA5 reanalysis (Hersbach et al., 2020) for the more recent 1979 to 2019 pe-190

riod. However, in this study, we focus our attention on 20CRv3 for consistency with the191

historical climate model output. A summary of the observations can be found in Table192

S2.193

2.3 Neural Network Framework194

In this analysis, we adopt a neural network architecture that was first introduced195

in Barnes et al. (2020) and is further illustrated here in Figure 1. We compare the im-196

pact of time-evolving greenhouse gases and industrial aerosols on a classification task of197

predicting the decade (year) from input maps of temperature. Each unit of the ANN in-198

put layer represents one grid point from a 2-m temperature map (13824 units per map199
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with dimensions of 96 latitudes by 144 longitudes), and our output layer represents the200

probabilities of a particular decade class (e.g., 2000-2009).201

Our ANN is set up with two hidden layers that each contain 20 hidden units (rel-202

atively shallow). We find that increasing the number of layers does not improve the skill203

of the model (Figure S1), and this architecture supports the interpretability of the fully204

connected neural network for scientific discovery. In particular, we apply the Rectified205

Linear Unit (ReLU; Agarap, 2018) activation function to all hidden layer nodes before206

the output layer, which is defined as f(x) = max(0, x). ReLU is well equipped for use207

in LRP visualization, since it tests whether individual neurons have been activated (Toms208

et al., 2020). We also apply a soft-max function to the output layer, which remaps the209

decadal class probabilities so that they add up to one. Both ReLU and soft-max func-210

tions are common in ANN classification problems such as ours (e.g., Lecun et al., 2015;211

Goodfellow et al., 2016; Samek et al., 2020).212

To retrieve the predicted year (output) by the ANN from the maps of 2-m tem-213

perature (input), we use a method called fuzzy classification encoding and decoding (Zadeh,214

1965; Amo et al., 2004). This occurs during the ANN’s output layer (see Barnes et al.215

(2020)). From this approach, each decade is identified by its central year (e.g., 2005 for216

2000 to 2009). The ANN is then designed to assign an input map to the probability of217

it falling under a particular decade class (encode). Finally, fuzzy classification determines218

the particular year by computing the weighted sum of the decadal class probabilities (de-219

code). For instance, the year 2008 would be encoded with the probability of 0.7 of be-220

longing to class center 2005 (for 2000 to 2009) and 0.3 of belonging to class center 2015221

(for 2010 to 2019). Thus, we can compute the exact year as follows: 0.7 ·2005 + 0.3 ·222

2015 = 2008. Additional examples are depicted in Figure 2 of Barnes et al. (2020). Given223

our approach using both LRP and fuzzy classification, we do not explore the more typ-224

ical method of multiple linear regression in this work. However, that approach has been225

explored in Barnes et al. (2019, 2020) for CMIP temperature and precipitation data.226

Before the maps are fed into the ANN, all training data are standardized by their227

standard deviation across all ensemble members and years at each grid point. Each ANN228

is then trained using a randomly selected subset of 80% of the climate model simulation229

data (16 ensemble members) and tested on the remaining 20% (4 ensemble members).230

During training, our loss function uses binary cross-entropy/log loss, which acts to pe-231
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Figure 1. Schematic of the artificial neural network (ANN) used in this study for predict-

ing the decade/year from global maps of 2-m air temperature (input layer). The shallow ANN

features two hidden layers that both contain 20 hidden units. The output layer uses fuzzy classi-

fication (Zadeh, 1965) to assign each prediction year to the probability of it occurring in a single

decade (e.g., within 2000-2009) (Barnes et al., 2020). An example heatmap using layer-wise rel-

evance propagation (LRP; Bach et al., 2015) is also illustrated here. LRP highlights the regions

of greater relevance for the ANN to predict the year by propagating an output sample backward

through the frozen nodes of the ANN until it reaches the input layer (Toms et al., 2020).
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nalize the ANN when the prediction is wrong, but the model confidence is still high. The232

ANN are trained using the Nesterov method (momentum = 0.9) for stochastic gradient233

descent (SGD; Ruder, 2016) for 500 epochs. While the interpretability results are not234

sensitive to our selection in hyperparameters, we set our learning rate to 0.01 and a batch235

size to 32 for each ANN used to generate the following figures.236

To overcome the problem of overfitting the input data, we use L2 ridge regulariza-237

tion (Friedman, 2012). The L2 parameter is set to 0.01 and applied to the weights of the238

first hidden layer. L2 regularization imposes a penalty on the model by adding a coef-239

ficient to the loss function that is proportional to the sum of the squares of the feature240

weights. Thus, L2 regularization leads to weights that are more smoothly distributed across241

the model and are not as sensitive to outliers in the input data. Importantly, and in re-242

lation to standard climate science tools, the inclusion of this parameter accounts for spa-243

tial autocorrelation that can exist in the 2-m temperature fields. L2 also improves the244

interpretation of the LRP heatmaps for identifying key regions that are relevant for the245

ANN to make its prediction (e.g., see Figure 3 in Barnes et al., 2020).246

2.4 Layer-wise Relevance Propagation247

The motivation for this work is to reveal the underlying climate patterns that are248

learned by the ANN from climate model simulations with different combinations of ex-249

ternal forcing. As we will show, using XAI tools alongside existing climate science meth-250

ods have the potential to bring new insights for interpreting projections of climate change251

in GCMs.252

For this work, we use an interpretation method called LRP (Bach et al., 2015; Mon-253

tavon et al., 2018) for tracing the decisions determined by the ANN. While there are an254

increasing number of LRP routines, we use a form here (alpha-beta rule) that works well255

for ReLU networks and is related to Taylor series expansion (Montavon et al., 2017). By256

propagating information backward until the first layer of the ANN is reached, we learn257

about the individual input units (features) that are “relevant” to make the ANN’s pre-258

diction.259

While a detailed overview of using LRP in the geosciences in provided in Toms et260

al. (2020), we briefly describe the method here: (1) the weights and biases of the ANN261

are frozen after training, (2) a single prediction output (prior to the soft-max function)262
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is conserved and propagated backward through each node of the ANN based on the frozen263

weights and biases, (3) the feature relevance is learned until the propagation reaches the264

input layer, and (4) the final output of LRP retains the original dimensions of the in-265

put data by showing the relevance for each pixel (i.e., gridded latitude by longitude points266

on a map). This process is repeated for every sample. Hence, we are left with a spatial267

heatmap (unitless) showing the regions of importance for the ANN to determine the decade268

(see Figure 1).269

In this study, our heatmaps are composites of both training and testing sample data,270

because we are interested in where the ANN is learning regional indicators to make all271

predictions. However, our LRP results are nearly the same when only using a compos-272

ite of testing data (e.g., Figure S13). Since our output layer can return multiple prob-273

abilities of a 2-m temperature map occurring in a particular decade (fuzzy classification274

encoding and decoding), we only propagate the output value with the highest probabil-275

ity of belonging to a particular decade. Again, LRP can only propagate one single out-276

put node backwards at a time. However, previous work has found that this does not af-277

fect the interpretation of the LRP output (Barnes et al., 2020). One final note about our278

use of LRP is that it returns information that positively contributes to the ANN’s pre-279

dicted likelihood (i.e., increases confidence in the prediction). Other XAI methods ex-280

plore ways to interpret contributions that lead to less confident predictions (e.g., Botari281

et al., 2020), but that is beyond the scope of this analysis. To interpret the heatmap fig-282

ures in this study, the higher relevance values indicate greater importance for the ANN’s283

prediction. Lastly, we introduce a method to mask noise (i.e., relevance) in the LRP out-284

put (Section 3.2).285

3 Results286

3.1 Response to External Forcing287

3.1.1 Evolution of simulated and observed trends288

We first evaluate the three large ensemble experiments (AER+, GHG+, ALL) us-289

ing more traditional climate science methods (i.e., trend analysis, signal-to-noise ratios,290

and timing of emergence) to understand the spatial patterns of the 2-m temperature re-291

sponse. Figure 2 shows annual maps of temperature trends over four separate 40-year292

periods for the ensemble mean of each experiment. In the historical period, there is an293
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observed cooling for AER+ (time-evolving aerosols; constant greenhouse gases) for all294

continental regions and most of the world’s oceans (Figures 2a-2b). However, there is295

a notable statistically significant region of warming over parts of the North Atlantic and296

Southern Ocean (Figure 2b). These areas of warming may be connected to a strength-297

ened Atlantic Meridional Overturning Circulation (AMOC) (Dagan et al., 2020; Keil et298

al., 2020; Menary et al., 2020). The global signature of cooling prior to 2000 is associ-299

ated with an increase in industrial aerosol emissions. Trends in aerosol optical depth are300

driven by an increase in emissions over Southeast Asia, North America, and Europe in301

the first half of the 20th century (see Figure 2 in Deser, Phillips, et al., 2020). However,302

a decrease in aerosol optical depth is observed in North America and Europe closer to303

present-day with the largest aerosol forcing remaining over Southeast Asia. As indus-304

trial aerosols are reduced over the 21st century, there is a net warming trend globally305

in AER+ through 2080 (Figure 2c-2d). Notably, the temperature trend in the North At-306

lantic reverses and resembles the “North Atlantic Warming Hole.” In agreement with307

earlier studies (e.g., Dagan et al., 2020), this suggests an important role for aerosols in308

North Atlantic climate variability. Figure 2e-2h reveals the global warming signature due309

to the dominant greenhouse gas forcing in GHG+ (time-evolving greenhouse gases; con-310

stant aerosols), along with a cooling patch in the North Atlantic. Relative to GHG+,311

statistically significant warming trends emerge later in ALL (Figure 2i), which is due to312

its greater aerosol forcing prior to 1960 (net cooling effect). As trends in optical aerosol313

depth decrease by 2040, there are larger global temperature trends in ALL (Figure 2l)314

compared to GHG+ (Figure 2h).315

We compare the simulated temperature trends with observations by showing the316

observed (using 20CRv3) 2-m temperature trend (annual mean) for two 40-year peri-317

ods in Figure S3. However, the observations only reflect one possible realization of in-318

ternal variability combined with the forced response. Therefore, they are not directly com-319

parable with the ensemble mean trends presented in Figure 2. Regardless, we still find320

some common temperature signatures emerge. By the second half of the 20th century321

(Figure S3b), we find statistically significant warming across the majority of the trop-322

ics and parts of North America. We also find the cooling trend over the North Atlantic323

detectable in observations for the 1960 to 1999 period.324

To understand the patterns of forced climate signals, we compute signal-to-noise325

(SNR) maps in Figure S4. Here, the SNR is computed as the absolute ensemble mean326
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Figure 2. Annual linear least squares trends of 2-m temperature (◦C per decade) over 1920

to 1959 (a,e,i), 1960 to 1999 (b,f,j), 2000 to 2039 (c,g,k), and 2040 to 2079 (d,h,l) for the ensem-

ble means of three climate model simulations (AER+; a-d, GHG+; e-h, ALL; i-l). Statistically

significant trends are shown with shaded contours at the 95% confidence level following the

Mann-Kendall (MK) test (Mann, 1945; Bevan & Kendall, 1971), while those that are not are

masked out using black hatch marks.
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trend divided by the standard deviation of the individual ensemble member trends for327

each 40-year period. We observe the highest SNR in the tropics, which is a result of the328

smaller internal variability in this region. High values of SNR (> 3) emerge as early as329

the 1920 to 1959 period in GHG+ from the Amazon to the Indian Ocean (Figure 4e),330

but do not appear until the later half of the 20th century in ALL (Figure S4j-S4k). SNR331

values are also high in the tropics for the AER+ simulation, but there is little to no forced332

response (SNR < 1) in the extratropics and polar regions (Figure S4a-S4d). This is likely333

a result of the small temperature trends in AER+ (compared to GHG+ and ALL), which334

make up a small fraction of internal variability at higher latitudes. While the global warm-335

ing signal overwhelms internal variability in GHG+ and ALL beginning in the 2000 to336

2039 period, SNR values remain lower (∼1-2) in the subpolar Atlantic.337

The effect of aerosols has a consequential role in identifying patterns and the tem-338

poral evolution of forced climate signals. Figure S5 shows the timing of emergence (ToE)339

of annual mean temperature for each large ensemble simulation. Following Lehner et al.340

(2017), the maps of ToE are computed as the first year that the 10-year running-mean341

temperature exceeds and stays above the mean 1920-1949 reference temperature by more342

than two standard deviations. ToE is computed for every grid point in each ensemble343

member before taking the ensemble mean. While there are numerous definitions and met-344

rics for detecting ToE (Mahlstein et al., 2012), here we are interested in a baseline to com-345

pare with our interpretable ANNs. Consistent with the SNR maps, we find that ToE is346

delayed by nearly a decade in ALL (Figure S5c) compared to GHG+ (Figure S5b) due347

to the effect of aerosol masking. This is particularly found across parts of Southern Asia.348

The North Atlantic does not emerge in GHG+ and ALL until at least the mid-21st cen-349

tury. Although ToE is found to be later in AER+ (Figure S5a), this is only a result of350

reduced aerosol optical depth in the 21st century, since there is no time-evolving green-351

house gas forcing in the simulation.352

In summary, increases in industrial aerosol loading (e.g., prior to 1960) can mask353

the ToE of greenhouse gas-induced warming, particularly in the extratropics. Therefore,354

to further compare the patterns of responses that are driven by anthropogenic climate355

drivers, we now turn to our interpretable ANN architecture. One advantage to using our356

ANN is that we can address potential nonlinearities in regional patterns that evolve over357

time, which would not be captured in the standard methods of trend and SNR/ToE anal-358

ysis that are conducted grid point by grid point.359
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Figure 3. (a) Predictions of the year by the ANN (y-axis) compared to the actual year (x-

axis) from global maps of annual 2-m temperature in AER+. (b) Same as (a) but for GHG+.

(c) Same as (a) but for ALL. The blue shading highlights the 5th-95th percentiles of predictions

from the large ensemble testing data. The red points show the ANN predictions using 20CRv3

observations. The red dashed line shows the linear least squares fit through the predicted obser-

vations in each model, and the associated R2 is shown in the lower right-hand corner. The 1:1

line (or perfect prediction) is overlaid in black.

3.1.2 Predictions by the ANN360

Figure 3 shows the predictions by the ANN after separately training and testing361

on each of the three large ensemble experiments. Here, we use fuzzy classification de-362

coding to show how well the ANN can predict the year from the input maps of 2-m tem-363

perature. It is clear that the ANN closely predicts the year on the climate model data364

(blue shading), especially after 1980 (Figure S1-S2). We also note that the ANN predicts365

the correct year similarly as well in AER+ compared to ALL for testing (Figure S1a,g),366

despite the fact that there is no time-evolving greenhouse gas forcing and consequently367

smaller global mean temperature trends.368

To assess the utility of our ANNs that are trained only on climate model data, we369

test their performance on observations by inputing 2-m temperature maps from 20CRv3.370

By testing on observational data, we find striking differences between the ANN predic-371

tions. The ANN has no skill in predicting the year for observations after training on AER+372

(Figure 3a). Since the real world features a large greenhouse gas-induced warming sig-373

nal, the ANN does not learn regional indicators that are in common with observations.374

For the ANN trained on ALL, there is an improvement for predicting the order of the375
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years after 1980 (Figure 3c). Considering that a forced temperature response has not clearly376

emerged from the background noise (see Figure S4i-S4j), we infer that this is why the377

ANN is less able to predict the correct ordering of the years before 1980.378

In contrast, the ANN performs quite well after training on GHG+ for predicting379

the order of all of the years in observations (Figure 3b). Since the real world does con-380

sist of both direct and indirect effects of greenhouse gases and aerosols, it is somewhat381

surprising to see that the ANN trained on GHG+ has a higher correlation to the actual382

year than for the predictions trained on ALL (Figure 4a). In fact, the observations ap-383

proximately parallel the 1:1 line in GHG+, but are offset by about four decades. This384

means that the patterns of forced responses are similar, but may emerge later in the cli-385

mate model data compared to observations. This offset could also arise from a differ-386

ence in Earth’s mean temperature that is common between climate models and reanal-387

ysis data sets (Hawkins & Sutton, 2016). Therefore, we compare our results in Figure388

3 to ANNs trained using input data with the global mean temperature removed from389

each map (Figure S6). While the correlation is weaker, the overall results of the obser-390

vations are quite similar. The ANN is still more skillful in predicting the order of the391

years for observations on the ANN trained using GHG+. This evidence suggests that392

the ANN is learning regional temperature signals and not just differences in the global393

mean temperature to make its predictions, as discussed further in Section 3.3.394

We investigate the robustness of our observational predictions in Figure 3 by us-395

ing 100 unique ANNs trained on different combinations of training and testing data sets396

(i.e., individual ensemble members) for six different L2 and epoch hyperparameter choices.397

Since L2 regularization imposes a degree of spatial autocorrelation in the weights, we wanted398

to see if the skill of the observational predictions could change by using different param-399

eters for each large ensemble ANN. We then test our observational data on each of these400

100 iterations of every ANN architecture and plot a histogram of their correlation be-401

tween the ANN-predicted year and the actual year. Our conclusions remain the same402

as Figure 3. We find that the median correlation is closer to 1 for GHG+ in the six ANN403

architectures evaluated here. Figure S7 also shows a comparison between the best cor-404

relations in GHG+ and ALL, which again confirms that the median correlation in GHG+405

is higher than the ALL.406
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Figure 4. Histograms of the correlation between the actual years and the ANN-predicted

years from 20CRv3 observations after considering 100 different combinations of training and test-

ing data for each of the AER+ (blue), GHG+ (brown), and ALL (red) ANNs using six different

combinations of epochs and L2 regularization parameters (a-f; listed in the upper-left corner).

The results from the ANN architecture used throughout the rest of the study are shown in (a).
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Proceeding with the L2 and epoch parameters outlined earlier (e.g., Figure 4a), we407

also plot a histogram of the predicted (linear) slopes for our observational data in Fig-408

ure S8. In agreement with our single trained ANNs in Figure 3, we find that the obser-409

vations tested on the ANN using GHG+ performs the closest to the 1:1 (or perfect pre-410

diction) line with little variability between each iteration. Once again, there is no skill411

in predicting the year of the observations for the ANN trained on the AER+ simulation.412

In ALL, the median slope is greater than the 1:1 line likely due to the fact that a forced413

temperature signal does not emerge until after the middle of the 20th century.414

While the results in Figures 3 and 4 show predictions based on maps of annual mean415

2-m temperature, we also investigate differences by calculating seasonal means before416

training and testing the ANN. Figure S9 show the results of predicting the year for bo-417

real winter (January-February-March; JFM) and boreal summer (July-August-September;418

JAS) in the ANNs using GHG+ and ALL, respectively. Once more, we find that the cor-419

relation of the predicted year of observations is higher for the ANN trained on GHG+.420

Notably, we also find a higher correlation for observations in JAS relative to JFM for421

both GHG+ and ALL trained ANNs. This may be a result of greater internal variabil-422

ity of 2-m temperatures in the Northern Hemisphere during JFM. In other words, the423

indicator patterns in common between observations and the climate model data may be424

weaker in boreal winter compared to summer.425

To understand how the ANN is making its predictions, we utilize LRP for evalu-426

ating regional climate patterns of interest. In particular, we investigate why the ANN427

predictions of observations are better correlated to the actual year after training on a428

climate simulation without time-evolving aerosols. As a reminder, the LRP heatmaps429

indicate areas of “relevance” (or importance) for the ANN to make an accurate predic-430

tion. Therefore, greater relevance does not necessarily correspond to the locations of great-431

est climate forcing. Additionally, the locations of higher relevance may change over time.432

3.2 Uncertainty in Layer-wise Relevance Propagation433

The LRP algorithm employed here provides output (relevance) for all grid points434

of every sample (e.g., Figure 1). However, it can be difficult to distinguish physically mean-435

ingful regions of importance to the ANN, especially for identifying known climate sig-436

nals. To limit noise in our LRP maps, we compute a threshold (or statistical significance)437
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using a baseline relevance value. In other words, we determine the maximum feature rel-438

evance that could be expected from an ANN that is trained on random noise. While other439

uncertainty metrics for LRP have been proposed (e.g., Bykov et al., 2020; Fabi & Schnei-440

der, 2020), our simple method can be employed without modifying the existing ANN ar-441

chitecture or LRP algorithm and takes a common approach applied by climate scientists.442

We compute this baseline relevance threshold as follows: (1) we randomly shuffle443

the individual ensemble member and year dimensions of the ALL input data while keep-444

ing the true year fixed (not shuffling), (2) we proceed with training and testing using the445

same ANN architecture and hyperparameters as Section 2.3, (3) each output sample is446

then propagated backward into the ANN to compute the relevance map, (4) we repeat447

steps 1-3 for 500 iterations of the ANN by using unique random initialization seeds and448

taking different combinations of the training and testing data, and (5) finally, we com-449

pute the 95th percentile from the distribution of LRP values at all grid points that are450

obtained from this procedure. Thus, this bootstrapping-like method determines the dis-451

tribution of LRP values that could be expected from climate data with no serial auto-452

correlation or temporal trends from forced signals.453

Figure 5 displays a histogram of this distribution of LRP values after 500 unique454

iterations of the shuffled ANN. We also test our observations (20CRv3) on the ANN trained455

by the shuffled ensemble from steps (1)-(5). As expected, the ANN cannot predict the456

year (median linear slope near 0), since it is unable to learn any forced climate signals457

from the shuffled data. Figure S10 shows a histogram of possible R2 values from the lin-458

ear fit of observations compared to the median R2 of observations trained on either AER+,459

GHG+, or ALL (Section 3.1.2). We also show an example of a LRP map from a single460

iteration of the ANN trained on the shuffled ensemble, which highlights the lack of rel-461

evant regions for the ANN to make a decision on this synthetic data (Figure 5).462

As an additional check of our methodology, we create a “large ensemble” of ran-463

dom numbers drawn from a normal distribution. This large ensemble of random noise464

has the same dimensions as our real data (20 ensembles, 161 years, 96 by 144 spatial grid465

points). After repeating steps (2)-(5), we find that the 95th percentile of the random noise466

LRP is in close agreement with our baseline calculated from Figure 5 (not shown).467
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Figure 5. Histogram of the possible relevance values from LRP after randomly shuffling the

ensemble members and years of the input data using the ALL experiment (see text for details).

The 95th percentile LRP threshold is shown by the dashed vertical red line. The graph inset

shows a LRP composite heatmap for one ANN trained on the shuffled input data and averaged

across all years. Higher LRP values indicate greater relevance for the ANN’s prediction.
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3.3 Regions of Climate Signal468

Figure 6 show the LRP heatmaps for the individual ANN’s trained on AER+, GHG+,469

and ALL input data of annual mean 2-m temperature masked using the method outlined470

in Section 3.2. Our LRP maps are averaged for every prediction sample (ensemble mem-471

ber) that is accurate to within ±2 years of the actual year (Barnes et al., 2020). In Fig-472

ure 6, we show the temporal evolution of relevance for the four periods we have consid-473

ered in this study (e.g., Figure 2). These LRP maps are composites after masking out474

the relevance below our new uncertainty threshold (see Figure 5). To compare the in-475

fluence of our LRP uncertainty metric introduced in Section 3.2, we also show the same476

LRP heatmaps in Figure S11, but without using a mask. Comparing Figure 6 to Fig-477

ure S11, we now see several climate regions of interest (e.g., North Atlantic and South-478

east Asia) that are more clearly distinguishable from the background noise.479

The North Atlantic is a key region of relevance between all three large ensembles,480

but is largest in GHG+ during the 2000 to 2039 period (Figure 6g). The LRP maps also481

reveal Southeast Asia as an important region for the AER+ and ALL neural networks.482

The relevance is largest in Southeast Asia for AER+ during the early 20th (Figure 6a)483

and early 21st centuries (Figure 6c). Again, although the regions of relevance do not di-484

rectly correspond to surface forcing, we infer that the emissions of anthropogenic aerosols485

over Southeast Asia and India are important indicators for the ANN to predict the year486

in the AER+ and ALL large ensembles. We also find that the Southern Ocean is a sig-487

nificant region of relevance for the large ensembles that observe time-evolving greenhouse488

gases (GHG+ and ALL). Notably, this Southern Ocean signal appears along the Antarc-489

tic sea-ice edge. However, in agreement with Barnes et al. (2020), we find that the Arc-490

tic is not a region of importance for predicting the year in any of the large ensemble sim-491

ulations. Despite the effects of Arctic amplification, the lack of relevance to the ANN492

prediction is likely a result of the large atmospheric internal variability in the high lat-493

itudes relative to the tropics (Figure S4).494

To compare the differences in LRP maps between seasonal and annual mean in-495

put data, we show their relevance composites over 1960 to 2039 in Figure 7. This pe-496

riod is selected due to the greater differences in the ToE of forced signals between the497

three large ensembles (Section 3.1.1). For the LRP maps based on the annual mean data498

(Figures 7a,f,k), we observe higher relevance in the North Atlantic for AER+, GHG+,499
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Figure 6. LRP composite heatmaps averaged over 1920 to 1959 (a,e,i), 1960 to 1999 (b,f,j),

2000 to 2039 (c,g,k), and 2040 to 2079 (d,h,l) for the three large ensemble experiments (AER+;

a-d, GHG+; e-h, ALL; i-l). Higher LRP values indicate greater relevance for the ANN’s predic-

tion. Relevance values less than the 95th percentile threshold (see text) have been masked out

(gray shading).
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Figure 7. LRP heatmaps for ANNs trained separately on annual (a,f,k), January-March

(JFM; b,g,l), April-June (AMJ; c,h,m), July-September (JAS; d,i,n), and October-December

(OND; e,j,o) input data of 2-m temperature using the three large ensemble experiments (AER+;

a-e, GHG+; f-j, ALL; k-o). Every LRP map is composited over the 1960 to 2039 period for the

annual data and in each season. Higher LRP values indicate greater relevance for the ANN’s

prediction. Relevance values less than the 95th percentile threshold (see text) have been masked

out (gray shading).

and ALL neural networks. This area of relevance is largest in the ANN trained on GHG+500

and is somewhat consistent between seasons. In agreement with Figure 6, this shows that501

the North Atlantic is a particularly important region for the neural network to predict502

the year. For AER+ and ALL, we observe a relevance hotspot over India and Southeast503

Asia, which is distinct during JFM and OND. This is likely due to the local influence504

of time-evolving aerosols in these climate model simulations, which are absent in the ANN505

trained on GHG+. Although there are some regional and seasonal differences in Figure506

7, the primary climate indicators (“relevance hotspots”) remain similar. Thus, we focus507

on the annual mean input data for the rest of our analysis.508
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As previously discussed (e.g., in Figure 4), we test the robustness of our results by509

running 100 unique iterations of each large ensemble ANN for different combinations of510

training and testing data. Figure S12a-c shows a composite LRP heatmap that is av-511

eraged over all 100 possible iterations of the ANN from 1920 to 2080 compared to a com-512

posite of ANNs using a smaller L2 regularization parameter and larger epoch parame-513

ter (Figure S12d-f). The conclusions remain the same. The regions of greatest relevance514

are consistent with Figure 6 and point to the North Atlantic and portions of Southeast515

Asia (only in AER+ and ALL) as essential to the ANN’s predictions. This highlights516

that the regional signals are robust, even after considering different combinations of in-517

dividual ensemble members and a smaller regularization parameter.518

Figure 8 shows the distribution of relevances from the 100 unique ANN iterations519

for the mean relevance value (1960-2039) in five general regions (Southeast Asia, India,520

North Atlantic, Central Africa, and a portion of the Southern Ocean). The small vari-521

ance in all of the distributions further reinforces the importance of these areas as key cli-522

mate indicator patterns that are learned by our nonlinear ANN. We find weaker rele-523

vance over Southeast Asia (Figure 8a) and India (Figure 8b) for GHG+, which is likely524

a result of its industrial aerosols being held fixed to 1920 levels. Thus, the temperature525

signals in these regions (e.g., absence of local cooling due to aerosols) are not as impor-526

tant for the ANN prediction. In contrast, GHG+ observes the greatest relevance in the527

North Atlantic, while AER+ observes the smallest relevance in this same area (Figure528

8c). Interestingly, the North Atlantic distribution for ALL falls between AER+ and GHG+.529

The relevance signals across Central Africa (Figure 8d) and the Southern Ocean (Fig-530

ure 8e) are mostly consistent between large ensemble simulations. Nevertheless, we note531

that there is a slight tendency for the Southern Ocean to be more important for the ANN532

when there is a larger relative contribution from greenhouse gas forcing (GHG+ and ALL).533

These LRP results highlight the key importance of the North Atlantic and Southeast Asia534

for the ANNs to make their predictions. To further compare their spatial differences of535

relevance, Figure S14 shows the difference in LRP heatmap composites for AER+ mi-536

nus ALL and GHG+ minus ALL. The largest contrasts in LRP are highlighted across537

Southeast Asia, the subpolar Atlantic, and parts of Central Africa.538

Finally, to understand where the ANN focuses its attention when making predic-539

tions on real world data, Figure 9 shows LRP maps for the observations that are input540

into the ANNs. Similar to the previous LRP maps of the climate model training and test-541
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Figure 8. Histograms of mean relevance from LRP over Southeast Asia (a; 10-40◦N and 105-

120◦E), India (b; 15-40◦N and 70-105◦E), the North Atlantic warming hole region (c; 50-60◦N

and 45-20◦W), Central Africa (d; 0-15◦N and 10◦W-45◦E), and a region near the Southern Ocean

(e; 40-66◦S and 5-70◦E) for 100 unique iterations of the AER+ (blue), GHG+ (brown), and ALL

(red) models. Mean LRP values are averaged over each year from 1960 to 2039.

ing data, we find several common relevance regions emerge (e.g., North Atlantic and South-542

east Asia). However, recall that the prediction of the years for observations are strikingly543

different between each large ensemble ANN (Figure 3). In particular, the GHG+ neu-544

ral network is more skillful in predicting the order of the years than by ALL. While there545

is somewhat greater relevance using observations across the North Atlantic and South-546

ern Ocean for the ANN trained on GHG+ (Figure 9c-9d) compared to ALL (Figure 9e-547

9f), the general patterns between the LRP maps are similar. This indicates that the neu-548

ral networks are using different combinations of these regional temperature signals to pre-549

dict the observations. This also suggests that the GHG+ network may be more skillful550

by focusing on greenhouse gas-induced responses that are closer to real world data, rather551

than the temperature patterns which are modulated by industrial aerosol forcing in the552

AER+ and ALL large ensembles. Hence, the LRP maps reveal how industrial aerosols553

can either mask or augment detection of greenhouse gas-induced warming signals on lo-554

cal to regional scales.555

4 Discussion and Conclusions556

Due to complex interactions between internal and external forcings in the climate557

system, it remains difficult to estimate the local and regional influence of human-induced558

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 9. LRP composite heatmaps (annual mean) averaged over 1920 to 1959 (a,c,e) and

1960 to 1999 (b,d,f) for observations (OBS) tested separately on each large ensemble ANN

(AER+; a-b, GHG+; c-d, ALL; e-f). Higher LRP values indicate greater relevance for the ANN’s

prediction. Relevance values less than the 95th percentile threshold (see text) have been masked

out (gray shading).
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climate change on surface air temperatures (Schneider & Held, 2001; Deser et al., 2012;559

McKinnon & Deser, 2018). Our work demonstrates the utility of explainable artificial560

intelligence (XAI) methods for extracting patterns of climate signals due to varying ex-561

ternal forcing, which adds to an existing set of statistical techniques for evaluating signal-562

to-noise in the Earth system (e.g., Wills, Sippel, & Barnes, 2020). By leveraging a XAI563

tool as a novel pattern recognition method, we aim to understand how a nonlinear ar-564

tificial neural network (ANN) makes a prediction by learning regional climate signals.565

We build off of ANN results from Barnes et al. (2019, 2020) by investigating the566

role of different anthropogenic external forcings on temperature patterns relative to the567

influence of atmospheric internal variability. Using climate model data from a new set568

of large ensemble experiments, we compare different combinations of human-induced cli-569

mate drivers (greenhouse gases and industrial aerosols) on forced temperature signals570

over the 20th and 21st centuries. The large number of ensemble members from one fully-571

coupled climate model (CESM1) allow us to disentangle forced changes from internal vari-572

ability. In particular, we use layer-wise relevance propagation (LRP) to investigate how573

the ANN learns regional climate patterns in order to predict the year from inputs of 2-574

m air temperatures. Importantly, LRP allows us to investigate the time-evolving rele-575

vance (from 1920 to 2080) of input features (maps of 2-m temperature) for the ANN to576

make an accurate prediction. We also introduce a simple metric to further extract the577

key relevance regions from the LRP maps. Lastly, we test our nonlinear ANN on obser-578

vations from a new 20th century atmospheric reanalysis data set (20CRv3) in order to579

understand how the effect of different external climate forcings impact the prediction of580

our ANN after testing on real world data.581

While efforts are underway to constrain observational uncertainties for the effec-582

tive radiative forcing of aerosols (e.g., Yoshioka et al., 2019; Bellouin et al., 2020; Ben-583

der, 2020; C. Smith et al., 2020), the net influence of aerosols on regional temperature584

variability remains highly uncertain in historical and future climate model simulations585

(Bauer et al., 2020; Dittus et al., 2020; Peace et al., 2020). Surprisingly, we found that586

our ANN trained on a climate model simulation with fixed industrial aerosols (set to 1920587

levels; GHG+) made predictions made predictions of real world temperature observa-588

tions that correlated higher with the actual year. In contrast, the ANN trained on a large589

ensemble with the most realistic external forcing configuration (ALL) was less likely to590

correctly identify the order of the years for observations. The LRP maps based on ob-591
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servations indicate that the temperature signal in the North Atlantic is particularly rel-592

evant for the predictions by the ANN trained on GHG+ compared to ALL. We also note593

that the spatial features of the LRP maps are similar to areas of anomalously late or early594

temperature signals in the ToE maps (relative to the rest of the globe), especially across595

Southeast Asia, Central Africa, and the North Atlantic. Explainable AI tools, such as596

LRP, may be another promising tool to explore for identifying the emergence of other597

climate variables in future work.598

Our ANN results suggests that CESM1 is highly sensitive to combinations between599

external forcings when simulating the variability and timing of emergence of global cli-600

mate signals, such as the North Atlantic Warming Hole, compared to observations. While601

we focus on only one set of single-forcing large ensembles, we recommend that additional602

experiments are conducted to fully understand the sensitivity of GCMs to aerosol radia-603

tive forcing and subsequently simulate realistic temperature trends and variability.604
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Table S.1. Description of climate model data sets used for the primary analysis in this study.

Name Forcing Years # Members Reference

ALL Historical (to 2005), RCP 8.5 1920–2080 20 CESM-LE - Kay et al. (2015)
AER+ ALL, but fixed greenhouse gases to 1920 levels 1920–2080 20 XGHG - Deser et al. (2020)
GHG+ ALL, but fixed industrial aerosols to 1920 levels 1920–2080 20 XAER - Deser et al. (2020)

Table S.2. Description of observational data sets used for the primary analysis in this study.

Name Data Set Years Reference

20CRv3 NOAA-CIRES-DOE 20th Century Reanalysis V3 1920–2015 Slivinski et al. (2019)
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Figure S.1. Box-and-whisker plots showing the mean absolute error (MAE) of testing years

before 1980 (blue) and after 1980 (red) for the ANNs trained separately on each large ensemble

experiment (AER+; a-c, GHG+; d-f, ALL; g-i). Results are shown for ANN architectures using

2 hidden layers of 20 nodes each (a,d,g), 3 hidden layers of 20 nodes each (b,e,h), and 4 hidden

layers of 20 nodes each (c,f,i) and different L2 regularization values (0.001, 0.01, 0.1, 1, 5). Each

box-and-whisker distribution of ANNs is comprised of 10 iterations (different combinations of

training and testing data and random initialization seeds) for 3 separate epochs (100, 500, 1500).
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Figure S.2. Box-and-whisker plots showing the mean absolute error (MAE) of testing years

before 1980 (blue) and after 1980 (red) for the ANNs trained separately on two large ensemble

experiments (GHG+; a-c, ALL; d-f) using architectures with 2 hidden layers of 20 nodes each,

three different epochs (100, 500, 1500), and L2 regularization values of 0.001 (a,d), 0.01 (b,e),

and 0.1 (c,f). Each box-and-whisker distribution of ANNs is comprised of 10 iterations using

different combinations of training and testing data and random initialization seeds.
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Figure S.3. Annual linear least squares trends of 2-m temperature (◦C per decade) over 1920

to 1959 (a) and 1960 to 1999 (b) using 20CRv3 reanalysis (observations). Statistically significant

trends are shown with shaded contours at the 95% confidence level following the Mann-Kendall

(MK) test (Mann, 1945; Bevan & Kendall, 1971). Insignificant trends are masked out using black

hatch marks.
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Figure S.4. Signal-to-noise ratio (SNR) maps of annual mean 2-m temperature over 1920

to 1959 (a,e,i), 1960 to 1999 (b,f,j), 2000 to 2039 (c,g,k), and 2040 to 2079 (d,h,l) for three

large ensemble simulations (AER+; a-d, GHG+; e-h, ALL; i-l). SNR is calculated here as the

absolute value of the ensemble mean trend (forced response) normalized by the standard deviation

of trends across individual ensemble members (internal variability) for each 40 year period.
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Figure S.5. Average timing of emergence (ToE) maps defined as the first year the 10-year

running-mean 2-m (annual mean) temperature exceeds and stays above the mean 1920-1949

period by more than two standard deviations (e.g., Lehner et al., 2017) for each ensemble member

in the three large ensemble simulations (AER+; a, GHG+; b, ALL; c).

Figure S.6. (a) Predictions of the year by the ANN (y-axis) compared to the actual year

(x-axis) from maps of annual 2-m temperature, but with the global mean temperature removed

in AER+. (b) Same as (a) but for GHG+. (c) Same as (a) but for ALL. The blue shading

highlights the 5th-95th percentiles of predictions from the large ensemble testing data. The red

points show the ANN predictions using 20CRv3 observations. The red dashed line shows the

linear least squares fit through the predicted observations in each model, and the associated R2

is shown in the lower right-hand corner. The 1:1 line (or perfect prediction) is overlaid in black.
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Figure S.7. Histogram of correlations between the actual years and the ANN-predicted years

based on maps from 20CRv3 observations for the GHG+ (brown) and ALL (red) ANNs (created

using different combinations of training and testing data). The distributions are selected by their

respective ANN architecture with the highest median correlation over the six hyperparameter

combinations (epochs and L2 regularization) shown in Figure 4.
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Figure S.8. Histogram of the possible slopes of predicted 20CRv3 observations after consid-

ering different combinations of training and testing data for each of the AER+ (blue), GHG+

(brown), and ALL (red) ANNs. The 1:1 is highlighted by the dashed gray line.
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Figure S.9. (a) ANN predictions of the year (y-axis) compared to the actual year (x-axis)

by models trained on global maps of 2-m temperature in GHG+ (a,c) and ALL (b,d) during

January-February-March (JFM; a,b) and July-August-September (JAS; c,d). The blue shading

highlights the 5th-95th percentiles of predictions from the large ensemble testing data. The red

points show the predictions using 20CRv3 observations. The red dashed line shows the linear

least squares fit through the predicted observations in each model, and its R2 is shown in the

lower right-hand corner. The 1:1 line is overlaid in black.
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Figure S.10. Histogram of the possible R2 values from the linear fit of predicted 20CRv3

observations after randomly shuffling the individual ensemble members and years of ALL input

data to obtain 500 iterations of the ANN. The median R2 values of the possible predictions of

observations using the ANNs for AER+ (blue), GHG+ (brown), and ALL (red) are overlaid by

the dashed vertical lines.
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Figure S.11. LRP composite heatmaps averaged over 1920 to 1959 (a,e,i), 1960 to 1999

(b,f,j), 2000 to 2039 (c,g,k), and 2040 to 2079 (d,h,l) for the three large ensemble experiments

(AER+; a-d, GHG+; e-h, ALL; i-l). Higher LRP values indicate greater relevance for the ANN’s

prediction.
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Figure S.12. (a) Composite of LRP heatmaps over 1920 to 2080 for inputs of annual 2-m

temperature (global) maps from AER+ using the ANN architecture with 500 epochs and L2

regularization set to 0.01. (b) Same as (a) but for GHG+. (c) Same as (a) but for ALL. (d-f)

Same as top row, but for LRP heatmaps from an ANN architecture with 1500 epochs and L2

regularization set to 0.001. LRP composites are generated by averaging across 100 possible ANN

iterations by using different combinations of training and testing data for each large ensemble.

Higher LRP values indicate greater relevance for the ANN’s prediction.
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Figure S.13. (a) Composite of LRP heatmaps using both training and testing data over 1920

to 2080 for inputs of annual 2-m temperature (global) maps from AER+. (b) Same as (a) but

for GHG+. (c) Same as (a) but for ALL. (d-f) Same as top row, but for LRP heatmaps using

only testing data. Higher LRP values indicate greater relevance for the ANN’s prediction.
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Figure S.14. Difference in composites of LRP heatmaps for AER+ minus ALL (a) and

GHG+ minus ALL (b) over 1960 to 2039 for inputs of annual 2-m temperature (global) maps.

LRP composites are first generated by averaging across 100 possible ANN iterations by using

different combinations of training and testing data for each large ensemble.

April 8, 2021, 3:38pm



X - 16 LABE AND BARNES: IDENTIFYING CLIMATE PATTERNS WITH EXPLAINABLE AI

References

Bevan, J. M., & Kendall, M. G. (1971). Rank Correlation Methods. The Statistician. doi:

10.2307/2986801

Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D., Lehner, F., . . . Steven-

son, S. (2020, sep). Isolating the Evolving Contributions of Anthropogenic Aerosols and

Greenhouse Gases: A New CESM1 Large Ensemble Community Resource. Journal of Cli-

mate, 33 (18), 7835–7858. Retrieved from https://doi.org/10.1175/JCLI-D-20- doi:

10.1175/JCLI-D-20

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., . . . Vertenstein, M.

(2015, aug). The Community Earth System Model (CESM) Large Ensemble Project:

A Community Resource for Studying Climate Change in the Presence of Internal Cli-

mate Variability. Bulletin of the American Meteorological Society , 96 (8), 1333–1349.

Retrieved from http://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00255.1 doi:

10.1175/BAMS-D-13-00255.1

Lehner, F., Deser, C., & Terray, L. (2017). Toward a new estimate of ”time of emergence” of

anthropogenic warming: Insights from dynamical adjustment and a large initial-condition

model ensemble. Journal of Climate, 30 (19). doi: 10.1175/JCLI-D-16-0792.1

Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica. doi: 10.2307/1907187

Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., Mc-
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