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Abstract

Quantitative Precipitation Estimates from space-based observations represent an important dataset for understanding the

Earth’s atmospheric, hydrological and energy cycles. Precipitation retrieval algorithms have been developed and refined over

the last few decades and their accuracy and reliability are becoming increasingly more important for Earth’s energy budget and

human activities. In particular, snowfall represents a key component of water cycle and contributes significantly to the Earth’s

radiative balance. Accurately quantifying global surface snowfall is especially important since snow comprises a large percentage

of the annual surface precipitation in many regions. The complexity of snowflakes particles and the nonlinear relationships

between observations and retrieved variables have moved scientists to continually develop and enhance retrieval techniques.

The present work aims to improve snowfall retrievals from Passive Microwave (PMW) sensors. Within the Global Precipitation

Measurement (GPM) mission, the Goddard PROFiling (GPROF) algorithm snowfall retrieval has been chosen as an example

of PMW precipitation product. Since previous works have demonstrated that GPROF performance strongly depends on the

snowfall type, we developed a Machine Learning technique to classify snowing regime. A combined CloudSat-GPM dataset

has been used to build the training dataset in which the GPM Microwave Imager (GMI) brightness temperatures (TB) are

associated with a snowfall type, classifying the snowfall into three classes (‘shallow convective’, ‘deep stratiform’, ‘other’). The

snowfall classification was adopted from a CloudSat classifying technique, based on snowing profiles and cloud classification.

The problem is posed as a supervised learning problem, using a fully connected deep learning architecture with TB textures

serving as input features. After building, optimizing and applying the classification method to existing GMI data, an evaluation

exercise was undertaken to assess the classification performance. Results show that using only 20,000 GMI-CloudSat collocated

snowing scenes the accuracy in retrieving the three classes has exceeded 80%. Being able to classify snowfall mode will help

develop a specific setup for GPROF to improve detection and retrieval performance.

1



 

Snowfall Type Classification for Improving Passive Microwave Snowfall 
Estimates 

 

Lisa Milani1,2, Veljko Petkovic1,3, Marko Orescanin4, Mark S. Kulie5 
 
 
1 Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD. 
2 NASA Goddard Space Flight Center, Greenbelt, MD. 
3 Cooperative Institute for Satellite Earth System Studies (CISESS), University of Maryland, College 
Park, MD. 
4 Navy Postgraduate School, Monterey, CA, USA. 
5 NOAA/NESDIS/STAR/ASPB. 
 
 
 

 
 
 
  



 

Introduction 
 
Quantitative Precipitation Estimates (QPE) from space-based observations represent an 
important dataset for understanding the Earth’s atmospheric, hydrological and energy cycles. In 
particular, snowfall represents a key component of water cycle and contributes significantly to 
the Earth’s radiative balance. Accurately quantifying global surface snowfall is especially 
important since snow comprises a large percentage of the annual surface precipitation in many 
regions. 
 
It is important to delineate the precipitation type scenario for improving snowfall retrievals, 
especially since current spaceborne QPE efficacy is sensitive to different snowfall regimes. 
Specific algorithm settings can be optimized and adopted to mitigate regime-dependent event 
detection and precipitation rate retrieval shortcomings. 
 
This work aims to provide a flag classifying most common snowfall types, ‘shallow cumuliform’ 
and ‘deep stratiform’ representing together the 95% of the global snowfall fraction (Kulie et al. 
2016). 
 

 
Figure 1: CloudSat observed (a) ‘shallow cumuliform’ and (b) ‘deep stratiform’ snowfall fraction 
(Kulie et al. 2016, ©Copyright 2016 American Meteorological Society). 
  



 

Motivation 
 
Several studies (Kulie et al. 2016, Kulie and Milani 2018, Milani et al. 2020) highlighted the 
importance of retrieving shallow convective snowfall around the globe. 
 
Shallow convective snowfall contributes to 18% of the global snowfall flux, and 36% of snowfall 
events. 
 
Deeper cloud structures that are characteristic of mid-latitude winter cyclones are generally 
easier for Passive Microwave(PMW) to detect due to stronger scattering signals from ice particles 
and higher reflectivity values that can be detected by radars with reduced sensitivity. 
Shallow snowfall, however, presents unique PMW detection complexities at higher latitudes 
since its radiative signal can be difficult to discern especially over snow-covered surfaces. 
Depending on radar sensitivity and near-surface blind zone extent, spaceborne radars might also 
not detect shallow snow events because of lighter radar reflectivities and extremely shallow 
cloud tops. 
 
Milani et al. (2020) analyzed these complexities over the US Great Lakes Region. Shallow, lake-
induced convection can persist over the same area for days, accumulating large amounts of snow 
over neighboring land regions. Fig. 2 shows an example of shallow convective lake-effect snow 
event over Lake Erie and Ontario in a 10 hour animation. 
 

 
Figure 2: NEXRAD reflectivities on 18 November 2014 (12.55 to 23.00 UTC), animation credit 

CIMSS Satellite Blog (https://cimss.ssec.wisc.edu/satellite-blog/). 
 

https://cimss.ssec.wisc.edu/satellite-blog/


 

There is a strong distinctive high frequency (>89GHz) PMW signal associated with this type of 
event (Fig. 3 shows the Δ183.31GHz from the Global Precipitation Measurement (GPM) 
Microwave Imager (GMI)), but not always PMWQPE algorithms consistently detect and quantify 
the amount of snowfall. 
 
Within the GPM mission, the Goddard PROFiling (GPROF) algorithm snowfall retrieval is the 
primary PMW precipitation product. GPROF estimates the probability of precipitation relying on 
a Bayesian approach using an a-priori knowledge to link the observed brightness temperature 
(TB) to the corresponding precipitation rates (Kummerowet al. 2015). GMI actually detects 
shallowsnow (Fig.3), but the a-priori database does not effectively translate TB’s associated with 
shallow snow with reliable precipitation rates. For this reason GPROF generally underestimates 
both snowfall detection and quantification when compared to active remote sensing sensor 
snowfall products. Fig. 4 shows an example of precipitation estimates from the Multi-
Radar/Multi-Sensors (GV-MRMS) ground validation product (Fig. 4a) and GPROF (Fig. 4b) over 
the Lake Erie and Ontario region on9 January 2015  

 
Figure 3: GMI 183.3±7 - 183.3±3 GHz TB differences for the GPM-Core Observatory overpass near 
1226 UTC 9 January 2015 (Orbit #4914) (Milani et al. 2020, ©Copyright 2020 American 
Meteorological Society). 
 
 

 
Figure 4: (a) GV-MRMS snowfall rate over Lakes Erie and Ontario on 9 January 2015 at 1226 UTC 
(orbit #4914), (b) GPROF precipitation rate(using SurfPrecip parameter from the Operational 
product) (Milani et al. 2020, ©Copyright 2020 American Meteorological Society). 
 



 

GPROF clearly does not detect the snow bands over the lakes and the coastal regions (Fig.4 
circles), adding precipitation over snow covered surfaces instead (Fig.4 square). 
These and similar issues motivated this research team to investigate a useful and efficient way to 
help a PMW algorithm detecting and retrieving shallow convective frozen precipitation. 
 
 
 

Snowfall Type Classification Method 
 
The classification method consists in a Machine Learning technique. A combined CloudSat-GPM 
dataset (see 'Dataset' box for more details) has been used to build the training dataset in which 
the GPM Microwave Imager (GMI) brightness temperatures(TB) are associated with a snowfall 
type, classifying the snowfall into three classes (‘shallow convective’, ‘deep stratiform’, ‘other’). 
The snowfall classification was adopted from a CloudSat classifying technique, based on snowing 
profiles and cloud classification (Kulie et al. 2016). The problem is posed as a supervised learning 
problem, using a fully connected deep learning architecture (Deep Neural Network, DNN) with 
TB textures serving as input features (similar to Petkovic et al 2019). After building, optimizing 
and applying the classification method to existing GMI data, an evaluation exercise was 
undertaken to assess the classification performance. Results show that using only 20,000 GMI-
CloudSat collocated snowing scenes the accuracy in retrieving the three classes has exceeded 
80%. 

 
Figure 5: Accuracy of the DNN model CloudSat snow class retrieval. Confusion matrix for three snow 
classes (‘shallow convective’, ‘deep stratiform’ and ‘other’). 
 
 
 



 

To build the training dataset, we adopted the classification algorithm developed by Kulie et al. 
(2016). The two main snowfall classes can be described as:  
 
 

• 'Deep stratiform': snowfall is associated with nimbostratus cloud structures. The 
nimbostratus normalized cloud thickness distribution is broad and centered around 4–5 km 
(Fig. 8). 
 

 
Figure 6: example of 'Deep stratiform' CloudSat reflectivity vertical profile. 

 
 
 

• 'Shallow cumuliform': snowfall is associated with cumulus and stratocumulus, is produced 
from very shallow cumuliform clouds (from which the name) with cloud thickness mostly less 
than 3 km (the cloud thickness distribution is centered around 1-2 km, fig. 8). 
 

Figure 7: example of 'Shallow convective' CloudSat reflectivity vertical profile. 



 

 
Figure 8: Cloud-top thickness distributions associated with shallow cumuliform (light blue) and 
nimbostratus (dark blue) CloudSat snowfall-producing cloud structures. Shallow vs deeper 
nimbostratus snowfall categories are defined by the CloudSat 2B-CLDCLASS product, while cloud 
thicknesses are calculated from the 2B-GEOPROF and 2C-PRECIP-COLUMN products (see Kulie et 
al. 2016 for details, ©Copyright 2016 American Meteorological Society). 
 
 
 

TBs Analysis 
 
The training/testing dataset built for the classifier (see 'Dataset' box for more details), also 
represents a very valuable dataset for investigating multi-frequency TB behavior under different 
snowfall type conditions. Panegrossi et al. (2017) introduced the TB analysis using a similarly built 
coincident dataset. We started from Panegrossi et al. (2017) results and partitioned the 
coincident dataset into sub-datasets to investigate possible unique signatures of TBs and TB 
differences (ΔTB) based on snowfall modes. 
 
Figures 9 and 10 show the 2D histograms of the coincident dataset in the 166 GHz TB-ΔTB 2-D 
space. Similar to Panegrossi et al. (2017), we found positive 166 GHz ΔTB (V-H) with TBs spanning 
between 200 and 270 K. 
 

• 'Deep stratiform': Fig. 9 shows the distribution of snowing coincident pixels flagged as 'deep 
stratiform', with higher TBs for ocean (orange dotted line), combined with higher ΔTB values, 
highlighting the contribution of ice scattering in deep precipitating structures. Deeper TB 
depressions are found for precipitation over land (magenta solid line) although some 
contribution from ice scattering is still significant with ΔTB reaching 10K. The signal over sea-
ice (cyan dashed line) lies in between the ocean temperatures (240-270K) and the land 
polarization signal (ΔTB up to 10K). 

 



 

 
Figure 9: Scatterplot of the 166 GHz ΔTB-TB 2-D histograms for the 'Deep stratiform' GMI-CPR 
snowfall coincident pixels. The color bar indicates the number of occurrences, while contours 
indicate the bins with at least 50 counts in the three background surfaces, ocean (orange dotted), 
land(magenta solid), sea ice (cyan dashed). 
 
 

• ‘Shallow convective': Different behavior is seen in Fig. 10 representing 'shallow convective' 
precipitation. Oceanic shallow snowfall shows a very polarized signal (exceeding 30K) and very 
warm TBs (250-270K) compared to Fig.9.Very shallow precipitation structures, combined with 
dry environmental conditions, allow the radiative signal to travel deeper through the 
atmosphere, with the very polarized oceanic surface contributing to the high ΔTB observed. 
For the same reason, the less polarized land surface, most likely covered by snow, contributes 
to the more variable 166GHz temperatures showing much less polarization (ΔTB<5K). Many 
shallow cumuliform snowfall events also contain ample supplies of supercooled cloud water 
that effectively tempers the ice scattering signature. 

 

 
Figure 10: similar to Fig. 9 but for 'Shallow convective' pixels. 

 



 

Other GMI channel combinations are being explored to better understand PMW signals 
associated with different snowfall regimes that depend on the complex interplay between 
microphysical composition (e.g., ice scattering versus supercooled cloud water emission), 
ambient water vapor content, and underlying surface type. The functional relationship between 
TB signal combinations with surface snowfall rate is also being investigated. 
 
 
 

Dataset 
 
The CloudSat-GPM coincident dataset (2B-CSATGPM) used for this project is provided by the 
Global Precipitation Measurement Mission (GPM) Precipitation Processing System (PPS). It 
consists on 2.5 years of coincident (within ±15 min) GPM and CloudSat segments of orbit from 
March 2014 to August 2016. 
 
To build the DNN training/testing datasets we used: 

• GMI TBs (13 channels) 

• Environmental parameters from ECMWF 

• Cloud type classification from CloudSat 2B-CLDCLASS 

• Snowfall rate from CloudSat 2C-SNOW-PROFILE 

• Surface classification from GPROF 

•  
All the aforementioned parameters are available within the CloudSat-GPM coincident dataset 
which is freely available here (https://gpm.nasa.gov/data). 
 
 
 

Conclusions 
 
Classifying snowfall type can provide important useful information to improve snowfall retrievals 
from Passive Microwave Sensors (PMW). 

• PMW precipitation retrievals often fail in retrieving shallow convective snowfall events a 
PMW snowfall type classification method could help optimize the algorithms by adopting 
specific settings to improve the retrieval efficacy. 

• The new PMW snowfall type classification method based on combined CloudSat-GPM 
observations retrieves the snowfall type classes with an accuracy of 80%. 

• The TB - precipitation type dataset built for training/testing the classifier represents a 
valuable dataset for studying TBs behavior under different precipitation and 
environmental conditions (surface type, snowfall type, temperature, precipitable water 
etc.). Other GMI channel combinations are being explored to better understand PMW 
signals associated with different snowfall regimes. 

 

https://gpm.nasa.gov/data
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