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Abstract

A comparison of moderate to extreme daily precipitation from the ERA-5 reanalysis by the European Centre for Medium-Range

Weather Forecasts (ECMWF) against two observational gridded data sets, EOBS and CMORPH, is presented. We assess the

co-occurrence of precipitation days and compare the full precipitation distributions. The co-occurrence is quantified by the

hit rate. An extended generalized Pareto distribution is fitted to the positive precipitation distribution at every grid point

and confidence intervals of quantiles compared. The Kullback-Leibler divergence is used to quantify the distance between

the entire extended generalized Pareto distributions obtained from ERA-5 and the observations. For days exceeding the local

90th percentile, the mean hit rate is 65% between ERA-5 and EOBS (over Europe) and 60% between ERA-5 and CMORPH

(globally). Generally, we find a decrease of the co-occurrence with increasing precipitation intensity. The agreement between

ERA-5 and EOBS is weaker over the southern Mediterranean region and Iceland compared to the rest of Europe. Differences

between ERA-5 and CMORPH are smallest over the oceans. Differences are largest over North-West America, Central Asia and

land areas between 15°S and 15°N. The confidence intervals on quantiles are overlapping between ERA-5 and the observational

data sets for more than 80% of the grid points on average. The intensity comparisons indicate an excellent agreement between

ERA-5 and EOBS over Germany, Ireland, Sweden and Finland, and a disagreement over areas where EOBS uses sparse input

stations. ERA-5 and CMORPH precipitation intensity agree well over the mid-latitudes and disagree over the tropics.
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Abstract13

A comparison of moderate to extreme daily precipitation from the ERA-5 reanalysis by14

the European Centre for Medium-Range Weather Forecasts (ECMWF) against two ob-15

servational gridded data sets, EOBS and CMORPH, is presented. We assess the co-occurrence16

of precipitation days and compare the full precipitation distributions. The co-occurrence17

is quantified by the hit rate. An extended generalized Pareto distribution is fitted to the18

positive precipitation distribution at every grid point and confidence intervals of quan-19

tiles compared. The Kullback-Leibler divergence is used to quantify the distance between20

the entire extended generalized Pareto distributions obtained from ERA-5 and the ob-21

servations. For days exceeding the local 90th percentile, the mean hit rate is 65% between22

ERA-5 and EOBS (over Europe) and 60% between ERA-5 and CMORPH (globally).23

Generally, we find a decrease of the co-occurrence with increasing precipitation inten-24

sity. The agreement between ERA-5 and EOBS is weaker over the southern Mediterranean25

region and Iceland compared to the rest of Europe. Differences between ERA-5 and CMORPH26

are smallest over the oceans. Differences are largest over North-West America, Central27

Asia and land areas between 15◦S and 15◦N. The confidence intervals on quantiles are28

overlapping between ERA-5 and the observational data sets for more than 80% of the29

grid points on average. The intensity comparisons indicate an excellent agreement be-30

tween ERA-5 and EOBS over Germany, Ireland, Sweden and Finland, and a disagree-31

ment over areas where EOBS uses sparse input stations. ERA-5 and CMORPH precip-32

itation intensity agree well over the mid-latitudes and disagree over the tropics.33

1 Introduction34

Natural hazards related to extreme precipitation (river floods, flash floods, land-35

slides, debris flows and avalanches) cause casualties, damages to infrastructures and build-36

ings and have direct and indirect economic impacts (MunichRE, 2018). For infrastruc-37

ture planning and prevention measures, information about rare events, e.g., events that38

occur on average only once in a hundred years, is important. Such information can be39

obtained from precipitation data with statistical tools. Assessing the accuracy in high40

quantiles depends on spatial domain sizes and temporal availability. Different types of41

global precipitation data sets are available (Sun et al., 2018): global precipitation data42

sets are based on ground observations, satellite observations, combinations of ground ob-43

servations and satellite observations and on short term weather model forecasts in re-44

analyses data sets. Reanalyses combine past observations with weather forecast mod-45

els to reconstruct past weather. The main advantage of this type of precipitation data46

set is its regular spatial and temporal coverage. Reanalyses ensure consistency of the pre-47

cipitation data with the atmospheric conditions, which is important for weather and cli-48

mate process studies. Here, we focus on ERA-5 precipitation (C3S, 2017). ERA-5 is the49

latest reanalysis product from the European Centre for Medium-Range Weather Fore-50

casts (ECMWF). ERA-5 precipitation is computed in short-term forecast started from51

reanalysis initial conditions (Hennermann, 2020). The ERA-5 precipitation production52

process does not include precipitation observation inputs. Hence comparison with ob-53

servational data makes sense, keeping in mind that observation data have (partly sub-54

stantial) uncertainties as well (Sun et al., 2018; Kulie et al., 2010; Prein & Gobiet, 2017).55

ERA-5 precipitation has already been widely used since its release in 2018, but very few56

assessments of this data set have been conducted over large regions. Only precipitation57

over restricted areas and precipitation associated with specific type of events have been58

assessed (Wang et al., 2018; Hénin et al., 2018; Mahto & Mishra, 2019; Tarek et al., 2020;59

Amjad et al., 2020). The goal of this article is to assess daily precipitation in ERA-5 against60

observational data sets over large regions: Europe, comparing with the station-based data61

set EOBS (Haylock et al., 2008), and the entire globe, comparing with the satellite-based62

data set CMORPH (Joyce et al., 2004). The verification of daily precipitation will fo-63

cus on the intensity distribution and on the temporal consistence, i.e., the co-occurrence64

of events. We use the extended generalized Pareto distribution (Tencaliec et al., 2019)65
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to evaluate the intensity distribution and we calculate co-occurrence hit rates to assess66

the joint occurrence of precipitation events.67

This paper is structured as follows. Section 2 describes the data used for this study.68

We introduce methods used for the comparison of co-occurrence and intensity in section69

3. The results of our analysis are presented in section 4. Finally, the results are summa-70

rized and discussed in section 5.71

2 Data72

2.1 ERA-5 Precipitation73

Reanalysis precipitation in this study are extracted from ERA-5 reanalysis data74

set. ERA-5 is the latest global reanalysis data set provided by the European Center for75

Medium-Range Weather Forecasts (C3S, 2017; Hersbach et al., 2020). In this data set,76

precipitation stem from short-term forecasts and are available at an hourly resolution77

that we aggregate to daily precipitation. The precipitation data calculation does not rely78

on observed precipitation. The data is interpolated to a regular grid with 0.25◦ resolu-79

tion.80

2.2 Observation-based Data Sets81

The two gridded observation-based precipitation data sets used in this study are82

EOBS (Haylock et al., 2008) that is based on European station observations and CMORPH83

that is based on satellite observations (Joyce et al., 2004).84

The EOBS data set is provided by the European Climate Assessment & Dataset85

and is a daily gridded data set based on spatially interpolated station data. The version86

used is 19.0e, with a 0.25◦ by 0.25◦ grid. The interpolation to a 0.25◦ by 0.25◦ grid is87

a combination of monthly precipitation totals and daily anomalies products. Figure 1a88

in Cornes et al. (2018) displays the station coverage for version 16.0. This coverage is89

heterogeneous, with a very dense network in Ireland, the Netherlands, Germany, Switzer-90

land, and northern Italy, for example, and very few stations in northern Africa, in the91

Middle East, in Iceland, in Norway, and in Sweden. EOBS covers land precipitation only,92

and the comparison with ERA-5 is conducted for the time period between January 197993

and December 2018.94

The second observational data, CMORPH, is provided by the National Center for95

Atmospheric Research (NCAR) (Climate Prediction Center, National Centers for En-96

vironmental Prediction, National Weather Service, NOAA, U.S. Department of Com-97

merce, 2011). This gridded precipitation product combines passive microwave satellite98

scans and geostationary satellite infrared data and provides 3 hour accumulations that99

we aggregate in daily accumulation. CMORPH stands for climate prediction center mor-100

phing method, the name of this combination technique. The precipitation estimation al-101

gorithm of this data set is not able to capture snow (Joyce et al., 2004). The spatial res-102

olution of the gridbox is also 0.25◦. The comparison with ERA-5 is conducted for the103

period 2003-2016, for latitudes between 60◦ S and 60◦ N.104

The two observation-based data sets have the same grid resolution as ERA-5 but105

a shift of 0.125◦ in latitude and longitude is present for the coordinates of the grid points106

compared to ERA-5.107

2.3 Data Processing108

The study evaluates seasonal precipitation for September, October, November (SON);109

December, January, February (DJF); March, April, May (MAM); and June, July, Au-110

gust (JJA). Separation between seasons ensures stationarity of the time series. The in-111
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tensity distribution analyses are based on wet days, defined as days with precipitation112

accumulations exceeding 1 mm. The 1 mm threshold corresponds to standard recom-113

mendations for station data (Hofstra et al., 2009) and eliminates potential drizzle effect114

in reanalysis data (Maraun, 2013). The co-occurrence analysis is conducted on the en-115

tire seasonal time series, including days with precipitation lower than 1 mm.116

The precipitation time series are not de-trended in the present study as the response117

of precipitation to increasing atmospheric CO2 varies with the precipitation intensity (Pendergrass118

& Hartmann, 2014) and trends depend on the length of time series (Scherrer et al., 2016).119

Moreover, Donat et al. (2014) identified mostly small or insignificant trends for the past120

thirty years.121

3 Methods122

For the sake of simplicity, in the method section OBSER denotes the observation-123

based data sets. OBSER can be either EOBS or CMORPH, as the comparison proce-124

dures between ERA-5 and EOBS and between ERA-5 and CMORPH are identical.125

3.1 Co-occurrence of Precipitation Events126

Binary events are defined here as occurrences of daily precipitation above the P th127

seasonal percentile with P ∈ {75, 90, 95, 99}. Percentile values can be different be-128

tween ERA-5 and OBSER. In Figure 1, the 95th precipitation percentiles in SON is dis-129

played for: (a) ERA-5 over the EOBS domain (1979-2018), (b) EOBS over its entire do-130

main (1979-2018), (c) ERA-5 over the CMORPH domain (2003-2016) and (d) CMORPH131

over the entire domain (2003-2016).132

We define a co-occurrence between two data sets when two exceedances occur ei-133

ther at the same grid point on the same day, at the same grid point with one day lag,134

or at one of the eight surrounding grid points on the same day. During the spatial and135

temporal shift, a single event is never used more than once when looking for co-occurrences.136

We allow for one day shift to bypass uncertainties that arise having a fixed 24h time win-137

dow (Haylock et al., 2008). The extension to the eight grid points around the centre point138

addresses potential issues arising from the precipitation interpolation to the different grids.139

The hit rate is the ratio between the number of joint events and the total number140

of events (Rhodes et al., 2015). The total number of events is the same if computed from141

ERA-5 or from OBSER.142

3.2 Intensity Assessment143

Extreme value theory is often used in hydrology and climate sciences (e.g., Lamb144

& Kay, 2004; Cooley et al., 2007; Tramblay et al., 2013; Kang & Song, 2017). This ap-145

proach states that peaks over high thresholds, i.e., amounts of rain exceeding a given thresh-146

old u, may be approximated by a generalized Pareto distribution, provided the thresh-147

old and the number of observations are large enough and some additional mild condi-148

tions are satisfied (see section 3.2 for generalized Pareto distribution definition). How-149

ever, the generalized Pareto distribution fitting has drawbacks. First, it only captures150

the upper tail behavior. A distribution combining gamma behavior for small and mod-151

erate precipitation amounts with generalized Pareto distribution behavior for high amounts152

can be a solution. Second, a threshold has to be determined for every station or grid point153

to separate the upper tail from the rest of the distribution (Dupuis, 1999). To overcome154

these challenges, here we use the extended generalized Pareto distribution (EGPD) (Naveau155

et al., 2016; Tencaliec et al., 2019).156
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To study wet day precipitation intensity distributions, this section presents a com-157

parison of quantiles and a homogeneity test based on the Kullback-Leibler divergence.158

Both parts rely on our EGPD fit.159

For the intensity comparison, we discard grid points where the number of wet days160

is smaller than 500 days for the comparison with EOBS and smaller than 200 days for161

the comparison with CMORPH. Moreover, auto-correlation can be present in daily time162

series, for example when two consecutive wet days are fostered by the same weather sys-163

tem (e.g., Lenggenhager et al., 2019a). To address the auto-correlation in time, we con-164

sider that two precipitation events separated by two days are independent (Barton et165

al., 2016; Lenggenhager & Martius, 2019b; Fukutome et al., 2015). To ensure indepen-166

dence of the time series, the intensity assessment is conducted on one-third of the data167

that is randomly drawn. This approach is a trade-off between keeping enough data in168

the sub-samples to ensure robust fitting and best removing the auto-correlation in the169

data.170

3.2.1 Extended General Pareto Distribution171

In extreme value theory, one way to model the extremal tail behavior is the so-called172

peak-over-threshold approach (see, e.g. Coles, 2001; Katz et al., 2002). Under this frame-173

work, rainfall exceedances above a large threshold u are assumed to follow a General-174

ized Pareto distribution defined as175

Hξ(z) =

{
1− (1 + ξz)

−1/ξ
+ if ξ 6= 0,

1− e−z otherwise,
(1)

where the positive scalar σ represents a scale parameter and the real ξ drives the upper176

tail behavior. A negative, null and positive ξ corresponds respectively to the “bounded”,177

“light” and “heavy” tail case, i.e. an upper tail that is bounded for ξ < 0, with expo-178

nential decay for ξ = 0 or polynomial decay for ξ > 0. The selection of the threshold179

u is not trivial for large data sets, as each grid point may need a different optimal thresh-180

old (e.g., Deidda, 2010). A large threshold implies a small sample size of extremes and181

consequently, large uncertainties in the estimation of σ and ξ. Conversely, a moderate182

threshold leads to a possible incorrect approximation by a Generalized Pareto distribu-183

tion, i.e. a large model error. To bypass this complex threshold selection step, Naveau184

et al. (2016) proposed a simple scheme to smoothly transition between the main body185

of the distribution and its upper tail, while keeping the constraint of modeling extremes186

with a Generalized Pareto distribution. The proposed model can be written as187

F (x) = G{Hξ(x/σ)}, for all x > 0, (2)

where G, the transition function, is a continuous cumulative distribution function (cdf)188

in the unit interval. By imposing the two constraints, lim
u↓0

1−G(1−u)
u is finite and positive189

and lim
u↓0

G(u)
us is finite and positive for some s > 0, the new cdf F (.) is bound to be in190

compliance with extreme value theory for its lower and upper tails. This class of cdf is191

called extended generalized Pareto distribution (EGPD) family. In this study, the cdf192

G(.) is estimated using a specific Bernstein polynomial approximation, more informa-193

tion can be found in Tencaliec et al. (2019). The R code is available upon request.194

3.2.2 Quantile Confidence Intervals195

Confidence intervals for the quantiles of ERA-5 and OBSER precipitation are com-196

puted using a semi-parametric bootstrap on EGPD fitting. For each grid point, the fol-197

lowing bootstrap procedure is conducted. Two subsamples containing one-third of the198

time series each are randomly drawn from the initial wet day time series. Each of these199

two subsamples is bootstrapped 100 times each, and each bootstrapped sample is fitted200
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by a EGPD. Having our disposal 200 bootstrapped estimates of G(.), σ and ξ, quantiles201

for any given non-exceedance probability can be computed from Eq. (2). In particular,202

95% confidence intervals of the quantiles are obtained by calculating the empirical 2.5%203

and 97.5% quantiles of the 200 bootstrapped quantiles values. An important feature to204

assess the proximity of our different data sets is to check if the confidence intervals from205

ERA-5 overlap (or not) with the observational data sets.206

3.2.3 Kullback-Leibler Divergence Test207

The well-known Kullback-Leibler divergence used in various fields “measures” the208

distance between two probability density functions, say f1 and f2. It is given by equa-209

tion210

Ef1
[
log

{
f1(X)

f2(X)

}]
+ Ef2

[
log

{
f2(Y)

f1(Y)

}]
(3)

with X and Y being random variables following respectively the probability density func-211

tions f1 and f2.212

Let XERA−5=(Xi)i=1,...,n and YOBSER=(Yj)j=1,...,m be the time series (after re-213

moving the auto-correlation) of wet day precipitation in ERA-5 and OBSER. With f̂1214

and f̂2 estimated by the EGPD fitting, we obtain the empirical value of the Kullback-215

Leibler divergence with equation216

1

n

n∑
i=1

log
f̂1(Xi)

f̂2(Xi)
+

1

m

m∑
j=1

log
f̂2(Yj)

f̂1(Yj)
. (4)

The null hypothesis of our test is “XERA−5 and YOBSER have the same distribu-217

tion”, i.e. f̂1 = f̂2. The alternative hypothesis is f̂1 6= f̂2.218

The distribution of the Kullback-Leibler divergence under the null hypothesis is219

estimated using 300 values of the divergence between two vectors randomly drawn from220

a concatenation of XERA−5 and YOBSER. The probability of “The Kullback-Leibler di-221

vergence between XERA−5 and YOBSER is greater than the Kullback-Leibler divergence222

under the null hypothesis” is the p-value of the test. This p-value is empirically deter-223

mined from the 300 values of the Kullback-Leibler divergence under the null hypothe-224

sis. The null hypothesis is rejected with a confidence level of 5% if the p-value is greater225

than 0.05.226

3.3 Difference in Number of Wet Days227

The intensity comparison is based on the EGPD, which is fitted to wet days only.228

Discrepancies in the number of wet days between ERA-5 and the observational data sets229

could have an impact when comparing the EGPD fitted to ERA-5 and the observational230

data sets. To quantify these discrepancies at a fixed grid point, we use two simple mea-231

sures. The first measure is the ratio of the seasonal number of wet days, defined by :232

Nwd
ERA−5

Nwd
OBSER

(5)

where, for a fixed season, Nwd
ERA−5 and Nwd

OBSER are the number of wet days in ERA-233

5 and OBSER, respectively.234

The second measure is the absolute value of the difference in the number of wet235

days between ERA-5 and OBSER, normalized by the time series length of OBSER, given236

by:237
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100×

∣∣∣∣∣Nwd
ERA−5 −Nwd

OBSER

Nwd
OBSER

∣∣∣∣∣ . (6)

Note that the absolute difference quantifies the distance between the ratio of the238

number of wet days and 1.239

4 Results240

4.1 Number of Wet Days241

Table 1 presents the mean absolute value of the difference in the number of wet days.242

The differences are computed only over grid points retained for the intensity compar-243

ison, i.e. with time series longer than 200 days for CMORPH and 500 days for EOBS.244

Over Europe, the mean absolute difference is between 11% (SON) and 21% (MAM)245

of EOBS number of wet days. In SON and DJF, the number of wet days is lower in ERA-246

5 than in EOBS in northern Europe and higher in southern Europe. In MAM and JJA247

the number of wet days is almost always higher in ERA-5 than in EOBS (see Figure A1a248

in the appendix for a map of the ratio of the number of wet days in SON). The differ-249

ence in number of wet days between ERA-5 and EOBS can be considered as low and will250

not have impact on the EGPD fitting.251

The global comparison with CMORPH reveals larger discrepancies in the seasonal252

number of wet days than with EOBS. The mean difference in the number of wet days253

corresponds to between 66% (DJF) and 76% (SON) of the CMORPH number of wet days.254

This difference is mainly due to the ERA-5 wet days being more numerous than in CMORPH.255

The number of wet days in ERA-5 is twice as large as in CMORPH for 19% (DJF) to256

25% (JJA) of grid points. Figure A1b in appendix displays the map of the ratio of num-257

ber of wet days in SON. This ratio is greater than 2 over bands at fixed latitudes e.g.258

over bands close 60◦ S, 20◦ S, 20◦ N and 60◦ N.259

4.2 Co-occurrence of Precipitation Events260

In the comparison between ERA-5 and both observation-based data sets, the hit261

rate decreases with increasing intensity of the events and is similar across the seasons262

(Table 2). Grid points with a given percentile of less than 1 mm are not considered.263

Over Europe the average hit rate between ERA-5 and EOBS for the 75th percentile264

is between 73 % (in JJA) and 77 % (in SON), i.e. about three quarters of the events ex-265

ceeding the 75th percentiles coincide. For the 95th percentile, the mean hit rate is be-266

tween 53% (JJA) and 60% (SON). For the 99th percentile, the hit rate varies between267

39 % and 45 % depending on the season. The global mean hit rate is of the same order268

of magnitude as for Europe. The mean hit rate between ERA-5 and CMORPH for the269

95th percentiles is above 50%. The mean hit rate associated with the 99th percentile is270

between 35% and 37% depending on the season.271

Maps of the hit rate for the 95th percentile can be found in the appendix (Figure B1272

and Figure B2). The spatial pattern does not strongly depend on the season or the per-273

centile. For Europe, the hit rate has a large variability near arid regions (Maghreb and274

Turkey). The rest of Europe is quite homogeneous. A lower hit rate is observed in Ice-275

land and southern Italy. For the global comparison, the best hit rate is reached over the276

oceans in the mid-latitudes. The hit rate is substantially lower in Eastern China, along277

the equator, in South America and in tropical Africa.278
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4.3 Intensity Verification279

4.3.1 Confidence Intervals on Quantiles280

The confidence interval overlap between ERA-5 and EOBS is independent of the281

probability of non-exceedance, i.e., the intensity of the events. Figure 2a shows the rel-282

ative position of the 95% confidence intervals for quantiles associated with probability283

of non-exceedance 0.9 in SON, between ERA-5 and EOBS. A grid point is displayed in284

yellow if the confidence intervals are overlapping, in orange if the upper boundary of ERA-285

5 confidence interval is lower than the lower boundary of the EOBS confidence interval,286

and in blue if the lower boundary of ERA-5 confidence interval is larger than the upper287

boundary of the EOBS confidence interval. Figure 3a shows the number of seasons with288

a confidence intervals overlap for quantiles with non-exceedance probability 0.9 between289

ERA-5 and EOBS. The confidence intervals overlap during all the seasons for a major290

part of Europe. The exceptions are Iceland, Norway and Western Russia, Romania, the291

Adriatic sea coast and some grid points in the Alps. Non-overlapping confidence inter-292

vals correspond primarily to an underestimation of the quantiles by ERA-5 for low pre-293

cipitation intensities (not shown), and overestimation for large intensities (Figure 2a.).294

Quantiles with probability of 0.3 have a larger number of grid points with disagreement295

in JJA. ERA-5 quantiles for probability 0.3 during JJA are underestimated compared296

to EOBS quantiles for a major part of Europe (not shown).297

The global comparison of ERA-5 with CMORPH shows less overlap of the confi-298

dence intervals with increasing precipitation intensity, as we will see in section 5. Fig-299

ure 2b displays the relative position of the 95% confidence intervals for quantiles asso-300

ciated with probability of non-exceedance 0.9 in SON, between ERA-5 and CMORPH301

and Figure 3b shows the number of seasons with an overlap of the confidence intervals302

for quantiles with non-exceedance probability 0.9 between ERA-5 and CMORPH. The303

confidence intervals for non-exceedance probabilities of 0.3 and 0.5 overlap for more than304

85% of the grid points. For probabilities 0.75 to 0.95, in a band along the equator the305

confidence intervals do not overlap for all the seasons for many grid points, see e.g. Fig-306

ure 2b. For all seasons and between 15◦ S and 15◦ N, ERA-5 quantiles are smaller com-307

pared to CMORPH. Another disagreement that deserves to be highlighted is the higher308

ERA-5 quantiles compared to CMORPH over the mountainous regions of the west coast309

of North America, the south of Chile, in Papua New Guinea, the Himalayas and the Alps,310

regardless of the non-exceedance probabilities and seasons.311

4.3.2 Comparison of the Full Distributions Using the Kullback-Leibler312

Test313

The Kullback-Leibler divergence of the full precipitation distribution points to re-314

gions of agreement and disagreement independent of the seasons, for both the compar-315

ison between ERA-5 and EOBS, and ERA-5 and CMORPH, see Figure 4. Figures 5a316

and 5b display the number of seasons for which the p-value of the Kullback-Leibler test317

is greater than 0.05, i.e. where the EGPD distributions fitted to ERA5 and to EOBS and318

CMORPH do not differ significantly.319

ERA-5 and EOBS wet day precipitation intensities agree best over Germany, Ire-320

land, Sweden and Finland. Wet day precipitation intensity follows the same distribution321

in ERA-5 and EOBS for most grid points in these countries. Regions with the least agree-322

ment, i.e. where the null hypothesis is rejected for all the seasons, are Iceland, Norway,323

Hungary and the Balkans. The area with at least one season where the null hypothe-324

sis is rejected is rather large. The Kullback-Leibler test gives weight to differences in the325

entire distribution, thus the low intensity precipitation disagreement in JJA mentioned326

previously in section 4.3.1 has an impact on the Kullback-Leibler divergence (see Fig-327

ure 4a and Figure 4c for the plots of the p-value in JJA and SON). Note the pattern328

following the border between Norway and Sweden, and Finland and Russia: a very good329
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agreement is observed in Sweden and Finland, whereas the null hypothesis is rejected330

for almost all seasons in Norway and Karelia.331

The Kullback-Leibler test between ERA-5 and CMORPH has a clear signal of agree-332

ment in the mid-latitudes and disagreement in the tropics, for all seasons. The summary333

over all seasons mainly informs about intensity agreement over the oceans, because of334

the time series length constrain removes most land grid points. Figures 4b and 4d present335

the p-value for JJA and SON, and show over land the same general pattern of disagree-336

ment in the tropics and agreement in the mid-latitudes. One exception to this pattern337

is the disagreement over mountainous regions of the mid-latitudes (western North Amer-338

ica, Himalayas, South Chile), in agreement with the results in section 4.3.1.339

5 Summary and Discussion340

The analysis of precipitation event co-occurrence between ERA-5 and EOBS and341

ERA-5 and CMORPH reveals a decreasing agreement with increasing intensity of events,342

independently of the season.343

Key results of the intensity comparison of ERA-5 with EOBS over Europe depend344

on the season (Table 3). Quantiles in MAM and SON show a good agreement for all non-345

exceedance probabilities p. Indeed, between 81% (for p = 0.3 in MAM and for p = 0.5346

in DJF) and 90% (for p = 0.5 in MAM and SON, and for p = 0.75 in SON) of the grid347

points have overlapping confidence intervals. The percentages of grid points where the348

distributions agree (Kullback-Leibler test) are highest for MAM (34%) and SON (39%).349

In DJF, the agreement between quantiles is between 69% (p = 0.9) and 82% (p = 0.3).350

In JJA agreement is much better for high quantiles (up to 94% for p = 0.95) than low351

ones, the confidence intervals for quantiles with probability p = 0.3 overlap for only 39%352

of grid points. This discrepancy for low precipitation intensity has an impact on the Kullback-353

Leibler test: the null-hypothesis could not be rejected for only 10% of grid points in JJA.354

The other seasons show a higher fraction of grid points for which the null-hypothesis was355

not rejected (between 29% in DJF and 39% in SON).356

The study of the wet day precipitation distribution (Kullback-Leibler test) between357

ERA-5 and EOBS over Europe reveals a robust agreement over regions where the sta-358

tion coverage of EOBS is dense. Areas with the largest differences in the distribution are359

areas with thin station coverage, e.g. in southern Europe and Russia. Cornes et al. (2018)360

highlighted that “station coverage is the most important factor in determining the suc-361

cess of the gridded data”. In areas with sparse station data, the precipitation is inter-362

polated from distant stations (Hofstra et al., 2009). Additionally, extreme precipitation363

is smoothed by the spatial interpolation (Hofstra et al., 2010), which justifies our quan-364

tiles larger in ERA-5 than in EOBS for extreme precipitation.365

The intensity comparison between ERA5 and CMORPH indicates a decreasing agree-366

ment between the two data sets with increasing precipitation intensity (Table 3). The367

percentage of grid points with confidence intervals overlapping is between 92% (JJA) and368

94% for p = 0.3, and between 70% (SON) and 75% (DJF) for p = 0.9. One excep-369

tion is the slightly better agreement of quantiles for extreme precipitation (non-exceedance370

probability p = 0.95) than for moderately extreme precipitation (p = 0.9), with an371

overlap rate 1% higher, for all seasons. This can be explained by confidence intervals be-372

coming larger for larger quantiles, and there is thus a higher chance of overlap between373

ERA-5 and the observational data set. This remark holds also for the EOBS results. The374

Kullback-Leibler test presents little variation with season, like for the quantile study. Be-375

tween 52% (SON) and 57% (DJF) of the grid points studied did not reject the null-hypothesis376

of the test.377

The analysis of the entire precipitation distribution reveals proportionally more grid378

points agreeing between ERA-5 and CMORPH than between ERA-5 and EOBS (see last379

–9–



manuscript submitted to Earth and Space Science

row of Table 3). This can be due to the longer time series in EOBS leading to a stricter380

test. Another explanation can be that there are proportionally more challenging regions381

for a model over Europe, with the Alps for example, whereas globally the largest regions382

compared are oceans, where the agreement is good in general.383

The global comparison of the wet day precipitation distributions between ERA-384

5 and CMORPH over the period 2003-2016 shows a rather good agreement in the mid-385

latitudes, and a strong disagreement over the tropics. This result is robust over the sea-386

sons and does not depend on the method used. The band along the equator where pre-387

cipitation intensities are lower in ERA-5 compared to CMORPH corresponds to a re-388

gion with a ratio of the number of wet days rather close to 1 (see Figure A1). The num-389

ber of wet days does not differ substantially in this region and therefore does not play390

a role in the robust disagreement between ERA-5 and CMORPH over the tropics. In this391

region, ERA-5 quantiles are lower than CMORPH ones, especially for non-exceedance392

probabilities larger than 0.75. This feature has already been observed by Pfahl and Wernli393

(2012) with ERA-interim, another reanalysis product from ECMWF. They computed394

the empirical 99th percentiles of 6-hourly precipitation in ERA-interim and CMORPH395

for the period 2003-2016 (Figure 2 in their article). The authors showed a strong under-396

estimation of ERA-interim precipitation over the tropics compared to CMORPH. They397

concluded that the deep convection, a central process in tropical extreme precipitation,398

was not properly captured by the reanalysis data set. Even though Nogueira (2020) found399

an improvement of the precipitation simulation over the tropics in ERA-5 compared to400

ERA-interim the previous reanalysis data set from ECMWF, we assume ERA-5 to still401

contain an underestimation of the tropical extreme rainfall.402

One limit of CMORPH that it is important to emphasize is the limitations of this403

data set to capture snow (Joyce et al., 2004) and low-intensity precipitation during win-404

ter in the mid-latitudes (Sun et al., 2018). This property leads to smaller number of wet405

days in winter (DJF or JJA depending on the hemisphere) as seen in section 4.1, hence406

the large areas where our intensity analysis can not be conducted. Some regions at high407

latitudes (close to 60◦ S and 60◦ N) and some mountainous regions have a number of408

wet days large enough for the intensity comparison to be conducted even if snow can be409

expected. However a substantial difference in the number of wet days is observed. The410

higher ERA-5 precipitation compared to CMORPH over mountainous regions might be411

related to snow. Timmermans et al. (2019) revealed a disagreement between CMORPH412

and gauge-based product for extreme precipitation in mountainous regions of western413

USA in DJF and interpreted it as a consequence of the post-processing performed in CMORPH414

leading to lots of missing data in winter (Xie et al., 2017).415

Hénin et al. (2018) assessed ERA-5 daily accumulated precipitation during extreme416

precipitation events over the Iberian Peninsula for the period 2000-2008 against precip-417

itation from a ground based gridded data set. They found an overestimation of daily sums418

for moderate extreme events and and underestimation for the most extreme events. Our419

study of quantiles in ERA-5 and EOBS for non-exceedance probabilities greater than420

0.75 reveals a moderate signal of overestimation of ERA-5 precipitation in the same re-421

gion. One exception is the southern Basque Country where an underestimation of ERA-422

5 quantiles for these probabilities in DJF. Our comparison of moderate and large extremes423

over the period 1979-2018 is therefore only partially in agreement with their study over424

the period 2000-2008.425

For the period 2014-2018, Amjad et al. (2020) showed that ERA-5 overestimates426

the precipitation observed over Turkey compared to ground based stations, independently427

of the wetness and slope classes. Our comparison with EOBS indicates the same signal428

for high quantiles, but also a dry bias for lower quantiles. This can be due to the fact429

that our study period is longer or that EOBS has a poorer station coverage in this re-430

gion.431
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In their study, Tarek et al. (2020) compared the mean seasonal precipitation in ERA-432

5 with station observations over North America between 1979 and 2018. In JJA, they433

found an underestimation of precipitation in ERA-5 over Florida, and an overestimation434

along the west coast of Canada, which is in agreement with our comparison of quantiles435

between ERA-5 and CMORPH for this season and for all probabilities of non-exceedance.436

In DJF, they showed an underestimation precipitation in ERA-5 over the west coast of437

USA and Florida, and an overestimation over the west coast of Canada. Our analysis438

highlighted that ERA-5 presents larger quantiles than CMORPH over the west coast of439

North America for all non-exceedance probabilities. Our results are thus in agreement440

for Canada but not for USA. This can be due to the fact that the time periods studied441

are different and that CMORPH underestimates precipitation during the cold months442

(Sun et al., 2018).443

Mahto and Mishra (2019) assessed ERA-5 precipitation in India against observa-444

tion comparing precipitation sums during the monsoon season (June-September) between445

1980 and 2018. They found a wet bias over Indo-Gangetic Plain and foothills of Himalaya446

and a dry bias in semi arid regions of western India. These results are in agreement with447

our quantile analysis in ERA-5 and CMORPH in JJA for the period 2003-2016.448

6 Conclusion449

We compare daily precipitation from the ERA-5 reanalysis data set with daily pre-450

cipitation from two observation-based data sets, EOBS and CMORPH. The compari-451

son addresses three aspects i) the temporal co-occurrence of moderate to high extreme452

events in two data sets, ii) the agreement of return values for moderate to extreme non-453

exceedance probabilities derived from the extended generalized Pareto distribution (EGPD),454

and iii) a comparison of the full precipitation distribution captured by the EGPD us-455

ing the Kullback-Leibler divergence. We quantify the co-occurrence of precipitation events456

with the hit rate. We compare the EGPD distributions between ERA-5 and the obser-457

vational data sets with confidence intervals for several non-exceedance probabilities and458

with a test based on the Kullback-Leibler divergence.459

Between ERA-5 and EOBS over Europe the hit rate is above 65% for moderate pre-460

cipitation and approximately 50% for extreme precipitation. Between ERA-5 and CMORPH461

globally the hit rate is above 60% for moderate precipitation and around 40% for extreme462

precipitation. Over Europe areas with the least agreement are the southern Mediterranean463

region and Iceland and for the global comparison areas with the least agreement are land464

areas between 15◦S and 15◦N, North-West America and Central Asia.465

For a majority of grid points confidence intervals for non-exceedance probabilities466

of 0.3 to 0.95 overlap between ERA-5 and EOBS. We find a disagreement between ERA-467

5 and EOBS in areas where EOBS uses fewer input stations. We therefore hypothesize468

that the reanalysis data set might better capture moderate to extreme precipitation in469

regions where the station coverage is sparse. The analysis also showed that ERA-5 un-470

derestimates extreme precipitation compared to CMORPH in the tropics. In general,471

the magnitudes of the non-exceedance probabilities agree between ERA-5 and the observation-472

based data sets in the mid-latitudes.473

The Kullback-Leibler test on the entire precipitation distributions over Europe shows474

an agreement of the EGPD distributions in ERA-5 and EOBS over Germany, Ireland,475

Sweden and Finland. The precipitation distributions differ significantly between in ERA-476

5 and EOBS in all four seasons in Iceland, Norway, Karelia, Hungary and the Balkan.477

The Kullback-Leibler test between ERA-5 and CMORPH shows that precipitation dis-478

tributions are generally in agreement over the mid-latitudes and differ significantly over479

the tropics for all seasons, confirming the results of the quantile comparison. ERA-5 should480

only be used with great care to study extreme precipitation over the tropics.481
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The strengths of ERA-5 daily precipitation data are the regular spatial and tem-482

poral resolution and the consistency with the large-scale circulation and there is gener-483

ally a good agreement with observation-based data sets in the extra-tropics. The reanal-484

ysis data set provides valuable complementary information to observational data in re-485

gions where observational data sets are sparse, e.g. in areas where the EOBS station cov-486

erage is poor or for CMORPH in regions and seasons where snow is prevalent. In the487

tropics, an observational data set should be preferred over ERA-5.488
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Table 1. Mean Absolute value of the Difference in the Number of Wet Days

EOBS CMORPH

DJF MAM JJA SON DJF MAM JJA SON

14.5% 20.7% 18.5% 10.9% 66.1% 73.7% 75.2% 76.0%

Note: the mean absolute value of the difference in the number of wet days is defined in equation 6, and is

computed here for grid points with more than 500 wet days for ERA-5 vs EOBS and for grid points with

more than 200 wet days for ERA-5 vs CMORPH.

Table 2. Mean Hit Rate ERA-5 vs EOBS and ERA-5 vs CMORPH

Percentile EOBS CMORPH

DJF MAM JJA SON DJF MAM JJA SON

75th 76% 75% 73% 77% 74% 73% 72% 73%

90th 66% 65% 61% 67% 62% 61% 60% 60%

95th 59% 58% 53% 60% 53% 52% 51% 52%

99th 44% 45% 39% 45% 37% 35% 35% 36%

Note: for a given percentile, the mean is computed over all grid points where the precipitation percentile

is larger than 1 mm. See section 3.1 for the definition of the hit rate.

Appendix A Number of Wet Days651

Appendix B Hit Rate652
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Table 3. Summary of the Wet Day Precipitation Distribution Comparison of ERA-5 With the

Observational Data Sets

Precipitation EOBS CMORPH
intensity

DJF MAM JJA SON DJF MAM JJA SON

Low
82% 81% 39% 82% 94% 93% 92% 93%

p = 0.3

Median
81% 90% 72% 90% 90% 86% 87% 88%

p = 0.5

Moderate
72% 89% 93% 90% 79% 76% 76% 75%

p = 0.75

High
69% 85% 93% 87% 75% 72% 73% 70%

p = 0.9

Extreme
73% 87% 94% 87% 76% 73% 74% 71%

p = 0.95

whole distrib. 29% 34% 10% 39% 57% 55% 53% 52%

Note: for a given non-exceedance probability p, the percentage denotes the proportion of grid points for

which the confidence intervals are overlapping. For the whole distribution, the percentage denotes the

proportion of grid points where the null-hypothesis can not be rejected, i.e. where the distributions are

similar.

Figure 1. 95th precipitation percentile (mm) for all days in SON for (a) ERA-5 over Europe

1979-2018 (b) EOBS 1979-2018 (c) ERA-5 globally 2003-2016 (d) CMORPH 2003-2016.
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Figure 2. Relative position of the confidence intervals (CIs) for SON quantiles associated

with non-exceedance probability 0.9 between (a) ERA-5 and EOBS (1979-2018) and between (b)

ERA-5 and CMORPH (2003-2016). See section 3.2.2 for computational details. Grid points with

an insufficient number of wet days (see section 3.2) are discarded and displayed in white.
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Figure 3. Number of seasons with overlapping confidence intervals for quantiles associated

with non-exceedance probability 0.9 between (a) ERA-5 and EOBS (1979-2018) and between (b)

ERA-5 and CMORPH (2003-2016). See section 3.2.2 for computational details. Grid points with

an insufficient number of wet days (see section 3.2) are discarded and displayed in white.
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Figure 4. p-value of the Kullback-Leibler divergence test (as defined in section 3.2.3) between

ERA-5 and EOBS (1979-2018) in JJA (a) and SON (b) and between ERA-5 and CMORPH

(2003-2016) in JJA (c) and SON (d). p-values ¡0.05 indicate that the distributions differ signif-

icantly. Grid points with an insufficient number of wet days (see section 3.2) are discarded and

displayed in white.
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Figure 5. Number of seasons where the distributions are similar, i.e., without rejection of

the null hypothesis of the Kullback-Leibler test (as defined in section 3.2.3) (a) between ERA-5

and EOBS (1979-2018) and (b) between ERA-5 and CMORPH (2003-2016). Grid points with an

insufficient number of wet days (see section 3.2) are discarded and displayed in white.
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Figure A1. Ratio of the number of wet days as defined with Eq. (5) in SON between (a)

ERA-5 and EOBS (1979-2018) and between (b) ERA-5 and CMORPH (2003-2016). Grid points

with an insufficient number of wet days (see section 3.2) are discarded and displayed in white.

Figure B1. Hit rate for events greater than the 95th percentile between ERA-5 and EOBS in

(a) SON, (b) DJF, (c) MAM and (d) JJA.
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Figure B2. Hit rate for events greater than the 95th percentile between ERA-5 and

CMORPH in (a) SON, (b) DJF, (c) MAM and (d) JJA. Grid points with an insufficient number

of wet days (see section 3.2) are discarded and displayed in white.

–22–


