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Abstract

The concavity index, $\theta$, describes how quickly river channel gradient declines downstream. It is used in calculations of

normalized channel steepness index, $k {sn}$, a metric for comparing the relative steepness of channels with different drainage

area. It is also used in calculating a transformed longitudinal coordinate, $\chi$, which has been employed to search for

migrating drainage divides. Here we quantify the variability in $\theta$ across multiple landscapes distributed across the

globe. We describe the degree to which both the spatial distribution and magnitude of $k {sn}$ and $\chi$ can be distorted if

$\theta$ is assumed, not constrained. Differences between constrained and assumed $\theta$ of 0.1 or less are unlikely to affect

the spatial distribution and relative magnitude of $k {sn}$ values, but larger differences can change the spatial distribution of

$k {sn}$ and in extreme cases invert differences in relative steepness: relatively steep areas can appear relatively gentle areas

as quantified by $k {sn}$. These inversions are function of the range of drainage area in the considered watersheds. We also

demonstrate that the $\chi$ coordinate, and therefore the detection of migrating drainage divides, is sensitive to varying values

of $\theta$. The median of most likely $\theta$ across a wide range of mountainous and upland environments is 0.425, with

first and third quartile values of 0.225 and 0.575. This wide range of variability suggests workers should not assume any value

for $\theta$, but should instead calculate a representative $\theta$ for the landscape of interest, and exclude basins for which

this value is a poor fit.
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Key Points:8

• We develop metrics to understand the variability of the concavity index in a given9

landscape, to help guide authors on how reliable a single value of θ will be if ap-10

plied across a landscape.11

• We compute the values of concavity index (θ) in basins across the globe (N=5033).12

The central tendency is 0.425, corroborating previous studies, but there is a large13

range in values, with interquartile range of 0.225–0.575.14
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concavities.18
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Abstract19

The concavity index, θ, describes how quickly river channel gradient declines downstream.20

It is used in calculations of normalized channel steepness index, ksn, a metric for com-21

paring the relative steepness of channels with different drainage area. It is also used in22

calculating a transformed longitudinal coordinate, χ, which has been employed to search23

for migrating drainage divides. Here we quantify the variability in θ across multiple land-24

scapes distributed across the globe. We describe the degree to which both the spatial25

distribution and magnitude of ksn and χ can be distorted if θ is assumed, not constrained.26

Differences between constrained and assumed θ of 0.1 or less are unlikely to affect the27

spatial distribution and relative magnitude of ksn values, but larger differences can change28

the spatial distribution of ksn and in extreme cases invert differences in relative steep-29

ness: relatively steep areas can appear relatively gentle areas as quantified by ksn. These30

inversions are function of the range of drainage area in the considered watersheds. We31

also demonstrate that the χ coordinate, and therefore the detection of migrating drainage32

divides, is sensitive to varying values of θ. The median of most likely θ across a wide range33

of mountainous and upland environments is 0.425, with first and third quartile values34

of 0.225 and 0.575. This wide range of variability suggests workers should not assume35

any value for θ, but should instead calculate a representative θ for the landscape of in-36

terest, and exclude basins for which this value is a poor fit.37

Plain Language Summary38

The elevation profiles of rivers are commonly used to interpret their tectonic and39

erosion history. The slope of river channels tends to decline downstream, and this de-40

cline can be described by a river’s concavity. Estimating the concavity is important when41

comparing river profiles across a region, and using an assumed value for concavity may42

result in spurious interpretations.43

1 Introduction44

For over a century, geoscientists have recognised the potential of fluvial geomor-45

phology to unravel links between landscape evolution and external forcing (e.g. Gilbert,46

1880; Davis, 1899). In his review of physical geography at the time, de Lapparent (1896)47

outlined a number of basic observations underpinning modern geomorphology: the sys-48

tematic concave up shape of river long profiles, the hypothesis that erosion is correlated49

with channel gradient, and that lithologic contrasts and inherited tectonic structures in-50

fluence river profile form. The geometry of river profiles later became one of the key tools51

for geoscientists in the first half of the 20th century for interpreting landscapes (e.g. Knopf,52

1924).53

Assuming that channel gradient encodes information about erosion rates, lithol-54

ogy, or other factors, you are faced with a fundamental problem: the concave nature of55

a typical river obscures relative steepness, as channel gradient has the pernicious ten-56

dency to increase towards the headwaters of a catchment. That is, how can one tell if57

a headwater channel is steeper, in a way that is meaningful for interpreting landscape58

evolution, than a section of the river some distance downstream? Some normalization59

is therefore required to compare river sections with different drainage areas. Morisawa60

(1962) noted a power law relationship between gradient and drainage area, which led to61

a means of normalizing river gradients. Flint (1974) formalized these observations into62

the slope–area relationship with a concavity index (θ), which describes how quickly river63

gradient decreases with increasing drainage area, and a steepness index (ks) that describes64

the relative steepness of a reach regardless of its drainage area:65

S = ksA
−θ (1)

–2–
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where S is the gradient of elevation along the channel (S = dz/dx where z is the ele-66

vation and x the flow distance); and A is the drainage area. This relative steepness in-67

dex ks, in particular, has been widely used in geomorphology because of its empirically68

observed positive correlation with erosion rates (e.g., Safran et al., 2005; DiBiase et al.,69

2010; Cyr et al., 2010; Scherler et al., 2014; Ouimet et al., 2009; Kirby & Whipple, 2012;70

Mandal et al., 2015; Harel et al., 2016), supported by a theoretical underpinning (Whipple71

& Tucker, 1999). The value of steepness index derived from drainage area and gradient72

depends on the value of the concavity index, so in order to compare different channels,73

the steepness index is typically calculated with a single value of θ, resulting in a “nor-74

malized” steepness index (ksn) (Wobus et al., 2006). Despite the importance of constrain-75

ing θ for calculating channel steepness, it is often assumed in many studies that 0.4 <76

θ < 0.6 (e.g. Tucker & Whipple, 2002; Whipple, 2004; Kirby & Whipple, 2012).77

Numerous authors have attempted to extract concavity indices from topographic78

data. For example, Tucker and Whipple (2002) compiled concavity indices using slope–79

area regression from ten previous studies, aggregating 27 different sites, and found con-80

cavity indices ranging from 0.11–1.13. Whipple (2004) argued that if you limit extrac-81

tion of the concavity index to bedrock rivers with homogeneous substrates, homogeneous82

uplift fields and time invariant uplift, concavity indices converge to a range between 0.4–83

0.7.84

Whipple (2004) went on to articulate circumstances in which concavity indices may85

fall outside this range. They argued that low concavity indices (θ < 0.4) can result from86

drainage basins influenced by debris flows (e.g. Stock & Dietrich, 2003) or from down-87

stream increases in incision rate or rock strength (Kirby & Whipple, 2001). Alluvial rivers88

can also have low concavity values: Gasparini et al. (2004) used a numerical model to89

predict that finer sediment could result in low concavity values (< 0.4) when either grain90

size was less than 100 mm in homogeneous sediment or if there was a high percentage91

of sand in mixed gravel and sand rivers. Whipple (2004) suggested that high concavi-92

ties (θ > 0.7) could result from downstream transitions to full alluvial conditions with93

bedrock reaches in headwaters, and also noted the findings of Kirby and Whipple (2001)94

that high concavity can result from downstream increases in rock strength or incision95

rate. Extreme concavity values (θ > 1.0) can also result from large knickpoints (e.g.96

Schoenbohm et al., 2004). Furthermore, Zaprowski et al. (2005) found that channel con-97

cavities varied systematically across a gradient in mean annual precipitation and pre-98

cipitation intensity, with higher concavities associated with a more intense hydrological99

settings on the high plains of the western USA.100

In this contribution, we aim to question the common assumption that a narrow range101

of θ values is appropriate for the majority of Earth’s landscapes. To do this, we attempt102

to constrain the range of concavity indices present both within and between a wide range103

of different study sites. We compare different methods of estimating the most likely val-104

ues of θ and refine existing methods of quantifying the uncertainty in choosing a most105

likely value of θ. We then examine the impact of using a poorly-constrained concavity106

value on estimates of ksn and the metric χ, which integrates drainage area along chan-107

nels and has been used to detect drainage divide migration (Willett et al., 2014), and108

highlight the potential risks of misinterpretation in such cases.109

2 Determining the concavity index110

2.1 Concavity index derived from slope–area data111

A common approach to deriving fluvial profile concavity is to transform equation112

1 into logarithmic space:113

log[S] = log[ks] ∗ −θ log[A] (2)

–3–
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where θ is the gradient of log[A]–log[S] plots and ks the intercept where log[A] = 0 (i.e.,114

where A = 1 m2 if areas are reported in square meters). Assuming ks is a constant, θ115

can be determined by linear regression of log[A]–log[S]. This logarithmic slope–area method116

has been widely used to determine both concavity and channel steepness (e.g. Wobus117

et al., 2006; Kirby & Whipple, 2012; Whipple et al., 2013).118

However, the use of raw S–A data has limitations: the seminal Wobus et al. (2006)119

paper includes the word “pitfalls” in the title. DEM data is inherently noisy (e.g. Wobus120

et al., 2006; Perron & Royden, 2013), either because of natural noise in river profiles or121

due to errors in the acquisition methods (e.g. airborne lidar or satellite altimetry), and122

taking the gradient of noisy data amplifies that noise (e.g. Perron & Royden, 2013). In123

addition, tributaries result in large jumps in drainage area, resulting in major gaps along124

the log[A] axis. Between tributaries, drainage area increases slowly, but channel gradi-125

ent can vary dramatically due to heterogeneity in local river bed conditions. This means126

that some form of averaging or binning must be used on the raw slope–area data in or-127

der to extract ks and θ values.128

We illustrate difficulties in extracting the concavity and steepness indices from S–129

A in Figure 1. This figure contrasts a theoretical case (panel a) with real data that con-130

siders the basin as a whole (panel b), each different tributary channel individually (panel131

c), or solely the main stem channel (panel d). Values of θ can vary substantially in the132

same drainage basin depending on the S–A data used, as shown by the histograms of133

best-fit populations of θ within the inset plots in panels b,c,d. This does not suggest134

that S–A data is unsuitable for extracting landscape metrics: steepness indices derived135

from this method have been shown to correlate well with other landscape properties such136

as erosion rates and tectonic activity in a range of contexts (e.g. Kirby & Whipple, 2012).137

However it highlights the potential difficulties and uncertainties in using this technique138

to extract θ or ks, particularly across large areas where θ might vary spatially.139

2.2 Concavity index from the integral approach140

These problems with the slope–area approach have led to the development of al-141

ternative methods in recent years. One such technique is to integrate drainage area along142

flow distance, which was first suggested by Royden et al. (2000) and further developed143

in Perron and Royden (2013) as a way to circumvent uncertainties associated with cal-144

culating gradient from noisy topographic data. Following Whipple et al. (2017) we can145

integrate equation 1, resulting in146

z(x) = z(xb) +

(
ks

A0
θ

)∫ x

xb

(
A0

A(x)

)θ
dx, (3)

where z(xb) is the elevation of the channel at some base level, and A0 is a reference drainage147

area, introduced to nondimensionalize the area term within the integral in equation (3).148

We can then define a longitudinal coordinate, χ:149

χ =

∫ x

xb

(
A0

A(x)

)θ
dx. (4)

The coordinate χ has dimensions of length, and is defined such that at any point in the150

channel:151

z(x) = z(xb) +

(
ks

A0
θ

)
χ. (5)

–4–
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Figure 1. Example slope–area plots. a. An idealized channel with slope and area following

equation 1. θ is uniform and a clear knickpoint separates two populations of ksn. b. Slope–area

data from a real watershed (the Buzău river in Romania, 3000 km2, outlet coordinates latitude

45.20 and longitude 26.75 in WGS84). Each grey point represents gradient calculated over a

vertical window of 20 meters; data derived from the ALOS World 3D 30 dataset. Note the noise

and irregularity of data spacing along the axes. In orange, data is binned by drainage area and

concavity is calculated using a segmentation algorithm described in Mudd et al. (2014). Only

one of the resulting segments has a concavity between 0 and 1: the inset in panels b,c, and d

show histograms of concavity values between 0 and 1 based on segmentation of S–A data. Panel

c. shows slope–area data binned by drainage area for all tributaries of the same watershed. The

population of θ is obtained by using the segmentation of slope–area data in each each tributary.

Panel d. shows data for the main stem channel only.

–5–
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Equation 5 has two key predictions: firstly, assuming that ks and θ are spatially152

constant, there will be a linear relationship between χ and elevation for a single chan-153

nel; and secondly, that tributaries will be collinear with the main stem. If the linearity154

prediction is true, θ can be calculated for a river by iterating through a range of θ val-155

ues for a given network and selecting the value with a best-fit linear relationship between156

χ and elevation (Perron & Royden, 2013). In many real landscapes which are undergo-157

ing transient adjustment, however, ks may vary spatially. Alternative approaches have158

attempted to fit a number of linear segments to χ-elevation data to circumvent this prob-159

lem (Mudd et al., 2014, 2018).160

The collinearity prediction provides a second independent metric of calculating the161

concavity index (θ) that does not assume that river profiles are linear in χ-elevation space.162

Instead it assumes that a point anywhere on the channel network with the same χ value163

will have the same elevation. This has been used as the basis for a number of techniques164

which calculate the concavity index by minimising the scatter between points on trib-165

utaries with the main stem channel (Goren et al., 2014; Hergarten et al., 2016; Mudd166

et al., 2018). The collinearity test would be rather restrictive, however, if it were lim-167

ited to landscapes where ks were uniform. Royden and Perron (2013) used solutions of168

the stream power law to show that collinearity holds even if there are perturbations to169

the erosion rate that propagate upstream through the channel network. The stream power170

law has many assumptions (e.g. Lague, 2014), but we can alternatively use geometric171

relationships to show that collinearity is indicative of the most likely concavity index with-172

out invoking stream power.173

Two centuries ago, Playfair (1802) observed that tributary junctions often featured174

channels joining at a common elevation: waterfalls are not systematically present at trib-175

utary junctions. This must mean that the two contributing streams need to have eroded176

at the same rate as the river just downstream of the junction. Niemann et al. (2001) ex-177

panded on this geometric observation and derived an expression for the migration rate178

of a local channel steepening or knickpoint (called its celerity, Ceh [L/T]) of:179

Ceh =
1

S2 − S1
∆E, (6)

where S1 is the channel slope prior to disturbance, S2 is the channel slope after distur-180

bance (e.g., due to a change in incision rate E), and ∆E is the difference between the181

incision rate before and after disturbance (E1 and E2 in units of length per time, ∆E =182

E2−E1). Following Wobus et al. (2006) we can introduce drainage area into equation (6)183

by replacing the slope terms using equation (1).184

Ceh =
E2 − E1

ks2 − ks1
Aθ. (7)

Once Ceh is known, we can calculate the vertical celerity (Cev) which is simply the185

horizontal celerity multiplied by the local slope after disturbance S2 (Wobus et al., 2006).186

The vertical celerity of a disturbance to the channel network is independent of drainage187

area:188

Cev =
E2 − E1

ks2 − ks1
ks2. (8)

Equation (8) implies that, under conditions of spatially homogeneous uplift and189

constant erodibility (i.e., channels with the same slope and drainage area erode at the190

same rate), then changes in slope will propagate vertically in elevation at a constant rate.191

If we begin with a landscape with constant ks as described in equation 5 that has a collinear192

–6–
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channel network, and propagate changes in slope at a constant vertical celerity, the net-193

work will remain collinear even if ks becomes spatially heterogeneous.194

2.3 Can we know if a concavity index is “correct”?195

The calculations of concavity index presented above are based on models of detachment-196

limited incision. A number of authors have also attempted to derive the concavity in-197

dex from transport-limited models (e.g., Whipple & Tucker, 1999; Wickert & Schildgen,198

2019). Although these models are a promising approach for understanding the fluvial199

concavity index, it is currently challenging to test these predictions by quantifying the200

correct concavity index from field observations.201

An alternative approach is to create simulated topography using a model that bears202

some resemblance to measured incision processes, impose a concavity index upon this203

model, and then test if the topographic methods are able to correctly extract the im-204

posed concavity index (e.g. Mudd et al., 2018). In spatially homogeneous, steady state205

landscapes, both methods could extract the correct concavity index, which is unsurpris-206

ing since this situation just produces a topographic surface exactly obeying equation 1.207

If the modelled landscapes were perturbed by changing uplift rates, or variations in erodi-208

bility, then Mudd et al. (2018) found that the slope–area method could not reliably be209

used to identify the imposed concavity index. In contrast, Mudd et al. (2018) found the210

collinearity approach could identify the imposed concavity index under spatial and tem-211

poral heterogeneity that might be found in a natural landscape. Therefore, for the rest212

of this paper, we primarily focus on extracting the concavity index using the collinear-213

ity method.214

3 Impact of varying concavity on the channel steepness index215

The channel steepness index in equation 1 (ks) depends on the concavity index, mean-216

ing that a reference value of θ (θref ) must be set to compare ks values across multiple217

basins (Wobus et al., 2006). This results in “normalized” values of the steepness index,218

ksn. Values of the normalized steepness index, ksn, have been widely correlated with ei-219

ther uplift rates, inferred from a range of indicators such as dated terraces (e.g., Sny-220

der, 2000), or erosion rates, usually inferred from the concentrations of in-situ cosmo-221

genic nuclides such as 10Be (e.g., Lal, 1991). In many such studies, there is a clear pos-222

itive correlation between ksn and inferred erosion and uplift rates (e.g., Kirby & Whip-223

ple, 2001; Safran et al., 2005; DiBiase et al., 2010; Cyr et al., 2010; Scherler et al., 2014;224

Ouimet et al., 2009; Mandal et al., 2015; Harel et al., 2016). Broadly speaking, these re-225

sults indicate that steeper channels do reflect faster erosion rates, if one controls for other226

factors such as lithology.227

If we believe that channel steepness can serve as a proxy for erosion rates, and that228

erosion rates are correlated with uplift rates, then it follows that channel steepness may229

be a powerful tool for detecting spatial variations in tectonic activity (e.g., Kirby & Whip-230

ple, 2012; Whittaker, 2012). However, ksn is a function of the concavity index. If we choose231

the incorrect value of the concavity index, what is the potential for misinterpreting the232

spatial distribution of relative channel steepness, and therefore uplift patterns?233

Figure 2 depicts scenarios where changing the value of the concavity index will re-234

sult in substantially different interpretations of the spatial variation in channel steep-235

ness. Figure 2a illustrates a catchment with spatial heterogeneity in θ. If one θ is used236

for the entire catchment this can lead to dramatic differences in the calculated ksn val-237

ues. This behavior is also expected in χ space, as shown in Figure 2b, where the steep238

slope patches, which are interpreted as representing faster erosion, appear in different239

locations depending on the value of θ. Panels c. and d. also highlight how, depending240

–7–
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on the choice of θ, one might find two clearly separated values of ksn within the chan-241

nel network or a range of values (see inset in panel c.).242

Figure 2. Schematic diagram exploring ways in which changing the values of the concavity

index lead to differing interpretations of tectonics or erosion based on channel steepness index.

Blue, orange and red colors represent low, medium and high concavities, respectively. The left

column depicts S–A data for two idealized catchments and the right column shows the corre-

sponding χ-elevation plots. The value of ksn for each point in these basins will be determined

by the point at which the lines intersect with the vertical axis at log[A] = 0. Catchment 1 (top

row) represents a catchment with spatial variation in concavity from a low-concavity outlet to

high-concavity headwaters. Selecting one index for the entire catchment will alter the distribution

of ksn values as shown in the inset plots. Catchment 2 (bottom row) represents a catchment with

one concavity but spatial variation in ks. This spatial variation in ks will only be detected if the

correct concavity value is chosen.

Conceptual diagrams such as Figure 2 highlight the uncertainties in ksn that are243

generated by uncertainties in θ. However, it is not straightforward to predict where these244

distortions will be greatest. One issue is that the relationship between ksn and θ is non-245

linear: the order of magnitude of the steepness values for different values of θ are not di-246

rectly comparable. In addition, the noise of S data and sparsity of A data, caused by247

jumps in A at junctions, require the use of data-loss methods such as binning (e.g. Wobus248

et al., 2006). This disconnects single points in a channel from S–A data and therefore249

hinders our ability to check binned values against field knowledge. Although the χ trans-250

formation offers a means to circumvent some of these issues (Perron & Royden, 2013),251

it is calculated with a fixed θ value, meaning that landscape–scale χ transformations may252

be distorted by the choice of θ (Figures 2b and d. Our study is focused on assessing the253

extent of this distortion and proposing metrics to estimate which θ value will least dis-254

tort values of ksn.255

–8–
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4 Methods256

4.1 Quantifying concavity using disorder257

We begin by looking at the uncertainty of θ values for a single basin. We use the258

disorder metric, first suggested by Goren et al. (2014), that is a measure of how far trib-259

utaries depart from the main stem river and amongst themselves in χ–elevation space260

(e.g. Goren et al., 2014; Hergarten et al., 2016; Mudd et al., 2018; Shelef et al., 2018).261

Our implementation follows the method of Hergarten et al. (2016). It ranks every point262

in the channel network by increasing elevation, and then checks to see if the associated263

χ coordinates are similarly ranked (or not):264

R =

N∑
i=1

∣∣χs,i+1 − χs,i
∣∣, (9)

where the the subscript s, i represents the ith χ coordinate that has been sorted265

by its elevation. This sum, R, is minimal if elevation and χ are related monotonically.266

However it scales with the absolute values of χ, which are sensitive to the concavity in-267

dex (see equation 4), so following Hergarten et al. (2016) we scale the disorder metric,268

D, by the maximum value of χ in the tributary network (χmax):269

D =
1

χmax

( N∑
i=1

∣∣χs,i+1 − χs,i
∣∣− χmax). (10)

The most likely concavity index is that which results in the lowest value of D for270

the river network: a perfectly collinear population of points would have D = 0 (Hergarten271

et al., 2016). To constrain uncertainty, Mudd et al. (2018) created subset networks formed272

from the trunk stream and every possible combination of three tributaries (Figure 3).273

The minimum D value was calculated for all of these combinations by iterating over θ274

values, creating a population of best fit concavity index values from all the combinations.275

The median and interquartile range were then reported.276

Several authors have shown this method is effective in identifying the most likely277

concavity index for a watershed (Hergarten et al., 2016; Mudd et al., 2018). However,278

as explained in section 3, one may be compelled to use a different value of θ for a par-279

ticular watershed, for example if one is comparing values of normalized channel steep-280

ness and needs to apply a constant θ value across the landscape to generate ksn data.281

We would like to know how well this fixed value of θ performs for multiple basins. We282

have therefore adapted the disorder approach to quantify sensitivity to changing θ. For283

every combination of tributaries, we calculate a value of D for a range of θ values. We284

then normalise each value of D by the maximum disorder value (Dmax) from that range:285

D∗ =
D

Dmax
(11)

This results in a population of D∗ values for every value of θ, and these values vary286

between 0 and 1 (Figure 3). If the dataset is perfectly collinear, then D will equal 0 (Hergarten287

et al., 2016), so normalizing by Dmax means D∗ spans from the maximum disorder to288

perfectly collinear channel networks. We can then quantify the median and lower quar-289

tile of D∗ as a function of θ, and from these derive estimates of the most likely θ value290

as well as some indication of how well constrained this value is. If the best fit concav-291

ity index is well constrained, the D∗ values will have a sharply defined minimum, whereas292

a poorly defined value will have a very broad range of D∗ values as illustrated in Fig-293

ure 3c. We calculate D∗ to provide metrics reflecting how well constrained θ is for a given294

watershed.295

–9–
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Figure 3. Method to determine best fit θ from all stream elevation data in a catchment by

measuring the normalised disorder in χ values ranked by corresponding increasing elevation

within the catchment (A). Uncertainty is constrained through a bootstrapping approach to mea-

sure the disorder for all possible combinations of three tributaries plus the main stem (B) to

build an uncertainty range for D∗ across the range of plausible θ values (C).

–10–
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Finding the value that minimises the disorder might suggest the most likely value296

for a watershed. However it is also important to quantify the goodness of this value, i.e.297

if a range of values would result in similar disorder metrics, or alternatively if small changes298

to the value of θ would lead to much greater disorder. We therefore developed a further299

metric for quantifying the uncertainty of θ within a watershed. The most likely value300

of θ is defined by the minimum value of median D∗ from all combinations of tributaries301

extracted for each value of θ (Figure 3c). Alongside the median we also calculate the first302

quartile: these values are lower than the median for each value of θ, so we draw a hor-303

izontal line from the minimum of the median D∗ values and mark where this intersects304

with the first quartile D∗ values at both lesser and greater values of θ (Figure 3, panel305

C). We then define the uncertainty range, Rθ, as the distance between these two points306

(maxQ1 and minQ1):307

Rθ = maxQ1 −minQ1 (12)

Lower values Rθ mean that there is less uncertainty on the best-fit θ (Figure 4). We can308

further assess the goodness of fit for θ for entire landscapes by calculating the cumula-309

tive distribution (CDF) of Rθ values across multiple basins. The shape of the cumula-310

tive distribution is a direct proxy of the cleanness of the best-fits: a steep CDF with low311

values would mean that the majority of basins had relatively low uncertainties on θ, whereas312

a more gradually increasing CDF would indicate that the landscape exhibits a wider range313

of uncertainty on θ.314

The technique outlined above allows us to calculate the best-fit theta value for one315

particular basin. However, D∗ is less useful if we wish to constrain the most likely value316

of θ across multiple watersheds, as different basins will have a different minimum value.317

Therefore, we also calculate a disorder metric normalized by the range of disorders within318

a basin, which we call D∗
r :319

D∗
r =

D −Dmin

Dmax −Dmin
(13)

We can calculate D∗
r for the reference value of θ (θref ) across every basin in the320

landscape. If the best-fit θ for a particular basin is equal to θref , then D∗
r for that basin321

will be 0. We can therefore interrogate the distribution of D∗
r values for the landscape322

to determine how well-constrained θref is, and therefore how reliable our estimates of323

normalized channel steepness will be.324

4.2 Quantifying spatial variations of θ using S–A325

The disorder metric outlined in Section 4.1 relies on comparing the main stem chan-326

nel with a number of tributaries. In some cases, either where basins have very few trib-327

utaries, or if concavity along a specific channel is of interest this method is not appro-328

priate. In these cases we use slope–area plots to quantify spatial variations in θ, as il-329

lustrated for the Danube case study (Section 5.4). We calculate the slope of the main330

channel using a fixed elevation drop of 5 meters. We wish to look at broad patterns in331

concavity so we segment the river into reaches based on their geological and/or geograph-332

ical settings, e.g. by sedimentary basin or upland area. In each subjectively defined reach,333

we apply an iterative Monte Carlo sampling scheme to randomly select 80% of the points334

within the reach and perform linear regressions to determine a population of θ values335

for each reach.336
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5 Concavity across scales337

We use the collinearity method outlined in Section 4.1 to investigate concavity across338

a wide range of different scales, ranging from individual drainage basins to entire moun-339

tain ranges. We aim to explore how variable concavity is spatially across different regions340

and test our ability to constrain a representative θ that can be used in channel steep-341

ness calculations.342

5.1 Individual drainage basins343

As a first step, we illustrate the collinearity method with two small watersheds in344

different geological contexts (Figure 4). The aim of using D∗ is to not only determine345

the best-fit values for a given watershed, but also to determine how “wrong” other val-346

ues are. This is necessary because normalized steepness values (ksn) are frequently cal-347

culated based on an assumed reference concavity θref , which inevitably results in chan-348

nel steepness values being calculated using values of θ which are inappropriate for an in-349

dividual basin.350

The first example site (Figure 4a,b,c) is in the Loess Plateau (China). It features351

a relatively homogeneous substrate and relatively homogeneous concavity indices esti-352

mated from previous studies (e.g. Mudd et al., 2018; Zhang et al., 2020). The density353

map in Figure 4a shows D∗ values for each value of θ tested, and for each combination354

of tributaries tested in the watershed. Higher densities (e.g., bright colours) mean that355

many of the tributary combinations returned that value of D∗. Median values minimis-356

ing D∗ suggest an optimal θ (θopt) value of 0.425 and a Rθ value of 0.075. A χ–elevation357

plot made using this concavity (Figure 4b) shows linear channel and tributary profiles,358

suggesting a channel with homogeneous substrate and a constant erosion rate (Perron359

& Royden, 2013).360

Figure 4c displays transformed river profiles for different θ with a normalised χ∗ =361

χ/χmax to plot the two populations of χ on the same horizontal scale. Both of these θ362

values lead to substantial divergence from the linear profile in panel b. If the θ values363

in panel c were used to determine ksn, one would predict a wide range of channel steep-364

nesses. Low values of θ result in tributaries that have higher values of ksn than the main365

stem (i.e., they are steeper in χ–elevation space), whereas tributaries have lower values366

of ksn than the main stem if θ is large. We also observe that the black dataset using θ =367

0.15 is closer to collinearity than the red dataset using θ = 0.85 as predicted by its lower368

disorder value.369

The second test site is a watershed located in the South-Eastern Carpathians (the370

outlet is 5 km NW of Buzau, Romania). The landscape is marked by spatial variations371

in uplift and subsidence, heterogeneous lithology (Mat,enco, 2017, and references therein),372

and shows strong evidence of stream piracy (e.g. ter Borgh, 2013). Figure 4d presents373

a density plot of D∗ values that feature more scatter than those of the Loess Plateau.374

However, the most optimal θopt, which here is 0.275 with a Rθ of 0.15, can still be de-375

termined from the minimum value of D∗. Figure 4e demonstrates that the method still376

isolates the value of θ which maximises collinearity despite prominent breaks-in-slope,377

a small number of outlier tributaries, and many competing forcings. If we compare the378

χ–elevation profiles in Figure 4f, we see that the profiles with a high value of θ are much379

more scattered than those with a low value of θ, which reflects the relative spread of D∗
380

at these θ values depicted in the density plot in Figure 4d.381
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Figure 4. θ best-fit for single watershed in the Loess Plateau (a,b and c) and for the Buzau

river (d,e and f) in the South-Eastern Carpathians. a) and d) Density plots of the D∗ for each

combination of watersheds function of θ. It suggests θopt = 0.425 and Rθ = 0.075 with a sharp

and clear minimum for the Loess Plateau and θopt = 0.275 Rθ = 0.15 for Buzau. b) and e)

χ-Elevation profile for the river at calculated with optimal θ. Note the collinearity of the profiles.

c) and f) Nondimensionalised χ∗ = χ/χmax calculated with non-optimal θs. Note the high scatter

compare to their optimised counterparts.

5.2 Distribution of θ across mountain ranges382

A mountain range or discrete upland area is a convenient unit of study in geomor-383

phology (e.g. Gilbert, 1880). To illustrate variations in the concavity index across moun-384

tain ranges, we apply our method to a range of sites showing different tectonic and litho-385

logical characteristics, as well as a range of scales: The San Gabriel Mountains (CA, USA),386

the Cordillera Central of Ilocos Norte (Luzon Island, Philippines), the Eastern Carpathi-387

ans (Ukraine, Romania and Republic of Moldova), and the Himalayas. For each test site,388

we extract all watersheds within the landscape with drainage areas from 50 km2 to 1000389

km2. We remove nested watersheds to avoid including the same channels multiple times.390

This range in drainage area provides a good balance between basins that have a num-391
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ber of tributaries with which to measure collinearity, and basins having a limited amount392

of internal heterogeneity such as faults, lithologic contacts or climate gradients.393

5.2.1 San Gabriel Mountains394

The San Gabriel Mountains sit within the tectonically active Transverse Ranges395

in Southern California (USA) (e.g. Lindvall & Rubin, 2008). DiBiase et al. (2010) quan-396

tified the erosion rates in the area using basin-wide cosmogenic radionuclides and ob-397

served positive correlations between erosion rates and ksn in the region. Using linear re-398

gressions on binned S–A plots, they suggested θ=0.45. We apply our methodology to399

the same field area. Figure 5a shows the spatial distribution of most likely values of θ,400

i.e θ value minimising D∗ for each basin, across the landscape. A frequency plot of most401

likely values (Figure 5b) suggests relatively low values of the concavity index with most402

falling between 0.25 and 0.4 (median is 0.325, and the first and fourth quartile respec-403

tively 0.275 and 0.445). Figure 5c shows that more that 60% of the basins have an Rθ404

below 0.2, meaning their best-fit is narrow and relatively well-defined, with some basins405

even showing Rθ close to 0.406

A strategy to select a representative θ value depends on the watershed of interest.407

In our case, if we are interested in all the basins on Figure 5, we suggest selecting θ =408

0.3 to minimise distortion. This value has been chosen as being one of the most repre-409

sented, meaning that it will minimise the distorion for a high number of basins, while410

being very close to the median. Figure 6 can be used to assess which basins will be most411

disordered, that is, have the highest D∗ value for a particular θ value. One might have412

less confidence in ksn values extracted from basins that are highly disordered in Figure 6413

when using the regional θ value.414
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Figure 5. Analysis of the spatial variations in concavity index of the San Gabriel Mountains

and surroundings by displaying the distribution of best-fit and their errors. a) Map of best fit

θ for each catchment analysed in the area. b) Frequency distribution of the best-fit catchment

values. The high concentration of θ = 0.05 is linked to the fact that this is the minimum value

considered and encompasses all best-fits lower than this. c) Cumulative distribution plot of Rθ.

This plot shows that 80% of the watersheds have Rθ values less than 0.3.
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Figure 6. D∗ values for each watershed for θ = 0.3. Low values, close to 0, reflect basins that

have very low disorder with this value of θ, whereas basins with higher D∗ values are much more

disordered. Comparison with Figure 5 allows one to identify basins that are highly disordered

because they do not share the regional best-fit θ (e.g., the basin in the SE corner of the study

area), but it can also identify basins that have a similar best fit θ to the regional value, but are

still somewhat disordered (e.g., the basin with an outlet on the southern side of the study area

with an Easting of just over 340 km).

5.2.2 Cordillera Central of Ilocos Norte, Philippines415

The second test site is the Cordillera Central of Ilocos Norte, in the northern part416

of Luzon island, Philippines. The island is bordered by doubly vergent subduction zones,417

one to both the east and west of the island. This tectonic forcing has led to the parti-418

tion of the island by a network of active faults: the Philippine fault system features shear-419

ing, compressive, and extensional faults (e.g. Ringenbach et al., 1992; Aurelio et al., 2009).420

The analysis of the spatial distribution of concavity indices (Figure 7a) contrasts with421

the result from the San Gabriel mountains: it is much more heterogeneous. The most422

occurring value of θ for the range is 0.45 (Figure 7b), but the mountains feature basins423

with most likely θ values that vary between 0.05 and 0.95, and there is no dominant value424

or range of values amongst the most likely θ values (Figure 7b).425

This heterogeneity is observable from other perspectives: Figure 7c shows the Rθ426

values of the range. The curve rises much more gradually than that of Figure 5c. Only427

40% of the basins have an Rθ < 0.2 and 40% of them have an Rθ > 0.4, suggesting428

large uncertainties in the most likely value of θ.429
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Figure 7. Summary of θ best-fit analysis for Luzon field site (Phillipines). Plots are in UTM

zone 51. a) Spatial distribution of the best-fits for each watershed showing striking heterogene-

ity across the region. b) Distribution of θ values compiled for all watersheds: there is no clear

peak in the best-fit θ. c) Cumulative density plot of the uncertainty Rθ. The low steepness of the

curve shows the spatial heterogeneity in best-fit θ.

5.2.3 The Eastern Carpathians430

The Eastern Carpathians system is part of the eastern continuation of the Alpine431

orogeny, and is more lithologically heterogeneous than the previous two sites. In their432

review of the regional tectonics and its topographic expression, Mat,enco (2017) (and ref-433

erences therein) highlighted several domains which evolved differently, ultimately con-434

trolling emergent features of the topography. The different domains are shown in Fig-435

ure 8a): (i) the Southern Carpathians, composed of resistant magmatic and metamor-436

phic rocks with the most recent significant exhumation during the Mesozoic; (ii) the East-437

ern Carpathians, composed of sedimentary rocks of variable strength and fewer magmato-438

metamorphic massifs, with exhumation history from late Miocene to present in localised439

sections; (iii) The Transylvanian Basin, an uplifted back-arc basin with potential drainage440

reorganisation (ter Borgh, 2013); (iv) The Getic and Focsani depressions, made of al-441

luvial fans from the Southern Carpathians and subsidence of the active part of the East-442

ern Carpathians; and (v) the European Foreland, the foreland basin of the Eastern Carpathi-443

ans and part of the European Shield (Mat,enco, 2017, and references therein).444

Figure 8 presents a summary of the concavity index distribution within the East-445

ern Carpathians. Figure 8b shows the most likely values of θ are widely distributed, but446

the distribution is centered around 0.625, excluding a large number of values with a best447

fit of θ < 0.05. Figure 8c suggests that the different domains behave differently. The448

–17–



manuscript submitted to JGR: Earth Surface

Getic and Focsani depressions primarily feature low concavities, between 0.2 and 0.4. Basins449

in the Southern Carpathians feature low to medium concavity with a wide range of low450

values between 0.1 and 0.5. The Transylvanian basin and the Eastern Carpathians present451

similar trends with best-fits centered on 0.5, although the relatively flat distributions sug-452

gest a less well constrained best-fit. The European Foreland, in contrast, has high θ val-453

ues, > 0.6.454

Figure 8. Concavity results from the Eastern Carpathians. a) Watershed between 5e7 and

1e9 extracted colored by domain corresponding to the legend on c. The base map and subsequent

units are in WGS84 UTM35N. b) Best-fit concavity across the field site. Note the peak of low

values representing values lesser or equal to 0.05. c) Median profiles of the median D∗ for each of

the watershed by zones. Global trend can be isolated with significantly different minimums for

the different area. The colors correspond to the basin outlined in a) and described in the legend.

5.2.4 The Himalayan system455

We also illustrate the spatial distribution of concavity in the central Himalayan sys-456

tem. We include in this analysis the main basins draining the range, outlined in black457

in Figure 9a, and their surrounding smaller basins on the Tibetan plateau and the Gangetic458

plain.459

Himalayan River networks have been widely studied (e.g. Seeber & Gornitz, 1983;460

Gupta, 1997; Lavé & Avouac, 2001; Clark et al., 2004), due to the heterogeneous nature461

of the range’s lithology and tectonics (e.g., Yin, 2006), as well as strong gradients in pre-462

cipitation and discharge (Bookhagen & Burbank, 2010) and the influence of glacial pro-463

cesses on catchment morphology. We find strong variations in θ values (Figure 9). Within464

the mountain belt, the most likely θ values are centred around 0.45, but large numbers465

of basins have most likely values between 0.05 to 0.7. Subtle patterns may be recognised;466

for example the patch of high concavity at Easting 750 km - Northing 3250 km, or the467

strip of low concavity just north of the basins outlined in black; but apart from system-468

atically low concavity in the plains, no clear signal emerges. This lack of pattern sug-469

gests caution should be used in applying a single value of θ across the range when ex-470

ploring channel steepness.471
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We also analysed the large scale expression of θ within the major basins, outlined472

in black, that average the effect of more factors than smaller basins (Figure 9c). Most473

of the large basins have a global θ in between 0.2 and 0.4 with large uncertainties. One474

basin features a very high concavity, at odds with Figure 9a, suggesting that large-scale475

expression of concavity might hide local heterogeneities.476

Figure 9. Distribution of θ across the Central Himalaya. a) Spatial distribution of the best-

fit θ for all watersheds in a range of drainage area from 50 to 100 km 2. The black outlines are

representing the main basins draining to the mountain front. The stars are their outlets and refer

to figure c. b) frequency distribution of all the best fits in the study area. Note that the very low

values (0.05) have been omitted here for the sake of clarity. c) Best-fit θ for the main drainage

basins draining the Himalayas. The outlets are colored on a).

5.3 Variability in the concavity index across multiple basins477

To give a broader picture of variation in the value of θ, we analysed θ across many478

different landscapes, selected to represent a broad range of climate, lithology and tec-479

tonic activity.480

Our compilation comprises 5033 basins analysed for most likely θ across a diverse481

range of landscapes. The median value across all these basins is 0.425, which is consis-482

tent with previous studies based on slope–area data (e.g. Tucker & Whipple, 2002). This483

central tendency, however, masks a very large degree of heterogeneity. The interquar-484

tile range of most likely θ values is 0.225–0.575. We note that our table makes no effort485

to isolate bedrock channels, and we may expect greater heterogeneity if the study area486

includes both alluvial and bedrock rivers (e.g., Whipple, 2004).487

The table includes metrics of the range of uncertainties across multiple landscapes.488

We hope this serves as a benchmark for authors to determine how “messy” their land-489

scape is in a global context. The first and third quartiles for Rθ across all 5033 basins490

is 0.175 and 0.375, respectively. Therefore, basins with an Rθ value of 0.175 or less have491

a sharply defined θ compared to most basins, whereas basins with an Rθ above 0.375 are492

particularly disordered: in these basins it is virtually impossible to constrain a “correct”493

or representative value of θ based solely on topography.494
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Table 1. Concavity indices across selected landscapes. At each site we analyse a number of

basins and report the median, and first and third quartiles of the most likely θ values amongst

the basins. We also report the median and first and third quartiles for the range of uncertainty

(Rθ) for individual basins. Maps showing exact locations of study areas and spatial distributions

of θ and Rθ can be found in the Supplemental Materials.

Site Name N
Basins

Median
θ

Q1
θ

Q3
θ

Median
Rθ

Q1
Rθ

Q3
Rθ

Chilean Andes 65 0.475 0.225 0.625 0.275 0.125 0.4
North Arkansas 11 0.65 0.525 0.663 0.3 0.2 0.412
Bureya Massif 75 0.45 0.325 0.55 0.225 0.175 0.325
Eastern Carpathians 876 0.5 0.325 0.65 0.275 0.175 0.375
Caucas Mountains 366 0.362 0.175 0.5 0.25 0.15 0.35
Sierra Madre, Mexico 94 0.45 0.306 0.525 0.25 0.131 0.375
Corsica 30 0.388 0.256 0.425 0.288 0.225 0.444
Ethiopian Highlands 111 0.3 0.2 0.4 0.175 0.125 0.275
Jebal Barez, Iran 54 0.2 0.106 0.275 0.175 0.125 0.25
Lesotho 78 0.475 0.35 0.569 0.175 0.1 0.275
Luzon 88 0.425 0.225 0.575 0.338 0.225 0.475
Edge of Mongolian
Plateau

107 0.45 0.35 0.525 0.225 0.125 0.338

Basins along Nujang
River

71 0.45 0.325 0.625 0.275 0.175 0.425

Oregon Coast Ranges 26 0.538 0.338 0.75 0.25 0.175 0.3
San Gabriel Moun-
tains

34 0.325 0.275 0.444 0.212 0.125 0.3

Southern Altai Moun-
tains

551 0.35 0.175 0.525 0.25 0.15 0.4

Southern Brazil 102 0.475 0.4 0.55 0.225 0.15 0.275
Western South Africa 634 0.25 0.125 0.425 0.225 0.15 0.35
Southern Wisconsin 60 0.562 0.45 0.625 0.2 0.144 0.325
Yemen 52 0.4 0.275 0.506 0.175 0.125 0.256
Atlas Mountains 26 0.4 0.275 0.5 0.225 0.175 0.325
Dolomites 28 0.538 0.35 0.756 0.338 0.225 0.5
Hida Mountains 51 0.5 0.3 0.575 0.3 0.225 0.438
Himalayas 645 0.4 0.25 0.525 0.275 0.175 0.4
Allegheny Plateau 118 0.7 0.556 0.819 0.25 0.175 0.394
Northern Appalachi-
ans, USA

177 0.525 0.4 0.675 0.35 0.225 0.45

Southern Appalachi-
ans, USA

277 0.5 0.3 0.625 0.35 0.225 0.45

Olympic Mountains 33 0.575 0.4 0.675 0.325 0.2 0.425
Pyrenees 61 0.475 0.3 0.575 0.325 0.225 0.4
Taiwan 97 0.45 0.15 0.575 0.275 0.2 0.375
Tien Shan 40 0.612 0.5 0.756 0.325 0.25 0.481
Zagros Mountains 49 0.475 0.3 0.625 0.25 0.125 0.4
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5.4 Variability along continental-scale rivers: the Danube495

Our previous test sites aimed to show the variation of concavity across different scales496

of field site. However there is still a particular case that has not been investigated: continental-497

scale rivers. Here we do not aim to extract concavity values over sets of basins, but rather498

over a large river crossing a continent. Exploring θ over a large river is particularly im-499

portant for χ, because the χ coordinate integrates discharge data from base-level to top.500

Thus, χ values at basin headwaters are sensitive to poorly fit values of θ downstream (Forte501

& Whipple, 2018).502

The Danube is the second longest river in Europe which flows for approximately503

2,860 km, connecting the Alps to the Black Sea. It acts as a major source-to-sink com-504

ponent of the Alpine-Pannonian-Getic-Black-sea system and sets boundary condition for505

the erosion of the North-Eastern Alps (Matenco et al., 2013). It also crosses several sed-506

imentary basins which are separated by gateways, each having a history of opening and507

closing through geological time (e.g. Leever et al., 2010, 2011).508

We extracted the Danube river long profile using a pre-conditioned DEM from the509

HydroShed (Lehner et al., 2008), and segmented the profile by very general domains: i)510

the Danube delta and crossing of the Northern Dobruja range (Eastern Romania, in dark511

blue in figure 10); ii) the Dacic depression, foreland of the South Carpathians (light blue512

in figure 10); (iii) the Iron Gates, the gateway between the Dacic depression and the Pan-513

nonian Basin (green in figure 10); (iv) the Pannonian Basin (orange in figure 10) and the514

Alpine Danube (red on figure 10). Processing of concavity along the river suggest sys-515

tematically low concavity on most of the sedimentary basins (between -0.15 and 0.15).516

The Iron gate area and the Alpine Danube show higher concavity around 0.3.517

Figure 10. a) Map of the Danube River’s course, coloured by domains discussed in the text.

Raster preconditioned by Hydroshed (Lehner et al., 2008) and projected in Lambert Conformal

Conic. b) Long profile of the Danube river, with θ for each river domain. Note the overall low

concavity on θ for most of the lowlands.

6 Distortion of ksn and χ values linked to variations in θ518

We have demonstrated the variability of θ values at a wide range of scales. When519

studying a field site, no matter the scale of the area, one needs to assume a reference θref520

for the study in order to use ksn or χ. This forces the worker to calculate ksn with θ val-521

ues that may not be the most likely for some of the watersheds. Therefore, we now move522

on to explore how changing values of θ will distort ksn and χ values, and consequently523

our interpretation of landscape metrics. We first investigate analytical expressions of the524

distortion, and then illustrate the distortion using real landscapes.525
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6.1 Distortion of ksn526

Interpreting ksn in a meaningful manner involves focusing on the contrasts between527

slope patches, sensu Royden and Perron (2013) across a field site. Indeed, local contrasts528

in ksn, i.e. a knickpoint, are commonly interpreted as driven by phenomenon such as529

climatically driven base-level drop (e.g. Crosby & Whipple, 2006; ?, ?; Prince & Spotila,530

2013) or tectonically-driven changes in uplift or fault throw rates (e.g. Kirby & Whip-531

ple, 2012; Whittaker & Boulton, 2012; DeLong et al., 2017; Mitchell & Yanites, 2019;532

Struth et al., 2019). If contrasts between two slope patches are exaggerated, attenuated,533

inverted, annihilated or artificially created, spurious patterns carry a real risk for mis-534

interpretation.535

6.1.1 Analytical formulation of ksn distortion536

We consider two points in a channel network, labelled with subscripts M and N ,537

that are characterised by their slope and drainage area (SM , AM ) and (SN , AN ). Their538

ksn values (expressed as kM and kN can be expressed rearranging equation 1 as follows:539

kM = SMAM
θref (14)

and540

kN = SNAN
θref (15)

We can calculate the ratio of ksn for these data points, which we call rk, that is541

valid for a given θ:542

rk,θ =
SMAM

θ

SNAN
θ

(16)

Which we recast with a slope ratio, rS , and an area ratio, rA:543

rk,θ = rS rA
θ (17)

Where rS = SM

SN
and rA = AM

AN
. To assess the distortion linked to changing the544

value of θ, we aim to express the ratio rk as a function of ∆θ, with ∆θ defined as:545

∆θ = θ2 − θ1 (18)

with θ1 and θ2 are the different concavities used. A logarithmic transformation can546

simplify comparison of ksn values for different values of θ at sites M and N :547

ln[rk,θ2 ]− ln[rk,θ1 ] = ln[rS ] + θ2 ln[rA]− ln[rS ]− θ1 ln[rA] (19)

The slope ratios cancel because these are not affected by θ:548

ln[rk,θ2 ]− ln[rk,θ1 ] = ∆θ ln[rA] (20)

We can define a factor that quantifies the distortion ratio between the two ksn val-549

ues as we vary θ, which we call the distortion factor, βr:550
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βr(∆θ) =
rk,θ2
rk,θ1

= r∆θ
A (21)

The distortion factor βr(∆θ) represents a ratio of the differences in ksn at two fixed551

points in the channel network for two different values of concavity θ, thus reflecting how552

sensitive gradients in ksn are to the use of different values of concavity θ. Higher values553

of βr reflect greater distortion of ksn, meaning that changing θ values will have a greater554

impact on the interpretations of spatial variations in ksn.555

6.1.2 Examples of ksn distortion in real landscapes556

We first illustrate distortion of ksn with the test sites used in Figure 4. Figure 11557

shows the extent of ksn distortion for different hypothetical cases where θ is set at a value558

that differs from the most likely value. We normalise all the ksn values by their range559

of values, noted k∗sn, to circumvent the differences in magnitude between the different560

values of θ. We display their median basin-wide distribution, binned by distance from561

their respective outlets.562

Figure 11. a) Distribution of k∗sn – i.e. normalised to range – for a range of θ along the wa-

tershed investigated in section 5.1a) (Loess Plateau, People’s Republic of China). The different

colours correspond to ∆θ from the best fit θ = 0.425. b) Distribution of k∗sn for a range of θ

along the watershed investigated in section 5.1d) (Buzau river, Romania). The different colours

correspond to ∆θ from the best fit θ = 0.275.

Figure 11 gives an insight of the possible distortion at the scale of a single water-563

shed. At optimal θopt = 0.425 for the first field site (see section 5.1), figure 11a depicts564

a ksn profile showing an initial increase of ksn in the first 8 kilometres followed by a slight565

decrease in median value the rest of the profile. Using θ > θopt gradually inverts this566

contrast by over-estimating ksn in the first section of the profile. The normally decreas-567

ing part of the profile is gradually over-estimated. On the other hand, using θ < θopt568

exaggerates the contrast between the lowest values near the outlet and the rest of the569

profile. The slightly decreasing pattern becomes flat or even increasing for very low θ.570

The second and more heterogeneous field site (Buzau, Romania, see section 5.1,571

θopt = 0.275), shows a gradual increase of ksn followed by a sharp decrease near the head-572

waters of the network (figure 11b). Changing the value of θ at this site does not change573

the overall pattern of channel steepness, however overestimates of θ result in a flatten-574

ing of the contrasts.575
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We also extracted illustrative ksn distortion across multiple basins within the Lu-576

zon field site (Figure 12, see Section 6 for context). A number of potentially spurious pat-577

terns emerge with the use of different θ values to calculate ksn.578

In this site, higher values of θ result in the largest proportion of high values of steep-579

ness in the range. The zone of high ksn values in Figure 12c is more extensive than the580

one in Figure 12a. Another systematic observation at higher θ, is that channels with more581

drainage areas feature higher values. We determined an area of interest outlined in light582

green (to not interact with the ksn color scheme) in Figure 12a, b and c in order to il-583

lustrate more thoroughly some aspects of the distortion.584

The green area includes a number of sub-basins draining to a low-relief area. At585

θ = 0.2, the larger channels have low steepness values, and the northern section of the586

range has generally higher ksn than the eastern section of the range. The plain has sys-587

tematically low steepness and no sharp contrasts in ksn are visible. When θ = 0.45, river588

steepnesses increases. Contrasts between the different sections are less pronounced but589

a few steeper areas do appear. At θ = 0.7, some of the larger rivers become steeper than590

the surrounding terrain. A number of sharp ksn patches appear.591

Figure 12. River network in the Luzon island (Philippines) coloured by ksn values for dif-

ferent θ. In order to produce comparable results, the minimum and maximum colours are set to

respectively the 10th and the 90th percentile of each ksn populations. θ values have been picked

in order to represent the general distribution of best-fits (see Figure 7): 0.20 for a), 0.45 for b)

and 0.70 for c). River points are sized by log[A] and largest A are plotted on top.

6.1.3 Subsequent implications and predictions592

Equation 21 highlights a number potential biases in ksn values when calculated with593

non-optimal θ. Figure 13 presents the analytical solution to the distortion βr, which has594

the amusing property of looking like a bow tie.595

Interpreting this bow tie may be slightly confusing, since βr is a ratio of ratios. Let596

us let first give a more concrete example: consider a landscape where, at a given value597
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of θ all the values of ksn are the same. This means that rk,θ1 must always equal unity598

and that βr will be equal to the ratio in channel steepness between two points with a599

drainage area threshold rA. If the θ value is reduced, then channel reaches with a larger600

drainage area will have a smaller ks value than those with smaller drainage area. If the601

θ value is increased, then it is the reaches with larger drainage area that will increase602

their ks values relative to smaller channels.603

Figure 13. The distortion ratio (βr) as a function of the change in θ, colored by the ratio of

drainage area between two points.

Having highlighted the most basic feature of Figure 13, we can expand upon the604

nature of distortion, which is a function of (i) how different the local θ is from the global605

best fit and (ii) the differences in drainage area amongst the compared channel reaches.606

To illustrate this behavior, consider two slope patches, (sensu Royden & Perron,607

2013), with a contrast in ksn of rk and a contrast in drainage area rA. Several scenar-608

ios can be considered which relate to potential distortion of ksn patterns in real land-609

scapes.610

First, assume that these two slope patches are contiguous, within the same river611

and without any significant tributary joining between them (i.e., they will have similar612

drainage areas). Their rA will typically be very low, e.g. between 0.9 and 1.1, depend-613

ing on the source dataset and local context. As illustrated in Figure 13, distortion for614

a low ratio of drainage areas is insignificant, with a distortion of the ratio in the order615

of 1.05 in the worst cases. It suggests using non-optimal θ will not impact the impor-616

tance of local knickpoints, relative to their immediate surroundings.617

This might give one confidence that we do not need to worry about distortion when618

identifying knickpoints based on ksn data. However, many studies base interpretation619

of factors driving the presence of knickpoints by their spatial distribution (e.g. Crosby620

& Whipple, 2006; Whittaker & Boulton, 2012; Mitchell & Yanites, 2019). Because river621

channels feature many fluctuations in gradient, simply looking for changes in ksn may622

result in large numbers of potential knickpoints (e.g. Gailleton et al., 2019), so we must623

compare the relative magnitude of knickpoints in different channels, which will inevitably624

have different drainage areas. In this case distortion due to non-optimal θ becomes prob-625

lematic. If we consider two knickpoints having the same ∆ksn contrast if the most likely626
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θ is used (i.e., ∆θ = 0), but one of these is in a small tributary (e.g. 1e5m2) and an-627

other one in the more prominent channel (e.g. 1e9m2, rA in the order of 1e4), the dis-628

tortion βr can rapidly rise up to 20 times higher/lower depending on the δθ. This con-629

firms earlier observations from topographic analysis suggesting the location of contrasts630

in ksn does not move with different values of θ but their relative importance would be631

modified (Gailleton et al., 2019).632

Next, consider two slope patches of differing drainage area located within the same633

watershed. This can represent a wide range of possible scenarios in real landscapes, for634

example contiguous slope patches up and downstream of a tributary junction, slope patches635

on different rivers, or slope patches on the same river that lie some distance from each636

other. The resulting distortion from varying the θ value can either generate new con-637

trasts, erase existing ones or even invert the steepness signals (Figure 13), as observed638

in the Loess Plateau in section 6.1.2. For example, a point with lower ksn in the main639

river relative to a tributary will see the contrast between the two shrink with potential640

inversion of the two values if the θ value is increased (i.e., ∆θ > 0). On the other hand,641

the ratio of ksn will grow exponentially larger with ∆θ < 0. The exact nature of the642

distortion is case specific when it comes to changes in drainage area and needs to be con-643

sidered carefully. Figure 13 can be used, along with constraints on θ, to assess the risk644

of distortion for particular cases. Figure 13 also shows that the key parameter in deter-645

mining the degree of distortion is the drainage area.646

6.2 Influence of concavity values on the distortion of the χ coordinate647

6.2.1 Analytical formulation of χ distortion648

Expressing the analytical distortion of χ linked to varying concavity is less straight-649

forward than for ksn, which is solely defined by constant S and A values. The χ coor-650

dinate at a given point x of the river profile, is dependent on the downstream river net-651

work and tributaries as it integrates (A0/A(x))θ from the outlet to x. This has two di-652

rect consequences.653

First, the χ value depends on the location of base level, x0. This issue is out of the654

scope of the present study and has been thoroughly discussed in multiple studies (e.g.655

Forte & Whipple, 2018; Seagren & Schoenbohm, 2019). We direct the interested reader656

to Figure 2 in Forte and Whipple (2018) for an illustration of the significant impact of657

base level choice on χ contrasts.658

Secondly, solving for distortion requires constraining the downstream shape of the659

river network. However, river flow distance x as a function of drainage area varies from660

river to another. For an analytical solution, we use an approximation by expressing the661

distance from the outlet, x, as a function of drainage area, A:662

A(x) = (X0 − x)ρ (22)

where X0 is the maximum distance of the river to the outlet (i.e. the distance from the663

source to the chosen base level), and ρ a positive exponent approximating the rate at664

which drainage area decreases toward the headwaters. This is a variation of Hack’s law665

(Hack, 1957), as Hack’s law described A as a function of flow distance downstream. Al-666

though very simplified, equation 22 can simulate realistic drainage area distribution along667

river profiles. We can then use the standard definition of the χ coordinate (e.g. Perron668

& Royden, 2013):669

χ(x) =

∫ x

xb

[
A0

(X0 − x)−ρ

]θ
dx (23)
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Integrated, this becomes670

χ(x) =
Aθ0(X0 − x)(1−ρθ)

ρθ − 1
− Aθ0(X0 − xb)(1−ρθ)

ρθ − 1
(24)

By definition, the outlet, xb, has a coordinate of 0 (x is defined as the distance from the671

outlet), so inserting this we arrive at:672

χ = − Aθ0
ρθ − 1

[
(X0 − x)(1−ρθ) −X(1−ρθ)

0

]
(25)

Willett et al. (2014) suggested that differences in the χ coordinate across drainage673

divides indicated disequilibrium in tectonic forcing and that drainage divides would mi-674

grate away from the side of the divide with a lower χ value. Conversely, if the χ value675

is the same on either side of the divide for two points with the same elevation, then the676

divide should be stable.677

We can explore the impact of changing θ on the χ coordinate on either side of the678

divide if we further simplify equation 27 by setting A0 = 1 m2 (this is the value chosen679

in most studies). In addition, the χ coordinate used to evaluate differences across divides680

is typically extracted at a critical drainage area (Ac) (e.g. Willett et al., 2014; Forte &681

Whipple, 2018). We can calculate the distance from the outlet of this critical drainage682

area from equation 22:683

xc = X0 −Ac1/ρ (26)

Inserting equation 26 into equation 27 and setting A0 = 1 m2, we arrive at:684

χd = − 1

ρθ − 1

(
Ac

1/ρ−θ −X(1−ρθ)
0

)
(27)

Now consider two points on either side of a divide with the same elevation and the685

same χ coordinate. The basins on either side of the divide could have different topol-686

ogy, so could have different values of ρ and different values of X0. If we call these val-687

ues in the second catchment ρ1 and X1, we can fix the two χ coordinates to the same688

value:689

1

ρθ − 1

(
Ac

1/ρ−θ −X(1−ρθ)
0

)
=

1

ρ1θ − 1

(
Ac

1/ρ1−θ −X(1−ρ1θ)
1

)
(28)

If we assign the value of X1, we can solve equation 28 for ρ1.690

Using these values of ρ, X0, ρ1, and X1 from basins that have the same value of691

χ at a critical drainage area of Ac, and which we have defined as being at equilibrium692

so therefore having the same elevation at these points, we can then alter the value of θ693

by some offset, ∆θ. When θ is modified, the χ coordinate will change in each basin. But694

the two new χ values will not be the same, generating an difference in χ at the divide695

that is an artefact of choosing an incorrect value of θ.696

We find that the offset in χ at the divide caused by selecting an incorrect value of697

θ is most sensitive to the correct value of θ, the value of ∆θ, and the ratio between the698

lengths of the basins that share a divide, X1/X0. We plot results as the percent offset699

in χ at the divide, which under some parameter values can exceed 40% (Figure 14).700
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Figure 14. Percent difference in the χ coordinate for two basins whose χ values are the same

for one value of θ, but are different lengths (X0 and X1), resulting in distortion of the χ coordi-

nate when θ is changed by ∆θ. In the left panel, we show the sensitivity to ∆θ whereas we show

the sensitivity to the difference in length between the two catchments.

Spurious offsets in χ at the divide are greater when the correct value of θ is smaller.701

Unsurprisingly, offsets are greater for greater values of ∆θ. The value of χ is greater in702

the longer catchment if θ has been overestimated (e.g., ∆θ < 0). In the nomenclature703

of Willett et al. (2014), if θ has been overestimated, the shorter basin will spuriously ap-704

pear to be the aggressor. We have shown in Section 5.3 that most likely values of θ can705

vary substantially from the central value of 0.45. If the most likely value is high, such706

as in the Allegheny Plateau or in the Ukraine (Table 5.3), the distortion for choosing a707

concavity index of 0.45 will result in relatively small distortions of around 10%, but the708

errors will be much larger in locations with low concavity values if a θ value of 0.45 is709

used. We should remind the reader that our analytical examples use the rudimentary710

approximation of the relationship between length and area described by equation 22, so711

we now move on to examples in real catchments.712

6.2.2 Illustration of χ distortion in real landscapes713

We select 3 sites in different geographical and geological contexts to explore the ra-714

tio of χ values across selected divides for a range of θ values. Figure 15 presents the re-715

sults for the three test sites. The first site (Figure 15a and d) is the island of Puerto Rico716

(United States of America), which is subject to differential climatic, tectonic and litho-717

logic forcings (e.g. Pike et al., 2010). The island does feature a common base level of the718

Atlantic ocean as well as asymmetric river lengths on both side of the divide. The sec-719

ond site (Figure 15b and e) is located in the Loess Plateau (People’s Republic of China);720

the site described in Section 5.1 lies within this area. We fix the base level at the Wei721

River, close to the relief front and at similar elevation. Finally we explore the Carpathian722

Mountain Range (Figure 15c and f) and the main divide across the Eastern and South723

Eastern Carpathians, with calculation of χ using the Black Sea as base level. For the sake724

of readability, we chose to display the maps with the widely used θ = 0.45 and the θ725

tested are 0.05, 0.25, 0.45, 0.65, 0.85.726

Puerto Rico’s cross-divide χ–ratios show wide variations across theta values (Fig-727

ure 15). Values of χ tend to be higher on the northern side of the divide (note rotation728

of figure).729
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The analytical solutions (Figure 14) suggest that reducing the value of θ will re-730

sult in longer catchments having greater values of χ at the divide. This is illustrated in731

Figure 15d, where very large differences in χ at the divide are seen for low values of θ732

at a divide distance of ≈ 150 km, which is where the difference in length of the north-733

ern and southern catchments is the greatest. Changing χ values caused by changing val-734

ues of θ can even lead to inversion of the side of the divide with greater χ, for example735

at a distance of approximately 12 km along the divide, where, when θ is low the north-736

ern catchments have greater χ but when θ is high it is the southern catchments with greater737

χ values.738

The Loess Plateau’s cross-divide χ–ratio at θ = 0.45 suggests a relatively stable739

contrast across the area, consistent with previous findings (Willett et al., 2014). The two740

basins on either side of the divide have a most likely θ value of 0.4, very close to θ =741

0.45. The absence of large changes in the offset of χ across the divide for different val-742

ues of θ in comparison to the other two study sites is also consistent with the analyti-743

cal solutions: the basins on either side of the divide feature similar distances between744

base level and the divide. In this landscape it seems that selecting a value of θ incon-745

sistent with the most likely value of θ would not have a large impact on the χ offset at746

the divide. However if χ is used to derive ksn, the same distortion as the previous sec-747

tion are expected to occur.748

The third test site in the Carpathians is the largest of the three and the most het-749

erogeneous: the χ calculation encompasses the entire whole mountain range and major750

sedimentary basins with very low relief as described in Section 5.4. The rivers on the south-751

ern and eastern side of the divide are linked more closely, in terms of flow distance, to752

the Black Sea whereas the rivers on the Western side of the divide travel around the South-753

ern Carpathians through the Pannonian basin, flowing along the Danube and Olt rivers.754

As shown in the section investigating the spatial variations in θ in the region, the most755

likely values of θ are very heterogeneous. The patterns at the start and at the end of the756

divide profile are inverted when switching from low to high θ.757

Again, we can use the analytical solutions to inform these results. At the south-758

ern section of the divide, the western basin flows along the Olt river, which we can see759

in Figure 15c dissecting the southern Carpathians, leading to a relatively modest differ-760

ence in flow length across the divide. In the center of the divide, the basins on the west-761

ern side of the divide flow a much greater distance, and so for decreasing values of θ the762

difference of χ across the divide grows much greater, to values on the west more than763

3.5 times those on the east.764
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Figure 15. Illustration of χ distortion effect on real landscapes. a) b) and c) show the χ map

at θ = 0.45 for respectively Puerto Rico (WGS84-UTM19N), Loess Plateau (People’s Republic

of China) and the Carpathians-Pannonian-Black Sea are (Czech Republic, Slovakia, Hungary,

Romania, Bulgaria, Ukraine, Moldova, Poland, Serbia). χ color scheme is based on the 5th to

the 95th percentile for each of the respective maps. the investigated divides are displayed in bold

black lines. d), e) and f) shows the cross divide for the three respective field sites. The ratio is

calculated for a window of 5 km across divide for Puerto Rico and 40 km for the others.

7 Conclusions765

In this contribution, we expanded methods to determine most likely value of the766

concavity index, θ, using disorder metrics (e.g. Goren et al., 2014; Hergarten et al., 2016;767

Mudd et al., 2018; Shelef et al., 2018) that quantify both the uncertainties in θ and the768

degree to which changes from the most likely value of θ affect the overall disorder of the769

channel network. Because determination of normalized channel steepness index ksn re-770

quires the assignment of a reference value of θ, these metrics can give the user insight771

into the degree to which each basin is likely distorted by a θ value that differs from its772

most likely value in a particular basin.773

We go on to explore variation in most likely θ values across numerous catchments774

using the disorder metric. This mirrors earlier studies which aimed to constrain θ us-775

ing S–A methods (Tucker & Whipple, 2002). Our results indicate that θ values have a776

central tendency of 0.425 similar to that suggested previously from S–A analysis (e.g.,777

Whipple et al., 2013, and references therein). The first and third quartiles across 5033778

basins are 0.225 and 0.575. Given this range, we suggest authors should never assume779

a reference value of θ without testing for the most likely values.780

As fixing a reference θ will result in calculating ksn using a θ value that is not the781

most likely value for each basin, we assessed, both analytically and numerically, the ex-782

tent to which selection of θ distorts ksn. When comparing values from different points783

in the channel network, the contrast in drainage area and |∆θ| controls the magnitude784

of the distortion, which can reach several order of magnitudes. We demonstrate that chang-785

ing θ can change the spatial distribution of ksn, leading to the risk of misinterpretation786

of uplift or erosion signals. We also find that existing contrasts between areas of high787

and low ksn can be inverted or erased. On the other hand, local adjacent contrasts are788
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are not affected if no tributary junction separate them, meaning that detection of knick-789

points is unlikely to be affected by changing θ.790

We have not explored strategies to circumvent spatially varying θ in ksn studies,791

but can speculate on possible approaches based on our analyses of the spatial variance792

of θ across a wide range of landscapes. One approach would be to non-dimentionalize793

ksn using, for example, a statistical representation of its distribution. Another approach,794

if one is studying a large enough landscape, is to compare populations of basins that share795

the same most likely value of θ. Finally, one could simply reject analysis of basins with796

outlying most likely θ values.797

We also investigated how χ values evaluated across divides are affected by changes798

in θ. Differences in the χ coordinate have been used as a proxy for drainage divide mi-799

gration (e.g. Willett et al., 2014), so if the difference in χ across the divide is affected800

by changes to θ there is a risk of misinterpreting the presence or absence of divide mi-801

gration. We first explored simple analytical solution of χ distortion across a divide and802

found that basins with lower values of θ were more sensitive to χ distortion. One key803

control is the length to base level of basins on either side of the divide. We find that for804

lower values of θ, longer basins will have increasing χ values, so reductions in θ will can805

result in longer basins being spuriously interpreted as “victims” catchments using the806

nomenclature of (Willett et al., 2014). Applications on real landscapes suggested that807

at spatially constant θ, the basins interpreted as aggressors were rarely inverted across808

drainage divides, but the magnitude of the χ offset varied by, in some cases, a factor of809

3 with large changes in θ. This implies that it can be extremely challenging to robustly810

compare the χ coordinate across divides in locations with spatially varying θ.811
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