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Abstract

The Atmospheric Carbon and Transport (ACT) – America NASA Earth Venture Suborbital Mission set out to improve regional

atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric

transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure

GHG mole fractions, associated trace gases, and atmospheric state variables collected 1140.7 flight hours of research data,

distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five, six-week

seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair

weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The

observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude

weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season

and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental

boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights

into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America data set and

ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional

atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly

accurate and precise sub-continental GHG flux estimates.
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ABSTRACT 39 

The Atmospheric Carbon and Transport (ACT) – America NASA Earth Venture 40 

Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) 41 

inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric 42 

transport that occurs within the midlatitudes. Two research aircraft instrumented with remote 43 

and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric 44 

state variables collected 1140.7 flight hours of research data, distributed across 305 individual 45 

aircraft sorties, coordinated within 121 research flight days, and spanning five, six-week 46 

seasonal flight campaigns in the central and eastern United States. Flights sampled 31 47 

synoptic sequences, including fair weather and frontal conditions, at altitudes ranging from 48 

the atmospheric boundary layer to the upper free troposphere. The observations were 49 

complemented with global and regional GHG flux and transport model ensembles. We found 50 

that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in 51 

patterns that were consistent as a function of season and altitude. We attribute these patterns 52 

to a combination of regional terrestrial fluxes and inflow from the continental boundaries. 53 

These observations, when segregated according to altitude and air mass, provide a variety of 54 

quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG 55 

transport realizations. The ACT-America data set and ensemble modeling methods provide 56 

benchmarks for the development of atmospheric inversion systems. As global and regional 57 

atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate 58 

these systems will produce increasingly accurate and precise sub-continental GHG flux 59 

estimates. 60 

CAPSULE (BAMS ONLY) 61 
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Midlatitude weather systems contain large gradients in greenhouse gases (GHG), 62 

reflecting regional fluxes and continental inflow. ACT-America carbon weather observations 63 

provide a synoptic-scale benchmark for GHG flux and transport models. 64 

Introduction  65 

Unknowns in the Earth’s carbon cycle. Understanding the terrestrial carbon cycle is 66 

essential for diagnosing current and predicting future climate change (Marquis and Tans, 67 

2008; Gregory et al., 2009; Michalak et al., 2011). Our current understanding of the earth’s 68 

carbon cycle is limited. We know global anthropogenic carbon dioxide (CO2) emissions with 69 

good accuracy, and that the Earth’s terrestrial biosphere has been a strong net sink of 70 

atmospheric (CO2) for more than three decades (Ciais et al., 2013) slowing the accumulation 71 

of CO2 caused by fossil fuel burning. The causes of these biogenic CO2 sinks (Huntzinger et 72 

al, 2017), their location (Peylin et al. 2013; Crowell et al., 2019), and their likely evolution in 73 

the future (Friedlingstein et al., 2014), remain deeply uncertain, contributing considerable 74 

uncertainty to climate projections (Stocker et al., 2013; Friedlingstein et al., 2014, Holden et 75 

al., 2018). Terrestrial biosphere models of ecosystem-atmosphere CO2 exchange diverge 76 

substantially in their regional simulations of gross primary productivity (GPP) and ecosystem 77 

respiration (RE), and show large differences in net ecosystem-atmosphere exchange of CO2 78 

(NEE) at seasonal and annual time scales (Huntzinger et al., 2012; Fisher et al, 2014; 79 

Schwalm et al., 2015).   80 

Methane (CH4) is accumulating in the atmosphere (Montzka et al., 2011, Dlugokencky et 81 

al., 2011) and is the second largest contributor to contemporary anthropogenic climate 82 

change (Myhre et al., 2013). Fluctuations in the global rate of increase of atmospheric CH4 83 

(Nisbet et al., 2014) remain unexplained (Turner et al, 2019). Anthropogenic CH4 emissions 84 

from inventories have been shown to have large biases (e.g. Miller et al., 2013; Alvarez et al., 85 
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2018), but these biases are not clearly related to the fluctuations (Bruhwiler et al., 2017; Lan 86 

et al., 2019). Estimates of wetland CH4 emissions diverge by nearly a factor of two on a 87 

global  scale (Saunois et al., 2016) and by more than a factor of four in North America 88 

(Bloom et al., 2017).  89 

How can atmospheric inversions help? Atmospheric inversions have the potential to 90 

provide ongoing, accurate and precise diagnoses of CO2 and CH4 fluxes. Atmospheric 91 

inversions (e.g., Baker et al., 2006a, 2010; Peters et al., 2007; Lauvaux et al, 2012; Peylin et 92 

al., 2013; Crowell et al, 2019) combine a first guess of fluxes (e.g., a model of ecosystem 93 

respiration and photosynthesis), referred to as a prior flux estimate, with winds and vertical 94 

mixing from an atmospheric transport reanalysis. The prior fluxes are propagated through the 95 

atmospheric transport fields to predict space-time distributions of atmospheric CO2 and CH4 96 

(hereafter collectively referred to as C) concentrations (hereafter we will use the more precise 97 

term of mole fraction). The simulated C mole fractions are then compared to observations, 98 

such as those collected by the Global Greenhouse Gas Reference Network (GGGRN, 99 

Conway et al., 1994; Dlugokencky et al., 2005; Andrews et al., 2014; Sweeney et al., 2015) 100 

or satellite platforms (Yokota et al., 2009; Kuze et al, 2016; Crisp et al, 2017; Hu et al, 2018; 101 

Eldering et al, 2019). The C flux estimates are then adjusted to minimize the difference 102 

between the observed and modeled atmospheric C mole fractions.  103 

Challenges facing atmospheric inversions. Atmospheric inversions provide invaluable 104 

insights into global to zonal, decadal-scale sources and sinks of C (e.g., Tans et al., 1990; 105 

Ciais et al., 1995; Battle et al., 2000; Bousquet et al., 2006). Atmospheric inversions still 106 

struggle, however, to inform regional-scale C fluxes (Peylin et al., 2013; Crowell et al., 107 

2019).  Our limited understanding of the Earth’s carbon cycle stems arguably from our 108 

limited ability to diagnose routinely earth-atmosphere fluxes at regional scales. Regional 109 
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scales are critically important because they are the scales over which changes in the 110 

environment (e.g. climate, nutrients, insects, fire) and human activity (e.g. energy systems, 111 

land use and land cover) drive changes in terrestrial C fluxes.  112 

A growing observational network. Globally-comparable, spatially and temporally 113 

extensive and dense atmospheric C measurements are essential for inferring earth-atmosphere 114 

fluxes of C using atmospheric inversions. Relevant spatial and temporal differences in 115 

atmospheric C are small, setting stringent demands on measurement calibration (WMO, 116 

2018). Despite these challenges, the global observational network for atmospheric C is 117 

growing, bringing the potential for greater atmospheric constraint on regional C fluxes.   118 

The most dramatic recent increases in observations have come from satellite remote 119 

sensing, including the Greenhouse gases Observing Satellite (GOSAT, Yokota et al., 2009; 120 

Kuze et al, 2016), the Orbiting Carbon Observatory-2 and -3 (OCO-2, -3; Crisp et al, 2017; 121 

Eldering et al, 2019), the TROPOspheric Monitoring Instrument (TROPOMI; Hu et al., 122 

2018), and the Cross-Track Infrared Sounder (CrIS; Nalli et al., 2020).  GeoCarb, planned for 123 

launch in 2022, will measure CO2, CH4 and CO over the Americas from geostationary orbit 124 

(Moore et al., 2018; Polonsky et al., 2014).  Evaluation of space-based measurements remains 125 

a significant challenge.  Considerable progress has been made on this topic (O’Dell et al., 126 

2018), but evaluation has been largely limited to single-point observations (Wunch et al., 127 

2011; 2017). Long-term, in situ measurement networks have also expanded in recent decades, 128 

including tower-based (Andrews et al., 2014; Miles et al., 2012; Hazan et al, 2016) and 129 

airborne (Sweeney et al., 2015; Machida et al., 2008) monitoring.  130 

Atmospheric inversion systems have been adapted to include the expanded remote and in 131 

situ observation networks, with some success at determining regional C fluxes (e.g. Hu et al., 132 

2019; Liu et al., 2017; Schuh et al., 2013). Nevertheless, large uncertainties remain in North 133 
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American total CH4 and biogenic CO2 fluxes (Bruhwiler et al., 2017; USGCRP, 2018; 134 

Crowell et al., 2019). Why, given the relatively high density of observations available in 135 

North America, do large uncertainties in C fluxes persist? 136 

Prior fluxes. Two factors beyond atmospheric observations limit the accuracy of 137 

atmospheric inversions.  One is uncertainty in prior flux estimates. Atmospheric inversions 138 

are complex optimizations that can be strongly influenced, especially when atmospheric C 139 

data are limited, by their “first guess” or prior fluxes. Large biases and poorly quantified 140 

uncertainties in these prior fluxes will hinder atmospheric inverse C flux estimates.  141 

The importance of atmospheric transport. Uncertainty in atmospheric transport is a 142 

second major source of uncertainty in inverse flux estimates (Baker et al., 2006b; Stephens et 143 

al., 2007; Gerbig et al., 2008; Chevallier et al., 2010; Lauvaux and Davis, 2014; Díaz-Isaac et 144 

al, 2018; Schuh et al., 2019). Atmospheric transport uncertainty in inverse estimates of net 145 

biogenic CO2 fluxes for temperate North America is 0.3-0.5 PgC yr-1 (Gurney et al., 2002; 146 

Baker et al., 2006b; Schuh et al., 2019), nearly equal to the estimated magnitude of the net 147 

annual flux. What are the causes of this uncertainty, and what can be done to reduce it? 148 

Improved representation of mid-latitude weather systems in atmospheric inversions is 149 

highly likely to improve the resulting inverse C flux estimates. Mid-latitude weather systems 150 

are both important drivers of the global redistribution of atmospheric C (Parazoo et al., 2008; 151 

2011; 2012; Chan et al, 2008; Barnes et al., 2016; Schuh et al., 2019), and major drivers of 152 

regional atmospheric C patterns that carry regional C flux information (Hurwitz et al., 2004; 153 

Barkley et al., 2019a; Pal et al., 2020a; Hu et al., 2021). Mid-latitude cyclones create north-154 

south exchange of C in the cyclonic circulation, large-scale vertical lifting at frontal 155 

boundaries, and vertical mixing via convective instability (Parazoo et al., 2008; 2011; 156 

Samaddar et al., 2021).  157 



8 
File generated with AMS Word template 1.0 

Improving the resolution of the atmospheric models used in inverse modeling systems 158 

may reduce transport errors.  Agusti-Panadera et al., (2019) used a global weather forecasting 159 

system to show that increasing the resolution of an atmospheric transport simulation reduces 160 

model-data errors in atmospheric CO2. Regional studies with high-density in situ atmospheric 161 

observation networks and regional, mesoscale atmospheric models (Lauvaux et al., 2012; 162 

Schuh et al., 2013) have inferred regional biogenic CO2 fluxes to an uncertainty level capable 163 

of evaluating agricultural inventories (Ogle et al., 2015). Hu et al., (2019) showed success in 164 

deriving temporal variations in North American biogenic CO2 fluxes using a continental-scale 165 

mesoscale modeling system. Regional inversion systems are still relatively rare. The 166 

resolution of global inversions is increasing, and the native atmospheric transport reanalyses 167 

used in these systems may already be sufficiently resolved to simulate C transport by 168 

synoptic weather systems with good fidelity.  169 

Data are needed to evaluate and improve the representation of weather systems in 170 

atmospheric inversions. Current long-term observational systems, in situ and remote, do not 171 

have sufficient spatial resolution and coverage to describe the spatial structures of C within 172 

midlatitude weather systems, and thus have limited ability to evaluate atmospheric 173 

simulations of C transport by weather systems.  174 

Value of an airborne mission. ACT-America is an airborne mission working toward the 175 

development of a new generation of high-resolution, weather-resolving, ensemble-based 176 

atmospheric C inversion systems. This mission complements long-term, global-scale 177 

observations such as those made by the NOAA Global Greenhouse Gas Reference Network 178 

and the growing constellation of C satellites, and airborne campaigns such as the 179 

Atmospheric Tomography Mission (AToM, Prather et al., 2018) focused on the remote 180 

atmosphere. ACT-America flights fill the observational gap left among continuous-in-time 181 
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but spatially-sparse, tower-based C measurements (Andrews et al., 2014), spatially-extensive, 182 

but spatially- and temporally-sparse long-term aircraft profiling (Sweeney et al., 2015), and 183 

globally-extensive but temporally-sparse (compared to synoptic weather) provided by low-184 

earth-orbit satellite systems (Kuze et al, 2016; Crisp et al, 2017). Here we present ACT-185 

America’s mission design, and an interpretation of the results emerging from the project. 186 

Mission Goals and Objectives 187 

The ACT-America mission’s overarching goal is to enable atmospheric inversions to 188 

quantify the contemporary carbon cycle with the accuracy and precision needed 1) to 189 

evaluate and improve terrestrial carbon cycle models, and 2) to monitor carbon fluxes in 190 

support of climate-change mitigation efforts. This overarching goal is being pursued via three 191 

specific objectives: 1) quantification and reduction of uncertainty in simulations of 192 

atmospheric C transport, 2) quantification and reduction in uncertainty in prior C flux 193 

estimates, and 3) evaluation of the ability of the OCO-2 instrument to capture regional-scale, 194 

tropospheric gradients in column CO2 (XCO2). Since the atmospheric and ecosystem 195 

processes we are studying are found throughout the Earth’s midlatitudes, and the satellite 196 

observations we are evaluating are global in scope, our results should improve our ability to 197 

diagnose the Earth’s carbon cycle on a global scale, and over the decades encompassed by the 198 

long-term C observing network. The intersecting elements of the mission are illustrated in 199 

Figure 1. 200 

Instruments and Platforms 201 

Airborne platforms.  202 

Two aircraft, a NASA Langley Research Center Beechcraft B-200 King Air, and a NASA 203 

Wallops Flight Facility Lockheed C-130 Hercules, carried a common suite of in situ, 204 
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continuous sensors measuring meteorological variables (wind speed, wind direction, and 205 

atmospheric temperature, water vapor and pressure), aircraft position, atmospheric C mole 206 

fractions (Baier et al., 2020), and atmospheric C tracers including carbon monoxide (CO), 207 

ozone (O3), ethane (C2H6, Weibring et al., 2020; Kostinek et al., 2019 ) and approximately 50 208 

long-lived trace gases including 14CO2 and carbonyl sulfide (OCS) using flask whole-air 209 

samplers (Baier et al., 2020). The C-130 carried additional instrumentation, including an in 210 

situ nitrous oxide (N2O) analyzer (Kostinek et al., 2019), a downward-pointing backscatter 211 

lidar able to detect clouds and clear-air atmospheric structure including atmospheric 212 

boundary layer (ABL) depth (McGill et al., 2004; Pal et al, 2020b), and a downward-pointing 213 

integrated path differential absorption (IPDA) lidar to measure either column CO2 (XCO2, 214 

first four flight campaigns, Campbell et al., 2020) or column CH4 (XCH4, aerosol/cloud, and 215 

ABL depth, final flight campaign).  More details on the instruments, performance metrics, 216 

calibration procedures and data archives are found in Wei et al., (2021). 217 

Towers.  218 

Communications towers were instrumented with Picarro cavity ring-down spectrometers 219 

to measure C at approximately 100m above ground (Miles et al., 2018).  Eleven towers were 220 

selected to fill in gaps in the NOAA GGGRN.  These towers operated throughout the years 221 

(2016-2019) of the ACT-America airborne campaigns.  222 

Satellites.  223 

Fourteen ACT-America flights were coordinated with the passage of OCO-2 such that the 224 

aircraft were co-located temporally and spatially within the instrument’s measurement swath 225 

(Bell et al., 2020).  The final ACT-America flight campaign overlapped with operations of 226 

the European Space Agency’s TROPOMI instrument, which retrieves XCH4 globally on a 227 

daily basis.  228 
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Ensemble Modeling System 229 

Ensemble modeling is an essential element of ACT-America’s methodology (Figure 1). A 230 

transport ensemble consisting of a mesoscale atmospheric transport model with multiple 231 

physical parameterizations (Díaz-Isaac et al., 2019), initial conditions (Chen et al., 2019; 232 

Feng et al., 2019a,b) and resolutions (Samaddar et al., 2021) is embedded within a suite of 233 

global atmospheric C reanalyses (Butler et al., 2020; Feng et al., 2019a,b), and can include an 234 

ensemble of ecosystem and anthropogenic C flux estimates (Zhou et al., 2020; Feng et al., 235 

2019a,b). This multi-component ensemble system enables model sensitivity to any of the 236 

individual components to be explored independently (e.g. Feng et al., 2019a; 2019b; Chen et 237 

al., 2019).  This enables ACT-America to address a primary challenge in the study of 238 

atmospheric C: the disaggregation of model-data errors caused by surface fluxes vs. 239 

atmospheric transport. 240 

The model ensemble provides a realistic assessment of uncertainty only if the range of 241 

variation in the components represents our uncertainty in those components.  Thus, another 242 

critical feature of the ensemble modeling effort is the attempt to calibrate the ensemble vs. 243 

both meteorological measurements (Diaz et al., 2019; Feng et al., 2019a,b) and atmospheric 244 

C flux and mole fraction observations (Zhou et al., 2020; Feng et al., 2019a,b). We use the 245 

term calibration in the sense of carefully determining the range of the ensemble for the 246 

purpose of quantifying uncertainty. Minimizing bias is also critical to the quality of the 247 

ensemble (Diaz et al., 2019). Continued evaluation and improvement of the model ensembles 248 

using ACT-America observations, and applications of the ensembles to improve inversions, 249 

is a central focus of ongoing investigation. 250 

In addition to the ensemble, we have created a “baseline simulation” of total atmospheric 251 

CO2 and CH4 continental enhancements spanning the entire flight campaign (Feng et al., 252 
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2020). The C mole fractions are broken down according to their source (e.g. boundaries, 253 

fossil, biogenic; Feng et al., 2019b; Barkley et al., 2019a). This baseline simulation has been 254 

combined with the HYSPLIT (Stein et al., 2015) and FLEXPART (Pisso et al., 2019) 255 

Lagrangian dispersion models to create influence functions for both flask samples (Baier et 256 

al., 2020) and continuous aircraft observations (Cui et al., 2021). 257 

Flight patterns and campaigns 258 

Flight regions.  259 

We chose ACT-America flight regions to encompass a range of weather and C fluxes.  260 

The Midwest region (flight base Lincoln, Nebraska) enabled the sampling of midlatitude 261 

cyclones early in their life cycles, and agricultural C fluxes. The South-Central region (flight 262 

base Shreveport, Louisiana) featured coastal convection, strong atmospheric influence from 263 

the Gulf of Mexico, substantial anthropogenic C fluxes, and forested and agricultural 264 

ecosystems with substantially different seasonality than the other study regions. The 265 

MidAtlantic region (flight bases NASA Wallops Flight Facility in Chincoteague, Virginia, 266 

and NASA Langley Research Center in Hampton, Virginia) spanned the Appalachian 267 

temperate forests, large anthropogenic C fluxes, and late-stage weather systems that carried 268 

the accumulated signatures of C fluxes from across the continent.  These central and eastern 269 

U.S. ecosystems are highly productive and encompass a large fraction of US ecosystem and 270 

anthropogenic C fluxes and flux uncertainty (Alvarez et al., 2018; Feng et al., 2019b; 271 

USGCRP, 2018). 272 

Flight patterns.  273 

ACT-America conducted three types of flights: OCO-2 underflights, fair weather flights 274 

and frontal flights. The fair and frontal flights were arranged to construct synoptic sequences 275 
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(Figure 2), with flight planning guided by a vigorous daily flight forecasting effort.  Both 276 

aircraft were deployed for the majority of ACT-America flights. All flights were conducted 277 

during late morning through mid-afternoon hours in order to minimize vertical gradients in C 278 

within the ABL. 279 

OCO-2 UNDER-FLIGHTS 280 

For OCO-2 under flights, the two aircraft flew out and back along a single track 281 

approximately 500 km in length that was within the sampling swath of the satellite (Figure 3). 282 

Since OCO-2 measurement retrievals are limited in the presence of cloud fields, clear 283 

conditions were targeted. This observation strategy, designed to test the ability of OCO-2 to 284 

retrieve regional-scale spatial variability in tropospheric XCO2, represents a unique 285 

contribution (Bell et al., 2020) to the OCO-2 XCO2 evaluation literature.  286 

SYNOPTIC SEQUENCES 287 

We designed the majority of ACT-America flights to sample the GHG and 288 

meteorological properties of midlatitude weather systems.  This included multi-level flights 289 

across frontal boundaries, and within pre- and post-frontal fair-weather air masses. A sample 290 

multi-day flight sequence from the summer of 2016 is illustrated in Figure 4.   291 

Pre-frontal conditions in the US Midwest were sampled on 9 and 10 August (Figure 4a).  292 

The fair-weather patterns flown on these two days were designed so that the ABL portion of 293 

the 9 August flight was approximately one day’s advection upwind of the ABL air sampled 294 

on 10 August to enable regional C flux estimates. Flow in the pre-frontal conditions came 295 

primarily from the south, but with some northerly air mass history since the flights were close 296 

to the high-pressure center (Figure 4f). These two-day sequences were flown primarily in the 297 

summer of 2016, and close to the center of fair-weather high-pressure systems whose light 298 
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winds allowed this quasi-Lagrangian flight plan to be executed. ABL C mole fractions in fair 299 

weather were often strikingly heterogeneous (Figure 4a,c), reflecting both spatially 300 

heterogeneous fluxes and the variable air mass history found within a high pressure center 301 

(Figure 4f).  302 

A front moved through the region on 12 August, 2016 and was sampled at four altitudes 303 

along a flight track approximately perpendicular to the front (Figure 4e).  Large differences in 304 

both CO2 and CH4 were found across the front in both the ABL and the free troposphere (FT), 305 

with larger differences in the ABL (Figure 4d): this was typical of the fronts sampled during 306 

this campaign (Pal et al., 2020a).  The influence functions (Figure 4g) show the convergence 307 

at the front of air masses influenced by C fluxes from the upper MidWest and the South. 308 

Persistent cross-frontal C differences were found in all seasons, but were the largest in the 309 

summer. This flight also shows an elevated band of CO2 in the ABL at about -94° to -95° 310 

longitude, just ahead of the cold front  (Figure 4b, d), a feature common to all frontal crossing 311 

flights (Pal et al., 2020a). The large and persistent cross-frontal C mole fraction differences 312 

(Pal et al., 2020a) are highly sensitive to regional C fluxes (Hu et al., 2021; Samaddar et al., 313 

2021), and emphasize both the importance of fronts in the meridional transport of C (Schuh et 314 

al., 2019) and their value in determining regional C fluxes (Hu et al., 2021; Barkley et al., 315 

2019a).   316 

Post-frontal, fair weather flights on 13 and 14 August (Figure 4c) sampled the strong shift 317 

to northwesterly winds sensitive to fluxes from the upper MidWest (Figure 4h). ABL C mole 318 

fractions remained highly variable (Figure 4c), despite the homogeneous air mass history.  319 

The slightly elevated ABL CO2 in the warm sector and strongly depleted CO2 in the cold 320 

sector (Figure 4a-c) suggest a weak CO2 source in southern ecosystems and a strong 321 

MidWestern ecosystem sink then (Pal et al., 2020a). The free tropospheric cross-frontal mole 322 



15 
File generated with AMS Word template 1.0 

fraction differences reflect large-scale seasonal, latitudinal gradients (Pal et al., 2020a). This 323 

sequence also illustrates the strong organization of C mole fractions as a function of air mass 324 

history associated with the passage of weather systems. Averaging soundings seasonally or 325 

regionally without attention to the synoptic state will erase this valuable information about 326 

upwind fluxes. Model-data comparisons sampled according to air mass history show more 327 

ability to distinguish among simulations of C fluxes and transport than comparisons that 328 

average all data (Gerken et al., 2021; Gaudet et al., 2021). 329 

GULF INFLOW FLIGHTS 330 

In all seasons, the Gulf of Mexico provided distinct, homogeneous C upwind boundary 331 

conditions for our flights.  This continental boundary exhibited itself most strongly in the pre-332 

frontal and warm sector data in the South and MidWest regions. Those air masses had 333 

considerably less variability than the air coming from the northwest across a large expanse of 334 

the North American continent (Gerken et al., 2021). We took advantage of this simple 335 

boundary condition by deploying a number of flights downwind of the Gulf when high 336 

pressure systems to the east led to a steady onshore flow (Figure 2). The change in C mole 337 

fractions downwind of the Gulf provides another upwind-downwind constraint on regional 338 

fluxes in the far southern portion of our study domain.   339 

FAIR WEATHER TRANSECTS. 340 

In order to better capture a large swath of upwind fluxes, and because in the dormant 341 

seasons ABL wind speeds were often too high to make a two-day Lagrangian sequence 342 

feasible, we changed our flight strategy for fair weather conditions to single flight days with a 343 

long, cross-wind transect and a second upwind transect to measure the changes in C mole 344 

fractions caused by more local fluxes.  345 
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LIDAR OVERPASSES 346 

Nearly every C-130 flight included one to four lidar overpasses of a spiral ascent or 347 

descent. Some of these spirals included lidar overpasses at multiple altitudes. These 166 348 

overpasses (a subset after screening for non-ideal conditions) enabled empirical tests and 349 

correction for biases in the lidar XCO2 (Campbell et al., 2020) and XCH4 observations. 350 

Flight campaign climatology. 351 

Flight campaigns sampled the large seasonality in both weather and ecosystem C fluxes 352 

characteristic of the midlatitudes.  Flight campaigns (Figure 2) were long enough to capture 353 

seasonally-typical flux and weather conditions in each of our three flight regions.  Flights 354 

were conducted for two weeks in each region, sampling roughly two synoptic sequences per 355 

region, and targeted typical rather than extreme conditions. Two summer flight campaigns 356 

were conducted both to increase sampling when biogenic CO2 fluxes are at their peak, and, 357 

for the Southern and MidWestern regions, to capture earlier and later summer conditions.   358 

Summer 2016 sampled mid- to late-summer conditions. Climatological conditions were 359 

fairly typical in two of our three flight regions. One significant exception was the flooding 360 

that occurred in the South, with the most extreme flooding taking place in southern Louisiana 361 

(Brown et al., 2020). Our final flight campaign, summer 2019, was conducted in early- to 362 

mid-summer conditions and was intended to sample earlier season biogenic CO2 fluxes a full 363 

two months earlier than our summer 2016 campaign in the South, and one month earlier in 364 

the MidWest.  This plan was complicated by extreme flooding in the late spring of 2019 in 365 

the central United States (Yin et al., 2020). The flooding delayed planting of crops in the 366 

MidWest by more than two weeks, and the landscape in early July appeared to be roughly a 367 

month behind in crop development. The South was not as broadly impacted in terms of 368 
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vegetation phenology, though river valleys were flooded all across the region. The 369 

MidAtlantic region was sampled at the same time of year in both campaigns. Summer 2019 370 

in the MidAtlantic included a period of extreme heat (17-22 July). 371 

Other seasonal campaigns also included climatological anomalies worthy of mention. The 372 

MidWestern portion of the winter 2017 flight campaign encountered anomalously warm 373 

conditions from 13-18 February, approximately the first week of flights.  The regional 374 

surface remained snow-covered and the warm air and snow-covered surface resulted in very 375 

shallow boundary layers until a strong storm system on 20 February, the center-point of one 376 

of the synoptic sequences sampled by ACT (Figure 2), brought a return to more typical 377 

regional weather conditions.  The MidAtlantic winter campaign (27 February - 10 March) 378 

coincided with an early spring.  Snowmelt had already occurred over most of the region.  379 

Exposed soils and lack of any significant transpiration from vegetation led to high sensible 380 

heat fluxes and some very deep ABLs (1-10 March), as is typical of the period between 381 

snowmelt and green-up in this region.   382 

The fall 2017 campaign was climatologically typical across all regions.  The Southern 383 

region retained some leaf cover and photosynthetic activity, while the other regions were 384 

mostly senescent.  Atmospheric boundary layers were well-defined, and we encountered a 385 

number of relatively clear, dry frontal passages.  One notable weather event was the passage 386 

through our study region of Hurricane Nate on 8-10 October.  We did not deploy research 387 

flights to study the hurricane, choosing to sample the more common midlatitude cyclones, but 388 

MidAtlantic region flights did take place before and after the hurricane passage. 389 

The spring 2018 campaign followed an unusually snowy winter and late greening in the 390 

MidWest.  Flights over the MidWest included some snow-covered terrain, and no appreciable 391 

photosynthetic activity.  Flights in Southern and MidAtlantic regions spanned the boundary 392 
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of the vegetation greening. The greening was quite evident in the atmospheric data, with 393 

readily observed changes in ABL CO2 that were correlated with the boundary of vegetation 394 

greenness (Figure 5). The other notable weather condition for the campaign was the presence 395 

of two stationary fronts, one that extended from the Gulf to the upper MidWest and persisted 396 

over this region from 30 April through 3 May. We sampled the stationary front 3 times from 397 

our MidWestern flight base (Figure 2). The other stationary front was west to east in 398 

orientation, and persisted over the MidAtlantic region from 11-18 May.  Five flights sampled 399 

this front. These multi-day case studies are ripe for case studies, including strong biological 400 

flux contrasts and active atmospheric mixing. 401 

Analyses 402 

Carbon weather observational metrics. 403 

Denning et al., (1995), Stephens et al., (2007), Pickett-Heaps et al., (2011) and Thompson 404 

et al., (2016) have all illustrated the value of evaluating atmospheric inversion systems using 405 

vertical C profiles. Inspired by this past work, and following the working hypothesis that 406 

accurate understanding of C mole fractions within mid-latitude weather systems is essential 407 

for accurate atmospheric inversions, we have developed new metrics focusing on the 408 

synoptic-scale performance of atmospheric C simulation and inversion systems.  409 

Pal et al., (2020a) demonstrated a set of metrics that quantify cross-frontal C mole 410 

fraction differences as a function of tropospheric layer (ABL, lower FT, upper FT), and 411 

vertical differences in C mole fractions between these layers within the cold (postfrontal) and 412 

warm (prefrontal) air masses.  Pal et al., (2020a) show that these metrics are highly consistent 413 

within a season across the entire central and eastern U.S. Gerken et al., (2021) expanded this 414 

approach to include probability distributions and spatial variograms of model-data differences 415 
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in CO2 mole fractions within these atmospheric sectors.  Gerken et al., (2021) illustrate that, 416 

when averaged across season, region altitude and air mass, model-data comparisons of CO2 417 

may show relatively little bias, but that when data are disaggregated by altitude and air mass, 418 

systematic biases appear.  419 

We have included diagnostic flags in the ACT-America in situ observations to enable 420 

analyses that are oriented with respect to these synoptic metrics (Davis et al., 2018).  All in 421 

situ aircraft data were complemented with three flags which identify whether or not the 422 

observations are within the ABL, the air mass position of the data point (warm / prefrontal, 423 

cold / postfrontal or ambiguous), and the aircraft maneuver (level leg, takeoff, landing, spiral 424 

ascent/descent, en route ascent/descent).  Flags exist for every ACT-America in situ data 425 

point and these are integrated into the flight data stored at the Oak Ridge DAAC (Wei et al., 426 

2021; Davis et al., 2018) and as an additional download accompanying NOAA’s ObsPack 427 

product (Schuldt et al., 2020). 428 

OCO-2 tropospheric XCO2 variability 429 

Multiple OCO-2 under flights were evaluated by Bell et al. (2020). Spatial gradients in 430 

tropospheric XCO2 across the few- to several-hundred-kilometer flight paths differed by 0.1 431 

ppm per 100 km or less among three XCO2 estimates. These results suggest that regional 432 

structures in OCO-2 XCO2 can be used to inform regional-scale flux inversions, and are 433 

motivating both direct observational analysis of synoptic scale variations in XCO2 (Wang et 434 

al., 2021), and new descriptions of OCO-2 XCO2 uncertainty structure in atmospheric 435 

inversions (Baker et al., 2021). Higher resolution inversion systems may be needed to take 436 

full advantage of this information. 437 

Seasonal, regional flux evaluation 438 
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ACT-America flight data are being used to evaluate C fluxes in two ways. First, multiple 439 

C flux estimates, including ACT-America’s CASA-based CO2 flux ensemble (Zhou et al., 440 

2020), have been propagated forward in our baseline WRF simulation. These simulated 441 

atmospheric C mole fractions can be compared to ACT-America airborne data to identify the 442 

most plausible ensemble members (e.g. Feng et al., 2021). Case studies exploring realizations 443 

of the Vegetation Photosynthesis and Respiration Model (VPRM) have also been performed 444 

(Hu et al., 2021). Flux estimates can also be adjusted to maximize the fit to the ACT-America 445 

observations (e.g. Barkley et al., 2019a, b). Second, back-trajectory Lagrangian influence 446 

functions (Cui et al., 2021) created with the WRF baseline simulation can be convolved with 447 

flux estimates to estimate atmospheric C at the locations of aircraft observations. These 448 

model-data differences can be used to evaluate regional, seasonal flux estimates, including 449 

terrestrial biosphere models (Parazoo et al., 2021) and posterior fluxes from atmospheric 450 

inversions (Cui et al., 2021). The influence functions enable any flux estimates to be 451 

evaluated without requiring them to be coupled to a new atmospheric transport simulation.   452 

Boundary conditions 453 

These C flux evaluations require treatment of C transport from outside the region of 454 

interest. Atmospheric C mole fractions within our study domain can be expressed, following 455 

Feng et al. (2019b), as 456 

     !"#" = !% + !'' ,  (1) 457 

where Ctot is the total atmospheric mole fraction, Cb is the mole fraction transported from 458 

outside of the study region, and Ci are the mole fraction contributions from sources or sinks, 459 

i, within the study region. ACT-America has developed two independent approaches to 460 

determining Cb so that aircraft or tower observations can be used to study continental fluxes.  461 
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First, we have merged boundary conditions from global C inversion systems into our 462 

continental-scale WRF simulation domain (Butler et al., 2020). We have included multiple 463 

versions of global boundary conditions to account for uncertainty in these background 464 

conditions (Feng et al., 2019b). Background conditions account for most of the C in the 465 

atmosphere of North America, but comparison of global inversion systems shows that the 466 

uncertainty in these boundary conditions is modest, typically of order 1 ppm for CO2, 467 

compared to continental fluxes that account for several to tens of ppm of CO2 for continental 468 

fluxes (Feng et al., 2019a,b; Chen et al., 2019).  A second approach is to assume that inflow 469 

from outside of the continent is homogeneous in the vertical, and that deep vertical mixing 470 

over the continent is limited so that upper free tropospheric mole fraction measurements are 471 

approximately equal to continental background conditions (Parazoo et al., 2021). NOAA 472 

aircraft profiling on the Pacific and Gulf coasts (Sweeney et al., 2015), ACT-America 473 

profiles over the Gulf (e.g. Campbell et al., 2020) and model-data comparisons in the upper 474 

free troposphere (Gerken et al., 2021) suggest that this is a reasonable approximation. 475 

Comparison of these approaches and more extensive quantification of this source of 476 

uncertainty is worthwhile.   477 

A third background scenario emerges in the attempt to isolate regional to local, not 478 

continental-scale, fluxes.  In this case, free tropospheric mole fractions are not a suitable 479 

background condition (Turnbull et al., 2015).  Instead ABL mole fractions outside of the 480 

influence of the region of interest are matched with simulations of both background mole 481 

fractions and fluxes from outside the region of interest to isolate mole fraction enhancements 482 

from the region of interest (Barkley et al., 2017).  This approach is difficult to apply to 483 

biogenic CO2 fluxes, since they are so broadly distributed, but this method works well for 484 
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studying emissions from discrete source regions such as cities or anthropogenic CH4 485 

emissions (Barkley et al., 2019a; 2021) and agricultural N2O emissions (Eckl et al., 2021). 486 

Quantifying regional, seasonal fluxes also benefits from the ability to segregate 487 

component fluxes. We can do this with both numerical and observational approaches.  Our 488 

WRF simulations include C mole fractions for each source or sink sector, making it possible 489 

to segregate, for example, atmospheric CO2 mole fractions originating from continental fossil 490 

fuel vs. biogenic CO2 fluxes (Feng et al., 2019a,b; Hu et al, 2021; Samaddar et al., 2021), and 491 

atmospheric CH4 mole fractions originating from continental or regional oil and gas vs. coal 492 

vs. agricultural emissions (Barkley et al., 2019a, b). If the uncertainty in one particular source 493 

is known with more confidence, simulated sector mole fractions, Ci, can be subtracted from 494 

the observed total mole fraction, Ctot, to isolate the sector mole fraction of interest.  Calibrated 495 

ensembles (Feng et al., 2019b) can be used to address uncertainty in the sectoral fluxes.  496 

As a complement to these numerical methods, we measured CO and 14CO2 to isolate 497 

fossil fuel CO2 mole fractions (Baier et al., 2020), OCS to segregate photosynthetic vs. 498 

respiratory biogenic CO2 fluxes (Parazoo et al., 2021), and ethane (C2H6) to segregate 499 

thermogenic from biogenic CH4 sources (Barkley et al., 2019a, b; 2021).  Figure 7 shows an 500 

example of such an analysis applied to estimating regional CH4 emissions from the southern 501 

United States.  502 

ACT’s lidar-based column C measurements have a unique capability to constrain regional 503 

C fluxes that has yet to be demonstrated. These observations, combined with backscatter lidar 504 

ABL depth measurements, can be used to infer regional GHG fluxes without concerns about 505 

the ability of in situ aircraft data to properly capture the vertical distribution of GHGs within 506 

the ABL.  507 
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Evaluation of atmospheric inversions 508 

Disaggregating the influence of flux and transport on a given atmospheric C mole fraction 509 

measurement has been a challenge for atmospheric inversions for decades. ACT-America’s 510 

observation of the structures of C mole fractions within weather systems provides a strong 511 

basis for untangling the interdependency of midlatitude weather and fluxes.   512 

Multiple avenues of inversion system evaluation are being explored. Evaluation of 513 

atmospheric transport variables, atmospheric C mole fractions (Gaudet et al., 2021), and 514 

posterior fluxes (Cui et al., 2021) from the global-scale OCO-2 Model Intercomparison 515 

Project (OCO2 MIP, Crowell et al., 2019) is underway in an attempt to identify the inversion 516 

systems that are most consistent with ACT-America’s carbon weather metrics. The same 517 

metrics will be used to evaluate continental atmospheric inversions, such as CarbonTracker-518 

Lagrange (Hu et al., 2019), once these become available. Model studies that control for 519 

sources of variability among inversions are also underway in an attempt to identify the causes 520 

of model-data discrepancies.  Studies of this sort include studies of the impact of model 521 

resolution (Samaddar et al., 2021) and atmospheric transport model (Gerken et al., 2021), 522 

both using common fluxes to isolate the impact of transport on CO2 mole fractions. More 523 

controlled model experiments confronted with ACT-America observations are needed to 524 

close our understanding of midlatitude C weather and the impact of the simulation of C 525 

weather on C flux inversions. 526 

The ensemble modeling initiated by ACT-America (Chen et al., 2019; Feng et al., 527 

2019a,b; 2021) illustrates another path to improving atmospheric inversions. Figure 7 shows 528 

the variability in ABL CO2 mole fractions produced by elements of a calibrated C model 529 

ensemble (Feng et al., 2019b). Ensembles like these, if calibrated and verified with intensive 530 

regional observations like ACT-America flights, can identify those regions and times where 531 
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flux uncertainty is large and other sources of uncertainty are small, and direct atmospheric 532 

inversion systems to use those data preferentially to solve for regional C fluxes.   533 

Improvement of atmospheric C inversions. 534 

In addition to evaluating existing atmospheric inversion systems using the aircraft data as 535 

independent observations, we have begun to translate our results into improvements in 536 

regional and global atmospheric inversions. Avenues for improvement of the inversion 537 

systems include modifying the assumptions about local to regional-scale errors and error 538 

correlations in OCO-2 observations (Baker et al., 2021), minimizing biases and adjusting 539 

uncertainties in prior fluxes used in inversions based on evaluation of these flux models (e.g. 540 

Barkley et al., 2019a, 2021; Feng et al., 2021), and improving atmospheric transport field and 541 

transport uncertainty assessments (Gerken et al., 2021; Feng et al., 2019a; Lauvaux et al., 542 

2019). These advances have yet to be tested in established inversion systems. ACT-America 543 

has also begun to develop new inversion systems that can incorporate prior flux (Wesloh et 544 

al., 2020) and atmospheric transport (Lauvaux et al., 2019) ensemble information.  545 

Conclusions 546 

ACT-America’s observational record provides unparalleled insight into the C fluxes and 547 

mole fractions of midlatitude weather systems - the carbon weather of the midlatitudes. We 548 

have confirmed that midlatitude weather systems are clearly responsible for a large 549 

component of the spatial and temporal variability in atmospheric C mole fractions over the 550 

continents, and have shown the strong connection between this weather-scale variability and 551 

terrestrial C fluxes. Modeling and analysis systems that can properly resolve these weather 552 

systems and interpret these carbon weather signals will provide superior regional and 553 
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continental C flux estimates.  Analyses that neglect the role of weather systems in C transport 554 

run the risk of masking compensating errors that will bias their results. 555 

More work is needed to untangle the mixed influences of C flux and transport 556 

uncertainties at sub-continental scales in current atmospheric inversion systems. ACT-557 

America investigations have pioneered new approaches in ensemble C simulations which, 558 

combined with ACT-America’s airborne database, are beginning to isolate and quantify the 559 

impact of flux versus transport errors. These methods, as they are adopted in atmospheric 560 

inversions, should continue to improve the accuracy and precision of regional inverse flux 561 

estimates.  562 

We have demonstrated that column remote sensing technologies, both space- and air-563 

borne, have the precision and stability needed to document regional-scale atmospheric C 564 

gradients.  These findings show promise for continued use of both passive and active remote 565 

sensing in the study of C mole fractions and fluxes.  566 

An unparalleled airborne methane and ethane dataset enabled us to make strong progress 567 

in evaluating anthropogenic emissions of CH4 from the central and eastern US.  We have 568 

begun to use the airborne data set to evaluate and improve seasonal and regional terrestrial 569 

biosphere model CO2 flux estimates.  Much more can be done in this area. 570 

Independent, routine, atmospheric evaluation of models and inventories of C fluxes at 571 

spatial domains of geopolitical and ecological relevance remains an important need for 572 

climate science and climate change mitigation. This is rapidly becoming feasible for fossil 573 

fuel CO2 emissions and some anthropogenic CH4 emissions. This is more challenging for 574 

broadly distributed fluxes such as agricultural and wetland CH4 emissions, and biogenic CO2 575 

fluxes. ACT-America investigations have provided an observation and methodological 576 

framework that will enable this advance. 577 
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FIGURES 996 

 997 

Figure 1. ACT-America measurements complement long-term in situ and remote sensing 998 

GHG observations by providing the first detailed measurements of the GHG structure of 31 999 

synoptic weather systems that passed through the central and eastern United States, a region 1000 

of strong, seasonally-varying GHG fluxes and vigorous mixing by mid-latitude cyclones. The 1001 

GHG and meteorological observations are complemented with ensembles of atmospheric and 1002 

ecosystem models, and measurements of trace gases, that aid in disaggregating GHG sources. 1003 

Improved GHG flux estimates are pursued by minimizing biases and random errors, and 1004 

quantifying the remaining uncertainty in atmospheric transport simulations, GHG flux 1005 

models, and OCO-2 XCO2 observations. These improved components can be incorporated 1006 

into atmospheric inversion systems. ACT-America observations are also used as independent 1007 

data to evaluate existing atmospheric inversion systems. The joint observations of greenhouse 1008 

gases, associated trace gases and atmospheric transport variables help to detangle the difficult 1009 

issue of combined atmospheric transport and C flux biases that are present in all atmospheric 1010 
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inversion studies. The central image overlays all ACT-America flight tracks. Images show 1011 

the NASA C-130 and B-200 aircraft, an instrumented communications tower, and a rendering 1012 

of the OCO-2 satellite platform.  1013 
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 1014 

Figure 2. Pictorial representation of the sequence of ACT-America research flights. Some 1015 

hybrid flights only have their primary purpose indicated. MA and MW refer to the 1016 

MidAtlantic and MidWest regions, respectively, the number refers to the synoptic sequence 1017 

within a season and region, and T refers to a transit flight. Details about the flight tracks, 1018 

scientific objectives, weather conditions and quick data visualizations are available in the 1019 

ACT-America campaign catalogue (Pal and Davis, 2020; 1020 

https://actamerica.ornl.gov/campaigns.html).  1021 
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 1022 

Figure 3: OCO-2 under flight from 27 October, 2017.  (a) The aircraft flew at multiple 1023 

altitudes to measure (b) in situ CO2 along the OCO-2 sampling swath. The C-130 flew at its 1024 

maximum altitude on one pass to measure partial column XCO2 (Campbell et al, 2020) with 1025 

the Multifunctional Fiber Laser Lidar (MFLL).  The flight was coordinated so that, (c) at the 1026 

midpoint in time of the flight pattern, the C-130 was at maximum altitude directly overflying 1027 

the B-200, which was performing an in situ spiral from 300 m AGL up to the altitude of the 1028 

C-130 overpass, when the OCO-2 satellite overflew both aircraft.  (d) The Cloud Physics 1029 

Lidar (CPL) mapped out backscatter (color scale) and a wavelet algorithm was used to 1030 

retrieve ABL depth (solid black line) along the flight track.   1031 
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1032 

Figure 4. Illustration of a MidWest synoptic sequence from the Summer, 2016 flight 1033 

campaign.  (a-c) Flight tracks for 9 - 14 August, 2016 showing in situ CO2 measured along 1034 

the tracks (only ABL CO2 is shown on 12 August when multiple tracks were stacked in the 1035 

vertical).  Fair weather portions include ABL (east-west legs) and lower free tropospheric 1036 

(diagonal and north-south) flight legs arrayed in quasi-Lagrangian 2-day sequences. (d) 1037 

Latitude vs. altitude CO2 mole fractions during the frontal crossing on 12 August. The 1038 

approximate surface frontal position is marked with the dotted black line. (e) The surface 1039 
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weather map for 18 UTC on 12 August (courtesy of the NOAA Weather Prediction Center, 1040 

http://www.wpc.ncep.noaa.gov) shows synoptic conditions with the flight track position 1041 

overlaid. (f-h) The associated upwind influence functions for the ABL portions of each flight.  1042 
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 1043 

Figure 5. (Left) Observed vs simulated ABL CO2 for the flight of 11 May, 2018. Simulated 1044 

CO2 mole fractions and wind barbs are plotted at 500 m AGL at 18Z; flight altitude was 1045 

roughly 300 m AGL and took place between 16-19Z. The simulation is from the ACT-1046 

America WRF baseline run, with CarbonTracker surface fluxes and lateral boundary 1047 

conditions (Feng et al, 2020). (Right) Observed ABL CO2 mole fraction and normalized 1048 

difference vegetation index (NDVI) during the day of the flight (Vermote, 2019). The teal 1049 

line marks the approximate location of a stationary front that was present at that time.  1050 
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1051 

Figure 6. Example of a dual-tracer optimization used to solve for methane emissions on 18 1052 

October, 2017. (top-left) Observed vs. simulated ABL ethane mole fraction enhancements 1053 

relative to a background based on oil and gas sources from the EPA 2012 Gridded Methane 1054 

Inventory (Massaakers et al, 2016) and an assumed average ethane:methane gas composition 1055 

of 0.10 (a reasonable overall estimate for US oil and gas production). (bottom-left) Observed 1056 

vs. simulated ABL ethane enhancements achieved by multiplying oil and gas emissions by a 1057 

factor of 2.5. (top-right) Observed vs. simulated ABL methane enhancements based on the 1058 

same inventory. (bottom-right) Observed vs. simulated ABL methane enhancements achieved 1059 

by multiplying oil and gas emissions by a factor of 2.5.  In all panels, simulated mole 1060 

fractions (Feng et al, 2020) are from 500 m AGL at 19 UT.  Aircraft observations are from 1061 

approximately 300 m AGL and were collected between 17-21 UT.  A surface cold front 1062 

parallels the northwest portion of the region of enhanced methane and ethane.  The enhanced 1063 

mole fractions are in the warm sector flowing to the north and east.  The ethane observations 1064 

enable source disaggregation (animal agriculture vs. oil and gas production) using the 1065 

ethane/methane emissions ratios.  Methods follow Barkley et al. (2019a).  1066 
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 1067 

Figure 7. Root mean square deviation in ABL CO2 mole fractions (500 m AGL) across 1068 

components of the multi-component ensemble simulation system described by Feng et al. 1069 

(2021) at 19 UT on 13 August, 2016, one of the fair weather flight days shown in Figure 4, 1070 

including: (a) RMSD across the CASA biological flux ensemble members, (b) RMSD across 1071 

the atmospheric transport ensemble members, and (c) RMSD across the continental boundary 1072 

condition ensemble members.  In each case, all other components  of the ensemble are held 1073 

constant. The black lines show the aircraft flight patterns on this day. Feng et al. (2019b) 1074 

demonstrated the calibration of this multi-component ensemble, but with a different 1075 



54 
File generated with AMS Word template 1.0 

biological CO2 flux ensemble.  The CASA ensemble may underestimate the true flux 1076 

uncertainty (Feng et al., 2021). 1077 


