Study landau damping of the DIA wave in a non-extensive distributed dusty plasma

Tohid Abasszadeh¹ and hossein zahed²

¹sahand university of technology ²Sahand University of Technology

November 22, 2022

Abstract

The Landau damping of the dust ion-acoustic wave (DIAW) propagating in a dusty plasma with nonextensive distributed components is kinetically analyzed. The electron, ion, and dust particles are effectively modeled by nonextensive distributions of Tsallis statistics. For a collisionless plasma with different values of plasma components indices, the general dispersion relation is achieved, and the nonextensivity effects on the frequency, as well as the Landau damping, are studied. We show that for , the preliminary results of the Maxwellian plasma are obtained. The decrease of wave damping is achieved by increasing the coefficient q index and the ion to electron density ratio. The damping rate also increases with a decreasing dust-to-electron temperature ratio. 1 2

Study landau damping of the DIA wave in a non-extensive distributed dusty plasma

3

T. Abbaszadeh^{a)}, H. Zahed^{b)}

4 Department of Physics, Sahand University of Technology, P.O.Box 51335/1996, Tabriz, Iran

5 Abstract

6 The Landau damping of the dust ion-acoustic wave (DIAW) propagating in a dusty 7 plasma with nonextensive distributed components is kinetically analyzed. The electron, ion, 8 and dust particles are effectively modeled by nonextensive distributions of Tsallis statistics. 9 For a collisionless plasma with different values of plasma components indices, the general 10 dispersion relation is achieved, and the nonextensivity effects on the frequency, as well as the Landau damping, are studied. We show that for $q \rightarrow 1$, the preliminary results of the 11 12 Maxwellian plasma are obtained. The decrease of wave damping is achieved by increasing the coefficient q index and the ion to electron density ratio. The damping rate also increases 13 14 with a decreasing dust-to-electron temperature ratio.

Keywords: Landau damping, dust-ion acoustic wave, nonextensive distribution, dusty
 plasma, Tsallis statistics

17 **1. Introduction**

18 A diversity of spatial observations indicates the existence of many suprathermal particles 19 in dusty plasma environments [1]. The laboratory and spatial observations demonstrate non-20 Maxwellian suprathermal tails for the velocity distribution function of most dust plasmas. 21 Indeed an extensive formalism could not be applied to physical systems containing long-22 range forces or long-range memory, for example, for the dusty plasma with long-range 23 interactions. Tsallis proposed the nonextensive form of entropy to solve the problems faced 24 by applying the Boltzmann-Gibbs standard statistical mechanics [2-4], and later, Silva et al. 25 introduced the q-extensive velocity distribution function [5]. The nonextensive approach has 26 been successfully used in several spatial plasmas. Compared with more complicated models, the nonextensive distribution of an ideal classical gas presents the best overlap with the 27 28 observed distribution of galaxy clusters [6].

The nonextensive distribution as an exciting topic in plasma physics has been applied in a variety of researches, such as studying the variable charge DA solitary waves [7], the transverse oscillation in relativistic plasmas [8], arbitrary amplitude kinetic Alfven solitons [9], IA solitary waves [10], electrostatic fluctuations in a two-component magnetoplasma [11], nonlinear propagation of electron-acoustic waves [12], the full Zakharov equations [13], and double layers in a warm plasma with nonextensive electrons [14].

The dust charge oscillation produces an instability state for low-frequency waves, such as DIAW, dust acoustic wave (DAW), and ion acoustic wave (IAW) [15, 16]. In the field of instability in the physics of plasma waves, Landau damping is considered as a well-known

^a Electronic email: <u>t_abbaszadeh@sut.ac.ir</u>

^b Electronic email: <u>zahed@sut.ac.ir</u> (Corresponding author)

phenomenon. For instance, the Landau damping of DIAW for ordinary plasma and
Lorentzian distribution [17, 18] were studied. In recent years, the study of instability with
nonextensive distribution has received more attention, for instance studies for IAW [19-21]
and DAW [22-24] in the plasma.

To the best of our knowledge, the Landau damping of DIAW in a dusty plasma with the application of nonextensive distribution has not been reported. In the present article, we have tried to present exciting aspects of the nonextensive parameter, q, in the dispersion relation and damping of DIAW for plasma particles in a dusty plasma through modeling by qdistribution.

47 The manuscript is organized in 5 section. In section 2, using the Vlasov equation, we 48 derive the dispersion relation of the DIA wave in Tsallis statistics. Then, we study the effect 49 of q, δ , and electron temperature parameters on the wave frequency and the Landau damping 50 in section 3. Section 4 provides the conclusion of this work.

51 **2.** The dispersion relation of DIA wave

52 The entropy in Tsallis statistics is presented as follows [2]:

$$S_q = k_B \frac{1 - \sum_i p_i^q}{q - 1} \tag{1}$$

where k_B , is the Boltzmann constant, $\{p_i\}$ is the probability of the i-th microstate, and the q parameter is the degree of nonextensivity. In the limit $q \rightarrow 1$, the Tsallis entropy (S_q) is turned to the B-G entropy. The fundamental aspect of Tsallis entropy is the nonextensivity for $q \neq 1$. In other words, for a given composite system A + B, including two independent subsystems A and B, we have:

$$S_q(A+B) = S_q(A) + S_q(B) + (1-q)S_q(A)S_q(B)$$
⁽²⁾

58 Generally, the one-dimensional q-equilibrium distribution function is given as follows [5]:

$$f_{q\alpha}(v) = \frac{n_{\alpha} A_{q_{\alpha}}}{\sqrt{\pi} v_{\alpha}} \left(1 - (q_{\alpha} - 1) \frac{v^2}{v_{\alpha}^2} \right)^{1/(q_{\alpha} - 1)} \qquad (\alpha = e, i, d)$$
(3)

59 where n_{α} is the number density, $v_{\alpha(i,e,d)} = \sqrt{2k_B T_{\alpha}/m_{\alpha}}$ is the thermal speed of 60 particles α , k_B is the Boltzmann constant, Γ is gamma function, T_{α} and m_{α} are temperature 61 and mass of particles α , respectively. The constant $A_q = \sqrt{1-q} \frac{\Gamma(1/(1-q))}{\Gamma(1/(1-q)-1/2)}$ gives 62 $A_q = \frac{1+q}{2} \sqrt{q-1} \frac{\Gamma(1/(q-1)+1/2)}{\Gamma(1/(q-1))}$ for $0 < q \le 1$ and also for $q \ge 1$. It should be mentioned 63 that the maximum value for the speed is considered $v_{max} = \sqrt{v_{\alpha}^2/(q-1)}$ and for $q \to 1$, the 64 q-distribution function becomes Maxwellian.

In this research, an un-magnetized, unbounded, and collisionless plasma including electrons, ions, and dust particles with nonextensive distribution function is considered for obtaining the dispersion relation of dust ion-acoustic waves. An electrostatic state with a weak perturbation in the equilibrium state is assumed. In kinetic theory, the Vlasov equation
 (see Eq(4)) is considered a fundamental equation for the evolution of distribution function:

$$\frac{\partial}{\partial t} f_{\alpha}(\mathbf{r}, \mathbf{V}, t) + \mathbf{V} \cdot \nabla f_{\alpha} + \frac{Q_{\alpha}}{m_{\alpha}} (\mathbf{E} + \mathbf{V} \times \mathbf{B}) \cdot \nabla_{v} f_{\alpha} = 0 \qquad \alpha = e, i, d$$
(4)

70 where m_{α} and Q_{α} are mass and charge of particles α , respectively. The quasi-neutrality 71 condition at the equilibrium in a dusty plasma is evaluated as follows:

$$Q_d n_{d0} + Q_i n_{i0} - Q n_{e0} = 0 (5)$$

where $Q_d = z_d e$ and $Q_i = z_i e$ are the charge of dust and ion particles, respectively. Singly charged ions and negatively charged dust, i.e., $Z_i = +1$ and $Z_d < 0$, are considered in this research. Furthermore, in the abovementioned equation, the charge fluctuation of dust particles is ignored. We considered the liner perturbation as $f_{\alpha} = f_{\alpha 0} + f_{\alpha 1}$ and $n_{\alpha} = n_{\alpha 0} + n_{\alpha 1}$, where indexes 0, 1 demonstrate the equilibrium and perturbation states, respectively, with the assumption of $|f_{\alpha 0}| \gg |f_{\alpha 1}|$ and $|n_{\alpha 0}| \gg |n_{\alpha 1}|$. The Poisson equation was applied for solving the Vlasov equation in this paper.

$$\nabla^2 \varphi = -4\pi \sum_{\alpha=e,i,d} Q_\alpha \int f_{\alpha 1} d^3 \nu$$
(6)

The Fourier transformation $(i.e., f_{\alpha 1} \simeq e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}, \varphi \simeq e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)})$ is applied for Eq. (4) and Eq(6), then the combination of these equations leads to the longitudinal dielectric permittivity as Eq (7):

$$\varepsilon_{q_{\alpha}}(k,\omega) = 1 + \sum_{\alpha=e,i,d} \frac{\omega_{p_{\alpha}}^2}{k^2} \frac{1}{n_{\alpha 0}} \int \frac{\partial f_{\alpha 0}/\partial v_x}{\omega/k - v_x} d^3 v = 1 + \sum_{\alpha=i,e,d} \chi_{\alpha} = 0$$
(7)

82 where $\omega_{p\alpha(i,d)} = (4\pi n_{\alpha 0} Q_{\alpha}^2/m_{\alpha})^{1/2}$ is the plasma frequency of species α and χ_{α} is the 83 plasma dielectric susceptibility.

We aim to investigate the effect of the dispersion relation, Landau damping of DIAW, and nonextensive effects on the wave frequency as well as instability. Considering the DIA wave condition $(v_d, v_i \ll \omega/k \ll v_e)$, if the nonextensive distribution function given by Eq. (3) is employed for unperturbed particles, the dispersion relation can be obtained as follows:

$$1 + \frac{1}{k^2} \sum_{\alpha = e, i, d} \frac{1}{\lambda_{\alpha}^2} \left[\frac{1 + q_{\alpha}}{2} + \xi_{\alpha} Z_{q_{\alpha}}(\xi_{\alpha}) \right] = 0$$
(8)

where
$$\lambda_{\alpha} = \frac{v_{\alpha}}{\sqrt{2}\omega_{p\alpha}}$$
, $\xi_{\alpha} = \omega/kv_{\alpha}$, and plasma dispersion function, Z_q , is [19]

$$Z_{q}(\xi_{\alpha}) = \frac{A_{q}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{(1 - (q - 1)t^{2})^{(2 - q)/(q - 1)}}{t - \xi_{\alpha}} dt \qquad t = v/v_{\alpha}$$
(9)

$$Z_{q}(\xi_{\alpha}) \approx -\frac{1+q}{2\xi_{\alpha}} - \frac{1}{2\xi_{\alpha}^{3}} - \frac{3}{2(3q-1)\xi_{\alpha}^{5}} + i\sqrt{\pi}A_{q} \left(1 - (q-1)\xi_{\alpha}^{2}\right)^{(2-q)/(q-1)} \qquad (|\xi_{\alpha}| \gg 1)$$
(10)

$$Z_q(\xi_{\alpha}) \approx i \sqrt{\pi} A_q \left(1 - (q-1)\xi_{\alpha}^2 \right)^{(2-q)/(q-1)} \qquad (|\xi_{\alpha}| \ll 1)$$
(11)

89 In limit $q \to 1, Z_q(\xi_\alpha)$ is recovered to the standard form of Z-function (the plasma 90 dispersion function) [25]. Regarding the phase velocity much smaller (larger) than the 91 thermal velocity of the electron (ion and dust), the large argument expansion of the Z_q -92 function for the ion and dust particles and the small argument expansion for the 93 electron particles are considered. Therefore, the dispersion relation of the DIA wave can 94 be approximately derived as follows:

$$1 + \frac{1}{k^{2}\lambda_{e}^{2}} \frac{1+q_{e}}{2} - \frac{\omega_{pi}^{2}}{\omega^{2}} \left(1 + \frac{3k^{2}v_{i}^{2}}{(3q_{i}-1)\omega^{2}}\right) - \frac{\omega_{pd}^{2}}{\omega^{2}} \left(1 + \frac{3k^{2}v_{d}^{2}}{(3q_{d}-1)\omega^{2}}\right) + i\frac{\sqrt{\pi}}{k^{2}}\sum_{\alpha=e,i,d}A_{q_{\alpha}}\frac{\xi_{\alpha}}{\lambda_{\alpha}^{2}} \left(1 - (12)\left(q_{\alpha}-1\right)\xi_{\alpha}^{2}\right)^{(2-q_{\alpha})/(q_{\alpha}-1)} = 0$$

3. Results and Discussion

95

To investigate the dispersion relation of the DIAW, the dielectric permittivity is considered as $\varepsilon_q(k, \omega) = \varepsilon_q^{re}(k, \omega) + i\varepsilon_q^{im}(k, \omega)$, where $\varepsilon_q^{im}(k, \omega)$ and $\varepsilon_q^{re}(k, \omega)$ are the imaginary and real parts of the dielectric permittivity, respectively, and $\omega = \omega_r + i\omega_i$, where ω_i and ω_r are the imaginary and real parts of the frequency, respectively. We suppose the linear perturbation that $|\varepsilon_q^{re}(k, \omega)| \gg |\varepsilon_q^{im}(k, \omega)|$ and $|\omega_r| \gg |\omega_i|$.

101 **3.1. Frequency**

102 For the real part of the dielectric permittivity, we have derived:

$$\varepsilon_{q}^{\text{re}}(\mathbf{k},\omega) = 1 + \frac{1}{k^{2}\lambda_{e}^{2}} \frac{1+q_{e}}{2} - \frac{\omega_{pi}^{2}}{\omega^{2}} \left(1 + \frac{3k^{2}v_{i}^{2}}{(3q_{i}-1)\omega^{2}}\right) - \frac{\omega_{pd}^{2}}{\omega^{2}} \left(1 + \frac{3k^{2}v_{d}^{2}}{(3q_{d}-1)\omega^{2}}\right)$$
(13)

103 Expanding $\varepsilon_q^{re}(\mathbf{k}, \omega)$ at $\omega = \omega_r$, we have derived:

$$\omega_r^2 = \frac{k^2 \lambda_e^2}{k^2 \lambda_e^2 + \frac{1+q_e}{2}} (\omega_{pi}^2 + \omega_{pd}^2) + 3k^2 \left(\frac{v_i^2}{3q_i - 1} + \frac{v_d^2}{3q_d - 1}\right)$$
(14)

104 where the condition $\varepsilon_{\rm K}^{\rm re}({\bf k},\omega_{\rm r}) = 0$, is used to drive the Eq.(14), which is the generalized 105 dispersion relation of the DIAW in a nonextensive distributed dusty plasma. Regarding 106 $\omega_r \gg k v_i, k v_d$, in limit $q_{\alpha(e,i,d)} \rightarrow 1$, one can easily show that Eq. (14) can be reduced to 107 the ordinary plasma dispersion relation in B-G statistics [15, 16]. Therefore, we can write Eq. 108 (14) as Eq. (15) as follows:

$$\frac{\omega_r^2}{\omega_{pi}^2} = \frac{k^2 \lambda_e^2}{k^2 \lambda_e^2 + \frac{1+q_e}{2}} \left(1 + \frac{m_i n_i}{m_d n_d} \left(1 - \frac{1}{\delta}\right)^2\right) + \frac{6}{\delta} \left(\frac{1}{3q_i - 1} \frac{T_i}{T_e} + \frac{1}{3q_d - 1} \frac{m_i}{m_d} \frac{T_d}{T_e}\right) k^2 \lambda_e^2 \tag{15}$$

109 where, $\delta = \frac{n_{i0}}{n_{e0}}$ is the ion-electron density ratio.

110 Within the permissible range of values for q, the frequency rate, ω_r/ω_{pi} , of the DIAWs 111 as a function of $k\lambda_e$ is plotted as shown in Figs. 1-5. Typical parameters of the dusty plasma 112 are considered; $T_i/T_e = 0.2$, $T_d/T_e = 0.01$, $m_i/m_d = 10^{-6}$, and $10^{-2} < m_i n_i/m_d n_d < 10^2$, 113 which is considered $m_i n_i/m_d n_d = 0.01$ in this study [16, 26]. Accordingly, a decrease of the 114 wave frequency can be obtained by increasing the q. The wave phase velocity for long 115 wavelength $(k\lambda_e \ll 1 \text{ or } k\lambda_e \rightarrow 0)$ is found as follows:

$$v_{ph} = \frac{\omega_r}{k} \approx \sqrt{\frac{2}{1+q_e}} \lambda_e \left(\omega_{pi}^2 + \omega_{pd}^2\right)^{1/2} \approx \sqrt{\frac{2}{1+q_e}} \lambda_e \omega_{pi} \left(1 + \frac{m_i n_i}{m_d n_d} \left(1 - \frac{1}{\delta}\right)^2\right)^{1/2}$$
(16)

116 In the limit of long wavelength, we can show that the phase velocity increases by 117 decreasing the electron density. In the limit of $q_e \rightarrow 1$, the wave phase velocity is 118 proportional to $v_{ph} \approx \lambda_e \omega_{pi} = \sqrt{\delta} (k_B T_e / m_i)^{1/2}$ and is entirely conformed to the 119 Maxwellian plasma [15].

120 Interestingly, Liang, X. et al. reported the same finding in the laboratory. Their 121 experimental observations show that decreases of the electron density as well as increases of 122 the phase velocity of the DIAW with increasing of z (distance) [27].

For short wavelength $(k\lambda_e \gg 1 \text{ or } k\lambda_e \to \infty)$, we can write the wave phase velocity as $v_{ph} \approx (\omega_{pi}^2 + \omega_{pd}^2)^{1/2}/k$. Practically, the dust ion-acoustic wave oscillate with the frequency of ω_r , which is the summation of ions and dusts plasma frequencies, $\omega_r \approx$ $(\omega_{pi}^2 + \omega_{pd}^2)^{1/2} \approx \omega_{pi}(1 + \frac{m_i n_i}{m_d n_d} (1 - \frac{1}{\delta})^2)^{1/2}$. Actually, for the short wavelength the effect of

Fig. 1. The normalized frequency rate of the DIAWs as a function of the normalized wave number for various values of q_e ($q_e = 0.6$ (solid), $q_e = 0.8$ (dashed), $q_e = 1$ (dash-dot; Maxwellian) and $q_e = 1.5$ (dotted). $\delta = 100$, $q_i = q_d = 1$ and $m_i n_i / m_d n_d = 0.01$ are assumed).

127 q is vanished.

Fig. 2. The normalized frequency rate of the DIAWs as a function of the normalized wave number for various values of $q_i(q_i = 0.6 \text{ (solid)})$, $q_i = 0.8 \text{ (dashed)}$, $q_i = 1 \text{ (dash-dot; Maxwellian)}$ and $q_i = 1.5 \text{ (dotted)}$. $\delta = 100$, $q_e = q_d = 1$ and $m_i n_i / m_d n_d = 0.01$ are assumed).

Fig. 3. The normalized frequency rate of the DIAWs as a function of the normalized wave number for various values of q_i ($q_d = 0.6$ (solid), $q_d = 0.8$ (dashed), $q_d = 1$ (dash-dot; Maxwellian) and $q_d = 1.5$ (dotted). $\delta = 100$, $q_e = q_i = 1$ and $m_i n_i / m_d n_d = 0.01$ are assumed).

Fig. 5. The normalized frequency rate of the DIAWs as a function of the normalized wave number for various values of q_e ($q_e = 0.6$ (solid), $q_e = 0.8$ (dashed), $q_e = 1$ (dash-dot; Maxwellian) and $q_e = 1.5$ (dotted). $\delta = 100$, $q_i = q_d = 0.6$ and $m_i n_i / m_d n_d = 0.01$ are assumed).

In Fig. 1 and 2, a decrease of v_{ph} can be seen by increasing the q nonextensive index for electron and ion particles. For dust particles (see Fig. 3), an approximately constant v_{ph} is observed by varying the q nonextensive index values. However, as can be seen in Fig. 4, dust particles present a similar behavior with electron and ion particles in a tiny change of q index, though with a more intense trend. Fig. 5, shows an increase of wave amplitude as the ion and

134 dust particles are considered as nonextensive.

136 **3.2.** Landau damping

137 The Landau damping can be studied through the Eq(17):

$$\gamma = -\frac{\varepsilon_q^{\text{im}}(\mathbf{k},\omega)}{\frac{\partial \varepsilon_q^{\text{re}}(\mathbf{k},\omega)}{\partial \omega}}\Big|_{\omega = \omega_r}$$
(17)

138 where γ is the imaginary part of frequency and $\epsilon_q^{im}(k, \omega)$ for DIAW can be identified as 139 Eq(18):

$$\varepsilon_{\mathbf{q}}^{\mathrm{im}}(\mathbf{k},\omega) = \frac{\sqrt{\pi}}{k^2} \sum_{\alpha=e,i,d} A_{q_{\alpha}} \frac{\xi_{\alpha}}{\lambda_{\alpha}^2} \left(1 - \left(q_{\alpha} - 1\right)\xi_{\alpha}^2\right)^{(2-q_{\alpha})/(q_{\alpha}-1)}$$
(18)

140 The Landau damping of the DIAW, in the range of v_d , $v_i \ll \omega/k \ll v_e$, can be obtained 141 in the form Eq(19) as follow:

$$\gamma \approx -\sqrt{\frac{\pi}{8}} \delta^{3/2} \frac{\omega_{pi} k \lambda_{e}}{1 + \frac{m_{i} n_{i}}{m_{d} n_{d}} \left(1 - \frac{1}{\delta}\right)^{2}} \left(\frac{1 + \frac{m_{i} n_{i}}{m_{d} n_{d}} \left(1 - \frac{1}{\delta}\right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1}{\delta} \frac{T_{i}}{T_{e}} \frac{6}{3q_{i} - 1} + \frac{1}{\delta} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{e}} \frac{6}{3q_{d} - 1} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1}{\delta} \frac{T_{i}}{T_{e}} \frac{6}{3q_{i} - 1} + \frac{1}{\delta} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{e}} \frac{6}{3q_{d} - 1} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1}{\delta} \frac{T_{i}}{T_{e}} \frac{1}{3q_{i} - 1} + \frac{1}{\delta} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{e}} \frac{1}{3q_{d} - 1} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{3}{3q_{i} - 1} + \frac{3}{3q_{d} - 1} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{i} - 1} + \frac{3}{3q_{d} - 1} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{i} - 1} + \frac{3}{3q_{d} - 1} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{i} - 1} + \frac{3}{3q_{d} - 1} \frac{m_{i}}{m_{d}} \frac{T_{d}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{d} - 1} + \frac{1}{\delta} \frac{m_{i}}{m_{d}} \frac{T_{i}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{d} - 1} + \frac{1}{\delta} \frac{m_{i}}{m_{d}} \frac{T_{i}}{T_{i}} \right)^{2}}{k^{2} \lambda_{e}^{2} + \frac{1 + q_{e}}{2}} + \frac{1 + q_{e}}{3q_{d} - 1} + \frac{1}{\delta} \frac{m_{i}}{q_{d} - 1} + \frac{$$

142 Fig. 6-17 show the change of the damping rate, γ/ω_{pi} , as a function of 143 wavenumber, $k\lambda_e$, for the various parameters such as q, δ , and electron temperature changes. 144 An increase of the Landau damping can be observed by decreasing q parameter. Typical 145 parameters of the dusty plasma are considered $T_i/T_e = 0.2$, $T_d/T_e = 0.01$, $T_i/T_d =$ 146 20, $m_i/m_d = 10^{-6}$, $m_e/m_i = 0.00054$, and $10^{-2} < m_i n_i/m_d n_d < 10^2$, which is 147 considered $m_i n_i/m_d n_d = 0.01$ in this study [16, 26].

148 If we consider the limit $q_e = q_i = q_d \rightarrow 1$ (Maxwellian), $\delta \rightarrow 1$, and $T_e \gg T_i, T_d$, the 149 Landau damping rate reduces to the Maxwellian description in B-G statistics [16,17].

$$\gamma \simeq -\sqrt{\frac{\pi}{8}} \frac{\omega_{pi} k \lambda_e}{(1+k^2 \lambda_e^2)^2} \left(\left(\frac{T_i}{T_e}\right)^{3/2} + \left(\frac{m_e}{m_i}\right)^{1/2} \right)$$
(20)

150

151

152

Fig. 6. The plot of Landau damping of the DIAWs in terms of the wavenumber for various values of q_e . $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 7. Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_i . $q_e = q_d = 1$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 8 Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_d . $q_e = q_i = 1$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 9 Plot of Landau damping of the DIAWs in terms of the wavenumber for various values of q_e . $q_i = q_d = 0.6$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 10. Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_i . $q_e = q_d = 0.6$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 11. Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_d . $q_e = q_i = 0.6$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 12. The plot of Landau damping of the DIAWs in terms of the wavenumber for various values of q_e . q_i , $q_d > 1$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 13. Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_i . q_e , $q_d > 1$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 14. Plots of Landau damping of the DIAWs in terms of the wavenumber for various values of q_d . q_e , $q_i > 1$, $\delta = 100$ and $m_i n_i / m_d n_d = 0.01$ are assumed.

Fig. 16. Plot of Landau damping of the DIAWs in terms of the wavenumber for various values of T_i/T_e ($T_i/T_e = 0.2$ (solid), $T_i/T_e = 0.6$ (dashed), $T_i/T_e = 0.8$ (dash-dot) and $T_i/T_e = 1$ (dotted). $T_d/T_e = 0.01, q_e = 0.6, q_i = q_d = 1, \delta = 100$ and $m_i n_i/m_d n_d = 0.01$ are assumed).

Fig. 17. Plot of Landau damping of the DIAWs in terms of the wavenumber for various values of T_d/T_e ($T_d/T_e = 0.2$ (solid), $T_d/T_e = 0.6$ (dashed), $T_d/T_e = 0.8$ (dash-dot) and $T_d/T_e = 1$ (dotted). $T_i/T_e = 0.2$, $q_i = 1$, $q_e = q_d = 6$, $\delta = 100$ and $m_i n_i/m_d n_d = 0.01$ are assumed).

168

169 If it is considered that $q_i, q_d \le 1$ for various values of q_e , in the limit of long-wavelength 170 (short wavelength), the Landau damping rate decreases (increases) by increasing the q_e 171 index, as can be seen in Fig. 6 and Fig. 9. Furthermore, for $q_i, q_d > 1$, the Landau damping 172 of the DIA wave generally decreases by increasing the q_e nonextensive index (see Fig.12). 173 Regarding that the damping rate is normalized by ion plasma frequency, it should be less than 174 one. Accordingly, the data obtained from Fig. 7 (b) is not acceptable regarding physics 175 concepts, therefore, the q_i values larger than 200 are acceptable.

In Fig. 7 and Fig. 10, for $q_e, q_d \le 1$, an increase of the Landau damping is observed by decreasing of the q_i nonextensive index. However, for $q_e, q_d > 1$, Fig. 13 shows that the damping rate decreases (increases) by increasing the nonextensive index q_i for $q_i > 1$ ($q_i < 1$). Furthermore, the damping rate is approximately constant for $q_d < 1$, though for $q_d > 1$ it increases by decreasing the q_d index (see Fig. 8, Fig. 11, and Fig. 14). 181 Generally, as can be seen in Fig. 15, the increase of δ enhances the damping rate, expect 182 for ion particles that the Landau damping rate increases (decreases) by increasing the q_i index in the limit of long-wavelength (short wavelength) (see Fig. 15 (b)). Furthermore, the electron 183 184 temperature changes on the Landau damping were investigated (see Fig. 16), which 185 represents an increase of the damping rate by increasing the ion-electron temperature ratio. 186 Interestingly, a decrease of the damping rate was observed by increasing the dust-electron 187 temperature ratio even with the slightest changes in the electron temperature. This attractive 188 findings is pointed to the essential concept in the dusty plasma.

Also, we can see in Fig. 17 that the damping rate decreases when the dust-electron temperature ratio increases, even with the slightest changes in the electron temperature, and this is essential point in a dusty plasma.

192 **4.** Conclusion

193 In this study, we investigate the phase velocity and the Landau damping of DIAW propagating in an un-magnetized, unbounded, and collisionless dusty plasma modeled q-194 195 distribution in Tsallis statistics. The effect of various q parameters index for dust, ion, and 196 electron particles were considered. Using the kinetic theory and Vlasov-Poisson equations, 197 the dispersion relation and the Landau damping rate (γ) were obtained. In the limit $q \rightarrow 1$, 198 the results were conformed to Maxwellian duty plasma in the framework of B-G statistics. 199 Generally, we showed that the phase velocity of the dust-ion acoustic decreases with an increase in the q-nonextensive index, applying different amplitudes for electron, ion, and dust 200 particles. It was shown that the wave normalized Landau damping rate $(|\gamma|/\omega_{pi})$ can be 201 analyzed for various values of the nonextensive index q, the ion-electron number density ratio 202 203 δ , and the change of the electron temperature $(T_i/T_e \text{ and } T_d/T_e)$. It was found that for electron particles, the Landau damping rate increases with a decrease in the q nonextensive 204 205 index. Our investigation showed a considerable variation of the DIAW damping rate by the dust nonextensivity (q_d) as well as the ion nonextensivity (q_i) . The result is very exciting for 206 $q_i, q_d < 1$, with regarding various values for q_e , the damping rate increases with an 207 increases in the ion-electron number density ratio δ . It was shown that the wave normalized 208 209 Landau damping rate decreases by decreasing the ion-electron temperature ratio, though the 210 reduction of the dust-electron temperature ratio enhances the damping.

Considering the ubiquitous form of the dust particles in space, our results may be helpful in the perception of the effects of nonextensivity on the frequency as well as the Landau damping of the DIAW in the nonextensive distributed dusty plasma, such as planetary areas, magnetospheres, and space plasma environments.

215 Acknowledgments

We would like to express our acknowledges for the application of datasets taken from references 16 and 26 [16, 26] for this research.

218 **References**

- 2191.Mendis, D.A. and M. Rosenberg, Cosmic Dusty Plasma. Annual Review of220Astronomy and Astrophysics, 1994. **32**(1): p. 419-463.
- 221 2. Tsallis, C., *Possible generalization of Boltzmann-Gibbs statistics*. Journal of
 222 Statistical Physics, 1988. 52(1): p. 479-487.

- 223 3. Curado, E.M. and C. Tsallis, *Generalized statistical mechanics: connection with thermodynamics*. Journal of Physics a: mathematical and general, 1991. 24(2): p. L69.
- 4. Tsallis, C., *Non-extensive thermostatistics: brief review and comments*. Physica A:
 Statistical Mechanics and its Applications, 1995. **221**(1-3): p. 277-290.
- 5. Silva Jr, R., A. Plastino, and J. Lima, A Maxwellian path to the q-nonextensive velocity distribution function. Physics Letters A, 1998. 249(5-6): p. 401-408.
- Lavagno, A., et al., *Non-extensive thermostatistical approach of the peculiar velocity function of galaxy clusters*. Astrophysical Letters and Communications, 1998. 35: p.
 449.
- Amour, R. and M. Tribeche, *Semi-analytical study of variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive ion velocity distribution.*Communications in Nonlinear Science and Numerical Simulation, 2011. 16(9): p.
 3533-3539.
- Liu, S.-Q. and X.-C. Chen, *Dispersion relation of transverse oscillation in relativistic plasmas with non-extensive distribution*. Journal of Plasma Physics, 2011. **77**(5): p. 653-662.
- 239 9. Liu, Y., S. Liu, and B. Dai, Arbitrary amplitude kinetic Alfvén solitons in a plasma
 240 with a q-nonextensive electron velocity distribution. Physics of Plasmas, 2011. 18(9):
 241 p. 092309.
- Roy, K., T. Saha, and P. Chatterjee, *Effect of ion temperature on ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution*. Physics of
 Plasmas, 2012. 19(10): p. 104502.
- Rufai, O.R. and R. Bharuthram, *Electrostatic fluctuations in a magnetized two- component plasma with q-nonextensive electrons and thermal ions.* Physics of
 Plasmas, 2016. 23(9): p. 092306.
- Rahman, M.M., et al., Nonlinear propagation of Electron-acoustic waves in a nonextensive electron-positron-ion plasma. Journal of the Korean Physical Society, 2015. 66(6): p. 941-946.
- Liu, X.-L. and X.-Q. Li, *The full Zakharov equations in nonextensive q-plasma*.
 Physics of Plasmas, 2014. **21**(2): p. 022306.
- Akhtar, N., W.F. El-Taibany, and S. Mahmood, *Electrostatic double layers in a warm negative ion plasma with nonextensive electrons*. Physics Letters A, 2013. **377**(18): p.
 1282-1289.
- 256 15. Shukla, P. and V. Silin, *Dust ion-acoustic wave*. PhyS, 1992. **45**(5): p. 508.
- 257 16. Shukla, P. and A. Mamun, *Introduction to Dusty Plasma Physics IOP*. 2002, Bristol.
- 25817.Lee, M.-J., Effects of suprathermal particles on the dust ion-acoustic waves in a259complex plasma. Current Applied Physics, 2010. 10(5): p. 1340-1344.
- Abbaszadeh, T., et al., *Study of dust ion-acoustic wave propagation in the Lorentzian magnetized dusty plasma*. Current Applied Physics, 2013. **13**(9): p. 1933-1942.
- Liyan, L. and D. Jiulin, *Ion acoustic waves in the plasma with the power-law q- distribution in nonextensive statistics.* Physica A: Statistical Mechanics and its
 Applications, 2008. **387**(19-20): p. 4821-4827.
- 265 20. Liu, Z., L. Liu, and J. Du, A nonextensive approach for the instability of current266 driven ion-acoustic waves in space plasmas. Physics of Plasmas, 2009. 16(7): p.
 267 072111.
- 268 21. Bouzit, O., M. Tribeche, and A.S. Bains, *Modulational instability of ion-acoustic*269 *waves in plasma with a q-nonextensive nonthermal electron velocity distribution.*270 Physics of Plasmas, 2015. 22(8): p. 084506.

- 271 22. Liu, S.-Q., H.-B. Qiu, and X.-Q. Li, *Landau damping of dust acoustic waves in the plasma with nonextensive distribution*. Physica A: Statistical Mechanics and its Applications, 2012. **391**(23): p. 5795-5801.
- 274 23. SAN QIU, L. and H.B. Qiu, *Dust acoustic instability with non-extensive distribution*.
 275 Journal of Plasma Physics, 2013. **79**(1): p. 105.
- 276 24. Amour, R. and M. Tribeche, *Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions*. Physics of Plasmas, 2014.
 278 21(12): p. 123709.
- 279 25. Fried, B. and S. Conte, *The Plasma Dispersion Function Academic Press*. Inc. New York, 1961.
- 281 26. Huba, J.D., *NRL plasma formulary*. Vol. 6790. 1998: Naval Research Laboratory.
- 282 27. Liang, X., et al., *Experimental observation of ion-acoustic waves in an inhomogeneous dusty plasma*. Physics of Plasmas, 2001. 8(5): p. 1459-1462.

Fig1.

Fig2.

Fig3.

Fig4.

Fig5.

Fig6.

Fig7a.

Fig7b.

Fig7c.

Fig8a.

Fig8b.

Fig9.

Fig10a.

Fig10b.

Fig11a.

Fig11b.

Fig12.

Fig13a.

Fig13b.

Fig14a.

Fig14b.

Fig15a.

Fig15b.

Fig15c.

Fig16.

Fig17.

