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Abstract

Flood disasters have regularly been reported in the Congo Basin with significant damages to human lives, food production

systems and infrastructure. Losses incurred by these damages are huge and represent a major challenge for economic expansion

in developing nations. In the Congo River Basin, where availability of in-situ data is a significant challenge, new approaches are

needed to investigate flood risks and enable effective management strategies. This study uses recently developed global flood

prediction data in order to produce flood risk maps for the Congo River Basin, where flood information currently does not exist.

Flood hazard maps that estimate fluvial flooding at a grid cell resolution of 3 arc-seconds (˜ 90 m), gridded population density

data of 1 arc-second (˜ 30 m) spatial resolution, and a spatial layer of infrastructure dataset are used to addresses flood risk at

the scale of the Congo Basin. The global flood data provides different return periods of exposure to flooding in the Congo Basin

and identifies flood extents. The risk analysis results are presented in terms of the percentage of population and infrastructure

at flood risk for six return periods (5, 10, 20, 50, 75 and 100 year). Of the 525 administrative territories, 374 are AGU Books
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exposed to fluvial flood, and 38 (10 %) of them are categorised as risk 
hotspot. Analysis shows that the most exposed territories represent 1% 
of total exposure which is estimated at 2.65% of the basin’s population. 
This study demonstrates the first and potentially most important stage in 
developing flood responses by determining the flood hazards areas and 
the population that would be exposed. The flood risk maps produced in 
this study provide information necessary to support policy decision of 
flood disasters prevention, including prioritisation of interventions to 
reduce flood risk in the CRB. 
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Abstract 
Flood disasters have regularly been reported in the Congo Basin with significant damages to human 

lives, food production systems and infrastructure. Losses incurred by these damages are huge and 

represent a major challenge for economic expansion in developing nations. In the Congo River 

Basin, where availability of in-situ data is a significant challenge, new approaches are needed to 

investigate flood risks and enable effective management strategies. This study uses recently 

developed global flood prediction data in order to produce flood risk maps for the Congo River 

Basin, where flood information currently does not exist. Flood hazard maps that estimate fluvial 

flooding at a grid cell resolution of 3 arc-seconds (~ 90 m), gridded population density data of 1 

arc-second (~ 30 m) spatial resolution, and a spatial layer of infrastructure dataset are used to 

addresses flood risk at the scale of the Congo Basin. The global flood data provides different return 

periods of exposure to flooding in the Congo Basin and identifies flood extents. The risk analysis 

results are presented in terms of the percentage of population and infrastructure at flood risk for six 

return periods (5, 10, 20, 50, 75 and 100 year). Of the 525 administrative territories, 374 are 

exposed to fluvial flood, and 38 (10 %) of them are categorised as risk hotspot. Analysis shows that 

the most exposed territories represent 1% of total exposure which is estimated at 2.65% of the 

basin’s population. This study demonstrates the first and potentially most important stage in 

developing flood responses by determining the flood hazards areas and the population that would 

be exposed. The flood risk maps produced in this study provide information necessary to support 

policy decision of flood disasters prevention, including prioritisation of interventions to reduce 

flood risk in the CRB.

Keywords: Flood hazard, Risk assessment, Return period, Congo River Basin

Page 2 of 34AGU Books



For Review Only

2

1. Introduction

Floods are the most common and devastating natural disasters around the world (UNISDR, 2011; 

Ward et al., 2013; Tanoue et al., 2016). Globally, damages due to floods during the last four 

decades costed more than 1 trillion $ US, with a loss of about 220,000 human lives (Jonkman, 

2005; Munich Re, 2019). For the year 2019 alone, at least 396 natural disasters were reported, 

killing 11755 people of which floods and storms accounted for 68% of the total number of affected 

people (EM-DAT, Guha-Sapir et al. www.emdat.be, 2019).  Worldwide, about 1 billion people are 

living in areas at risk of flooding (Collet et al., 2018).  Recent studies indicate an increase in flood 

exposure -people and assets- (Tanoue et al., 2016; Change et al., 2001; Ward et al., 2013; Visser et 

al., 2014), therefore highlighting the role of land use change (Milly et al.,2002 ; Bronstert, 2003; 

Christensen and Christensen, 2003)  and climate change (Kundzewicz et al., 2014) in the increase 

of frequency and intensity of floods.  In 2005 the World Bank Hotspots Project estimated risks 

based on reported flood event data combined with gridded population and GDP information (Dilley 

& Mundial, 2005). The United Nations International Strategy for Disaster Reduction (UNISDR) 

produced maps of population and GDP exposed to flooding using a combination of modelled and 

reported events (Peduzzi et al., 2009). Jongman et al. (2012) contributed further by quantifying 

changes in population and assets exposed to 100-year flood events between 1970 and 2050. 

Hirabayashi et al. (2013) quantified the impacts of future climate change on the number of people 

exposed to 10 and 100-year flood events. Ward et al. (2013) produced a global-scale flood risk 

maps based on a large number of return-periods with a module to simulate multiple risk indicators.

Floods are difficult to predict, this is basically due to limited understanding of processes governing 

the occurrence of flood hazards, which is exacerbated by limited access to data at the appropriate 

spatial and temporal scales.  However, recent advances in computing power and better access to 

Earth Observation information have provided an unprecedented opportunity to better predict the 

occurrence of flood events and, thus reducing risks. Through this opportunity, models have been 

developed that produce flood extent outputs that are now freely available and being used to address 

science and management questions related to flood hazards and risks, including the issue of how 

flood risks could change in the future. For instance, Neal et al. (2012a) developed a subgrid channel 

model for simulating floodplain inundation over large and data sparse areas, based on combination 

of earth observation data, including water surface elevation from Ice, Cloud and Land Elevation 

Satellite laser altimeter. Schumann et al. (2013) developed a large-scale flood inundation model that 

uses ensemble forecasting data for flood prediction in data scarce areas, while Sampson et al. 

(2015) produced a 3 arc-second resolution global flood hazard maps for several return periods using 
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LISFLOOD-FP with regionalised flood frequency analysis derived from global hydrological data. 

Other global models based on processed versions of the SRTM DEM and HydroSHEDS river 

network such as CaMa-Flood (Yamazaki et al.,2011) and GLOFRIS (Ward et al., 2013) have been 

used to understand the implication of flood on exposed  gross domestic product loss and population, 

both under current and future conditions of land use and climate change (Trigg et al., 2016; 

Winsemius et al., 2015).

Until recent years, the majority of studies have focused on global coverage. To date, national or 

regional flood hazard and risk studies have been undertaken mostly in developed countries, 

allowing a consistent and comprehensive understanding of their flood hazard and risk for planning. 

Some of these studies include ( Roo et al., 2000; Fortin Jean-Pierre et al., 2001; Eleutério et al., 

2010; Samarasinghe et al., 2010 ; Safaripour et al., 2012; Lim &  Lee, 2018).  In developing 

countries where the effects of floods are more pronounced due to low level of flood protection, 

there are far fewer works on flood hazards and risks due to the challenges of accessing appropriate 

data and the remoteness of some flood prone regions (Alcántara-Ayala, 2002; Baldassarre et al., 

2010; UNISDR, 2015; Trigg et al., 2016 ; Egbinola et al., 2017). Recent advances in remote 

sensing technology, data processing algorithms and new satellite platforms have converted data 

poor regions of developing countries to data rich regions (Bates, 2012). Through modelling coupled 

with global data, flood hazards have been predicted and, when combined with vulnerability data, 

flood risk areas have been mapped out (Samarasinghe et al. 2010). In their study of watershed 

modelling and flood prediction, Samarasinghea et al. (2010) used a hybrid GIS and remote sensing-

based approach for flood risk determination in Sri Lanka. By coupling remote sensing data with a 

multi-criteria decision analysis algorithm, an approach for flood risk assessment for the Kopili 

River Basin in India and Vietnam has been developed (Shivaprasad et al., 2018, Armenakis et al., 

2017). Optical and radar remote sensing data along with logistic regression were used to develop 

modelling for flood-damaged areas in North Korea (Lim & Lee, 2018). Safaripour et al. (2012) 

perform flood risk assessment using Landsat imaging and a digital elevation model to assess flood 

risk in the Gorganroud watershed in Iran. These studies demonstrate that earth observation data 

coupled with Geographical Information Systems have proved resourceful for flood management in 

developing countries (Schumann et al., 2009; Mason et al., 2011). However, Sub-Saharan African 

countries have not taken enough the advantage of remote sensing or recent flood prediction and 

management data that assess flood hazard and risk. For instance, studies at regional scales, such as 

the Congo River Basin (CRB), where a large proportion of the population are at risk of flooding, 

have not yet been undertaken. Flood disasters have been regularly reported in the CRB with 
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significant damages to socio-economic well-being and to the environment. A diagnostic study on 

flood risk by Tshimanga at al. (2016) showed that from 1964 to 2012, the CRB has recorded about 

196 flood events that have affected about 10 million people. Moreover, the impact of floods in 

forthcoming decades could increase in the CRB due to the current trend of land use changes as well 

as climate change (Ward et al., 2013, Kundzewicz et al., 2014).  Therefore, there is a demand from 

end users (e.g. local institutions) for flood hazard and risk information, for example in terms of 

maps of flood-prone areas, assets, and population exposed.  Increasing availability and constant 

improvement of high resolution (3 arc-seconds or ~ 90 m) earth observation data and their 

application in the data scarce basin of the CRB can help derive flood hazard and flood risk maps to 

meet end users’ needs (Bates, 2012).  

This study, therefore, uses the global flood data simulated using a global flood model based on 

LISFLOOD-FP (Sampson et al., 2015), in combination with socio-economic and population 

information to evaluate flood risks at the Congo Basin, With the aim to assist policy decision for 

flood mitigation, necessary to enhance communities’ resilience in the Congo River Basin. 
  

2. Study Area

The Congo River Basin (CRB) is framed within 10o N, 12o E to 14o S, 34o E (corner-corner 

coordinates, Fig. 1), and encompasses nine riparian countries. The central part of the basin has low 

slopes, but many of the headwaters have steeper topography, from which flow the four main Congo 

tributaries (the Oubangui River in the North East, Sangha River in the North West, the Kasai River 

in the South West, and the Lualaba River in the South East). These tributaries meet in the central 

basin and form the main stem of the Congo River (Tshimanga & Hughes, 2014). Many cities in the 

CRB are located near the major rivers and tributaries, such that fluvial floods constitute a major 

issue. It is estimated that 39 million people live within 10 km of a major river in the CRB (Trigg et 

al., 2020).  A study by Tshimanga et al. (2016) determined that floods in the CRB occur in form of 

riverine floods, flash floods and other combined types of flood, such that riverine floods are the 

most prominent type of flood with 121 events recorded since 1964 in the region. As a natural 

hazard, floods often occur when the river system carrying capacity is unable to convey the river 

flow, especially after heavy rain has occurred in the basin. This situation can worsen when the flood 

prone areas have been developed for human use with little or no flood protection measures. 

Characterised by a tropical climate and with a high drainage density, the CRB is a classic example 

of a vast flood-prone region in Africa (Dilley et al., 2005). 

The general pattern of CRB precipitation (Fig. 2) consists of two rainy seasons: March to May 

(MAM) and October to December (OND), which has higher rain rates (Pokam et al., 2014). The 
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driest season is from June to August (JJA). Flood occurrences coincide with rainfall peaks in the 

Congo Basin (Fig. 2), which often occur around November and December (Haensler et al. 2013). 

The CRB is identified as an important flooding hotspot (Dilley, 2005, Kundzewicz et al., 2014). For 

instance, the 2015 flooding affected 8,480 families in the CRB (Angola, Tanzania, Cameroon, and 

DRC) and resulted in 100 fatalities and 10,000 individuals displaced (Tshimanga et al., 2016). 

Furthermore, the recent 2019-2020 floods affected about 170,000 people across the Republic of the 

Congo, including 30,000 in Central African and Congolese refugees and 6,302 hectares of 

agricultural fields have been destroyed (Reliefweb, 2019). Floods have also been reported in many 

other parts of Democratic Republic of the Congo (DRC), notably in the provinces of Bas Congo 

and Kisangani (Tshimanga et al., 2016). In 1999, a flood occurred in November and lasted until 

January of the following year, thus approaching the two previous largest flood events of the 

century, in 1903 and 1962. The 1999 flood affected tens of thousands of people in both Kinshasa 

(DRC) and Brazaville (Republic of Congo) and caused serious disruption of the drinking water 

supply (Tshimanga et al., 2016). 

Figure 1:  Congo River Basin 
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Figure 2: Rainfall and Congo River flow pattern. Grey indicates location for mean rainfall (JAS = 

73mm month-1, OND = 160 mm month-1, JFM = 123 mm month-1, AMJ = 146 mm month-

1). The hydrograph represents a July-June water year with long term average of Congo River 

discharge at Kinshasa gauging station. Asterisks mark the given discharge on the month (Jul 

= 29,991m3s-1, Aug = 29,035m3s-1,Sep = 32,017 m3s-1,Oct = 41,525 m3s-1,Nov = 49,143m3s-

1, Dec = 53,680 m3s-1, Jan = 45,505 m3s-1, Feb = 36,108 m3s-1, Mar = 33,559 m3s-1, April = 

38,084 m3s-1, May = 40,883 m3s-1, Jun = 37,466 m3s-1), the green line marks the equator, 

(adapted from Alsdorf et al., 2016).

3. Flood Risk Analytical Framework 

This research focuses on flood hazard, vulnerability and risk, and we adopt the definitions of these 

concepts are from UNISDR (2015). Flood hazard denotes the likelihood of a potentially damaging 

physical event that may cause the loss of life or injury, property damage, social and economic 

disruption, or environmental degradation that it is usually presented as an annual exceedance 

probability and/or return period.

Flood vulnerability encompasses a set of conditions and processes resulting from physical, social, 

economic, and environmental factors that increase the susceptibility of a community to the impact 
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of hazards (Merz et al. 2015). Exposure can be defined as the assets and values located in flood-

prone areas (IPCC, 2012).  Flood risk refers to the probability of harmful consequences, or 

expected losses (deaths, injuries, property, livelihoods, economic activity disrupted, or environment 

damaged) resulting from interactions between flood hazards and vulnerable conditions (UNISDR, 

2015). Risk analysis  can  be  realised  at  different  scales (macro, meso and micro),  depending  on  

the  objectives  of  the  analysis. Different scales of risk evaluation are defined as a function of the 

level of detail of the evaluation process (Eleutério, 2012, de Moel et al., 2009,  Schumann, 2011) of 

which in the CRB: 

- Macro-scale refers to full spatial region of the Congo Basin;

- Meso-scale to the Congo Basin’s sub-watershed level, such as the Oubangui for instance;

- Micro-scale is adopted if a single element such as administrative territory is analysed. 

Different combinations of scales can be considered depending on the data availability, e.g. hazard 

maps produced using macro-scale methods can be combined with micro-scale exposure and 

vulnerability datasets in order to evaluate potential flood risk (de Moel, 2009). In developed 

countries, we can observe different scales of evaluation and a mixture of scales used in the literature 

(Messner & Meyer, 2006; Barredo et al., 2005; Eleutério, 2012). While macro and meso-scale flood 

analysis for developing countries can rely on global data, the proposed framework (Fig. 3) is 

applied at the regional scale (macro-scale) as micro-scale flood risk analysis requires financial and 

human resources as well as high resolution data, particularly for the data sparse regions such as the 

CRB. 

Figure 3: Flood risk analysis framework (modified from Bizimana and Schilling, 2010).
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Such a regional scale assessment aims at the identification of risk areas in order to alert the public 

and inform policy decision makers of the potential risks. The identification of risk areas across 

nations is fundamentally concerned with controlling development in such areas and also for 

investment prioritisation (de Model et al., 2015).

4. Data and methods

To examine flood risk, we employ spatial data defining flood hazard and a number of socio-

economic characteristics (infrastructure and buildings) and population density.

4.1. Flood Hazard Data

We used flood hazard maps (Sampson et al., 2015) produced using a variant of the LISFLOOD-FP 

hydrodynamic model representing riverine flood hazards for the CRB. The LISFLOOD-FP flood 

hazard maps estimate the inundation caused by fluvial flooding at a grid cell resolution of 3 arc-

seconds (~ 90 m), for different return periods. The maps provide information on the extent of flood 

hazard for specific locations (Fig. 4). The flood hazard spatial layer consists of areas that are 

susceptible to flooding, such as water bodies, areas of low slope, floodplains and topographic 

depressions. For this study, six hazard return periods (5, 10, 20, 50, 75 and 100 year) were used.  

Modelled flood hazards do not include any flood protection (such as levees and drainage systems). 

However, flood protection is not yet implemented in many developing countries, particularly in the 

CRB.  

Fluvial flooding is simulated in all river basins with upstream catchment areas larger than 50 km2 

(Smith et al., 2019). River channel locations are derived from the MERIT Hydro global 

hydrography data set (Yamazaki et al. 2019). A sub-grid hydraulic model (Neal, Bates, and 

Schumann 2012b) is used, which enables all river channels, even those smaller than the 3-arc 

second (~90 m) resolution of the model, to be explicitly represented using a computationally 

efficient local inertial formulation of the shallow water equations (Bates, Horritt, and Fewtrell 

2010). Integration of a hydrography global data set with a sub-grid hydraulic model enables the 

representation of flooding from river channels across all areas, including data-poor regions 

(Sampson et al., 2015). The derived model input boundary conditions are from a global 

regionalised flood frequency analysis (Smith, Sampson, and Bates 2015). This method links river 

gauges to catchment characteristics and local climatology respectively, with un-gauged regions 

linked to gauged.  Sampson et al. (2015) in their attempt to describe the areas affected by all flood 

events of a certain magnitude, report that the global model fairly captures between two thirds and 

three quarters of flooded area in the local benchmark data sets from Canada and the UK, and that 

along nontidal reaches of large rivers, the skill is likely close to that of local models. The model has 

been demonstrated to perform well for inland flooding, and MERIT DEM is used to enable the 
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model to simulate flood hazard on vegetated and urbanized floodplains.  However, the model is 

likely to underestimate flood hazard in coastal areas that are prone to tidal flooding due to the lack 

of a storm surge component (Sampson et al., 2015). The model may also overestimate hazard along 

rivers with significant reservoir management capacity as such features are not yet incorporated 

(Sampson et al., 2015).  As such, the LISFLOOD- FP output is suitable for flood analysis and 

management in the CRB. Users should not expect perfection from the model, but it is useful for 

describing areas exposed to a certain magnitude of flood and undertaking related flood risk analysis 

at the scale of interest (national and regional) which can be incorporated into decision making 

(Ward  et al., 2015).  

Figure 4:100-year-return period flood hazard map at specific locations (photos, 2019 flood in 

Kinshasa)

4.2. Socioeconomic Data

To estimate the number of people exposed to flooding, we used a gridded population density data 

of 1 arc-second, (~ 30 m) spatial resolution. The CRB High Resolution Population Density Map is a 

new population dataset generated jointly by Facebook, Columbia University and the World Bank. 

Previous population maps (Bright et al., 2015, Tatem & WorldPop, 2017) represented population 

pixel with a spatial resolution of 3 arc seconds (LandScan), or ~100 m spatial resolution 

(WorldPop), but Facebook and Columbia University (2018) have achieved the spatial refinement (1 

arc-second) based on a convolutional neural network to identify individual buildings. Based on the 

settlement identification, population is then redistributed equally over all the buildings found within 
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the census area. The method assumes equal population distribution per building within a census 

area.  By combining the building data with census data, the population data with 1 arc-second (~ 30 

m) spatial resolution was produced. The Third Integrated Household Survey (IHS3) which provides 

a descriptive analysis of the demographic characteristics of the population of Malawi (NSO, 2016) 

which has been completely manually labelled, at a resolution of 3 arcsecond was used to validate 

the data. Tiecke et al. (2017) outline a number of validation exercises for the High Resolution 

Population Density Map data, including the testing of building identification.  This survey recorded 

the location of 12,288 households countrywide. When used as a validation data set, the results 

revealed that 95.3% of IHS3 household locations coincided with High Resolution Population 

cells/pixels.  After assessing the accuracy of the buildings, the population redistribution over the 

buildings was undertaken for a single region of Blantyre, Malawi. Population estimates are 

obtained using a minimally modelled approach of proportional allocation (De Sherbinin & Adamo, 

2015).  The population is distributed equally to settled areas in the binary classification that fall 

inside census units. The uncertainty of the population estimates originates from census data 

obtained at a too coarse administrative unit. The full methodology of gridded population data can 

be found in Tiecke et al.(2017). Flood is also the result of the interactions of natural and human 

factors, this interplay is illustrated in Fig.5 and 6.  

Figure 5: Land covers types illustrated by Kinshasa and Brazzaville
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Figure 6: River network, terrain and population pixels distribution illustrated by Kinshasa and 

Brazzaville.

Spatial layers (Fig. 7) that contain the administrative areas (Map library, 2019) and population 

distribution have been used as units of investigation for this work. The total population and 

infrastructures in the Congo Basin was extracted from population pixel and infrastructures layer 

mentioned in the section above, and presented in table 1. 

Figure 7:  Congo Basin countries with 525 second level administrative subdivision (territory) and 

population distribution extracted from high resolution population pixels.
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Table 1: Population and infrastructures within the basin

The Humanitarian Openstreet MapTeam’s spatial layers (HDX/OCHA, 2019) that contain urban 

system such as buildings, fuel stations, school, marketplaces, and hotels have also been used.

Community of mappers all over the world work together online, using satellite, GIS software and 

drone imagery to generate map layers of infrastructure including buildings, roads, shops, 

businesses, rivers, topographical peaks, administrative boundaries, bus and train routes in 

OpenStreetMap. The resulting free map layers are made available online via the Humanitarian Data 

Exchange (HDX) and can be used for disaster management and risks reduction. In case of the 

Congo River Basin, these maps (Fig. 8) represent the spatial distribution of infrastructure and 

buildings and helped us to map and understand risk related to flooding. OpenStreetMap data cover 

all CRB, but is far from complete because all objects are not mapped. Therefore, infrastructure 

numbers are only indicative of exposure in the CRB. 
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Figure 8: Town level maps, showing spatial representation of infrastructures and buildings in two 
urban areas: (a) infrastructures distribution in Kinshasa; (b) buildings distribution in 
Bangui (Source: Humanitarian OpenStreetMap spatial layers).

4.3. Methods

4.3.1. Flood exposure 

The analysis in this study was done in QGIS (v3.10). The population gridded dataset (1 arc-second 

resolution) were resampled to the same resolution (∼90 m) as the flood dataset (3 arc-second 

resolution) using the nearest neighbour method. The number of people or infrastructure (road and 

bridges, healthcare facilities, educational institutions, police, buildings and fuel stations) exposed to 

each return period were estimated per territory. The raster calculation method was used to produce 

the flood exposure layer, intersecting flood hazards pixels with the spatially distributed population 

gridded data, to extract people per population grid cell within flood hazards pixels which represent 

the flood exposed population pixels. Flood exposure at territory level for each return period flood 

hazard was estimated by calculating the sum of population pixels of flood exposure layer 

overlaying territory polygons through zonal statistics. We run this analysis for all the return periods 

at a territory level and aggregate our results at country and basin level to estimate the total number 

of people affected.  Therefore, flood risk for the population (Rf), was defined by the equation (1).

(1)Rf = Fh ∩ Sp  
Were,

Rf: is flood risk for each territory  

Fh: is the flood hazard spatial layer 

Sp: is the population spatial layer

The number of people exposed to a flood is not the only aspect of interest when calculating flood 

exposure. We were also interested in assessing the number of infrastructures at risk of flooding. To 

create a vector layer that contains exposed infrastructures at a specific location, the spatial queries 

Page 14 of 34AGU Books



For Review Only

14

allowed us to extract features in infrastructures map layer by their relation (intersection) with the 

flood hazard layer, using extract by location operation. Thus, flood risk related to infrastructures 

was defined as:

(2)Rf = Fh ∩ IS 
Were,

Rf: is flood risk for each territory   

Fh: is the flood hazard spatial layer 

IS: is infrastructures spatial layer

Exposure by country was quantified as the ratio of population or infrastructures exposed to 100-

year-flood compared to the total population or infrastructures of the basin. While exposure by 

return period was quantified as the ratio of total population or infrastructures exposed to related 

return period compare to total population or infrastructures of the basin. Then, exposure at the basin 

level was the ratio of population or infrastructures of the basin exposed to 100-year flood compare 

to the total population or infrastructures of the basin. Total element (population and infrastructures) 

of the basin were the sum of population pixels or infrastructures located in the Congo basin. 

4.3.2. Risk hotspots assessment

The first step in the flood hotspots analysis for the Congo River Basin was to examine flood hazard 

in terms of available spatial data on flood occurrence. The desirable analysis would be the 

probabilities of occurrence of a flood hazard in a specific time period. Unfortunately, detailed 

probabilistic analysis of this type does not exist for flood hazards in the Congo River Basin. Even 

without detailed analysis, however, it is still possible to distinguish between areas of higher and 

lower risk using flood occurrence data (UNISDR, 2005). Occurrence of flood and location can be 

imaged by satellite or captured through modelling. In addition, risk hotspots can also be determined 

using the exposure of people to flood. 

Data sets on historical flood occurrence have been explored, and integrated in the analysis. Over 

time, Dartmouth Flood Observatory (DFO), actually Colorado Flood Observatory   

(https://floodobservatory.colorado.edu/) (Brakenridge, 2020) has compiled a list of extreme flood 

events from diverse sources and georeferenced to the nearest degree from 1985 to date 

(Brakenridge, 2020). This data provides spatial information on flood occurrence against which 

flood areas from the model were evaluated. The LISFLOOD-FP model output (Sampson et al., 

2015) such as the flood hazard map for different return periods (5, 20, 50, 75 and 100-year) were 

used to identify flood hotspots for the Congo River Basin.  To characterize 100-year flood exposure 

hotspot, the exposed population of the 374 territories were weighted and the resulting index (0–1) 

was used to classify each territory within the index class. The risk was classified according to the 
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index class and the map has been generated based on the number of territory per class. The 

weighted index for each territory is calculated as:

(3)WT = ((% 𝑃𝑖

% 𝑃)(𝑃𝑖

𝑃)) × 1000

Were, 

WT: is weighted index for each territory, 

% Pi:  is percentage of exposed population per territory, 

% P: percentage of total population of 374 territories 

Pi: is number of population per territory, 

P: Total population of 374 territories.

4.3.3. Evaluation process 

The developed global maps were tested in different locations in CRB, in order to evaluate the 

capability of the produced flood maps in detecting flood areas. Several sources including the 

Dartmouth Flood Observatory and NASA’s 250 m resolutions Near Real Time Flood Map 

(NRTFM) (NASA, 2020) were used. The 2019-2020 flood imagery was taken from the NASA’s 

Near Real Time Flood Map. The NASA NRTFM uses Moderate Resolution Image 

Spectroradiometer (MODIS) imagery to capture flood events globally, and stores them online in an 

open-access domain. Using over two weeks of data ensured that the entire event (maximum extent) 

was captured. The NASA’s flood imagery was compared with the LISFLOOD-FP’s flood extend 

output of 50-year return period. The 2019-2020 floods were one of the most devastating floods in 

the basin and are comparable to the 1960s flood in term of extend and impact (Reliefweb, 2019). 

These flood events had probably an estimated return period of around 50 years (Thinkhazard, 

2020). The 50-year return period was reported with no indication of how the value was estimated. 

In this evaluation, the mentioned return period, both reported and modelled, do have their 

associated uncertainties that needs to be considered. In order to preserve the detail of the model 

resolution (∼90 m), and because comparison needs to be carried out at the same spatial resolution, 

the MODIS imagery outputs were resampled to ∼90 m resolution using the nearest neighbour 

method. The modelled extent maps for a 50-year flood was than compared against reported flood 

extents from NASA’s Near Real Time Flood Map Products. LISFLOOD-FP flood extents and the 

observed NASA extents overlap was evaluated in terms of the number of pixels that showed 

agreement, overprediction, and underprediction. The performance score was chosen to evaluate 

model performance (model fit, and the proportion of flood captured). Critical success index (CSI) 

score or the F< 2 > is a comprehensive performance scores (Stephens et al., 2014) and estimated as:  
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(4)CSI =
Fm ∩  F0

Fm ∪  F0

Were, 

Fm  F0: is the intersection of the modelled and observed flood extent, ∩

Fm  F0: is the union of modelled and observed extent. ∪

The CSI ranges from worst (0) to best (1). The CSI has been shown to favourably bias larger floods 

(Wing et al., 2017). However, because the floods compared in this study have a similar return 

period, CSI was assumed appropriate. The CSI was applied to the LISFLOOD-FP flood maps and 

NASA’s GSFC MODIS Flood Mapping Products. Such evaluation allows us to investigate the 

performance of the flood hazard maps in identifying flood extent where official flood maps do not 

exist. The performance metric used in the analysis of the flood models is commonly used in flood 

model assessments and for forecast verification (Dorotti et al., 2016; Sampson et al., 2015; 

Bernhofen et al., 2018; Wings et al., 2017; Trigg et al., 2017; Jannis & Trigg, 2019). Visual 

observation allowed us to compare the flood-prone areas identified by the DFO data were 

consistent with that produced by the model.  

5. RESULTS

5.1. Hazard assessment 

The flood hazard maps proved to be consistent with known and reported flood areas. The map 

(Fig.9) indicates geographic location of NASA’s floods (Modis imagery) and flood events during 

1985 – 2010, reported by the public global database, the Dartmouth Flood Observatory.  According 

to the Dartmouth Flood Observatory (DFO), there are 34 territories in the CRB reported as having 

experienced large flooding events that have confirmed our results. Besides, this study revealed 374 

territories throughout the CRB predicted as being at risk of fluvial flooding. The biggest difference 

between modelled and observed events occurs in the centre, South and North of the CRB. This is 

likely at least partly due to the optical sensor (MODIS) used by Dartmouth Flood Observatory 

being obscured by clouds and its coarser resolution of 250 m. In addition, DFO data shows only 

floods that happened in the last 2 decades, rather than the potential to flood, as shown by the flood 

model. Not all areas at risk of flooding will have flooded and additionally, DFO data can have 

trouble detecting urban flooding and flooding under vegetations, both of which are simulated by the 

hazard data model. The regions with few reported flood impacts are the least populated areas of 

centre, North and South of the CRB.

The overlap of the observed and modelled extents and the performance scores are represented in 

Figure 10.  The results indicate that there is an agreement in term of the location of flood for both 
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observed and modelled. However, differences persist in term of flood extents.  Batanga, 

Lufira,Oubangui and Congo stand out as the areas in which the models perform well. The CSI 

scores which are acceptable (> 0.5) in these areas, are likely a reflection of the areas’ narrow 

confined floodplain compared to Kwa, and Lualaba which showed poor value of CSI scores (< 0.5),  

may be due to large areas of floodplain with many bifurcations. 

Figure 9: (1) Congo basin fluvial flood map for 5, 10, 20, 50, 75,100-year return period and 

location of reported flood from DFO. (2) Flood extent for different return period 

extracted from area (e). (3) MODIS imagery of 2019-2020 flooding for area 

(a,b,c,d,f,g).

For validation, the performance metrics used for flood forecast verification (CSI) shows different 

value of CSI scores (Fig.10). The CSI scores for different analysed areas in the basin is 0.51 for 

Oubangui, 0.64 for Batanga, 0.42 for Kasai, 0.60 for Congo, 0.71 for Lufira and 0.46 for Lualaba. 

The disagreement can be attributed to the flooded areas captured by NASA’s satellite (good 
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Exposure
5-year 10-year 20-year 50-year 75-year 100-year % 

Population 571256 830995 1195406 1339714 1482381 2644124 2.65 99937019
Infrastructures 100 118 150 177 192 272 3.67 7415

Exposed elements Total 
elements

Flood hazard 

temporal but limited spatial resolution) that are not connected to river within the modelling domain. 

These include lakes that are not connected to the floodplain and may be flooded perennially or 

seasonally by rainfall. Further, there are errors in the coarse representation of the flood areas.  

 

Figure 10: Overlap of individual model extent for return period flood of 50-years and MODIS 

observed flood extent for Oubangi, Batanga, Kwa, Congo, Lufira and Lualaba.

Not all areas at risk of flooding will have flooded and that NASA data can have trouble detecting 

urban flooding and flooding under vegetation, both of which are simulated by the hazard data. 

5.2. Regional risk analysis and exposure to floods

For the entire region of the CRB, we estimate the total number of people and the share of the 

population who are exposed to floods at the territory level. In the results presented, we examine 

exposure for 5, 10, 20, 50, 75 and 100-year return period floods. We aggregate the results at 

country and the basin level. About 2.65% of present day population and 3.67% of infrastructure are 

exposed to flood (Table 2).

Table 2: Population and infrastructures exposed to flooding in the Congo River Basin
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Flood risk analysis with respect to population revealed that approximately 0.57 % of the population 

is under 1 in 5 year flood hazard category, while 0.83 % and 1.2% are under 10 –year return period 

and   20-year return period flood category respectively. For 50-year return period flooding, 1.3 % of 

the CRB’s population is already exposed. Exposure for the 75-year return period and 100-year 

return period flood events show that as hazard intensity increases, so does the exposure of 

population, 1. 49 % and 2.65 % respectively, (Table 3). 

Table 3: Population exposed to flooding in the Congo River Basin 

Following the analysis of the flood footprints on the infrastructure elements, a basin-wide aggregate 

of flood impact on infrastructure is presented. Fig. 11 shows the results for infrastructure exposed 

to all return period flooding and the results are reflective of the whole basin.  Risk to infrastructure 

is extensive. The risk was greatest for places of worship where many churches are built in the 

floodplain. In the mega-city of Kinshasa for example, all places of worship situated at a distance of 

50 m to the river are frequently flooded. Flood causes significant damage to fuel stations, schools 

and public buildings. 

Figure 11: 100-year-return period flood and exposed infrastructure in the Congo Basin
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Flood risk analysis with respect to infrastructure revealed that 1.35 % of assets are under the 5-year 

return period flood category, 1.59 % at 10 year, 2.01 % at 20-year, 2.39% at 50-year, 2.66% at 75- 

and 3.67% at 100-year return period (Table 4). 

Table 4: Infrastructures exposed to flooding in the Congo River Basin.

Risk increases with the return period (Fig. 12), but there is a big change from 75 to 100-year 

exposure. The important value for the 100-year return period might be explained by the fact that the 

total flooded area doesn’t follow the same pattern, or are there some significant populated areas that 

suddenly become inundated between 75 and 100 year. 

Figure 12: Spider diagram in case of: (a) exposed population, (b) exposed infrastructures

These regional results on exposure are not evenly distributed across countries. The spatial analysis 

also allows us to examine the distribution of exposed population with regard to all return period 

floods. Basin wide analysis identifies risk areas of high exposure along the Congo River main 

channel (Fig. 13). The aggregate results show a monotonic increased exposure with flood return 

period. Many zones of the CRB are exposed to floods which affect 374 of the Basin’s 525 
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territories.  Regions were affected differently according to their factor of risk. Lowland areas like 

the Cuvette Centrale were more exposed to floods, while mountainous areas like South East, North 

and South of the CRB were less exposed. One of the risk factors within the CRB might be the 

population density and its proximity to the river system, because of the importance of rivers for 

economic transportation (Trigg et al., 2020). In terms of absolute and relative risk of population and 

infrastructure, the DRC has the greatest exposure compared to other basin countries. This is 

primarily due to the proportion of DRC in the Congo Basin, 62% of the total basin area and 74% of 

the total basin population (Trigg et al., 2020).  Overall, in the CRB the results show that there is a 

strong link between flood hazards and population settlement setting.

Figure 13: Dot density map showing exposed population in case of a: 5, 10, 20, 50, 75, and 100-

year flood.

The territory level analysis (Fig. 14) shows that the most exposed territories represent 1% of total 

exposure which is estimated at 2.65% of the basin’s population. Bomongo has a large relative 

exposure and Kinshasa has a large absolute exposure. These territories have high exposure likely 
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due to their low topography within the cuvette centrale and location along the navigable rivers. Low 

topography and location near the river are factors that increase flood risk during a flood event. 

Figure 14: The 20 most exposed territories in the Congo River Basin

5.3. Risk hotspot assessment

Flooding risk hotspots maps were produced by considering areas in which high occurrence of 

flooding coincides with high exposure based on flood hazards and risk analysis. The output of the 

risk assessment and distribution of areas with different risk classes are shown in Figure 15. The risk 

pattern that emerged from this study indicates that 38 territories are flood hotspots risk areas due 

their high exposition in the Congo River Basin. Flood estimates for Congo River Basin show 

marked spatial variability. Flood hazard analysis brought out zones of high risk such as Kinshasa in 

the Southwest; Dongou and Bangui in the North; Bongandanga, Bolomba, Imfondo and Bomongo 

in the centre; Kisangani and Walikale in the Northeast. Vulnerability indicators (population, and 

basin topography) might be more important contributors to the degree of risk than the hazard in 

some cases. Considering risk as a function of hazard and vulnerability, five classes (Table 5) based 

on a weighted index of exposed population was established. 

Table 5: Flood risk hotspots class
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Figure 15: Hotspots for 100-year flood risk in the Congo River Basin 

6. DISCUSSION 

While fluvial flood risk for many developing countries is still unmapped, new global data has 

allowed an improved understanding of flood hazard and risk in the Congo Basin.  Global flood 

models have therefore proved useful for flood risk analysis at regional scales (Bates, 2012; Trigg et 

al., 2016). The model showed a good agreement at Batanga, Lufira and Congo.  This suggests that 

the models perform well at estimating the reported flood. The differences are apparent in the critical 

success index where the model showed an overprediction at three sites. This could be due to the 
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fact that detailed channel information at Kasai, Lualaba  and  Oubangui might not be well captured 

in the global model.  Even if an improved connectivity offered by higher spatial resolution is 

evident in some sites, connectivity provided by small channels which has a significant effect on the 

hydraulics of floodplain might be absent in other sites (Bernhofen et al., 2018). Further, a better 

representation of bifurcation would improve the performance of both 1D and 2D sub-grid models in 

areas of high bifurcation, such as floodplains (Mateo et al., 2017). However, discrepancies between 

observed and global models indicate caution should be used in their application, particularly at fine 

scales (Bernhofen et al., 2018; Trigg et al., 2016).  Nonetheless, their application in the Congo 

River Basin can be extremely helpful for predicting flood hazard and risk. Such studies can also 

increase the preparedness of populations and reduce catastrophic impacts (Dottori et al. 2016). 

Flooding risk in the CRB have been delineated by overlaying three datasets: the flood hazard map, 

the areal administrative units and a population dataset. The identified risk areas (based on exposed 

population and infrastructure) are distributed along the Congo River main channel, rivers 

confluences, and floodplains. These hydrological factors linked to settlement are often the most 

important factor in flood disasters and determine the vulnerability of an area. People have 

increasingly occupied floodplains areas for settlements and agricultural purposes, making 

themselves more vulnerable to flooding and increasing the risk (Hazarika et al., 2018). Considering 

significant impacts in low elevation floodplains, the Congo River main channel flooding due to its 

topography might be one of the causes of the higher risk.

Aggregate floods risk analysis results show that exposure monotonically increase with flood return 

period. But it has been observed from particular territories that some areas with less population 

were affected the most. Furthermore, the results illustrate a link between flood hazard and 

population settlement settings. Less populated zones are reported to be less affected.  This study 

presents findings on flood risk in the Congo Basin, how it changes under different return periods, 

and whether exposure is unevenly distributed with flood areas identified mostly along the lowland 

of Congo River main channel. As regard to infrastructures, the aggregated analysis presented here 

shows that schools, fuel stations and places of worship are more prone to flooding than others. 

These exposures illustrate the socio-economic ambivalence between rural area and cities in term of 

socio-economic facilities. In fact, in the Congo Basin most of the infrastructure, such as schools, 

hospitals, fuel stations, hotels and public buildings are located in the main cities. Such uneven 

distribution and concentration of socio-economic facilities at cities increase flood risk and can 

exposes the basin to high economic loss during flood event. At a country level, Angola, Cameroon, 

Tanzania and Zambia are less exposed because their shares of basin area are rural and almost 

uninhabited. Conversely, the Democratic Republic of the Congo, Rwanda, Burundi, Republic of the 
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Congo and the Central Africa Republic are more exposed. All these countries have populated cities 

located along rivers where socio-economic facilities such as schools, hospitals, fuel stations, hotels 

are concentrated. For instance, Kinshasa in the Democratic Republic of the Congo and Brazzaville 

in the Republic of Congo are two mega cities located along the main Congo River, while Bangui in 

the Central Africa Republic and Buterere in Burundi are located on Oubangui river and lake 

Tanganyika respectively. Trigg et al. (2020) also confirm the uneven distribution of the population 

within the Congo Basin where low population density areas are away from navigation channels, 

while populated areas are located along rivers. Another observation is that in the southern and 

northern part of the basin, there are also populated cities along rivers which are not exposed to 

flood to the same extent as the central part. These differences demonstrate that follow-up actions, 

such as exposure dataset refinement should have a higher priority for flood risk analysis (Trigg et 

al., 2016).

With regard to relative exposure, most of the exposed territories are within the centre in the tropical 

humid region. This central part of the basin is known to be the Cuvette Centrale depression and has 

high exposure to flood even with less populated centers such as Bomongo, Impfondo, Dongou, 

Bongandanga, Bolomba Isangi and Maknaza. The high exposition of low populated area highlights 

the vulnerability of a particular location such as floodplain to being negatively affected by recurrent 

fluvial flood. Cuvette Centrale depression is characterise by massive floodplain of which settled 

people are prone to fluvial flood. However, certain practices for adapting to the risk of flooding, 

such as houses on stilts are put in place by the population. Hotspots analysis is intended to reveal 

areas of highest risk from flood hazards. The study illustrates both their damaging potential and the 

spatial distribution of risk. The hotspots map shows risk in the cuvette centrale, and the east of the 

basin. Centre and east hotspots are related to population living in the lowland area along main 

rivers. Conversely, in the west and the north of the Congo Basin, high risk is related to population 

density rather than location. The hotspots areas identify by the study follow the same pattern as of 

the DFO. This similarity reveals the fact that DFO detects only large floods and small or medium 

floods are generated by hydrodynamic models.  There might be a distinct seasonality to risk posed 

by floods. Whereas the North zone has hotspots during the October-November rainy season, the 

Northeast zone is prone to floods during the December – April rainy season. In the Southwest and 

centre of the CRB, flood risk is during December-January rainy season. Thus, flood planning and 

preparedness is necessary not only on hotspots areas but also on “hotseasons”. The results 

demonstrate that exposure varies markedly in CRB, suggesting that population density and 

locations are the main factors of exposure. Moreover, exposure estimation undertaken in this study 

may substantially overestimate population at risk in some areas and underestimate them in other 
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areas. The use of gridded population data for risk is only indicative of exposed population. This 

previous viewpoint held that gridded population data is indicative because no method exists to 

validate the population data globally. However, researchers are currently challenging this view by 

demonstrating that Night-Time Light (NTL) captures population better than prior work which relied 

on algorithm or building identification to generate local estimates of population (Mellander et al. 

2015). In addition, population estimates originate from census data obtained at only a coarse 

administrative unit. Thus, population data should be used with some caution at a fine scale. It is 

why Smith et al. (2019) state that when these data are intersected with the hazard data, the majority 

of the modelled hazard area does not generate exposure (Smith et al., 2019).

7. Conclusion 

This study has shown the great potential of identifying exposure to flooding in the CRB region 

using global data. The intention of this study was to explore the use of different global data sources 

for predicting and estimating flood risk. The key point is the performance of global data in 

identifying flood areas in the CRB. We found that a combination of flood hazard maps with 

different layers can perform this task with reasonable accuracy.  We have demonstrated that global 

data can make up for the absence of ground data for the purpose of flood risk assessment in 

developing countries. We highlight that the limitations arising from the use of limited accuracy 

population and infrastructure data may not be significant when we are interested in the 

identification of flood risk at a regional scale, but can be quite critical for flood risk analysis at the 

small scale. Throughout 525 territories, 374 are exposed to different flood periods and 10 % of 

these territories are categorised as hotspots of flood risk. Flood risk pattern identified by the study 

could be further analysed, and steps could be taken by researchers to confirm flood seasonality and 

pattern within the basin. Exposure distribution reflects the characteristic features of the region, 

which, in turn, influences the hazard, vulnerability and the risk from flooding. Settlement location 

and terrain topography seem to worsen flood risk for population in the basin. This study suggests 

that flood risk derived from global data may lead to flood hazard management challenges at 

national and regional scales of analysis and decision making, given the financial resource 

constraints for follow on small scale assessments. Identification of the most exposed areas can 

inform disaster prevention measures, including prioritization of intervention, for more detailed and 

localized risk assessments and emergency response strategies.  Flood risk mapping could be used 

by policy makers and agencies in formulating flood mitigation policies and resource allocation, of 

which the main focus would be a decrease of the vulnerability and risk in flood hazard zones and 

the development of long-term land-use plans and multi-hazard risk management strategies.
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Focusing on flood risk management rather than disaster relief would greatly benefit Congo Basin 

countries, cut costs for donors, and free up resources for promoting positive development that 

impact population livelihood. Through these analyses, international donors can focus attention and 

resources on high-risk regions. National authorities can use similar techniques to formulate 

proactive and effective risk management. This study exhibits the first and most important stage in 

developing flood responses by determining the flood hazards areas and the population that would 

be affected. Heavily affected areas have been identified and the flood exposure of the basin closely 

examined. In addition to the need for accurate flood risk reduction measures, considerable effort 

needs to be focused on basin scale response. It is now recognized that hydro-meteorological 

disasters such as floods are an integral component of hydrological system, and not just a matter of 

planning for emergency and humanitarian assistance at individual or family preparedness. This 

integrated approach links the upstream–downstream continuum but also improves the long-term 

environmental and social sustainability and poverty alleviation.  
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