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Abstract

Remote, harsh conditions of the Southern Ocean challenge our ability to observe the region’s influence on the climate sys-

tem. Southern Ocean air-sea CO2 flux estimates have significant uncertainty due to the reliance on limited ship-dependent

observations in combination with satellite-based and interpolated data products. We utilize a new approach, making direct

measurements of air-sea CO2, wind speed, and surface ocean properties on an Uncrewed Surface Vehicle (USV). In 2019 the

USV completed the first autonomous circumnavigation of Antarctica providing hourly CO2 flux estimates. Using this unique

data set to constrain potential error in different measurements and propagate those through the CO2 flux calculation, we find

that different wind speed products and sampling frequencies have the largest impact on CO2 flux estimates with biases that

range from -4% to +20%. These biases and poorly-constrained interannual variability could account for discrepancies between

different approaches to estimating Southern Ocean CO2 uptake.
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Key Points: 12 

 The first autonomous circumnavigation of Antarctica allowed for direct measurements of 13 
air-sea CO2 and wind speed in the Southern Ocean. 14 

 Bias and error propagation of various approaches to calculating CO2 flux could explain 15 
some of the discrepancies between previous estimates. 16 

 Interannual variability that is poorly-constrained by observations are also likely 17 
contributing to the discrepancies in CO2 flux estimates. 18 

  19 
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Abstract 20 

Remote, harsh conditions of the Southern Ocean challenge our ability to observe the region’s 21 
influence on the climate system. Southern Ocean air-sea CO2 flux estimates have significant 22 
uncertainty due to the reliance on limited ship-dependent observations in combination with 23 
satellite-based and interpolated data products. We utilize a new approach, making direct 24 
measurements of air-sea CO2, wind speed, and surface ocean properties on an Uncrewed Surface 25 
Vehicle (USV). In 2019 the USV completed the first autonomous circumnavigation of Antarctica 26 
providing hourly CO2 flux estimates. Using this unique data set to constrain potential error in 27 
different measurements and propagate those through the CO2 flux calculation, we find that 28 
different wind speed products and sampling frequencies have the largest impact on CO2 flux 29 
estimates with biases that range from -4% to +20%. These biases and poorly-constrained 30 
interannual variability could account for discrepancies between different approaches to 31 
estimating Southern Ocean CO2 uptake. 32 

Plain Language Summary 33 

The Southern Ocean is an important part of the global climate, playing an outsized role in the 34 
uptake of heat and carbon. Yet observing the Southern Ocean is challenging due to its size, 35 
remoteness, and harsh conditions. In 2019 we completed the first autonomous circumnavigation 36 
of Antarctica with an Uncrewed Surface Vehicle (USV), also known as an ocean robot, in order 37 
to address some of these observing challenges. By directly measuring air and surface seawater 38 
carbon dioxide (CO2) and wind speed on the USV, we were able to observe CO2 exchange 39 
between the ocean and atmosphere every hour during the mission. Using this data set, we 40 
estimated potential errors in these measurements as well as other approaches to estimating CO2 41 
exchange. The use of different satellite-based wind products and sampling frequency play the 42 
largest role in uncertainty of the uptake of CO2 in the Southern Ocean. In order to reduce this 43 
uncertainty and provide a better understanding of the Southern Ocean, expansion of an observing 44 
network made up of ships, USVs, and other autonomous devices is necessary. 45 

1 Introduction 46 

Covering only 30% of the global ocean surface, the Southern Ocean (most often defined 47 
as south of 30–35°S) plays an outsized role in the climate system. It is the meeting point of ocean 48 
currents and a connector between the atmosphere and ocean interior for the transfer of heat and 49 
carbon, accounting for as much as 75% and 40% of global ocean heat and carbon uptake, 50 
respectively (Frölicher et al., 2014; Khatiwala et al., 2009). While questions remain as to all of 51 
the mechanisms that contribute to CO2 flux and the overturning circulation in the Southern 52 
Ocean, it is becoming clear that control of net CO2 uptake over annual to decadal scales is 53 
dominated by wind-driven physical mixing and upwelling of carbon-rich deep water (Iudicone et 54 
al., 2011; Lovenduski et al., 2008). 55 

Southern Ocean CO2 flux is primarily a balance between the outgassing of natural carbon 56 
in upwelled waters not taken up by biological processes and the flux of anthropogenic carbon 57 
into the ocean driven by increasing atmospheric CO2. These processes occur continuously and 58 
simultaneously as cold, carbon-rich water outgasses in upwelling regimes, and absorbs 59 
anthropogenic heat and carbon as the water flows north in the surface layer to warmer regimes. 60 
These processes vary across the diversity of Southern Ocean regimes from the temperature-61 
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dominated system in the Subtropical Zone to the sea ice- and biologically-dominated regime 62 
closest to Antarctica. 63 

The combination of these diverse and variable biogeochemical regimes, sparse 64 
observations, and inadequate constraint of circulation in models challenge estimates of Southern 65 
Ocean CO2 uptake. Climatological mean uptake estimates based on observations from ships 66 
range from -0.8 to -1.0 Pg C yr-1 (Landschützer et al., 2014; Takahashi et al., 2009). While the 67 
magnitude of interannual variability is unknown, the temporal variability of CO2 flux at 68 
interannual to decadal time scales is correlated with atmospheric variability as defined by the 69 
Southern Annular Mode (SAM) index: the difference in mean sea level pressure between 40°S 70 
and 65°S (Marshall, 2003). When the SAM index is positive, winds south of 45°S increase, 71 
potentially accelerating upwelling of carbon-rich deep water and reducing net CO2 uptake. A 72 
negative SAM index is associated with a reduction of both upwelling and ventilation of CO2 to 73 
the atmosphere, allowing increased net CO2 uptake. However, there are regional variations in 74 
CO2 flux response to SAM conditions that are not fully understood (Keppler and Landschützer, 75 
2019; Nevison et al., 2020). Keppler and Landschützer (2019), for example, found increased 76 
upwelling and CO2 outgassing in higher latitudes during positive SAM conditions but opposing 77 
effects in other regions. Several data- (Fay et al., 2014; Landschützer et al., 2015; Takahashi et 78 
al., 2012) and modeling-based (Le Quéré et al., 2007; Lovenduski et al., 2007, 2008, 2015) 79 
studies suggest decadal-scale variability of Southern Ocean CO2 uptake is within ±0.4 Pg C yr-1, 80 
a significant portion of the climatological mean estimate of -0.8 to -1.0 Pg C yr-1. 81 

New observations, however, challenge whether the Southern Ocean is a strong sink. 82 
Biogeochemical float data from 2014–2017 estimate a Southern Ocean CO2 flux of -0.08 Pg C 83 
yr-1 (Gray et al., 2018), an order of magnitude less than the climatological mean estimates based 84 
on ship-based surface ocean CO2 partial pressure (pCO2) data products (Landschützer et al., 85 
2016, 2014; Rödenbeck et al., 2015; Takahashi et al., 2009). Even after correcting for a potential 86 
bias of 4 μatm to the float-based calculated seawater pCO2, discrepancies between ship- and 87 
float-based CO2 flux estimates remain (Bushinsky et al., 2019). Whether recent float-based CO2 88 
flux estimates represent an updated understanding of the climatological mean, float-based 89 
seawater pCO2 requires an even larger bias correction, or 2014–2017 conditions were 90 
anomalous, is currently unresolved. 91 

A criticism of ship-based estimates is the scarcity of data in both time and space, 92 
especially during winter months. However, surface ocean pCO2 is measured directly on ships 93 
with low uncertainty (±0.5%) (Pierrot et al., 2009), compared to pCO2 calculated from float pH 94 
measurements and estimated total alkalinity that has a higher uncertainty (±2.8%) (Bushinsky et 95 
al., 2019; Williams et al., 2017). Unlike ships, floats are able to sample in harsh winter 96 
conditions unfit for safe ship operations as well as under ice, increasing the potential for filling 97 
observational gaps. Another issue impacting the uncertainty in both float- and ship-based 98 
climatological CO2 flux estimates is the use of observation-derived atmospheric CO2 products 99 
and satellite-based wind and sea level pressure products, which have been shown to add 100 
significant uncertainty to CO2 flux estimates in some regions (Chiodi et al., 2019; Roobaert et 101 
al., 2018; Sutton et al., 2017). 102 

Technological advances of Uncrewed Surface Vehicles (USVs) address these 103 
observational challenges through remote surveying in harsh conditions with direct measurements 104 
of air-sea pCO2 and wind speed. Here we present results from the first autonomous 105 
circumnavigation of Antarctica, a 22,000-km, 196-day mission. A Saildrone Inc. USV with an 106 



manuscript submitted to Geophysical Research Letters 

 

integrated Autonomous Surface Vehicle CO2 (ASVCO2™) system was designed specifically to 107 
survive the forces of being rolled and submerged by 15-meter breaking waves in the Southern 108 
Ocean. We calculate air-sea CO2 flux from the USV and provide a thorough comparison of 109 
potential bias in CO2 flux calculated with direct measurements relative to recent float-based 110 
methods (Bushinsky et al., 2019; Gray et al., 2018) and a ship-based data product (Landschützer 111 
et al., 2020) that rely on other satellite- and observational-based data products. We then discuss 112 
the potential role of flux uncertainty and interannual variability in determining the Southern 113 
Ocean carbon sink. 114 

2 Materials and Methods 115 

2.1 USV and sensors 116 

The Saildrone USV is an ocean-going drone navigable via satellite communications with 117 
wind-driven propulsion and primarily solar-powered meteorological and surface ocean physical, 118 
chemical, and biological sensors. The Saildrone USV that completed the 2019 Antarctica 119 
circumnavigation is similar to the standard vehicles with a 7 m hull and 2.5 m keel described by 120 
Meinig et al. (2019) and Zhang et al. (2019) but includes an adapted wing to survive the extreme, 121 
high winds and waves of the Southern Ocean (Figure 1). This USV design includes a lower-122 
aspect square rig designed to withstand the force of being rolled and submerged by 15 m 123 
breaking waves but limits navigation to sailing primarily downwind. This design has been 124 
recently modified to improve maneuverability. 125 

Meteorological sensors are mounted on the square wing, including a Gill WindMasterTM 126 
anemometer at 3.8 m height. Through field intercomparisons, Zhang et al. (2019) found RMS 127 
differences of ±0.6–1.0 m s-1 between wind speed measured on Saildrone USVs with the 128 
standard 5 m wing compared to both the Woods Hole Oceanographic Institute’s buoy Air-Sea 129 
Interaction METeorology System and the R/V Revelle. In this study, we use the higher-bound 130 
wind speed error of ±1.0 m s-1 derived by Zhang et al. (2019) for the estimated error of wind 131 
speed measured from the shorter wing at 3.8 m. Even though they determined that bias was 132 
inconclusive, to generate conservative estimates we use the mean bias determined from Zhang et 133 
al. (2019) intercomparisons of +0.2 m s-1.  134 

The ASVCO2™ system is packaged in a waterproof enclosure mounted in the USV hull. 135 
The ASVCO2 is nearly identical to the Moored Autonomous pCO2 (MAPCO2™) system that has 136 
been used for over two decades on dozens of surface buoys and has a lab- and field-validated 137 
uncertainty of ±2 μatm or ±0.5% (Sabine et al., 2020; Sutton et al., 2014). These CO2 systems 138 
utilize an equilibrator-based gas collection system and an infrared gas analyzer (LI-820, LI-139 
COR™) calibrated in situ with reference gas traceable to World Meteorological Organization 140 
standards, a similar methodology to the underway pCO2 system deployed on the global network 141 
of ships of opportunity (Pierrot et al., 2009). In order to adapt the MAPCO2 for USV 142 
deployments, the ASVCO2 includes an equilibrator mounted to the USV hull with a fairing 143 
added to maintain consistent water level in the equilibrator when moving at speeds greater than 4 144 
knots (Figure 1). 145 

The ASVCO2 system collects 1-hourly measurements of sea surface and marine 146 
boundary layer atmospheric xCO2 (the mole fraction of CO2) and sea level atmospheric pressure. 147 
Each xCO2 measurement is paired with sea surface temperature (SST) and salinity (SSS) 148 
collected by an RBR Saildrone3 CTD customized for mounting through the Saildrone USV keel 149 
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at 0.5 m depth. Seawater and air pCO2 (at in situ SST) is calculated according to standard 150 
operating procedures (Dickson et al., 2007; Weiss, 1974) as described in Sutton et al. (2014). 151 
Data from the ASVCO2 system and wind speed, SST, and SSS are archived at the National 152 
Centers for Environmental Information (Sutton et al., 2020). 153 

The USV was deployed from Bluff, New Zealand on 19 January 2019. Sailing 154 
downwind, the USV navigated east 22,000 km around Antarctica and was recovered off Bluff on 155 
3 August 2019, 196 days later. The anemometer was damaged near the Drake Passage during an 156 
iceberg collision at the end of March. 157 
 158 

 159 

Figure 1. Schematic diagram of the 2019 Southern Ocean Saildrone USV and location of the 160 
sensors used in this study. Schematic is not to scale. 161 

2.2 Comparison data sets 162 

Several data sets are used as comparisons for the USV-derived CO2 fluxes. The first is 163 
v2020 of the SOM-FFN neural network product documented in Landschützer et al. (2016), 164 
which uses ship-based measurements of seawater pCO2 to estimate monthly air-sea CO2 fluxes 165 
globally over the period 1982 to 2019 (Landschützer et al., 2020). The second product is the 166 
same SOM-FFN neural network, but with the addition of Southern Ocean Carbon and Climate 167 
Observations and Modeling project (SOCCOM) float-derived pCO2 as training datasets 168 
(Bushinsky et al., 2019). This product is available as “SOCCOM-only” as well as 169 
“SOCCOM+ship” for the years 2014 to 2017. To compare these two data sets with the USV, we 170 
subsample each product at the location and month of each USV CO2 flux measurement and 171 
average the CO2 fluxes over 10-day periods.  172 

The third comparison dataset is air-sea CO2 fluxes estimated from calculated surface 173 
ocean pCO2 from SOCCOM biogeochemical float data from 2015 to 2019, which is available 174 
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online as a quality-controlled data snapshot dated 30 August 2020 (Johnson et al., 2020). All 175 
float profiles from 2015 to 2019 were separated by year and front locations, and subsequently 176 
averaged by month to create monthly pCO2 and CO2 flux estimates for each of the three major 177 
zones discussed in this manuscript. The Subantarctic Zone is defined as profiles with an oxygen 178 
minimum deeper than 1200 m, a salinity maximum deeper than 500 m, and surface waters 179 
fresher than 34.6. The Polar Frontal zone is defined as profiles with an oxygen minimum 180 
between 900 and 1200 m deep and a deep (>1400 m) salinity maximum. The Antarctic Zone is 181 
defined as profiles with an oxygen minimum between 600 and 900 m deep and a salinity 182 
maximum deeper than 1000 m. While there are some profiles within the Seasonal Sea Ice Zone 183 
which fall within the definitions above, these profiles are not included in the analysis if they 184 
occur during a calendar year when that float profiled under ice. In contrast to previous studies, 185 
the float profiles have not been extrapolated over time and the monthly averages only represent 186 
averages of the instantaneous fluxes at the time of the float surfacing. 187 

We use CO2 flux provided by the first two comparison data sets (Bushinsky et al., 2019 188 
and Landschützer et al., 2020).  CO2 flux for the third comparison data set (SOCCOM 189 
biogeochemical floats from 2015 to 2019) and the USV are calculated using established 190 
methodologies summarized in the Supplemental.  191 

 192 

3 Results and discussion 193 

3.1 Air-sea observations 194 

During the mission, the USV observed a large range in ΔpCO2 (seawater – air pCO2) of 195 
33 to -40 μatm with a slightly negative mean of -4 μatm and a variance of ± 12 μatm (Figure 2). 196 
Although periods of negative and positive ΔpCO2 were observed throughout the deployment, 197 
positive ΔpCO2 indicating outgassing was prevalent during the latter part of the deployment, 198 
primarily during late fall and early winter in the Indian Ocean sector of the Antarctic Zone 199 
(Figure S1). Observed mean, variation, and range of air xCO2, sea pCO2, ΔpCO2, SST, SSS, and 200 
wind speed are given in Table S2. 201 

3.2 CO2 flux uncertainty analysis  202 

The uncertainty in calculated CO2 flux can vary widely given the different options of 203 
inputs. The gas transfer velocity (k) uncertainty of 20% applies to all CO2 flux estimates 204 
(Wanninkhof, 2014), leaving the choice and availability of wind speed, seawater pCO2, and air 205 
pCO2 data sets the major sources of variation among different approaches. 206 

Given the scarcity of in situ wind speed observations, the use of satellite-based wind 207 
speed in calculating CO2 flux is common. However, in many regions, these satellite-based 208 
products have biases in comparison to available in situ data (Hihara et al., 2015; Kent et al., 209 
2013; Tomita et al., 2015; Wallcraft et al., 2009; Weissman et al., 2012) and can have significant 210 
impacts on CO2 flux estimates (Chiodi et al., 2019; Roobaert et al., 2018; Sutton et al., 2017). 211 
Directly-measured wind speed also suffer errors due to flow distortion, platform movement, and 212 
wave shadowing, resulting in uncertainties of ±0.1 m s-1 on buoys (Cronin et al., 2008; Kubota et 213 
al., 2008; Weller, 2015) and up to ±1.0 m s-1 on Saildrone USVs (Zhang et al., 2019). 214 

Prior to the USV anemometer being damaged in March 2019, there is no mean difference 215 
between USV-measured and Cross-Calibrated Multi-Platform Near Real Time V2.0 (CCMP V2) 216 
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wind speed (Mears et al., 2019) or ERA-Interim Reanalysis (Dee et al., 2011) wind speed with a 217 
variance around wind speed residuals of ±1.8 m s-1 and ±2.0 m s-1, respectively (Figure S2). 218 
NCEP-DOE AMIP-II Reanalysis 2 (NCEP-2) (Kanamitsu et al., 2002) and ERA5 (Hersbach et 219 
al., 2020) wind speeds have lower wind speed by 1.0 and 0.1 m s-1, respectively, than measured 220 
on the USV with a variance around the mean bias of ±3.9 and ±1.4 m s-1, respectively. In Table 221 
S1 these biases are reported relative to the “true” wind speed by correcting for the USV wind 222 
speed bias of +0.2 m s-1 (Zhang et al., 2019). Importantly, the biases in satellite-based wind 223 
speed products relative to the USV-measured wind speed are not randomly distributed. Satellite 224 
and USV wind speeds tend to agree most closely at wind speeds of 10 m s-1, but diverge at lower 225 
and higher wind speeds (Figure S2c). These results are consistent with biases reported in other 226 
intercomparisons mentioned previously and summarized by Cronin et al. (2019). 227 

Uncertainties associated with ship-, USV-, and float-based sources of pCO2 are ±0.5%, 228 
±0.5%, and ±2.8%, respectively (Table S1.) Common data sources of atmospheric baseline xCO2 229 
are the NOAA Greenhouse Gas Marine Boundary Layer (MBL) Reference CO2 product 230 
(Dlugokencky et al., 2019) or observations from nearby atmospheric observatories, like at Cape 231 
Grim. Monthly mean xCO2 from these two sources and the USV tend to agree within 0.2 ppm; 232 
however, shorter-term variability indicating terrestrial biosphere influence is prevalent within the 233 
hourly USV observations (Figure S3) and the hourly in situ Cape Grim observations (data not 234 
shown). Converting these sources of xCO2 to pCO2 requires atmospheric pressure at sea level, 235 
which if using satellite-based products such as NCEP 2, ERA-Interim, or ERA5 introduces 236 
another possible source of error (Table S1).  237 

Various sampling frequencies of these data sources can also introduce error into the CO2 238 
flux calculation. Monthly CO2 flux calculated from subsampling the hourly USV ΔpCO2 data set 239 
at 6-hourly intervals, which is the common temporal frequency of satellite-based products, 240 
results in nearly identical values to monthly flux calculated from the hourly observations (Figure 241 
S4). However, subsampling the hourly data set at all possible 10-day sampling frequencies, the 242 
timescale for float observations, results in an integrated bias in CO2 flux of +0.05 g C m-2 mo-1 or 243 
+23% (less uptake/more outgassing) over the 7-month comparison period with large variation 244 
around the monthly means due to the high temporal variability of the data set at a scale of less 245 
than 10 days. 246 

Propagated bias of USV-derived CO2 flux is -4% (less outgassing/more uptake) driven by 247 
the potential bias in USV-measured wind speed (Table 1).  In this case, USV, CCMP V2, and 248 
ERA-Interim wind speed bias are equivalent and have the same impact on calculated CO2 flux. 249 
Replacing directly-measured air pCO2 with pCO2 calculated from MBL or Cape Grim values and 250 
NCEP 2, ERA-Interim, or ERA5 sea level pressure does not significantly impact flux bias. 251 
Taking into consideration the potential bias of subsampling at 10-day intervals combined with 252 
the ERA-Interim wind speed bias results in an overall positive bias of +20% (more 253 
outgassing/less uptake) in calculated CO2 flux primarily due to the bias in subsampling the 2019 254 
USV data set at 10-day intervals. Monteiro et al. (2015) found that a 10-day sampling period in 255 
spring-summer in the Subantarctic Zone resulted in a 10-25% increase in uncertainty in CO2 flux 256 
relative to hourly sampling due to mixed layer responses to storm events, which may explain a 257 
similar magnitude sampling bias observed with the USV results. 258 
 259 
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Table 1. Estimated bias for different approaches of calculating CO2 flux by applying mean bias 260 
from Table S1 to conditions observed during the 2019 USV deployment. Resulting biases are 261 
additive based on mean biases reported in Table S1. A negative bias suggests less 262 
outgassing/more uptake; positive suggests more outgassing/less uptake. The USV CO2 flux bias 263 
results from the estimated USV wind speed bias of +0.2 m s-1 (Zhang et al., 2019). 264 

 265 

Seawater pCO2 
data source 

Air pCO2                      
data source 

Wind speed data 
source 

Estimated CO2 
flux bias 

USV USV USV -4% 

Ship or USV Ship, USV, MBL, or Gape Grim CCMP-NRT or 
ERA-Interim -4% 

Float-derived MBL or Cape Grim ERA-Interim +20% 

 266 

3.3 CO2 flux comparisons 267 

Due to the loss of the wind speed sensor during the USV deployment, USV CO2 flux 268 
presented in this section is calculated using CCMP V2 wind speed. During the 2019 269 
circumnavigation, the USV observed periods of strong outgassing as high as 10.5 g C m-2 mo-1 in 270 
June and July in the Antarctic Zone, which was one of the zones where SOCCOM float-based 271 
data from 2014‒2017 showed stronger outgassing than the SOM-FFN ship-based climatology 272 
(Figure 3a; Bushinsky et al., 2019; Gray et al., 2018). There were also periods of intense short-273 
scale CO2 uptake during February through April, some of which were associated with 274 
phytoplankton blooms (data not shown). The periods of strong outgassing observed by the USV 275 
in June and July overlap with the Bushinsky et al. (2019) 2014‒2017 SOCCOM-only SOM-FFN 276 
estimates of CO2 outgassing (Figure 3a). However, the USV observations show these outgassing 277 
events occur over time periods from hours to two days in length, and these short-lived outgassing 278 
events do not lead to outgassing as strong as the SOCCOM-only SOM-FFN estimates when 279 
averaged at the 10-day scale. Mean USV CO2 flux in June and July results in a weak net 280 
outgassing of 0.7 g C m-2 mo-1, more similar to the Landschützer et al. (2020) ship-based data 281 
product and the Bushinsky et al. (2019) combined SOCCOM-ship SOM-FFN product than the 282 
SOCCOM-only SOM-FFN product. 283 

 284 
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 285 

Figure 2. CO2 flux calculated from USV-measured ΔpCO2, SST, and SSS and CCMP-NRT 286 
wind speed. Dates and * show the location of the USV with time. Black lines indicate 287 
climatological locations of the major fronts from Orsi et al. (1995) as in Figure S1. 288 

 289 

Focusing only on 2019 observations, USV-measured and float-estimated surface seawater 290 
pCO2 are consistent within standard deviations of monthly means within the Subantarctic Zone 291 
and the Antarctic Zone, the two major zones sampled by the 2019 Saildrone USV (Figure S5). 292 
Within the Antarctic Zone where Gray et al. (2018) found the largest winter-time discrepancy 293 
between float- and ship-based data, we find a mean difference of 0.5 ± 2.6 g C m-2 mo-1 (or no 294 
significant difference) between USV and float-derived CO2 flux in March through July 2019 295 
(Figure 3b). To test the possible effect of variable float locations on the estimates of CO2 flux in 296 
the Antarctic Zone, the Landschützer v2020 SOM-FFN ship-based climatology was subsampled 297 
at the times and locations of each float observation. Float-based fluxes are on average 1.5 g C m-298 
2 mo-1 greater than the ship-based climatology in this zone for 2015‒2019 with significant 299 
interannual variability (2015: +3.9, 2016: +2.1, 2017: +0.6, 2018: +0.8, and 2019: -0.1 g C m-2 300 
mo-1). 301 

Figure 3b illustrates this significant interannual variability in float-derived CO2 flux in 302 
the Antarctic Zone from 2015‒2019. Net CO2 uptake observed by the USV and floats in 2019 303 
contrasts with the strong outgassing during winter of 2015 and 2016. This interannual variability 304 
may be influenced by SAM with increased westerly wind strength during the more positive 305 
phases of SAM increasing upwelling of relatively CO2-rich waters. The greatest outgassing is 306 
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observed in the Antarctic Zone during strong positive phases of SAM in 2015 and 2016 (Figures 307 
3b and S6). The USV data were collected during a decline in the SAM index and are similar to 308 
the float-based net flux estimates for 2019 (Figure 3b). 309 

 310 

 311 

Figure 3. a) Time series of monthly CO2 flux calculated using all USV observations at hourly 312 
(red dots) and 10-day averaged (red line) time steps; from Landschützer et al. (2020) SOM-FFN 313 
ship-based climatology (orange) and 2019 (yellow) subsampled at the Saildrone locations and 314 
times and averaged over 10 days; and from Bushinsky et al. (2019) using the same methods of 315 
the SOM-FFN v2020 ship-based climatology for the years 2014‒2017 but incorporating 316 
seawater pCO2 estimated from both ships and SOCCOM biogeochemical-float observations 317 
(light blue), and using only SOCCOM biogeochemical float observations (dark blue) for the 318 
years 2014‒2017. The shaded area represents the interannual variability in the SOCCOM-only 319 
product over 2014‒2017. b) Antarctic Zone monthly-averaged USV fluxes (red) plotted with 320 
monthly mean SOCCOM float-based CO2 flux from 2015‒2019 in that zone (gray). The shaded 321 
area is 1 σ of monthly mean SOCCOM CO2 flux. 322 
 323 

Analysis of the Saildrone USV observations reveal several potential sources of bias and 324 
error in USV-, ship-, and float-based CO2 flux (Tables S1 and 1). Given the significant fine-scale 325 
temporal and spatial variability observed during 2019, the 10-day sampling routine of floats may 326 
introduce a bias (more outgassing/less uptake in this case), which could account for some of the 327 
difference between float- and ship-based CO2 flux reported previously (Bushinsky et al., 2019; 328 
Gray et al., 2018). It is also critical to better constrain how shifts in SAM conditions play a role 329 
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in Southern Ocean CO2 flux. The larger differences between the ship-based climatology and 330 
float-based flux during prolonged positive SAM conditions in 2015‒2016 suggests an influence 331 
of measurement bias during those years or the possibility that the ship-based climatology does 332 
not constrain increased upwelling of CO2-rich water in higher latitudes. Sustained observations 333 
are needed to better constrain interannual variability like the anomalous strong winter outgassing 334 
observed by floats in 2015‒2016 relative to 2017–2019. Better coverage of ships, USVs, and 335 
floats are needed to resolve these uncertainties in measurements and variability in the Southern 336 
Ocean. 337 

4 Conclusions 338 

Climate change is predicted to reduce ocean CO2 uptake under climate model scenarios 339 
that show intensification of winds and acceleration of the overturning circulation in the Southern 340 
Ocean (Le Quéré et al., 2007). Over the next century models also predict reductions in sea-ice 341 
cover and surface ocean warming, freshening, and stratification, which are all expected to impact 342 
the carbon sink. How these processes impact the overall balance of CO2 outgassing and uptake in 343 
the Southern Ocean is uncertain. Better representation of these processes in models is necessary 344 
to predict the Southern Ocean’s role in a future climate. 345 

Our results indicate that the strong wintertime outgassing observed by floats in 2015 and 346 
2016 was not prevalent in 2019. The change may be linked to a decline in the SAM index in the 347 
later years leading to a reduction in upwelling of CO2 rich waters to the surface. More sustained 348 
observations are needed to constrain interannual variability and the impact on both Southern 349 
Ocean and global ocean CO2 uptake estimates. The first circumnavigation of the Southern Ocean 350 
by a USV described here has shown the capability to collect high quality data that can be used to 351 
constrain multi-platform measurement uncertainties and interrogate how variability from the 352 
scale of hours to years may impact CO2 flux estimates. 353 

A multi-platform observing network consisting of USVs directly surveying air-sea 354 
interactions, floats measuring full water column biogeochemistry even under ice, and the ship-355 
based measurements for ground-truthing autonomous sensors would, in combination, best track 356 
changes in ocean carbon uptake and better constrain variability. USVs fill a unique niche with 357 
the ability to survey regions for extended periods where ships do not routinely operate, opening 358 
up new opportunities for filling persistent gaps in the ocean observing system with high-quality 359 
pCO2 and meteorological observations.  360 
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Introduction  

Additional figures and tables of 2019 Southern Ocean Saildrone USV observations and 
intercomparisons as well as a summary of CO2 flux calculations are included here as 
supporting information. 

CO2 flux calculations 
 

CO2 flux is calculated using: 
 

CO2 flux = k×Ko×ΔpCO2            
 



 
 

2 
 

where k is the gas transfer velocity as a function of wind speed (Wanninkhof, 2014), Ko 
is the solubility coefficient for CO2 as a function of SST and SSS (Weiss, 1974; Weiss et 
al., 1982), and ΔpCO2 is seawater pCO2 ‒ air pCO2.  

The ASVCO2 provides directly-measured seawater and air pCO2. For the floats, 
seawater pCO2 is calculated using measured pH and estimated total alkalinity as 
described by Williams et al. (2017) and atmospheric pCO2 is calculated from air xCO2 
observations from the NOAA Greenhouse Gas Marine Boundary Layer Reference 
product (Dlugokencky et al., 2019) converted to pCO2 using NCEP 2 sea level 
atmospheric pressure.  As noted in the main text, the float fluxes were not extrapolated 
over time as was done by Gray et al. (2018). This means that the monthly averages 
presented here are averages of the instantaneous flux at the time of the float surfacing. 

Gradients in seawater pCO2 are assumed insignificant between the Saildrone 
measurements depth at about 0.5 m and the float measurements depth at 5‒7 m in the 
well-mixed surface waters of the Southern Ocean. These measurements are also well 
below the surface boundary layer where skin temperature effects could impact the flux 
comparison between the different measurement approaches (Watson et al., 2020). 

Several sources of wind speed have been used in previous studies to calculate 
CO2 flux: Cross-Calibrated Multi-Platform Near Real Time V2.0 (CCMP V2) (Mears et 
al., 2019), NCEP-DOE AMIP-II Reanalysis 2 (NCEP 2) (Kanamitsu et al., 2002), ERA-
Interim Reanalysis (Dee et al., 2011), and ERA5 (Hersbach et al., 2020). All wind speed 
data assessed here are 6-hourly except for ERA5 and USV-measured wind speed, 
which are hourly resolution.  All satellite-based winds used here are at 10 m, with USV 
wind speed measured at 3.8 m corrected to a height of 10 m using parameterizations of 
Large and Pond (1981) as described in Sutton et al. (2017).   

CCMP V2 wind speed is used to calculate both USV and 2015‒2019 SOCCOM 
biogeochemical float fluxes.  For the other two comparison data sets, Landschützer et al. 
(2020) uses ERA5 wind speed with k scaled for ERA5 wind data, and Bushinsky et al. 
(2019) uses ERA-Interim using k of Wanninkhof (2014), which is scaled for CCMP wind 
data. 

Given the USV provides hourly in situ air-sea pCO2 and wind speed 
observations, the 2019 USV data set is used to estimate potential bias and error in 
satellite-based wind speed and sea level pressure, different sources of air xCO2, and the 
effect of different sampling periods. In Table S1, bias is the mean difference between the 
USV measurements and these other sources. Error is one standard deviation (σ) of the 
differences.  

The effect of the 10-day sampling period used by biogeochemical floats on 
monthly flux is estimated by subsampling hourly USV air and seawater pCO2, SST, and 
SSS every 10 days at noon (UTC) and linearly interpolating the values in between.  
These values are then combined with high-frequency wind speed to estimate CO2 flux.  
To obtain as many realizations of the mean as possible, this is repeated ten times by 
shifting the starting time by a day.  Resulting bias is the mean difference between the 
monthly USV flux and monthly mean flux from all realizations of the 10-day subsampling, 
averaged for each month from January through July.   

We also use direct measurements of air-sea pCO2 and wind speed from the 
USV, which are rare in the Southern Ocean, as the baseline for interrogating how 
potential bias in other products and interpolated observations impact calculated CO2 flux. 
We estimate this by applying the mean bias in Table S1 directly to the USV wind speed, 
sea level pressure, seawater pCO2, and, in the case of sampling frequency, calculated 
CO2 flux in the 7-month USV data set. For example, in the case of USV-derived CO2 flux 
(first entry in Table 1), the wind speed bias of +0.2 m s-1 is applied to the data set, then 
CO2 flux is re-calculated. The resulting mean difference between the original USV CO2 



 
 

3 
 

flux and flux with biases applied is reported for each approach in Table 1.  This 
technique of using the 2019 Southern Ocean USV data to estimate calculated CO2 flux 
bias is specific to the conditions observed during this mission and may not apply to the 
bias in these approaches in other applications.  
 
 

 
 
 
Figure S1. Saildrone USV-measured a) ΔpCO2 (µatm), b) SST (oC), c) SSS, and d) wind 
speed (m s-1) during the mission along with black lines indicating climatological locations 
of the major fronts from Orsi et al. (1995).  Zones moving from Antarctica north are: 
Seasonal Ice Zone, Antarctic‐Southern Zone, Polar Frontal Zone, Subantarctic Zone, 
and Subtropical Zone. 
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Figure S2. a) Wind speed time series from January to August 2019 from directly-
measured Saildrone USV anemometer (gray) and the following satellite-based products: 
NCEP 2 (dark blue), ERA-Interim Reanalysis (red), ERA5 (pink), and CCMP V2 (yellow). 
b) Residual between Saildrone-measured wind speed and satellite products (mean 
residual ± one standard deviation). c) Comparison of wind speed products to USV-
measured wind speed as a function of wind speed. 
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Figure S3. Comparison of directly-measured air xCO2 (gray), a fixed time series at the 
Cape Grim Baseline Air Pollution Station (red; data from the Australian Bureau of 
Meteorology and CSIRO Oceans & Atmosphere), and the NOAA Greenhouse Gas 
Marine Boundary Layer Reference product (blue; Dlugokencky et al., 2019).  
 
 

 
Figure S4. Comparison of calculated monthly mean CO2 flux using hourly (black), 6-
hourly (gray), and 10-day (red) sampling frequencies with each realization of the 10-day 
subsampling shown in pink.  
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Figure S5. Comparison of hourly and monthly-averaged Saildrone USV directly-
measured seawater pCO2 compared to float-based calculated seawater pCO2 in the 
three major Southern Ocean zones sampled during the 2019 Saildrone USV mission.  
Shaded areas represent 1 σ of monthly mean float-based pCO2. 
 
 

 
 
Figure S6. 3-month moving average of the SAM Index based on Marshall (2003). 
Shaded area is the deployment time for the 2019 Saildrone USV mission. 
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Source of error Mean bias σ 

Ship and USV-based pCO2 (µatm) - 0.5% 
Float-based seawater pCO2 (µatm) - 2.8% 
NCEP 2 sea level pressure (hPa) −0.2 3.6 

ERA-Interim sea level pressure (hPa) +0.2 1.8 
ERA5 sea level pressure (hPa) −0.5 0.9 

USV wind speed (m s-1) +0.2 1.0 
CCMP V2 wind speed (m s-1) +0.2 1.8 
NCEP 2 wind speed (m s-1) −0.8 3.9 

ERA-Interim wind speed (m s-1) +0.2 2.0 
ERA5 wind speed (m s-1) +0.1 1.4 

10-day sampling frequency (g C m-2 mo-1) +0.05 0.43 
 
 
Table S1. Sources of error in calculating CO2 flux from various sources. USV wind 
speed errors are from Zhang et al (2019). Seawater pCO2 errors are from previous 
studies: Pierrot et al. (2009) for ship-based pCO2, Sabine et al. (2020) for USV-based 
pCO2, and Williams et al. (2017) for float-based pCO2.  Mean bias and standard 
deviation (σ) of sea level atmospheric pressure and wind speed are calculated from 
residuals between USV-measured parameters and each data product.  For wind speed, 
these biases are reported relative to the “true” wind speed by correcting the difference 
reported in Figure S2(b) for the USV wind speed bias of +0.2 m s-1.  Error due to 10-day 
sampling frequency of float-based measurements is calculated by subsampling the 
hourly USV data set at all possible 10-day intervals starting at 12:00 UTC.   
 
 

  Mean σ Range 
air xCO2 (µmol mol-1) 407 1 402 410 
seawater pCO2 (µatm) 393 11 354 427 

ΔpCO2 -4 12 -40 33 
SST (oC) 4.8 3.0 -0.3 13.5 

SSS 34.04 0.27 32.12 34.95 
wind speed (m s-1)* 10.2 3.4 0.3 24.9 

CCMP-NRT wind speed (m s-1) 10.8 3.8 1.3 24.3 
 
* USV wind speed statistics represent measurements made from the beginning of the mission 
until 26 March 2019 due to loss of sensor.  CCMP V2 wind speeds for the entire deployment are 
also included to indicate that mean, variance, and range during January through March were 
similar to conditions throughout the deployment. 
 
Table S2. Mean, one standard deviation of the mean (σ), and range of observations 
measured on the Saildrone USV from 19 January to 3 August 2019. 


