Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front

Xiao-Ming Hu¹, Sharon M Gourdji², Kenneth J Davis³, Qingyu Wang⁴, Yao Zhang⁴, Ming Xue⁴, Sha Feng⁵, Berrien Moore⁴, and Sean M R Crowell⁴

¹Univ. Oklahoma ²National Institute of Standards and Technology ³The Pennsylvania State University ⁴University of Oklahoma ⁵Penn State

November 22, 2022

Abstract

Enhanced CO2 mole fraction bands were often observed immediately ahead of cold front during the Atmospheric Carbon and Transport (ACT)-America mission and their formation mechanism is undetermined. Improved understanding and correct simulation of these CO2 bands are needed for unbiased inverse CO2 flux estimation. Such CO2 bands are hypothesized to be related to nighttime CO2 respiration and investigated in this study using WRF-VPRM, a weather-biosphere-online-coupled model, in which the biogenic fluxes are handled by the Vegetation Photosynthesis and Respiration Model (VPRM). While the default VPRM satisfactorily parameterizes gross ecosystem exchange, its treatment of terrestrial respiration as a linear function of temperature was inadequate as respiration is a nonlinear function of temperature and also depends on the amount of biomass and soil wetness. An improved ecosystem respiration parameterization including enhanced vegetation index, a water stress factor, and a quadratic temperature dependence is incorporated into WRF-VPRM and evaluated in a year-long simulation before applied to the investigation of the frontal CO2 band on 4 August 2016. The evaluation shows that the modified WRF-VPRM increases ecosystem respiration during the growing season, and improves model skill in reproducing nighttime near-surface CO2 peaks. A nested-domain WRF-VPRM simulation is able to capture the main characteristics of the 4 August CO2 band and informs its formation mechanism. Nighttime terrestrial respiration leads to accumulation of near-surface CO2 in the region. As the cold front carrying low-CO2 air moves southeastward, and strong photosynthesis depletes CO2 further southeast of the front, a CO2 band develops immediately ahead of the front.

1	
2 3	Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves the simulation of nighttime CO ₂ peaks and a daytime CO ₂ band ahead of a cold front
4 5 6	Xiao-Ming Hu ¹ , Sharon M. Gourdji ² , Kenneth J. Davis ^{3,4} , Qingyu Wang ⁵ , Yao Zhang ⁶ , Ming Xue ¹ , Sha Feng ³ , Berrien Moore ⁷ , and Sean M. R. Crowell ⁷
7 8 9	¹ Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma 73072, USA
10	² National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
11	³ Department of Meteorology and Atmospheric Science and ⁴ Earth and Environmental Systems
12	Institute. The Pennsylvania State University. University Park, PA 16802, USA
13	⁵ School of Meteorology, University of Oklahoma, Norman, Oklahoma 73072, USA
14	⁶ Department of Environmental Engineering, Columbia University, New York, NY 10027, USA
15	⁷ GeoCarb Mission, University of Oklahoma, Norman, Oklahoma 73072, USA
16 17	Submitted to Journal of Geophysical Research-Atmospheres
18	
19	on 12/3/20 11:36 PM
20	
21	Corresponding author address:
22	Dr. Xiao-Ming Hu
23	Center for Analysis and Prediction of Storms
24	University of Oklanoma
23	Norman, Oklanoma 73072, USA
20 27	Email: $xnu(\omega)ou.edu$ Dhome: (405) 225, 0402
21	Phone: (403) 323- 0402
20 20	Koy Doints
29 20	Key rollits
31 32 33	1. A new terrestrial ecosystem respiration parameterization accounting for vegetation index, water stress, and a nonlinear temperature dependence is implemented in WRF-VPRM to improve the simulation of both respiration and GPP.
24	2. The destine hands of elevated CO, wells for stions should of cold forms in part due to the
34 35	2. The daytime bands of elevated CO_2 mole fractions aread of cold fronts form in part due to the accumulation of nighttime respiration; hence the new VPRM improves performance.
36 37 38	3. Cloud-shading induced perturbation of photosynthesis cannot explain the CO ₂ band immediately ahead of the surface cold front on 4 August 2016 because of its small magnitude and lagging behind the front.
39 40 41	4. Biological CO ₂ clearly dominates the lower tropospheric CO ₂ mole fraction patterns on the synoptic scale, with cross-frontal variations of more than 30 ppm for photosynthesis and respiration.
42 43	

44

Abstract

45 Enhanced CO₂ mole fraction bands were often observed immediately ahead of cold front 46 during the Atmospheric Carbon and Transport (ACT)-America mission and their formation 47 mechanism is undetermined. Improved understanding and correct simulation of these CO₂ bands 48 are needed for unbiased inverse CO_2 flux estimation. Such CO_2 bands are hypothesized to be 49 related to nighttime CO₂ respiration and investigated in this study using WRF-VPRM, a weather-50 biosphere-online-coupled model, in which the biogenic fluxes are handled by the Vegetation 51 Photosynthesis and Respiration Model (VPRM). While the default VPRM satisfactorily 52 parameterizes gross ecosystem exchange, its treatment of terrestrial respiration as a linear function 53 of temperature was inadequate as respiration is a nonlinear function of temperature and also 54 depends on the amount of biomass and soil wetness. An improved ecosystem respiration 55 parameterization including enhanced vegetation index, a water stress factor, and a quadratic 56 temperature dependence is incorporated into WRF-VPRM and evaluated in a year-long simulation 57 before applied to the investigation of the frontal CO₂ band on 4 August 2016. The evaluation 58 shows that the modified WRF-VPRM increases ecosystem respiration during the growing 59 season, and improves model skill in reproducing nighttime near-surface CO₂ peaks. A nested-60 domain WRF-VPRM simulation is able to capture the main characteristics of the 4 August 61 CO₂ band and informs its formation mechanism. Nighttime terrestrial respiration leads to accumulation of near-surface CO₂ in the region. As the cold front carrying low-CO₂ air moves 62 63 southeastward, and strong photosynthesis depletes CO₂ further southeast of the front, a CO₂ band 64 develops immediately ahead of the front.

66 **1. Introduction**

67 An enhanced CO_2 mole fraction band was often observed immediately ahead of cold fronts 68 during the Atmospheric Carbon and Transport (ACT)-America mission (Pal et al., 2020). Correct 69 simulation of the gradients of CO₂ across cold fronts and understanding of the formation 70 mechanisms are needed for accurate estimation of regional CO₂ budget (Chan et al., 2004; Hurwitz 71 et al., 2004; Lee et al., 2012; Pal et al., 2020; Parazoo et al., 2008). Improved understanding of 72 atmospheric constituents including CO_2 ahead of fronts may also help explain air pollution events 73 sometimes found ahead of fronts (Hu et al., 2019a) since CO₂ and pollutants are sometimes co-74 emitted (Brioude et al., 2013; Brioude et al., 2012; Konovalov et al., 2014; Lindenmaier et al., 2014; Reuter et al., 2019; Turnbull et al., 2011; Wunch et al., 2009; Yang et al., 2019a). These 75 76 CO₂ bands were previously briefly examined using WRF-VPRM, a weather-biosphere-online-77 coupled model, in which the terrestrial fluxes are handled by the Vegetation Photosynthesis and 78 Respiration Model (VPRM) while the Weather Research and Forecast (WRF) model (Skamarock 79 et al., 2008; Skamarock & Klemp, 2008) is used to simulate atmospheric flows and CO₂ transport 80 and diffusion. These previous WRF-VPRM simulations were able to capture the existence of the 81 CO₂ bands during the ACT-America mission (Hu et al., 2020a). However substantial bias in terms 82 of CO₂ magnitude existed, which appeared related to underestimation of diurnal variation of CO₂, 83 particularly nighttime CO₂ peaks (Li et al., 2020; Wang et al., 2020). Other studies also implied 84 that VPRM and WRF-VPRM tended to underestimate nighttime CO₂ fluxes (Dayalu et al., 2018; Lopez-Coto et al., 2017) and concentration (Park et al., 2020). Nighttime CO₂ biases were not 85 86 extensively examined previously. Many previous regional CO₂ studies focused on daytime 87 boundary layer CO₂, while nighttime CO₂ was less studied (Parazoo et al., 2008), likely because 88 of two factors: 1, nighttime CO₂ simulations are less trusted because of uncertainties in the

parameterization of the nighttime boundary layer and terrestrial respiration fluxes; 2, many remotesensing and in-situ (such as aircraft) CO₂ observations are only available during daytime
(Crevoisier et al., 2010; Pal et al., 2020; Sweeney et al., 2015).

92 Terrestrial ecosystem respiration in simple empirical modeling systems such as VPRM is 93 often parameterized as a function of temperature, thus not accounting for factors such as soil 94 moisture and substrate available for heterotrophic respiration (Ai et al., 2020; Buchmann, 2000; 95 Fang & Moncrieff, 2001; Lloyd & Taylor, 1994; Raich et al., 2002; Schubert et al., 2010). VPRM 96 simulates the Net Ecosystem Exchange (NEE) of CO₂ through separate parameterizations for 97 ecosystem respiration (ER) and Gross Ecosystem Exchange (GEE) (Mahadevan et al., 2008)

98 NEE = ER + GEE (1) 99 ER = $m \times T + Q$

$$99 \qquad \text{ER} = \alpha \times T + \beta \tag{2}$$

100 GEE =
$$\lambda \times T_{scale} \times W_{scale} \times P_{scale} \times FAPAR_{PAV} \times PAR \times \frac{1}{1 + \frac{PAR}{PAR_0}}$$
, (3)

101 where α and β are parameters used to model ecosystem respiration as a function of temperature T, 102 λ is the maximum light use efficiency, T_{scale} , W_{scale} , and P_{scale} account for effects of temperature, 103 water stress, and leaf age on photosynthesis, respectively, FAPAR_{PAV} is the Fraction of Photosynthetically Active Radiation (PAR, μ mol m⁻² s⁻¹) absorbed by the photosynthetically-104 105 active portion of the vegetation, which roughly equals the Enhanced Vegetation Index (EVI), and PAR_0 is the half-saturation value. This version of VPRM (Mahadevan et al., 2008) and the 106 107 corresponding parameters previously calibrated off-line using eddy covariance tower data over 108 North America (Hilton et al., 2016) were implemented into WRF-VPRM to examine 109 spatiotemporal variation of CO_2 over the contiguous U.S. (Hu et al., 2020b) and northeastern China 110 (Li et al., 2020). While Eq. (3) is a light-use efficiency algorithm commonly used to simulate GEE 111 (Dong et al., 2015; Wagle et al., 2014; Zhang et al., 2016a; Zhang et al., 2016b; Zhang et al., 2018; 112 Zhang et al., 2017), respiration (Eq. 2), is considerably simpler than parameterizations of

113 ecosystem respiration in more complex, process-based models. Ecosystem respiration depends 114 not only on temperature but also on other factors such as soil moisture (Davidson et al., 1998; 115 Murayama et al., 2003; Rey et al., 2002) and the mass of leaf and stem of biomes (proxy of plant 116 productivity) that can be roughly represented by EVI (Guan et al., 2006). The leaf and stem 117 respiration (which is the dominant contributor to autotrophic respiration) was observed to account 118 for about 27%-52% of the total ecosystem respiration on annual average, with a higher percentage 119 during summer (Guan et al., 2006; Tang et al., 2008). Biogeochemical models like Carnegie Ames 120 Stanford Approach (CASA) (Zhou et al., 2020) and Simple Biosphere Model (SiB4) (Haynes et 121 al., 2019) track carbon pools, and simulate respiration as a function of the carbon pool size, along 122 with pool-specific litter decay rates and environmental controlling factors. Other studies (Loranty 123 et al., 2011) attempted to include plant productivity in ecosystem respiration parameterization by 124 making respiration a function of leaf area index. A better respiration parameterization is warranted 125 for improving WRF-VPRM.

Recently an improved terrestrial respiration parameterization in VPRM has been developed by incorporating EVI, water stress scaling factor (W_{scale}) and its interactions with temperature to capture soil moisture effects, and a quadratic dependence on surface air temperature (T in °C) (Gourdji et al., 2020):

130
$$ER = \beta + \alpha_1 \cdot T + \alpha_2 \cdot T^2 + \gamma \cdot EVI + k_1 \cdot W_{scale} + k_2 \cdot W_{scale} \cdot T + k_3 \cdot W_{scale} \cdot T^2$$
(4)

The parameters in this improved VPRM (Eq. 3 and 4) were calibrated with comprehensive flux tower data. Preliminary evaluation showed that this improved parameterization leads to better prediction of diurnal and monthly variation of CO₂ fluxes and concentration (Gourdji et al., 2020). This improved respiration parameterization is implemented into WRF-VPRM in this study and its performance over the contiguous United States (CONUS) is evaluated in 2016, particularly in 136 terms of reproducing nighttime boundary layer CO₂ at six NOAA towers (see their locations in

Fig. 1), where hourly in-situ boundary layer CO_2 data are available in both daytime and nighttime.

138 High-resolution simulations with this improved WRF-VPRM is further used to examine the CO₂

139 band ahead of the cold front on 4 August 2016 observed during the ACT-America aircraft field

140 campaign, a case well documented previously using observations (Pal et al., 2020) and simulations.

141 **2. Modeling approach and evaluation data**

142 143

2 **2.1 Brief description of VPRM improvement**

144 The respiration parameterization of Eq. (4) is implemented into WRF-VPRM. While in the 145 GEE calculation (Eq. 3), W_{scale} considers water stress effect using a function of Land Surface 146 Water Index (LSWI):

147
$$W_{scale}(GEE) = \frac{1 + LSWI}{1 + LSWI_{max}}$$
(5)

148 following earlier VPRM development studies (Mahadevan et al., 2008; Xiao et al., 2004), W_{scale} 149 used for ER calculation adopts

150
$$W_{scale}(ER) = \frac{LSWI - LSWI_{min}}{LSWI_{max} - LSWI_{min}}$$
(6)

proposed by Matross et al. (2006) for relatively-more water-limited region, because Eq. (6) leads to a larger variation of W_{scale} between different seasons with different water stresses. Eq. 6 was previously used for GEE calculation in grass and shrubs, but we change it to Eq. 5 to better match early growing season uptake in these ecosystems (Gourdji et al., 2020).

To maintain minimal terrestrial respiration in presence of low temperature in winter months and account for the fact that soil temperature is higher than air temperature during winter, the temperature (in °C) used in Eq. (4) is adjusted to

158
$$T = (T_a - T_{crit}) \cdot T_{scale2} + T_{crit}$$
(7)

159 when the air temperature T_a is lower than T_{crit} . The VPRM parameters (GEE and respiration parameters in Eq. 3, 4, and T_{scale2} and T_{crit} in Eq. 7) for each vegetation type are summarized in 160 161 Table 1, and were calibrated by Gourdji et al., (2020) using AmeriFlux data 162 (https://ameriflux.lbl.gov/sites). Respiration parameters were first calibrated using nighttime data, 163 and then daytime respiration were computed, and daytime GEE were separated out, which was 164 subsequently used to optimize GEE parameters. This is a different optimization procedure than 165 originally formulated by Mahadevan et al (2008), where 24 hours of hourly NEE are used to 166 simultaneously optimize GEE and respiration parameters. The new optimization procedure results 167 in a larger magnitude of both respiration and GEE, and hence the diurnal cycle of NEE, by 168 separately fitting respiration and GEE parameters to night and day-time observations respectively. 169 A more detailed description of the improved VPRM and parameter calibration can be found in 170 Gourdji et al. (2020), although parameters for western shrubs and grasslands were optimized 171 separately for the simulations presented in this study, given that Gourdji et al. (2020) focuses on 172 estimating fluxes in eastern North America.

173

174 175

2.2 Configurations of WRF-VPRM simulations and episode description

Two kinds of WRF-VPRM simulations, referred to as year-long and episodic, are conducted. A single-domain, one year WRF-VPRM downscaling simulation is conducted over the CONUS domain at a 12-km grid spacing in 2016 to examine the updated VPRM performance over a full year. Following the year-long run, nested-domain episodic WRF-VPRM simulations are conducted for 4 August 2016 to examine the formation mechanism of the CO₂ band ahead of the cold front at a higher horizontal resolution, with an inner nested domain covering the northern Great Plains at a 4 km grid spacing (see domain configuration in Fig. 1).

183 The year-long WRF-VPRM simulation follows the configuration of our previous 184 downscaling study (Hu et al., 2020b), with the NCEP/DOE R2 data (Kanamitsu et al., 2002) 185 providing meteorological initial and boundary conditions and the CT2017 global simulation 3°×2° 186 outputs (Peters et al., 2007) providing CO₂ initial and boundary conditions. Anthropogenic CO₂ 187 emissions are taken from the 0.1°×0.1° Open-Data Inventory for Anthropogenic Carbon dioxide 188 (ODIAC) (Oda et al., 2018) version 2018 and ocean CO₂ fluxes are taken from climatological 189 monthly values derived by Takahashi et al. (2009). Using ODIAC led to a better CO₂ simulation 190 than using Emission Database for Global Atmospheric Research (EDGAR) in Hu et al. (2020b). 191 Selected major physics parameterization schemes within WRF include the Dudhia shortwave 192 radiation scheme (Dudhia, 1989), the rapid radiative transfer model (RRTM) (Mlawer et al., 1997) 193 for longwave radiation, the Noah land surface model (Chen & Dudhia, 2001), the Grell-3 cumulus 194 scheme (Grell & Devenyi, 2002), the Morrison microphysics scheme (Morrison et al., 2009), and 195 the Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hong et al., 2006). 196 Selection of PBL schemes is critical for accurate simulation of lower tropospheric CO₂ vertical 197 distribution (Ballav et al., 2016; Diaz-Isaac et al., 2018) and CO₂ accumulation ahead of cold fronts. 198 The YSU scheme has been shown to perform well for both daytime and nighttime at the 12 and 4 199 km grid spacings used in this study (e.g., Hu et al., 2012; Hu et al., 2013; Hu et al., 2010b; Hu et 200 al., 2019b; Yang et al., 2019b). The YSU scheme is a nonlocal scheme with explicit treatment of 201 entrainment fluxes, which was shown to be critical to reproducing convective boundary layer 202 structures (Hu et al., 2010b; Hu et al., 2019b) and achieve a better performance than some local 203 schemes such as the Mellor-Yamada-Janjic (MYJ) scheme (Wang et al., 2016). For stable 204 boundary layer, an update in stability function in 2013 led to a better YSU performance in terms 205 of reproducing nighttime profiles of both meteorological and chemical variables, particularly over

206 the Great Plains (Hu et al., 2013). The model domain has 47 vertical layers extending from the 207 surface to 10 hPa with 21 layers in the lower 2 km above the ground to resolve boundary layer 208 processes. The WRF-VPRM downscaling simulation ran continuously from January 1 to 209 December 31, 2016, adopting the spectral nudging technique (Gomez & Miguez-Macho, 2017; 210 Otte et al., 2012; Vincent & Hahmann, 2015) to ensure that the large scale flows do not deviate 211 from the driving NCEP/DOE R2 data, following our previous downscaling studies (Hu et al., 212 2020b; Hu et al., 2017; Hu et al., 2018). Such long-term regional simulations refine global model 213 simulation (CT2017 in this case) and improve the general accuracy of simulation by better 214 resolving local forcing and atmospheric processes, and are commonly referred to as dynamic 215 downscaling.

216 The nested-domain simulations for 4 August 2016 examine the formation mechanism of 217 the CO₂ band ahead of the cold front on the nested 4 km grid. During the selected episode, a 218 surface cold front that formed on 3 August moved southeastward quickly to central Nebraska until 219 12 CST (18 UTC) 4 August when it slowed down (Pal et al., 2020). Along the front, scattered 220 light clouds were present and at some isolated points/time there were large thunderstorms, e.g., at 221 Lincoln after landing of ACT research flight. OCO-2 XCO₂ data indicate a transition of low XCO₂ 222 to high XCO₂ across the front (Fig. 1c). But due to the interference of clouds, OCO-2 could not 223 detect the detailed gradient across the front (Bell et al., 2020; O'Dell et al., 2018). Lower 224 troposphere measurements from the ACT-America flight campaign reveal an enhanced CO₂ mole 225 fraction band (\sim 50 km wide) immediately ahead of the cold front with the cross-frontal CO₂ 226 contrast as high as 30 ppm (Pal et al., 2020). Note ppm is equivalent to µmol/mol. These CO₂ 227 bands formed likely due to a few factors including horizontal and vertical transport, and reduced 228 photosynthetic uptake caused by clouds (Chan et al., 2004; Hu et al., 2020a; Lee et al., 2012). The

229 finer horizontal and vertical resolutions used in this study can better resolve small-scale processes 230 and shallow surface layers than earlier studies using coarse resolutions (e.g., Chan et al., 2004), 231 which is critical for reproducing the formation of the narrow CO_2 bands. To diagnose the CO_2 232 band, in addition to the fully coupled control run, two sensitivity simulations (summarized in Table 233 2) are conducted, in which clear-sky radiation is used to drive VPRM and the Noah land surface 234 model, respectively. These sensitivity simulations are designed to isolate the impact of cloud 235 shading on terrestrial CO₂ fluxes and surface energy balance, respectively, and the subsequent 236 impact on frontal CO₂ structures.

- 237
- 238 239

39

2.3 Description of Observations

240 2.3.1 NOAA Tall Towers241

Hourly data from six NOAA tall towers over central and eastern half of US, i.e., WLEF Tower (LEF), Argyle, Maine Tower (AMT), West Branch, Iowa (WBI), South Carolina Tower (SCT), Boulder Atmospheric Observatory (BAO), and WKT Tower (WKT), are used to evaluate simulated CO₂ profiles in the continental boundary layer during both daytime and nighttime. The measurements at BAO were discontinued on 26 July 2016. More detailed description of those towers can be found at https://www.esrl.noaa.gov/gmd/ccgg/insitu/.

248 2.3.2 Atmospheric Carbon and Transport (ACT)-America data 249

The ACT-America mission was conducted to improve the understanding of sources and sinks of CO₂ at regional scale ($\sim 10^6$ km²) and transport of greenhouse gases by weather systems in midlatitudes. During the mission, two aircraft (NASA Wallops C130 - Hercules and NASA Langley B200 – King Air) were deployed over the eastern half of the continental U.S. during 2016-2019, to measure meteorological variables and gas species including CO₂ and CH₄ across a variety of weather conditions in both the boundary layer and the free troposphere (Davis et al., 2018; Digangi et al., 2018). Airborne CO_2 were measured using a PICARRO 2401-m analyzer calibrated with gas standards traceable to the WMO scale. The ACT-America flight data on 4 August 2016 (see flight track of B200 in Fig. 1) are used in this study to evaluate the CO_2 simulation with the updated WRF-VPRM and to examine the CO_2 band ahead of the cold front.

260 **3. Results**

261 262

3.1 Evaluation of year-long CO₂ downscaling simulation with tower data

The year-long WRF-VPRM downscaling simulation is conducted mainly to examine the 263 264 performance of the updated VPRM, particularly in terms of reproducing nighttime boundary layer 265 CO₂ peaks, because nighttime CO₂ was found to contribute substantially to the daytime CO₂ bands 266 ahead of cold fronts (Hu et al., 2020a). Note that the effect of simulated CO₂ variations on 267 radiation and subsequent weather is not considered in current WRF-VPRM (such effect should be 268 much smaller than meteorological conditions such as clouds, atmospheric temperature and water 269 vapor distributions (Houghton & Moir, 1977)). Instead, a climatological CO₂ mole fraction 270 (379 ppm) is used in the radiation scheme. Thus, updates in VPRM do not affect the simulated 271 meteorological fields, which are essentially the same as those reported in Hu et al. (2020b). 272 Comprehensive evaluation conducted in Hu et al. (2020b) concluded that the downscaled 273 meteorological fields are sufficiently accurate to drive online coupled VPRM and subsequent CO₂ 274 simulation.

The updated VPRM predicts enhanced respiration during growing season, partially due to added dependence on EVI. While a more detailed evaluation of VPRM fluxes can be found in a companion paper (Gourdji et al., 2020), CO₂ fluxes at an AmeriFlux site (US-Ne3, see its location in Fig. 1) near the B200 flight track are evaluated in Fig. 2. During non-growing season, both model and observations show minimal NEE except observations show occasional spikes. During 280 growing season at this crop site (July, August, September), both negative and positive CO₂ fluxes 281 are enhanced, indicating daytime NEE and nighttime ER, respectively. The previous version of 282 VPRM with Eq. (2) underestimates growing season NEE and ER (Fig. 2a,c). With the modified 283 ER parameterization (Eq. 4) and newly calibrated parameters, the updated VPRM (referred to as 284 VPRM G in figure legends) predicts enhanced productivity with enhanced NEE during both 285 daytime and nighttime during growing season, showing a better agreement with observations (Fig. 286 2b,d). The growing season mean bias of nighttime CO_2 fluxes is reduced from -4.2 to -0.2 µmol $CO_2 m^{-2} s^{-1}$ at this site, which is a critical improvement to reproducing the daytime CO_2 bands 287 288 ahead of cold front as will be discussed in section 3.2. Different from simulated fluxes, which represent the average flux over a 12×12 km² grid cell, observed fluxes represent the flux at the site 289 290 and observed nighttime fluxes often show positive spikes (Fig. 2a,b) presumably due to 291 instantaneous intermittent turbulence particularly during growing season (Aubinet, 2008). The 292 median diurnal variation of CO₂ fluxes during growing season is evaluated in Fig. 2c,d, which 293 further confirms that the new VPRM better captures the diurnal variation of fluxes relative to the 294 old VPRM formulation. Examination of CO₂ fluxes at a grass site in Kansas close to the 4 August 295 B200 flight track also indicates a better performance of the new VPRM (figure not shown).

Fluxes along with transport dictate the atmospheric CO_2 spatiotemporal variation. Simulated hourly CO_2 values at six NOAA tower sites are evaluated. Among the six sites, three northern sites, WBI (crop site) and LEF and AMT (mixed forest sites), show more pronounced seasonal variation of CO_2 (Fig. 3), indicating more pronounced seasonal cycle of productivity. The strong variation of hourly values in the growing season (Fig. 4) is due to enhanced diurnal variation of NEE relative to non-growing season. Detailed hourly variation of CO_2 in first half of July is shown in Fig. 5, illustrating intense diurnal variation with nighttime CO_2 peaks (grey shading) and 303 afternoon CO₂ minima (no shading). Afternoon minimum CO₂ shows a prominent seasonal cycle 304 with minimum in July-August at WBI crop site and in June-September at LEF, AMT mixed forest 305 sites (Fig. 3), consistent with previous studies (Bakwin et al., 1998; Parazoo et al., 2008), 306 indicating active terrestrial uptake in growing season during daytime. Note that mixed forest 307 typically has a longer growing season than crop (Li et al., 2020). Such seasonal variation of 308 afternoon minimum CO₂ also shows up in the aircraft boundary layer CO₂ data from NOAA Global 309 Greenhouse Gas Reference Network (https://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and the 310 XCO₂ data recorded at Total Carbon Column Observing Network [TCCON] (Hu et al., 2020b), 311 both of which only have daytime observations. Relatively-less-reported is the seasonal variation 312 of nighttime CO₂ peaks/spikes (e.g., Bakwin et al., 1998; Davis et al., 2003), which increase 313 significantly during growing seasons (Fig. 3). The increasing magnitude of nighttime CO₂ 314 peaks/spikes during growing season is even larger than the decreasing magnitude of afternoon CO₂ 315 minimum (Fig. 3).

For SCT and two grass sites, BAO, and WKT, the contrast between the non-growing season and growing season identified from time series of hourly CO_2 is not as clear as the crop and mixed forest sites, which is due to a smaller seasonal variation of local fluxes and location in the continent (Sweeney et al., 2015).

The updated VPRM showed improved performance compared to the previous version, particularly in terms of reproducing nighttime CO₂ peaks (Fig. 5). Overall, the underestimation of surface CO₂ is reduced, with 24-hour mean bias reducing from -5.3 ppm to -1.0 ppm at the six NOAA sites in 2016 (Table 3). During nighttime (22-06 CST) the mean bias is reduced from -9.4 ppm to -4.0 ppm (Table 5) while during the day (10-18 CST) the mean bias is changed from -1.1 ppm to 1.6 ppm (Table 4). The nighttime mean bias remains most prominent at two mixed forest 326 sites, AMT (-10.4 ppm) and LEF (-4.4 ppm) with the updated VPRM (Fig. 3, Table 5). At the 327 WBI crop site, nighttime mean bias reduced from -11.46 ppm to -4.2 ppm. The remaining bias at 328 night could be due to overestimated nighttime turbulent mixing (Hu et al., 2010b), as well as 329 underestimated nighttime respiration due to drainage and loss of measured flux at towers (Aubinet, 330 2008). These evaluations illustrate that the updated terrestrial respiration parameterization (i.e., 331 Eq. 4) and the newly calibrated parameters (Table 1) have a much-improved skill to reproduce the 332 nighttime CO₂ peaks, as well as diurnal variation of near-surface CO₂, particularly during growing 333 season. Note that among the 6 NOAA towers, WBI is closest to the B200 flight track on 4 August 334 2016 and the flight track is mostly over the crop land category (Fig. 1a,b). Thus, significant 335 improvement of WRF-VPRM performance over the WBI crop site is likely to be particularly 336 beneficial to diagnose formation mechanism of the CO₂ band observed by B200 on 4 August.

337 In addition to terrestrial fluxes, the surface CO₂ concentration is dictated by boundary layer 338 vertical distribution. Boundary layer CO₂ profiles are examined in Figs. 6-8 to further diagnose 339 the CO₂ biases. During daytime (10, 14, 18 CST), CO₂ in the boundary layer is nearly well mixed, 340 except at 18 CST when CO₂ starts to accumulate near the surface at eastern sites, e.g., AMT and 341 SCT because these sites enter evening earlier comparing to western sites. The biases of these well-342 mixed daytime profiles are minor, consistent with previous evaluation using daytime 343 measurements of boundary layer CO₂ from NOAA small aircraft and XCO₂ from TCCON (Hu et 344 al., 2020b).

Comparing to daytime, biases of nighttime boundary layer CO₂ are relatively-less-reported. Through the night and the following early morning (22, 2, 6 CST), CO₂ from terrestrial respiration keeps accumulating near the surface in presence of a stable boundary layer and near-surface vertical gradients of CO₂ increase. Comparing to daytime, WRF-VPRM has more challenge to 349 reproduce the nighttime CO₂ peaks. The bias of near-surface CO₂ becomes prominent during 350 nighttime. With increased nighttime respiration in the updated VPRM (Eq. 4), the nighttime bias 351 is alleviated. However, the bias of early morning CO_2 at certain sites are still large. For example, 352 at AMT, the bias reaches as large as >20 ppm at 2 CST and the bias quickly reduces to <10 ppm 353 at 6 CST as the convective boundary layer starts to grow and photosynthesis becomes active at 354 this eastern site, reducing surface-layer CO₂ peaks quickly (Fig. 6). At 6 CST, the bias of surface 355 CO_2 at WBI and LEF reaches ~16 ppm and 10 ppm, and the biases at three other south sites, SCT, 356 BAO, WKT are smaller. The median diurnal variations of CO₂ during growing season (Fig. 4) 357 also illustrate the largest nighttime bias remains at AMT, WBI, and LEF. Future further 358 improvement of simulating boundary layer CO₂ diurnal variation may focus on the biologically 359 very productive sites such as WBI crop site and AMT, LEF mixed forest sites, and may benefit 360 from co-located measurements of fluxes, mole fraction, and boundary layer meteorology (Davis 361 et al., 2003; Yi et al., 2004; Yi et al., 2001).

362

364

366

363 **3.2 Examination of the CO₂ band ahead of cold front on 4 August 2016**

365 **3.2.1** Analysis of ACT-America data and fully coupled WRF-VPRM control simulation

367 An important purpose of this study is to examine the cause of elevated CO₂ bands ahead 368 of cold fronts, which appeared to be related to nighttime accumulation of near-surface CO_2 (Hu et 369 al., 2020a). With improved capability to reproduce the nighttime CO₂ surface flux and mole 370 fraction peaks with the updated VPRM, we seek to better diagnose the formation mechanism of 371 the CO_2 bands. The CO_2 band ahead of the cold front on 4 August 2016 is examined with nested-372 domain WRF-VPRM simulations (see domain configuration in Fig. 1). In early morning (0600 CST), the model captures the stable boundary layer structure, as verified by routine sounding data 373 374 at KLBF, KOAX, and KTOP in the vicinity of the ACT-America flight track on this day (Fig. 9).

375 At 1000 CST when C130 took off, the convective boundary layer grew up to \sim 700 m AGL, as 376 indicated by the potential temperature profile measured by C130 (Fig. 9b). Nighttime accumulated 377 CO₂ in the stable boundary layer was mixed in this early shallow convective boundary layer with 378 a vertically constant mole fraction of ~418 ppm, about 14 ppm higher than the CO₂ mole fraction 379 in the free troposphere above (Fig. 9a). The control WRF-VPRM simulation captures these 380 boundary layer structures even though certain biases exist, including overestimation of boundary 381 layer potential temperature by 2-3 K and underestimation of boundary layer CO₂ with a mean bias 382 of ~5 ppm. During the morning, the cold front kept pushing southeastward bringing the low-CO₂ 383 air mass (indicated by the OCO-2 XCO₂ data in Fig. 1c and aircraft data in Fig. 10a,b) into the 384 region. Meanwhile, enhanced GEE over cropland around Lincoln and area east of Lincoln 385 (partially due to large EVI in the region, Fig. 1a) reduced the boundary layer CO₂, leading to 386 formation of a high CO₂ mole fraction band between west of Lincoln and leading edge of the cold 387 front, which was detected by B200 at ~1230 CST when it flew westward and crossed the front 388 (Fig. 10). The WRF-VPRM simulation captures the CO₂ gradient across the front in both the 389 boundary layer and free troposphere (Fig. 10b) and the horizontal variation of boundary layer CO_2 390 mole fraction along the B200 flight track, including the CO₂ band immediately ahead of the cold 391 front and west of Lincoln, albeit the band position is a little off (Fig. 10a,b), which is partially due 392 to the time difference between observation and simulation. The CO_2 band was observed at ~1230 393 CST while the simulation is taken at 1200 CST in Fig. 10 (WRF outputted hourly).

394 Simulated individual components of CO_2 in the higher-resolution inner domain are 395 examined to further diagnose the CO_2 band attribution. Total CO_2 are decomposed into 396 background, biogenic, anthropogenic, and oceanic CO_2 , which are tracked by individual tracer in 397 WRF-VPRM. While biogenic, anthropogenic, and oceanic CO_2 are CO_2 accumulated from the

398 terrestrial biogenic fluxes, anthropogenic emissions and oceanic fluxes, background CO₂ is the 399 CO₂ transported into the domain from the lateral boundary CO₂, which is derived from CT2017. 400 Biogenic CO₂ can be further decomposed into respiration CO₂ and photosynthesis CO₂, which are 401 CO₂ accumulated from transported ER and GEE, i.e., Eqs. (4) and (3). Among these components, 402 oceanic CO₂ is negligible over the continent (Hu et al., 2020b) and therefore not shown here. The 403 background CO₂ transported by the cold front has its origins from the northern boundary where 404 CO₂ is low in summer (Hu et al., 2020b; Sweeney et al., 2015), thus southeastward penetration of 405 background CO₂ carried by the cold front creates a step-function-like gradient (~6ppm difference) 406 across the front, with a nearly constant CO_2 (~ 402 ppm) ahead of the cold front (Fig. 11b, 12b). 407 The anthropogenic CO_2 includes a small contribution to CO_2 to the far east side along the B200 408 flight track, while it does not contribute to the CO₂ band immediately ahead of the cold front (Fig. 409 11d, 12d). The CO_2 enhancement band is mostly comprised of biogenic CO_2 (Fig. 11c), that is, 410 accumulated from terrestrial biogenic fluxes, which contributes a ~15 ppm cross-front difference 411 (Fig. 12c). The horizontal variation of biogenic CO₂ (Fig. 11c, 12c) matches the horizontal 412 variation of total CO₂ (Fig. 11a, 12a) in terms of general trend.

413 Figure 12 also illustrates that updated VPRM significantly enhances the model capability 414 to capture the CO₂ band ahead of the cold front. The previous version of VPRM, with a much 415 weaker respiration given by Eq. (2), barely simulates any contribution to the cross-front CO₂ 416 gradient from biogenic CO₂ at 12 CST, with only background CO₂ contributing a ~6ppm CO₂ 417 gradient across the front. With a stronger respiration, updated WRF-VPRM simulates a 418 dominating contribution from biogenic CO₂ (~15 ppm) to the cross-front CO₂ gradient, with 419 certain biases still remaining including underestimating the peak concentration of the CO₂ band 420 by ~ 8 ppm and overestimating the width of the CO₂ band.

421 To further delineate the effects of biogenic CO₂ fluxes, individual contribution history from 422 respiration CO_2 and photosynthesis CO_2 during the morning of 4 August is examined in Fig. 13. 423 In the early morning at 8 CST, respiration CO_2 ahead of the cold front is significant (~40 ppm) 424 and does not show much variation along the B200 flight track (Fig. 13b). Photosynthesis CO₂ are 425 enhanced (absolute value) over the cropland region with enhanced EVI (Fig. 1a) around Lincoln 426 and area east of Lincoln (Fig. 13c). As a result of collective contribution of respiration and 427 photosynthesis CO_2 , biogenic CO_2 shows a band of enhanced mole fraction immediately ahead of 428 the cold front (Fig. 13a). Through time, this CO₂ band is squeezed and pushed southeastward by 429 the front, which was detected by B200 ~1230 CST (Fig. 13d). When the CO₂ band is pushed 430 further into high GEE region east of Lincoln, stronger GEE (negative photosynthesis CO₂ 431 contribution) gradually weakens the narrow CO₂ band immediately ahead of the cold front in the 432 afternoon until it merges into the CO_2 background in the warm sector of the front (not shown).

433 The morning and noontime CO₂ band extends from the surface into the free troposphere 434 (Fig. 10b, 11a) ahead of the cold front, which is related to nighttime convective transport of 435 accumulated CO₂ from the nighttime stable boundary layer into the free troposphere (Fig. 14). The 436 snapshots at 0200 CST shows significant updrafts and downdrafts ahead of the front associated 437 with moist convection, which ejects the near-surface CO₂-rich and water vapor-rich air mass into 438 the free troposphere. As a result, a weaker CO_2 band extends at least 3-4 km AGL (Fig. 11a). This 439 may explain other CO₂ bands observed in the free troposphere by ACT-America flights. The moist 440 convection in the region is more active during nighttime and weakens during the day on 4 August, 441 which might be related to the diurnal variation of low-level jet (LLJ) over the Great Plains. On 442 the night of 3-4 August, a strong LLJ is formed ahead of the cold front (not shown). The nighttime 443 convection is presumably enhanced by convergence at the northern end of the LLJ over the

444 Northern Great Plains. Moist convective transport of chemical species has been reported to have
445 significant impacts on air quality (Barth et al., 2007; Hu et al., 2010a; Jiang et al., 2007; Langford
446 et al., 2010); it similarly impacts CO₂ transport and its budget in this case, as also shown by Penn
447 State simulations.

448

449 450

9 **3.2.2** Analysis of WRF-VPRM sensitivity simulations to examine cloud impacts

451 Clouds associated with moist convection block shortwave radiation during the day, thus 452 affecting photosynthesis, and the land surface energy balance and eventually terrestrial CO₂ fluxes. 453 Two sensitivity simulations (summarized in Table 2) are conducted to examine the impact of 454 clouds on terrestrial fluxes and the frontal CO₂ band. In the clear-sky-photosynthesis simulation, 455 clear-sky radiation is used to drive VPRM. The difference between clear-sky-photosynthesis and 456 control runs shows the impact of clouds shading on terrestrial CO_2 fluxes (through Eq. 3), and 457 subsequent impact on frontal CO₂ structures. During the night of 3-4 August, moist convection 458 initially develops along the frontal boundary due to convergence. Through time, the convection 459 lags behind the surface cold front convergence line along the southwest end of the convection line 460 (Fig. 15). In the control simulation, reduced shortwave radiation due to cloud shading suppressed 461 GEE, thus leading to enhanced biogenic CO₂. However, the enhanced biogenic CO₂ due to cloud 462 shading (difference between control and clear-sky-photosynthesis) is minor (~2 ppm) comparing 463 to the total enhancement in biogenic CO_2 ahead of the leading edge of the front (~20 ppm) and 464 their position is not matching along the B200 flight track (Fig. 15). The storm weakens/shrinks 465 from 10 to 12 CST and does not move while the surface front keeps moving southeastward (Fig. 466 16). So the biogenic CO_2 due to cloud shading at the time remains lagging behind the front while 467 biogenic CO₂ during previous hours is transported southwesterly by the front, and the magnitude 468 remains ~ 2 ppm (Fig. 16). Thus, cloud shading barely contributes to the CO₂ band ahead of the 469 front observed by B200 in this case (Fig. 17).

470 At the northeast end of the convection line in the domain, the convection is at the leading 471 edge of the front and the contribution from cloud shading to CO_2 concentration enhancement is 472 more significant because biogenic activity is more vigorous (higher EVI), and convection is 473 stronger in the region. Thus, in this region, cloud shading contributes more to the CO_2 band ahead 474 of the front (Fig. 15, 16).

475 The impacts of clouds on CO_2 flux and mole fraction through the surface energy balance 476 is more complex. Since the nested-domain WRF-VPRM simulations start at 0000 UTC 4 August 477 (1800 CST), there is still daylight (shortwave radiation) in the first 2 hours of simulation during 478 early evening. Using clear-sky shortwave radiation to drive surface energy balance in the clear-479 sky-surface-energy simulation initially leads to slightly higher temperature around clouds, which 480 later on provides perturbation for the strong moist convection during nighttime (not shown), and 481 the subsequent perturbation on CO₂ fields becomes quite non-linear, which can propagate through 482 the rest of simulation. The deep moist convection weakens during the day and cloud shading on 483 surface temperature becomes more linear. In the control simulation, cloud shading leads to lower 484 surface temperature compared to the clear-sky-surface-energy simulation (Fig. 18g). Despite a 485 nearly linear temperature response, its subsequent impact on CO₂ fluxes and mole fraction is 486 complex. Compared to the clear-sky-surface-energy simulation, lower temperature in the control 487 simulation results in lower respiration according to Eq. 4 and lower boundary layer height. Lower 488 respiration leads to lower biogenic CO₂, but lower boundary layer on the other hand leads to more 489 accumulation of respiration CO₂. The impact of lower surface temperature on photosynthesis is

490 also mixed depending on whether the ambient temperature is lower or higher than the optimal temperature (T_{opt}) because optimal temperature leads to the strongest GEE through the highest 491 T_{scale} (Mahadevan et al., 2008). In the morning of 4 August, temperature in the nested 4 km 492 493 domain varies from 5°C to 35°C, spanning both sides of the T_{opt} (25 °C and 18 °C) of two dominant 494 vegetation types in the domain, i.e., crop and grass. Thus, the impact of reduced temperature due 495 to cloud shading on NEE is mixed (Fig. 18h). Another likely impact of lower temperature behind 496 the cold front is to slightly enhance the front penetration, which might explain the negative CO_2 497 difference between control and clear-sky-surface-energy along some portion of the front. Thus, 498 with all these impacts, CO₂ difference between the control and clear-sky-surface-energy 499 simulation has mixed results with both positive and negative values (Fig. 18i). Given the relatively 500 small magnitude of these CO₂ difference (< 4 ppm), the elevated CO₂ mole fraction band ahead of 501 the front is not alleviated by the impact of clouds on surface energy balance (Fig. 17).

502

4. Conclusions and Discussion

503 An enhanced CO₂ mole fraction band was often observed immediately ahead of cold fronts 504 during the Atmospheric Carbon and Transport (ACT)-America mission and its cause is 505 undetermined (Pal et al., 2020). Improved understanding and correct simulation of these CO₂ 506 bands are needed for unbiased inverse CO₂ flux estimation. Such CO₂ bands are hypothesized to 507 be related to nighttime CO₂ respiration and investigated in this study using WRF-VPRM, an 508 online-coupled weather-biosphere model. While the original version of VPRM is mechanistically 509 realistic and satisfactorily parameterizes gross ecosystem exchange with appropriate calibration, 510 its treatment for terrestrial respiration, a linear dependence on temperature only, is inadequate to 511 simulate ecosystem respiration that is nonlinear and also depends on biomass and soil wetness. In this study, an improved terrestrial respiration parameterization that adds enhanced vegetation index (EVI), water stress scaling factor (W_{scale}) and its interactions with temperature to capture soil moisture effects, and a quadratic function of temperature (Gourdji et al., 2020) is incorporated into the WRF-coupled VPRM and evaluated first in a year-long dynamic downscaling simulation before being applied to investigate the CO₂ band ahead of a cold front on 4 August 2016.

517 The year-long downscaling simulation for 2016 is conducted over the contiguous United 518 States at a 12 km grid spacing with spectral nudging to help maintain consistency of large scale 519 flows with the driving reanalyses. Evaluations show that the improved WRF-VPRM simulates 520 a stronger respiration (and stronger GEE also), thus showing a better skill to reproduce 521 nighttime near-surface CO₂ peaks measured at six NOAA towers.

522 Nested-domain WRF-VPRM simulations including a 4-km inner domain covering the 523 Northern Great Plains are conducted for 4 August 2016 to examine the CO₂ band formation 524 mechanism. The control simulation is shown to be able to capture main characteristics of the 525 CO₂ bands, albeit with certain biases in magnitudes and/or locations. Nighttime terrestrial 526 respiration leads to accumulation of near-surface CO₂ in the region. As the cold front with low-527 CO₂ air mass moves southeastward, together with strong photosynthesis depleting CO₂ further 528 southeast of the front, an enhanced CO_2 mole fraction band develops immediately ahead of the 529 front. Two sensitivity simulations are conducted to examine the impact of cloud shading on CO₂ 530 attributions, using clear-sky radiation (i.e., neglecting cloud effects on radiation parameterization) 531 to drive VPRM and land surface energy balance respectively. Cloud shading is not found to 532 enhance or alleviate the CO₂ band observed by the ACT-America flight in this case because the 533 cloud shading-induced perturbation of biogenic CO₂ through radiative and surface temperature 534 effects is not significant and its location lags behind the surface cold front.

Though not shown here, a few other CO_2 bands ahead of cold front including the ones on Oct 18, 2017, and May 2, 2018, were also examined using WRF-VPRM simulations. Nighttime accumulation of respiration CO_2 is found to contribute substantially to these CO_2 bands, as in the case of 4 August 2016 (Hu et al., 2020a).

539 Parameterization of impact of radiation on photosynthesis in VPRM through Eq. (3) may 540 be overly simplified. Some studies reported enhanced photosynthesis in presence of diffuse 541 radiation. Such a process is not currently considered in VPRM. Nonetheless, this study illustrates 542 the first-order effect of cloud shading on terrestrial CO₂ fluxes and CO₂ attribution around cold

543 fronts.

This study finds that respiration fluxes contribute significantly to the CO_2 bands ahead of cold fronts. Further improvement of terrestrial respiration parameterization, particularly over biologically-very-active land covers, is warranted to improve CO_2 simulations in the vicinity of mesoscale/synoptic weather systems, which is critical to accurately estimate regional CO_2 budgets (Chan et al., 2004; Pal et al., 2020). In addition, transport/dispersion, particularly during nighttime, could also be improved to reduce CO_2 biases (Hu et al., 2013).

550

551

Acknowledgement. This study was supported by the Atmospheric Carbon and Transport (ACT) America project through grant NNX17AG11G at OU and grant NNX15AG76G at Penn State. The
 ACT-America project is a NASA Earth Venture Suborbital 2 project funded by NASA's Earth
 Science Division. The last author was supported by NASA OCO-2 program under grant
 80NSSC18K0896. Computations were performed at the San Diego Supercomputer Center (SDSC)
 through XSEDE allocation grant TG-ATM160014.
 References are made to certain commercially available products in this paper to adequately

558 References are made to certain commercially available products in this paper to daequality 559 specify the experimental procedures involved. Such identification does not imply recommendation

560 or endorsement by the National Institute of Standards and Technology, nor does it imply that these

561 products are the best for the purpose specified.

562 The reanalysis data set was downloaded from https://rda.ucar.edu/, and the CT2017 data were 563 provided by NOAA ESRL, Boulder, Colorado, USA from the website at

564 <u>http://carbontracker.noaa.gov</u>. Tomohiro Oda provided the 0.1°×0.1° Open-Data Inventory for

- 565 Anthropogenic Carbon dioxide (ODIAC) emissions. Monthly ocean CO₂ fluxes are downloaded
- 566 from <u>https://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea_flux_2000.html</u>.
- 567 *ACT-America data (DOI <u>10.3334/ORNLDAAC/1593</u>) is downloaded from 568 <u>https://doi.org/10.3334/ORNLDAAC/1593</u>. AmeriFlux data are downloaded from*
- 569 https://ameriflux.lbl.gov/sites/site-search/
- 570 Model data produced from this study have been archived at the oasis data server at the San Diego
- 571 Supercomputer Center, /oasis/projects/nsf/uok114/xhu2/C02_and_otherGHG

572	Table 1. Parameter values used in this study. Units for parameters are as follows: λ : μ mol CO ₂
573	$m^{-2}s^{-1}/\mu$ mol PAR $m^{-2}s^{-1}$; β, λ, γ, k_1 : μmol CO ₂ $m^{-2}s^{-1}$; PAR0: μmol PAR $m^{-2}s^{-1}$; α_1 , k_2 : μmol
574	$CO_2 \text{ m}^{-2}\text{s}^{-1} C^{-1}$; α_2 , k_3 : $\mu \text{mol } CO_2 \text{ m}^{-2}\text{s}^{-1} C^{-2}$; temperature and the temperature parameters are in
575	°C. Parameters for shrub and grass are specifically optimized for this study, but other parameters
576	are taken from Gourdji et al (2020).

	Evergreen Forest	Deciduous Forest	Mixed forest	Shrub	Savanna	Crop	Grass
T _{crit}	1	13	2	12	11	-1	3
T_{scale2}	0.05	0.1	0.05	0	0.2	0.05	0.2
T_{min}	0	0	0	0	0	2	2
T_{opt}	20	20	20	20	20	25	18
T_{max}	40	40	40	40	40	40	40
PAR_0	477.3	594	453	320	722	2782	900
λ	-0.122	-0.096	-0.121	-0.074	-0.10	-0.078	-0.124
β	0.560	-14.048	0.077	0.922	-4.124	-0.156	-1.650
α_1	0.120	1.766	0.132	-0.114	0.68	0.072	0.180
α_2	0.003	-0.048	0.001	0.002	-0.018	-0.001	-0.006
γ	1.430	5.349	3.20	5.944	3.269	5.501	9.050
k_1	-0.531	9.008	-0.799	0.570	2.698	0.145	0.944
k_2	0.181	-1.207	0.182	-0.109	-0.382	-0.152	-0.260
<i>k</i> ₃	-0.005	0.038	-0.002	0.004	0.016	0.016	0.013

578	Table 2	configurations	for nested-doma	in sensitivity	simulations
570		configurations	tor nesteu-donna	III Selisitivity	sinnulations

Simulations	configuration	Purpose
Control	fully coupled	to diagnose the formation mechanism of the CO ₂
		band ahead of the cold front
clear-sky- photosynthesis	use clear-sky radiation to drive VPRM	The difference between clear-sky-photosynthesis and control runs shows the impact of clouds shading on terrestrial CO_2 fluxes, and subsequent impact on frontal CO_2 structures
clear-sky- surface-energy	use clear-sky radiation to drive the Noah land surface model	The difference between clear-sky-surface-energy and control runs shows the impact of clouds on surface energy balance, and subsequent impact on frontal CO ₂ structures

- 3 Table 3. Overall statistics for simulated CO₂ over six NOAA towers during both daytime and nighttime by
- 4 WRF-VPRM_G in this study and WRF-VPRM in Hu et al. (2020b).
- 5 The metrics include correlation coefficient r, mean bias (MB), mean absolute gross error (MAGE), root mean-
- 6 square error (RMSE), and normalized mean bias (NMB). Their formula can be found in Seigneur et al. (2000).

		day and night										
Sites	AMT		BAO		LEF		SCT		WBI		WKT	
Simulations	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM
Mean obs, ppm	415.12	415.12	417.12	417.12	411.33	411.33	416.47	416.47	416.19	416.19	414.32	414.32
Mean sim, ppm	410.84	406.16	414.72	412.66	410.05	405.63	417.67	414.42	415.42	409.39	415.59	410.72
Number	8153	8153	4742	4742	8124	8124	7940	7940	7754	7754	8024	8024
r	0.52	0.34	0.51	0.45	0.65	0.57	0.75	0.71	0.63	0.46	0.71	0.57
MB, ppm	-4.28	-8.96	-2.39	-4.45	-1.29	-5.70	1.20	-2.05	-0.77	-6.80	1.27	-3.61
MAGE, ppm	7.91	10.19	6.89	7.41	5.31	6.77	5.84	6.07	7.04	8.81	5.07	5.74
RMSE, ppm	15.54	19.00	10.84	11.80	9.05	11.52	8.03	8.74	11.58	15.48	7.01	8.84
NMB, %	-1.0	-2.2	-0.6	-1.1	-0.3	-1.4	0.3	-0.5	-0.2	-1.6	0.3	-0.9

7 8

Table 4. Evaluation statistics for simulated CO₂ over six NOAA towers during daytime between 10-18 CST.

		late day (10-18CST)										
Sites	AMT		BAO		LEF		SCT		WBI		WKT	
Simulations	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM
Mean obs, ppm	405.57	405.57	412.52	412.52	405.62	405.62	407.39	407.39	408.43	408.43	408.25	408.25
Mean sim, ppm	406.5	403.43	410.96	410.3	407.36	403.98	410.57	408.4	411.04	406.81	410.95	408.44
Number	2836	2836	1642	1642	2826	2826	2771	2771	2676	2676	2782	2782
r	0.86	0.84	0.51	0.46	0.90	0.91	0.75	0.75	0.86	0.86	0.78	0.76
MB, ppm	0.92	-2.15	-1.56	-2.23	1.74	-1.64	3.19	1.02	2.61	-1.62	2.70	0.19
MAGE, ppm	3.98	4.28	5.62	5.88	3.68	3.48	4.86	4.13	5.32	4.85	4.14	3.28
RMSE, ppm	5.75	6.4	10.41	10.84	5.22	5.11	6.52	5.70	7.38	7.19	5.44	4.56
NMB, %	0.2	-0.5	-0.4	-0.5	0.4	-0.4	0.8	0.2	0.6	-0.4	0.7	0

9 0

Table 5. Evaluation statistics for simulated CO₂ over six NOAA towers during nighttime between 22-06 CST.

		late night (22-06CST)										
Sites	AMT		BAO		LEF		SCT		WBI		WKT	
Simulations	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM	VPRM_G	VPRM
Mean obs, ppm	424.99	424.99	421.1	421.1	416.99	416.99	424.73	424.73	423.13	423.13	419.43	419.43
Mean sim, ppm	414.62	408.58	417.85	414.65	412.58	407.26	423.64	419.52	418.95	411.67	419.22	412.53
Number	3197	3197	1865	1865	3182	3182	3100	3100	3055	3055	3152	3152
r	0.21	-0.12	0.39	0.34	0.24	0.11	0.57	0.50	0.31	-0.02	0.53	0.32
MB, ppm	-10.38	-16.42	-3.25	-6.45	-4.41	-9.72	-1.08	-5.20	-4.19	-11.46	-0.21	-6.9
MAGE, ppm	12.69	16.88	7.93	8.81	7.10	10.16	6.52	7.82	8.86	12.50	5.75	8.06
RMSE, ppm	22.79	27.79	11.29	12.79	12.02	15.91	9.10	10.89	14.67	20.66	8.11	11.54
NMB, %	-2.4	-3.9	-0.8	-1.5	-1.1	-2.3	-0.3	-1.2	-1.	-2.7	0	-1.6

593 Figure captions:

Figure 1. (a) enhanced vegetation index (EVI) on 4 August 2016, and (b) dominant vegetation types including water, evergreen forest, deciduous forest, mixed forest, shrubland, savanna, cropland, grassland, and urban derived from MODIS data in the simulation domain. The second domain with a 4 km grid spacing over the Northern Great Plains is marked. Six NOAA tower sites (LEF [WI], AMT [ME], WBI [IA], SCT [SC], BAO [CO], and WKT [TX]) are marked with hollow diamonds. The ACT-America B200 flight track is also marked. (c) MODIS cloud image on this day overlaid with OCO-2 XCO₂ observation.

601

Figure 2. Evaluation of (a,b) hourly CO₂ flux and (c,d) its median diurnal variation during growing season simulated by (left) VPRM with respiration parametrization using eq. (2) (Mahadevan et al., 2008) and (right) VPRM_G using eq. (4) (Gourdji et al., 2020) comparing to the NEE measurements at US-Ne3, a crop site. Growing season mean bias (MB) of day and nighttime fluxes are marked in (a) and (b).

607

608 Figure 3. Near-surface CO_2 in 2016, observed at six NOAA tower sites and simulated by WRF-609 VPRM_G. Note that CO_2 is measured at different heights AGL at different towers, simulated 610 values are extracted at the corresponding model height. Nighttime and daytime mean bias (MB) 611 of CO_2 at each site is marked.

612

Figure 4. Median diurnal variation of near-surface CO₂ during growing season (June-September) in 2016, observed at six NOAA tower sites and simulated by WRF-VPRM_G. Note that CO₂ is measured at different heights AGL at different towers, simulated values are extracted at the corresponding model height.

617

Figure 5. Near-surface CO₂ in first half of July 2016 (growing season for most sites), observed at
six NOAA tower sites and simulated by WRF-VPRM_G in this study and WRF-VPRM in Hu et
al. (2020b). Nighttime is shaded.

621

Figure 6. Mean CO₂ profiles in growing season (June-September) of 2016 (1st row) observed at
(left) LEF and (right) AMT NOAA towers and simulated by (2nd row) WRF-VPRM_G in this
study and (3rd row) WRF-VPRM in Hu et al. (2020b).

625

626 Figure 7. same as Figure 5, but at (left) WBI and (right) SCT NOAA towers.

627

628 Figure 8. same as Figure 5, but at (left) BAO and (right) WKT NOAA towers.

- 630 Figure 9. (1st row) Profiles of CO₂, potential temperature (θ), and water vapor mixing ratio 631 simulated at 1000 CST and observed during the C130 ascending time between 1000-1015 CST on 632 August 4 over the Lincoln airport (40.8367°N, 96.7619°W), and profiles of (left to right) wind 633 speed, θ , and water vapor mixing ratio at 0600 CST on August 4 simulated and observed at 634 sounding sites: (2nd-4th rows) KLBF, KOAX, and KTOP, which are marked on Fig. 10. 635
- 636 Figure 10. (a,c) horizontal (at ~995m above sea level) and (b,d) vertical cross sections of (left)
- 637 CO₂ and (right) equivalent potential temperature (θ_e) through the B200 flight track at 1200 CST
- on August 4 simulated by WRF-VPRM_G, overlaid with B200 aircraft CO₂ data. Note that the
- flight path and CO_2 data are marked in panel a. The CST time is marked along the flight path.
- 640
- Figure 11. (a) vertical cross sections of total CO₂ through the B200 flight track at 1200 CST on
 August 4 simulated by WRF-VPRM_G in the nested inner domain, overlaid with B200 aircraft
 CO₂ data and (b-f) CO₂ components including background, biogenic, anthropogenic, respiration,
 and photosynthesis CO₂. Location of Lincoln is marked using a star on X-Axis.
- 645

Figure 12. (a) Total CO₂ through the B200 flight track at 1200 CST on August 4 in the nested inner
domain simulated by WRF-VPRM_G and WRF-VPRM, along with B200 aircraft CO₂ data in the
boundary layer during 11:20-13:10 CST and (b-f) simulated CO₂ components including
background, biogenic, anthropogenic, respiration, and photosynthesis CO₂. Location of Lincoln is
marked using a star on X-Axis.

- 651
- Figure 13. (top to bottom) Surface biogenic CO₂, respiration, and photosynthesis CO₂ at (a,b,c) 08
 and (d,e,f) 12 CST. B200 aircraft CO₂ data in the boundary layer is overlaid for location reference.
- Figure 14. (a) vertical cross sections of total CO_2 through the B200 flight track at 0200 CST on August 4 simulated by WRF-VPRM_G in the nested inner domain, overlaid with B200 aircraft CO₂ data and (b-d) CO₂ components including background, biogenic, anthropogenic CO₂, (e-f) vertical velocity, and hydrometer mixing ratio.
- 659
- 660 Figure 15. (top to bottom) surface short wave radiation, GEE, and biogenic CO_2 simulated by (left) 661 control and (middle) the clear-sky-photosynthesis sensitivity simulation, and (right) their 662 difference at 10 CST. B200 aircraft CO_2 data in the boundary layer at ~12 CST is overlaid.
- 663
- Figure 16. difference of (top to bottom) surface short wave radiation, GEE, and biogenic CO_2 simulated by the control and the clear-sky-photosynthesis sensitivity simulation, at (left) 11 CST and (right) 12 CST. B200 aircraft CO_2 data in the boundary layer at ~12 CST is overlaid.
- 667
- Figure 17. same as Figure 12, but simulated by the Sensitivity1 (clear-sky-photosynthesis) and
 Sensitivity2 (clear-sky-surface-energy) simulations.
- 670
- Figure 18. (top to bottom) temperature at 2 m AGL (T2), NEE, and biogenic CO₂ simulated by
- 672 (left) control and (middle) the clear-sky-surface-energy sensitivity simulation, and (right) their
- 673 difference at 10 CST. B200 aircraft CO_2 data in the boundary layer at ~12 CST is overlaid.
- 674

References:

676	Ai, J., Xiao, S., Feng, H., Wang, H., Jia, G., & Hu, Y. (2020). A global terrestrial ecosystem
677	respiration dataset (2001-2010) estimated with MODIS land surface temperature and
678	vegetation indices. Big Earth Data, 4(2), 142-152. 10.1080/20964471.2020.1768001
679	Aubinet, M. (2008). EDDY COVARIANCE CO2 FLUX MEASUREMENTS IN NOCTURNAL
680	CONDITIONS: AN ANALYSIS OF THE PROBLEM. Ecological Applications, 18(6),
681	1368-1378. https://doi.org/10.1890/06-1336.1
682	Bakwin, P. S., Tans, P. P., Hurst, D. F., & Zhao, C. (1998). Measurements of carbon dioxide on
683	very tall towers: results of the NOAA/CMDL program. Tellus B: Chemical and Physical
684	Meteorology, 50(5), 401-415. 10.3402/tellusb.v50i5.16216
685	Ballav, S., Patra, P. K., Sawa, Y., Matsueda, H., Adachi, A., Onogi, S., De, U. K. (2016).
686	Simulation of CO2concentrations at Tsukuba tall tower using WRF-CO2tracer transport
687	model. Journal of Earth System Science, 125(1), 47-64. 10.1007/s12040-015-0653-y
688	Barth, M. C., Kim, S. W., Wang, C., Pickering, K. E., Ott, L. E., Stenchikov, G., Telenta, B.
689	(2007). Cloud-scale model intercomparison of chemical constituent transport in deep
690	convection. Atmos. Chem. Phys., 7(18), 4709-4731. 10.5194/acp-7-4709-2007
691	Bell, E., O'Dell, C. W., Davis, K. J., Campbell, J., Browell, E., Scott Denning, A., Weir, B.
692	(2020). Evaluation of OCO-2 X Variability at Local and Synoptic Scales using Lidar and
693	In Situ Observations from the ACT-America Campaigns. Journal of Geophysical
694	Research: Atmospheres, 125(10), e2019JD031400. 10.1029/2019jd031400
695	Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S. W., Evan, S., McKeen, S. A., Trainer,
696	M. (2013). Top-down estimate of surface flux in the Los Angeles Basin using a
697	mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx
698	and CO2 and their impacts. Atmospheric Chemistry and Physics, 13(7), 3661-3677.
699	10.5194/acp-13-3661-2013
700	Brioude, J., Petron, G., Frost, G. J., Ahmadov, R., Angevine, W. M., Hsie, E. Y., Gurney, K.
701	R. (2012). A new inversion method to calculate emission inventories without a prior at
702	mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas.
703	Journal of Geophysical Research-Atmospheres, 117. D05312, 10.1029/2011jd016918
704	Buchmann, N. (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies
705	stands. Soil Biology and Biochemistry, 32(11), 1625-1635.
706	https://doi.org/10.1016/S0038-0717(00)00077-8
707	Chan, D., YUEN, C. W., HIGUCHI, K., SHASHKOV, A., LIU, J., CHEN, J., & WORTHY, D.
708	(2004). On the CO2 exchange between the atmosphere and the biosphere: the role of
709	synoptic and mesoscale processes. Tellus Series B-Chemical and Physical Meteorology,
710	56(3), 194-212. 10.1111/j.1600-0889.2004.00104.x
711	Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface-hydrology model with the
712	Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity.
713	Monthly Weather Review, 129(4), 569-585. Doi 10.1175/1520-
714	0493(2001)129<0569:Caalsh>2.0.Co;2
715	Crevoisier, C., Sweeney, C., Gloor, M., Sarmiento, J. L., & Tans, P. P. (2010). Regional US
716	carbon sinks from three-dimensional atmospheric CO ₂ sampling.
717	Proceedings of the National Academy of Sciences, 107(43), 18348-18353.
710	10 1072/mag 0000062107

718 10.1073/pnas.0900062107

- Davidson, E. A., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as
 independent or confounded factors controlling soil respiration in a temperate mixed
 hardwood forest. *Global Change Biology*, 4(2), 217-227. 10.1046/j.13652486.1998.00128.x
- Davis, K. J., Bakwin, P. S., Yi, C., Berger, B. W., Zhao, C., Teclaw, R. M., & Isebrands, J. G.
 (2003). The annual cycles of CO2 and H2O exchange over a northern mixed forest as
 observed from a very tall tower. *Global Change Biology*, 9(9), 1278-1293.
 doi:10.1046/j.1365-2486.2003.00672.x
- Davis, K. J., Obland, M. D., Lin, B., Lauvaux, T., O'Dell, C., Meadows, B., . . . Pauly, R. M.
 (2018). ACT-America: L3 Merged In Situ Atmospheric Trace Gases and Flask Data,
 Eastern USA: ORNL Distributed Active Archive Center,
 <u>https://doi.org/10.3334/ORNLDAAC/1593</u>.
- Dayalu, A., Munger, J. W., Wofsy, S. C., Wang, Y., Nehrkorn, T., Zhao, Y., . . . Luus, K. (2018).
 Assessing biotic contributions to CO2 fluxes in northern China using the Vegetation,
 Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to
 2009. *Biogeosciences*, 15(21), 6713-6729. 10.5194/bg-15-6713-2018
- Diaz-Isaac, L. I., Lauvaux, T., & Davis, K. J. (2018). Impact of physical parameterizations and
 initial conditions on simulated atmospheric transport and CO2 mole fractions in the US
 Midwest. *Atmospheric Chemistry and Physics*, *18*(20), 14813-14835. 10.5194/acp-1814813-2018
- Digangi, J. P., Choi, Y., Nowak, J. B., Halliday, H. S., & Yang, M. M. (2018). ACT-America: L2
 In Situ Atmospheric CO2, CO, CH4, and O3 Concentrations, Eastern USA. Retrieved
 from: <u>https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1556</u>
- Dong, J. W., Xiao, X. M., Wagle, P., Zhang, G. L., Zhou, Y. T., Jin, C., . . . Moore, B. (2015).
 Comparison of four EVI-based models for estimating gross primary production of maize
 and soybean croplands and tallgrass prairie under severe drought. *Remote Sensing of Environment, 162*, 154-168. 10.1016/j.rse.2015.02.022
- Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon
 Experiment Using a Mesoscale Two-Dimensional Model. *Journal of the Atmospheric Sciences*, 46(20), 3077-3107. Doi 10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2
- Fang, C., & Moncrieff, J. B. (2001). The dependence of soil CO2 efflux on temperature. *Soil Biology and Biochemistry*, 33(2), 155-165. <u>https://doi.org/10.1016/S0038-</u>
 0717(00)00125-5
- Gomez, B., & Miguez-Macho, G. (2017). The impact of wave number selection and spin-up time
 in spectral nudging. *Quarterly Journal of the Royal Meteorological Society*, 143(705),
 1772-1786. 10.1002/qj.3032
- Gourdji, S. M., Lopez-Coto, I., Karion, A., Mueller, K., Ghosh, S., Baker, I., ... Zhou, Y.
 (2020). Modeling (and evaluating) the upwind biosphere for urban CO2 inversions in the Northeast Corridor. Paper presented at the ACT-America Community Workshop, https://drive.google.com/drive/folders/1hm0e0OuIp3g4TAO8KWejSfc7VW9ZXoUA.
- Grell, G. A., & Devenyi, D. (2002). A generalized approach to parameterizing convection
 combining ensemble and data assimilation techniques. *Geophysical Research Letters*,
 29(14). 1693, 10.1029/2002gl015311
- Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun, X.-M., & Jin, C.-J. (2006). CO2
 fluxes over an old, temperate mixed forest in northeastern China. *Agricultural and Forest Meteorology*, *137*(3), 138-149. <u>https://doi.org/10.1016/j.agrformet.2006.02.003</u>

- Haynes, K. D., Baker, I. T., Denning, A. S., Stöckli, R., Schaefer, K., Lokupitiya, E. Y., &
 Haynes, J. M. (2019). Representing Grasslands Using Dynamic Prognostic Phenology
 Based on Biological Growth Stages: 1. Implementation in the Simple Biosphere Model
 (SiB4). *Journal of Advances in Modeling Earth Systems*, *11*(12), 4423-4439.
 10.1029/2018ms001540
- Hilton, T. W., Davis, K. J., Keller, K., & Urban, N. M. (2016). NACP VPRM NEE Parameters
 Optimized to North American Flux Tower Sites, 2000-2006. Retrieved from: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1349
- Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit
 treatment of entrainment processes. *Monthly Weather Review*, 134(9), 2318-2341. Doi
 10.1175/Mwr3199.1
- Houghton, J. T., & Moir, D. W. (1977). *The Physics of Atmospheres*: Cambridge University
 Press.
- Hu, X.-M., Crowell, S., Wang, Q., Feng, S., & Davis, K. (2020a). *Examine CO2 bands along cold fronts observed during ACT-America using WRF-VPRM*. Paper presented at the
 ACT-America Community Workshop,
- 781 <u>https://drive.google.com/drive/folders/1hm0e0QuIp3g4TAQ8KWejSfc7VW9ZXoUA</u>.
- Hu, X.-M., Doughty, D. C., Sanchez, K. J., Joseph, E., & Fuentes, J. D. (2012). Ozone variability
 in the atmospheric boundary layer in Maryland and its implications for vertical transport
 model. *Atmospheric Environment*, 46, 354-364. DOI 10.1016/j.atmosenv.2011.09.054
- Hu, X.-M., Fuentes, J. D., & Zhang, F. (2010a). Downward transport and modification of
 tropospheric ozone through moist convection. *Journal of Atmospheric Chemistry*, 65(1),
 13-35. 10.1007/s10874-010-9179-5
- Hu, X.-M., Klein, P. M., & Xue, M. (2013). Evaluation of the updated YSU planetary boundary
 layer scheme within WRF for wind resource and air quality assessments. *Journal of Geophysical Research-Atmospheres*, *118*(18), 10490-10505. 10.1002/jgrd.50823
- Hu, X.-M., Nielsen-Gammon, J. W., & Zhang, F. Q. (2010b). Evaluation of Three Planetary
 Boundary Layer Schemes in the WRF Model. *Journal of Applied Meteorology and Climatology*, 49(9), 1831-1844. 10.1175/2010jamc2432.1
- Hu, X.-M., Xue, M., Kong, F., & Zhang, H. (2019a). Meteorological Conditions During an
 Ozone Episode in Dallas-Fort Worth, Texas, and Impact of Their Modeling Uncertainties
 on Air Quality Prediction. *Journal of Geophysical Research: Atmospheres, 124*(4), 19411961. 10.1029/2018jd029791
- Hu, X.-M., Xue, M., & Li, X. (2019b). The Use of High-Resolution Sounding Data to Evaluate
 and Optimize Nonlocal PBL Schemes for Simulating the Slightly Stable Upper
 Convective Boundary Layer. *Monthly Weather Review*, 147(10), 3825-3841.
 10.1175/mwr-d-19-0085.1
- Hu, X. M., Crowell, S., Wang, Q., Zhang, Y., Davis, K. J., Xue, M., . . . DiGangi, J. P. (2020b).
 Dynamical Downscaling of CO2 in 2016 Over the Contiguous United States Using WRFVPRM, a Weather-Biosphere-Online-Coupled Model. *Journal of Advances in Modeling Earth Systems*, *12*(4), e2019MS001875. 10.1029/2019ms001875
- Hu, X. M., Xue, M., & McPherson, R. A. (2017). The Importance of Soil-Type Contrast in
 Modulating August Precipitation Distribution Near the Edwards Plateau and Balcones
 Escarpment in Texas. *Journal of Geophysical Research-Atmospheres*, *122*(20), 1071110728. 10.1002/2017jd027035

- Hu, X. M., Xue, M., McPherson, R. A., Martin, E., Rosendahl, D. H., & Qiao, L. (2018).
 Precipitation Dynamical Downscaling Over the Great Plains. *Journal of Advances in Modeling Earth Systems*, 10(2), 421-447. 10.1002/2017ms001154
- Hurwitz, M. D., Ricciuto, D. M., Bakwin, P. S., Davis, K. J., Wang, W., Yi, C., & Butler, M. P.
 (2004). Transport of Carbon Dioxide in the Presence of Storm Systems over a Northern
 Wisconsin Forest. *Journal of the Atmospheric Sciences*, *61*(5), 607-618. 10.1175/15200469(2004)061<0607:Tocdit>2.0.Co;2
- Jiang, J. H., Livesey, N. J., Su, H., Neary, L., McConnell, J. C., & Richards, N. A. D. (2007).
 Connecting surface emissions, convective uplifting, and long-range transport of carbon
 monoxide in the upper troposphere: New observations from the Aura Microwave Limb
 Sounder. *Geophysical Research Letters*, 34(18). 10.1029/2007gl030638
- Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., & Potter, G. L.
 (2002). NCEP-DOE AMIP-II reanalysis (R-2). *Bulletin of the American Meteorological Society*, 83(11), 1631-1643. 10.1175/Bams-83-11-1631
- Konovalov, I. B., Berezin, E. V., Ciais, P., Broquet, G., Beekmann, M., Hadji-Lazaro, J., ...
 Schulze, E. D. (2014). Constraining CO₂ emissions from open biomass
 burning by satellite observations of co-emitted species: a method and its application to
 wildfires in Siberia. *Atmos. Chem. Phys.*, 14(19), 10383-10410. 10.5194/acp-14-103832014
- Langford, A. O., Tucker, S. C., Senff, C. J., Banta, R. M., Brewer, W. A., Alvarez II, R. J., ...
 Williams, E. J. (2010). Convective venting and surface ozone in Houston during TexAQS
 2006. Journal of Geophysical Research: Atmospheres, 115(D16). 10.1029/2009jd013301
- Lee, T. R., De Wekker, S. F. J., Andrews, A. E., Kofler, J., & Williams, J. (2012). Carbon
 dioxide variability during cold front passages and fair weather days at a forested
 mountaintop site. *Atmospheric Environment*, *46*, 405-416.
 https://doi.org/10.1016/j.atmosenv.2011.09.068
- Li, X., Hu, X.-M., Cai, C., Jia, Q., Zhang, Y., Liu, J., . . . Crowell, S. M. R. (2020). Terrestrial
 CO2 Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and
 Modeling Studies. *Journal of Geophysical Research: Atmospheres*, e2019JD031686.
 10.1029/2019jd031686
- Lindenmaier, R., Dubey, M. K., Henderson, B. G., Butterfield, Z. T., Herman, J. R., Rahn, T., &
 Lee, S. H. (2014). Multiscale observations of CO2, (CO2)-C-13, and pollutants at Four
 Corners for emission verification and attribution. *Proceedings of the National Academy*of Sciences of the United States of America, 111(23), 8386-8391.
- 844 10.1073/pnas.1321883111
- Lloyd, J., & Taylor, J. A. (1994). On the Temperature Dependence of Soil Respiration. *Functional Ecology*, 8(3), 315-323. 10.2307/2389824
- Lopez-Coto, I., Prasad, K., & Whetstone, J. R. (2017). Carbon Dioxide Biogenic vs
 Anthropogenic Sectoral Contribution for the Indianapolis Flux Experiment (INFLUX).
 Retrieved from Gaithersburg, MD: http://dx.doi.org/10.6028/nist.sp.1237
- Loranty, M. M., Goetz, S. J., Rastetter, E. B., Rocha, A. V., Shaver, G. R., Humphreys, E. R., &
 Lafleur, P. M. (2011). Scaling an Instantaneous Model of Tundra NEE to the Arctic
 Landscape. *Ecosystems*, 14(1), 76-93. 10.1007/s10021-010-9396-4
- Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X. M., Dunn, A. L., Lin, J. C., . . . Gottlieb,
 E. W. (2008). A satellite-based biosphere parameterization for net ecosystem CO2

855	exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global
856	Biogeochemical Cycles, 22(2). Gb2005, 10.1029/2006gb002735
857	Matross, D. M., Andrews, A., Pathmathevan, M., Gerbig, C., Lin, J. C., Wofsy, S. C.,
858	Hollinger, D. Y. (2006). Estimating regional carbon exchange in New England and
859	Quebec by combining atmospheric, ground-based and satellite data. Tellus B: Chemical
860	and Physical Meteorology, 58(5), 344-358. 10.1111/j.1600-0889.2006.00206.x
861	Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative
862	transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
863	longwave. Journal of Geophysical Research-Atmospheres, 102(D14), 16663-16682. Doi
864	10.1029/97id00237
865	Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of Cloud Microphysics on the
866	Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison
867	of One- and Two-Moment Schemes. <i>Monthly Weather Review</i> , 137(3), 991-1007.
868	10.1175/2008mwr2556.1
869	Muravama, S., Saigusa, N., Chan, D., Yamamoto, S., Kondo, H., & Eguchi, Y. (2003), Temporal
870	variations of atmospheric CO2 concentration in a temperate deciduous forest in central
871	Japan. Tellus B. Chemical and Physical Meteorology 55(2), 232-243.
872	10.3402/tellush v55i2.16751
873	O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B.,, Velazco,
874	V. A. (2018). Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2.
875	with the version 8 ACOS algorithm Atmospheric Measurement Techniques 11(12)
876	6539-6576 10 5194/amt-11-6539-2018
877	Oda T Maksvutov S & Andres R I (2018) The Open-source Data Inventory for
878	Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2
879	gridded emissions data product for tracer transport simulations and surface flux
880	inversions Earth Syst Sci Data 10(1) 87-107 10 5194/essd-10-87-2018
881	Otte T L Nolte C G Otte M L & Bowden I H (2012) Does Nudging Squelch the
882	Extremes in Regional Climate Modeling? Journal of Climate 25(20), 7046-7066.
883	10 1175/Icli-D-12-00048 1
884	Pal S Davis K I Lauvaux T Browell E V Gaudet B I Stauffer D R Zhang F
885	(2020) Observations of Greenhouse Gas Changes Across Summer Frontal Boundaries in
886	the Fastern United States Journal of Geophysical Research: Atmospheres 125(5)
887	e2019ID030526_10_1029/2019id030526
888	Parazoo N C Denning A S Kawa S R Corbin K D Lokupitiya R S & Baker I T
889	(2008) Mechanisms for synoptic variations of atmospheric CO ₂ in North
890	America South America and Europe Atmos Chem Phys 8(23) 7239-7254
891	10 5194/acn-8-7239-2008
892	Park C. Park S-Y. Gurney K. R. Gerbig C. DiGangi I. P. Choi Y. & Lee H. W. (2020)
893	Numerical simulation of atmospheric CO2 concentration and flux over the Korean
894	Peninsula using WRF-VPRM model during Korus-AO 2016 campaign <i>Plos One</i> 15(1)
895	e0228106 10 1371/journal none 0228106
896	Peters W Jacobson A R Sweeney C Andrews A F Conway T I Masarie K Tans
897	P P (2007) An atmospheric perspective on North American carbon diovide exchange
898	Carbon Tracker. Proceedings of the National Academy of Sciences of the United States of
899	America $104(48)$ 18925-18930 10 1073/nnas 0708986104
0,,,	1

- Raich, J. W., Potter, C. S., & Bhagawati, D. (2002). Interannual variability in global soil
 respiration, 1980–94. *Global Change Biology*, 8(8), 800-812. 10.1046/j.13652486.2002.00511.x
- Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C. W., Richter, A., . . .
 Burrows, J. P. (2019). Towards monitoring localized CO2 emissions from space: colocated regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. *Atmos. Chem. Phys.*, 19(14), 9371-9383. 10.5194/acp-19-9371-2019
- Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P. G., & Valentini, R. (2002). Annual
 variation in soil respiration and its components in a coppice oak forest in Central Italy. *Global Change Biology*, 8(9), 851-866. 10.1046/j.1365-2486.2002.00521.x
- Schubert, P., Eklundh, L., Lund, M., & Nilsson, M. (2010). Estimating northern peatland CO2
 exchange from MODIS time series data. *Remote Sensing of Environment*, 114(6), 11781189. https://doi.org/10.1016/j.rse.2010.01.005
- Seigneur, C., Pun, B., Pai, P., Louis, J. F., Solomon, P., Emery, C., . . . Tombach, I. (2000).
 Guidance for the performance evaluation of three-dimensional air quality modeling
 systems for particulate matter and visibility. *Journal of the Air & Waste Management Association, 50*(4), 588-599.
- Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Barker, M., Duda, K., ... Powers, J. (2008). A
 description of the advanced research WRF version 3. NCAR Tech. Note TN-475 STR.
- Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for
 weather research and forecasting applications. *Journal of Computational Physics*, 227(7),
 3465-3485. <u>http://dx.doi.org/10.1016/j.jcp.2007.01.037</u>
- Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., . . . Tans, P. P.
 (2015). Seasonal climatology of CO2 across North America from aircraft measurements
 in the NOAA/ESRL Global Greenhouse Gas Reference Network. *Journal of Geophysical Research: Atmospheres*, *120*(10), 5155-5190. doi:10.1002/2014JD022591
- Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., . .
 de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean
 pCO(2), and net sea-air CO2 flux over the global oceans. *Deep-Sea Research Part Ii- Topical Studies in Oceanography*, 56(8-10), 554-577.
- Tang, J., Bolstad, P. V., Desai, A. R., Martin, J. G., Cook, B. D., Davis, K. J., & Carey, E. V.
 (2008). Ecosystem respiration and its components in an old-growth forest in the Great
 Lakes region of the United States. *Agricultural and Forest Meteorology*, *148*(2), 171<u>https://doi.org/10.1016/j.agrformet.2007.08.008</u>
- Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., ... Tans,
 P. P. (2011). Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas
 emissions from airborne measurements over Sacramento, California in spring 2009. *Atmos. Chem. Phys.*, 11(2), 705-721. 10.5194/acp-11-705-2011
- Vincent, C. L., & Hahmann, A. N. (2015). The Impact of Grid and Spectral Nudging on the
 Variance of the Near-Surface Wind Speed. *Journal of Applied Meteorology and Climatology*, 54(5), 1021-1038. 10.1175/Jamc-D-14-0047.1
- Wagle, P., Xiao, X. M., Torn, M. S., Cook, D. R., Matamala, R., Fischer, M. L., ... Biradar, C.
 (2014). Sensitivity of vegetation indices and gross primary production of tallgrass prairie
 to severe drought. *Remote Sensing of Environment*, 152, 1-14. Doi
- 944 10.1016/J.Rse.2014.05.010

- 945 Wang, Q., Crowell, S., Hu, X.-M., & Davis, K. (2020). Evaluation of Online and Offline 946 Regional Modeled CO2 Transport with INFLUX Observations. Paper presented at the the 947 100th AMS Annual Meeting, Boston, 948 https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/364572.
- 949 Wang, W. G., Shen, X. Y., & Huang, W. Y. (2016). A Comparison of Boundary-Layer 950
 - Characteristics Simulated Using Different Parametrization Schemes. Boundary-Layer Meteorology, 161(2), 375-403. 10.1007/s10546-016-0175-4
- 952 Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., & Yavin, Y. G. (2009). Emissions 953 of greenhouse gases from a North American megacity. Geophysical Research Letters, 36. 954 L15810, 10.1029/2009gl039825
- 955 Xiao, X. M., Hollinger, D., Aber, J., Goltz, M., Davidson, E. A., Zhang, Q. Y., & Moore, B. 956 (2004). Satellite-based modeling of gross primary production in an evergreen needleleaf 957 forest. Remote Sensing of Environment, 89(4), 519-534. 10.1016/j.rse.2003.11.008
- 958 Yang, S., Duan, F., Ma, Y., He, K., Zhu, L., Ma, T., . . . Kimoto, T. (2019a). Haze formation 959 indicator based on observation of critical carbonaceous species in the atmosphere. 960 Environmental Pollution, 244, 84-92. https://doi.org/10.1016/j.envpol.2018.10.006
- Yang, Y., Hu, X.-M., Gao, S., & Wang, Y. (2019b). Sensitivity of WRF simulations with the 961 962 YSU PBL scheme to the lowest model level height for a sea fog event over the Yellow 963 Sea. Atmospheric Research, 215, 253-267. 964
 - https://doi.org/10.1016/j.atmosres.2018.09.004
- 965 Yi, C., Davis, K. J., Bakwin, P. S., Denning, A. S., Zhang, N., Desai, A., ... Gerbig, C. (2004). 966 Observed covariance between ecosystem carbon exchange and atmospheric boundary 967 layer dynamics at a site in northern Wisconsin. Journal of Geophysical Research: 968 Atmospheres, 109(D8). 10.1029/2003jd004164
- 969 Yi, C., Davis, K. J., Berger, B. W., & Bakwin, P. S. (2001). Long-Term Observations of the 970 Dynamics of the Continental Planetary Boundary Layer. Journal of the Atmospheric 971 Sciences, 58(10), 1288-1299. 10.1175/1520-0469(2001)058<1288:Ltootd>2.0.Co;2
- 972 Zhang, Y., Xiao, X., Guanter, L., Zhou, S., Ciais, P., Joiner, J., . . . Stocker, B. D. (2016a). 973 Precipitation and carbon-water coupling jointly control the interannual variability of 974 global land gross primary production. Scientific Reports, 6, 39748. 10.1038/srep39748
- 975 Zhang, Y., Xiao, X. M., Jin, C., Dong, J. W., Zhou, S., Wagle, P., ... Moore, B. (2016b). Consistency between sun-induced chlorophyll fluorescence and gross primary production 976 977 of vegetation in North America. Remote Sensing of Environment, 183, 154-169. 978 10.1016/j.rse.2016.05.015
- 979 Zhang, Y., Xiao, X. M., Wolf, S., Wu, J., Wu, X. C., Gioli, B., . . . Ardo, J. (2018). Spatio-980 Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation 981 Absorption by Canopy Chlorophyll. Geophysical Research Letters, 45(8), 3508-3519. 982 10.1029/2017gl076354
- 983 Zhang, Y., Xiao, X. M., Wu, X. C., Zhou, S., Zhang, G. L., Qin, Y. W., & Dong, J. W. (2017). 984 Data Descriptor: A global moderate resolution dataset of gross primary production of 985 vegetation for 2000-2016. Scientific Data, 4. 170165, 10.1038/sdata.2017.165
- 986 Zhou, Y., Williams, C. A., Lauvaux, T., Davis, K. J., Feng, S., Baker, I., ... Wei, Y. (2020). A 987 Multiyear Gridded Data Ensemble of Surface Biogenic Carbon Fluxes for North 988 America: Evaluation and Analysis of Results. Journal of Geophysical Research: 989 Biogeosciences, 125(2), e2019JG005314. 10.1029/2019jg005314
- 990

Figures.

Figure 1. (a) enhanced vegetation index (EVI) on 4 August 2016, and (b) dominant vegetation types including water, evergreen forest, deciduous forest, mixed forest, shrubland, savanna, cropland, grassland, and urban derived from MODIS data in the simulation domain. The second domain with a 4 km grid spacing over the Northern Great Plains is marked. Six NOAA tower sites (LEF [WI], AMT [ME], WBI [IA], SCT [SC], BAO [CO], and WKT [TX]) are marked with hollow diamonds. The ACT-America B200 flight track is also marked. (c) MODIS cloud image on this day overlaid with OCO-2 XCO₂ observation.

Figure 2. Evaluation of (a,b) hourly CO₂ flux and (c,d) its median diurnal variation during growing season simulated by (left) VPRM with respiration parametrization using eq. (2) (Mahadevan et al., 2008) and (right) VPRM_G using eq. (4) (Gourdji et al., 2020) comparing to the NEE measurements at US-Ne3, a crop site. Growing season mean bias (MB) of day and nighttime fluxes are marked in (a) and (b).

Figure 3. Near-surface CO₂ in 2016, observed at six NOAA tower sites and simulated by WRF-VPRM_G. Note that CO₂ is measured at different heights AGL at different towers, simulated values are extracted at the corresponding model height. Nighttime and daytime mean bias (MB) of CO₂ at each site is marked.

Figure 4. Median diurnal variation of near-surface CO₂ during growing season (June-September) in 2016, observed at six NOAA tower sites and simulated by WRF-VPRM_G. Note that CO₂ is measured at different heights AGL at different towers, simulated values are extracted at the corresponding model height.

Figure 5. Near-surface CO₂ in first half of July 2016 (growing season for most sites), observed at six NOAA tower sites and simulated by WRF-VPRM_G in this study and WRF-VPRM in Hu et al. (2020). Nighttime is shaded.

Figure 6. Mean CO_2 profiles in growing season (June-September) of 2016 (1st row) observed at (left) LEF and (right) AMT NOAA towers and simulated by (2nd row) WRF-VPRM_G in this study and (3rd row) WRF-VPRM in Hu et al. (2020).

Figure 7. same as Figure 6, but at (left) WBI and (right) SCT NOAA towers.

Figure 8. same as Figure 6, but at (left) BAO and (right) WKT NOAA towers.

Figure 9. (1st row) Profiles of CO₂, potential temperature (θ), and water vapor mixing ratio simulated at 1000 CST and observed during the C130 ascending time between 1000-1015 CST on August 4 over the Lincoln airport (40.8367°N, 96.7619°W), and profiles of (left to right) wind speed, θ , and water vapor mixing ratio at 0600 CST on August 4 simulated and observed at sounding sites: (2nd-4th rows) KLBF, KOAX, and KTOP, which are marked on Fig. 10.

Figure 10. (a,c) horizontal (at ~995m above sea level) and (b,d) vertical cross sections of (left) CO₂ and (right) equivalent potential temperature (θ_e) through the B200 flight track at 1200 CST on August 4 simulated by WRF-VPRM_G, overlaid with B200 aircraft CO₂ data. Note that the flight path and CO₂ data are marked in panel a. The CST time is marked along the flight path.

Figure 11. (a) vertical cross sections of total CO₂ through the B200 flight track at 1200 CST on August 4 simulated by WRF-VPRM_G in the nested inner domain, overlaid with B200 aircraft CO₂ data and (b-f) CO₂ components including background, biogenic, anthropogenic, respiration, and photosynthesis CO₂. Location of Lincoln is marked using a star on X-Axis.

Figure 12. (a) Total CO₂ through the B200 flight track at 1200 CST on August 4 in the nested inner domain simulated by WRF-VPRM_G in this study and WRF-VPRM in Hu et al. (2020), along with B200 aircraft CO₂ data in the boundary layer during 11:20-13:10 CST and (b-f) simulated CO₂ components including background, biogenic, anthropogenic, respiration, and photosynthesis CO₂. Location of Lincoln is marked using a star on X-Axis.

Figure 13. (top to bottom) Surface biogenic CO_2 , respiration, and photosynthesis CO_2 at (a,b,c) 08 and (d,e,f) 12 CST. B200 aircraft CO_2 data in the boundary layer is overlaid for location reference.

Figure 14. (a) vertical cross sections of total CO₂ through the B200 flight track at 0200 CST on August 4 simulated by WRF-VPRM_G in the nested inner domain, overlaid with B200 aircraft CO₂ data and (b-d) CO₂ components including background, biogenic, anthropogenic CO₂, (e-f) vertical velocity, and hydrometer mixing ratio.

Figure 15. (top to bottom) surface short wave radiation, GEE, and biogenic CO₂ simulated by (left) control and (middle) the clear-sky-photosynthesis sensitivity simulation, and (right) their difference at 10 CST. B200 aircraft CO₂ data in the boundary layer at \sim 12 CST is overlaid.

Figure 16. difference of (top to bottom) surface short wave radiation, GEE, and biogenic CO_2 simulated by the control and the clear-sky-photosynthesis sensitivity simulation, at (left) 11 CST and (right) 12 CST. B200 aircraft CO_2 data in the boundary layer at ~12 CST is overlaid.

Figure 17. same as Figure 12, but simulated by the Sensitivity1 (clear-sky-photosynthesis) and Sensitivity2 (clear-sky-surface-energy) simulations.

Figure 18. (top to bottom) temperature at 2 m AGL (T2), NEE, and biogenic CO₂ simulated by (left) control and (middle) the clear-sky-surface-energy sensitivity simulation, and (right) their difference at 10 CST. B200 aircraft CO₂ data in the boundary layer at \sim 12 CST is overlaid.